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Abstract

These notes aim to give a brief introduction to the provable security paradigm in
cryptography. We will focus on game-based security definitions using reductionist proofs: a
security property for a cryptographic scheme is defined as a game between a challenger and
an adversary, and security is usually shown by reducing the problem of winning the game
(and thereby “breaking” security) to the problem of breaking some underlying hard problem.
We structure our proofs primarily using sequences of games. We will develop the techniques
using three examples: the collision resistance of the Merkle–Damg̊ard construction for hash
functions, the semantic security of the basic ElGamal public key encryption scheme, and the
unforgeability of the RSA Full-Domain Hash signature scheme in the random oracle model.
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1 Starting off with hash functions

Definition 1 (Hash function). A hash function H : {0, 1}∗ → {0, 1}λ maps arbitrary-length
binary strings to binary strings of length λ.

There are several properties that applications often want from hash functions:

• Collision-resistance: It should be hard to find two distinct inputs x and x′ such that
H(x) = H(x′).
• Preimage resistance: Given y ∈ {0, 1}λ, it should be hard to find a value x such that
H(x) = y.
• Second preimage resistance: Given x, it should be hard to find a value x′ 6= x such that
H(x) = H(x′).

To prove that a hash function has collision resistance, we need a more precise definition.

For now, we will put aside what it means to be “hard”, and instead begin by trying to define
the task for an attacker and measure that attacker’s ability to complete the task.

1.1 Security experiment

A security experiment is a game played between two algorithms: a challenger and an attacker.
The challenger typically does three things:

1. Setup. Sets up the experiment, for example by generating any parameters or long-term
keys.

2. Execution. Executes the adversary by giving it some input, letting it run, optionally
interacting with it, and receiving the output of the adversary.

3. Winning condition. Deciding if the adversary has completed the task (“won the game”).

The challenger in the security experiment for collision resistance (coll) of a hash function H
against an attacker A is shown in Figure 1.

Expcoll
H (A)

1: // Execution:

2: (x, x′)
$← A()

3: // Winning condition:
4: if (x 6= x′) and (H(x) = H(x′)) then
5: return 1
6: else
7: return 0
8: end if

Figure 1: Security experiment for collision resis-
tance

The adversary A is usually considered to
be a probabilistic algorithm. Formally defin-
ing algorithms is more work than we will do
here, but can be done rigourously using Tur-
ing machines. A probabilistic algorithm A
most generally is a deterministic algorithm
that takes as input a value x and randomness
r ∈ {0, 1}∗ and computes an output y, denoted
y ← A(x; r). Often we assume that the ran-
dom coins are not given explicitly, and instead
are chosen uniformly at random from a set of

an appropriate size ρ, in which case y
$← A(x)

is shorthand for r
$← {0, 1}ρ ; y ← A(x; r).

1.2 Success probability

Once we have a security experiment, we then can measure the attacker’s ability to complete the
task using probability.
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We define the success probability of algorithm A in finding a collision in H as

SucccollH (A) = Pr
(
Expcoll

H (A) = 1
)
,

where the probability is taken over the random coins used by the challenger and by A.

1.3 Security

For a hash function to be collision-resistant, we want the success probability to be zero or small
for all algorithms A. This turns out to be a very high bar (called “information theoretically
secure” or “unconditionally secure”, a special case of which is “perfectly secure”). Few practical
schemes are information theoretically secure. For most practical schemes, we have to consider a
restricted class of attacker algorithms, such as polynomial-time algorithms or algorithms that
take at most 280 steps.

We will hold off quantifying over classes of adversaries for a while since it is a non-trivial
task.

For hash functions, the birthday paradox tells us that there is an algorithm that finds
collisions with reasonable probability in time 2λ/2.

1.4 Building an arbitrary-length hash function

Cryptographers try to build bigger cryptographic schemes from other smaller cryptographic
schemes.

• This allows implementers to re-use software code.
• This allows cryptographers to build secure systems out of secure building blocks.

Recall that our definition of a hash function H : {0, 1}∗ → {0, 1}λ takes arbitrary-length
inputs. It’s hard to build a secure function that works for arbitrary-length inputs. It’s much
easier to build a secure function that takes fixed-length inputs, and then hope we can use that
to build one that takes arbitrary-length inputs.

Definition 2 (Compression function). A compression function h :
{0, 1}µ×{0, 1}λ → {0, 1}λ maps binary strings of length µ+λ to binary
strings of length λ.

h

x1

x2 y

The Merkle–Damg̊ard construction, as shown in Figure 2 builds an arbitrary-length hash
function H : {0, 1}≤264 → {0, 1}λ from a compression function h : {0, 1}µ × {0, 1}λ → {0, 1}λ.

1. Split input m up into µ-bit blocks m = m1‖m2‖ . . . ‖m`, where m` may be less than µ bits
long.

2. Add padding pad = 1000 . . . 0‖L where L is the bit length of m represented as a 64-bit
integer and we use enough zeros to pad out m` to µ bits (or overflow into the next block if
not enough space in m`.

3. Input each block into compression function h along with chained output; use initialization
vector (IV) to get started.

Here’s the theorem we’d like to prove:

Theorem 1 (Collision-resistance of Merkle–Damg̊ard construction). If h is a collision-resistant
compression function, then H (the Merkle–Damg̊ard hash function constructed from h) is
collision-resistant.
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m1 m2 m3 . . . m`‖pad pad

h h h
. . .

h h
IV H(m)

Figure 2: The Merkle–Damg̊ard construction of hash function H from compression function h.

Since we haven’t yet said what it means to be hard, we’ll prove something slightly different:

Theorem 2 (Collision-resistance of Merkle–Damg̊ard construction). Let h be a compression
function and H be the Merkle–Damg̊ard hash function constructed from h. Given a collision
M 6= M ′ for H, “we can easily find” a collision m 6= m′ for h.

Proof. Let Hi and H ′i, respectively denote the intermediate hash values in the computation of
H(M) and H(M ′) respectively: H0 = IV,Hi = h(mi, Hi−1). This constructs a chain of hash
values:

IV = H0 , H1 , . . . , Ht , Ht+1 = H(M)

IV = H0 , H ′1 , . . . , H ′r , H ′r+1 = H(M ′)

with
h(Mt‖pad,Ht) = Ht+1 = H ′r+1 = h(M ′r‖pad′, H ′r) .

If Ht 6= H ′r or Mt 6= M ′r or pad 6= pad′, then we have a collision on h, and we can stop.

Otherwise, we have that Ht = H ′r and Mt = M ′r and pad = pad′. Since pad = pad′ and they
encode t and r respectively, we must have that t = r. So

h(Mt−1, Ht−1) = Ht = H ′t = h(M ′t−1, H
′
t−1) .

If Ht−1 6= H ′t−1 or Mt−1 6= M ′t−1, then we have a collision on h, and we can stop.

Otherwise, we have that Ht−1 = H ′t−1 and Mt = M ′t and Mt−1 = M ′t−1. Iterate all the way
to the beginning, and either

• find a collision on h at some stage, or
• for all i, Mi = M ′i . But this implies M = M ′, which contradicts the assumption M 6= M ′

in the theorem.

Thus we can always “easily find” a collision for h given a collision for H.

The contrapositive allows us to turn the above theorem into a security statement:

Corollary 1. If no one can easily find a collision in the compression function h, then no one
can easily find a collision in the hash function H.

Formalizing “easily find” is sometimes challenging but we will work towards it.

Corollary 2. Let h be a compression function, H be the Merkle–Damg̊ard hash function
constructed from h, and let A be an algorithm that attempts to find a collision in H. Then, for
the algorithm B given implicitly in the proof of Theorem 2,

SucccollH (A) ≤ Succcollh (BA) ,

where BA denotes that B can call A as a subroutine.
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Figure 3: One MD5 operation.
MD5 consists of 64 of these operations, grouped in four rounds of 16 operations. F is a nonlinear function;
one function is used in each of the 4 rounds. Mi denotes a 32-bit block of the message input, and Ki

denotes a 32-bit constant, different for each operation. ≪s denotes a left bit rotation by s places; s
varies for each operation. � denotes addition modulo 232. (Image and caption from Wikipedia.)

The algorithm B acts as a (Turing) reduction from the problem of collision-finding in h to
the problem of collision-finding in H using subroutine A.

1.5 Merkle–Damg̊ard in practice

Many real-world hash functions are built using Merkle–Damg̊ard, such as MD5, SHA-1, and the
SHA-2 family.

Here is one (out of 64) iterations comprising the MD5 compression function hMD5:

Question: Is hMD5 collision-resistant?

Answer:

• Collisions definitely exist. The birthday paradox finds collisions in MD5 in about 2128/2 =
264 operations.
• At the rump session of CRYPTO 2004, Xiaoyun Wang and coauthors gave two colliding

inputs to MD5.
• The best attack at present finds collisions in 218 operations. It is even possible to

construct “meaningful” collisions, such as two different public key certificates or two
different executable files.

That collisions can be easily found in MD5 does not invalidate the security proof of the
Merkle–Damg̊ard construction: both Theorem 2 and Corollary 2 are still valid. What’s not true
is the precondition of Corollary 1, that “no one can easily find a collision in the compression
function” hMD5.

2 Overview of provable security

(This section based in part on lecture slides by Alexander Dent.1)

Provable security aims to show mathematically that a specific property of a scheme cannot

1http://www.cs.bris.ac.uk/Research/CryptographySecurity/SummerSchool2009/slides/Alex.pdf
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be broken by a class of attackers. We need:

• a definition of the scheme
• a definition of security, including an execution environment / model and a winning condition
• a class of attackers
• a proof that no attacker in that class can achieve the winning condition for that scheme

Provable security has several approaches:

Provable
security

Unconditional
(information-

theoretic)
security

Computational
security

Formal
methods

Reductionist
proof

Abstract
cryptography

Game-based
Simulation-

based

Standard model /
Random oracle model / . . .

Concrete / Asymptotic

• Unconditional or information-theoretic security. Security against “all” attackers – no
bound on computation. Examples: Shannon [Sha49], one-time pad, etc. Typically uses
combinatorial or information theory techniques.
• Computational security. Security against a class of attacker algorithms. Typically uses

complexity theoretic techniques.

– Formal methods. Computer-verified security of scheme / protocol. Typically assumes
underlying cryptography is perfect.

– Reductionist proof. Manual proof of security of scheme / protocol. Typically reduces
security of scheme to security of underlying hard problem. Introduced by Goldwasser
and Micali [GM84].

∗ Abstract cryptography or constructive cryptography [Mau05, Mau12]. A recent
approach aiming to describe cryptographic primitives and reductions as algebraic
objects, which can be combined using algebraic rules.
∗ Game-based. Security defined as a game played between a challenger and an

attacker. The challenger’s behaviour defines the security model.
∗ Simulation-based. Security defined as an attacker being unable to distinguish

between interact with the real scheme and an “idealized” scheme with a simulator
trying to simulate the real scheme. Specific example: universal composability
(UC) framework [Can01].

Reductionist security can be

∗ Asymptotic. Class of attacker algorithms: probabilistic polynomial time (poly-
nomial in a security parameter). Attacker’s success probability / advantage:
negligible in the security parameter, meaning smaller than the inverse of any
polynomial.
∗ Concrete. Class of attacker algorithms: probabilistic time-t algorithms. Attacker’s

success probability / advantage: ≤ ε.
Reductionist proofs sometimes make use of powerful simplifying assumptions:

∗ Ideal hash functions, the random oracle model [BR93].
∗ Ideal block ciphers, the ideal cipher model.
∗ Ideal groups, the generic group model [Sho97].
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Reductionist proofs without such assumptions are said to be in the standard model.

Reductionist proofs and formal methods are starting to merge with computer-verifiable
reductionist proofs (see for example EasyCrypt2).

In Section 1, we developed a game-based definition of security for collision resistance, and
used a standard model reductionist proof with concrete values to show computational security
of collision resistance for the Merkle–Damg̊ard construction.

3 Public key encryption

(This section based in part on Victor Shoup’s paper “Sequences of Games: A Tool for Taming
Complexity in Security Proofs” [Sho06].)

3.1 Basic definitions for public key encryption

Definition 3 (Public key encryption scheme). For a message space M, a public key encryption
scheme Π is a triple of algorithms Π = (KeyGen,Enc,Dec).

• KeyGen()
$→ (sk, pk): A probabilistic key generation algorithm that takes no input, and

generates a secret key / public key pair.

• Enc(pk,m)
$→ c: A probabilistic encryption algorithm that takes as input a public key pk

and a message m ∈M, and outputs a ciphertext c.
• Dec(sk, c)→ m or ⊥: A deterministic decryption algorithm that takes as input a secret

key sk and a ciphertext c, and outputs either a message m or a distinguished error symbol
⊥.

Definition 4 (Correctness). A public key encryption scheme Π is correct if for all m ∈M, all
(sk, pk)← KeyGen(), and all c← Enc(pk,m), we have that Dec(sk, c) = m.

Sometimes it is sufficient that valid ciphertexts decrypt correctly with high probability.

There are several possible security goals for the attacker:

• Key recovery : Compute sk, allowing the attacker to decrypt any message.
• Message recovery : Given a ciphertext, decrypt it.
• Indistinguishability : Given a ciphertext encrypting either m0 or m1, decide which.

Indistinguishability turns out to be equivalent to semantic security : the attacker learns
nothing about the message given the ciphertext, except possibly its length. [GM84]

We can give the attacker different powers:

• Key-only attack : The attacker receives pk.
• Chosen-plaintext attack (CPA): The attacker may encryptions of messages of his choosing.
• Chosen-ciphertext attack (CCA1): The attacker may obtain decryptions of ciphertexts of

his choosing (up until he receives the challenge).
• Adaptive chosen-ciphertext attack (CCA2): The attacker may adaptively obtain decryptions

of his choosing, even after he receives the challenge.

The “best” security notion is the one where we set the weakest goal for the attacker and
give him the strongest powers, which in this case is indistinguishability under adaptive chosen-

2https://www.easycrypt.info
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Expind-cpa
Π (A)

1: // Setup:

2: (sk, pk)
$← KeyGen()

3: // Execution:

4: (m0,m1, st)
$← A(pk)

5: b
$← {0, 1}

6: c
$← Enc(pk,mb)

7: b′
$← A(st, c)

8: // Winning condition:
9: if b = b′ then

10: return 1
11: else
12: return 0
13: end if

(a) Semantic security / indistinguishability
under chosen plaintext attack (IND-CPA)

Expind-cca
Π (A)

1: // Setup:

2: (sk, pk)
$← KeyGen()

3: // Execution:

4: (m0,m1, st)
$← ADec(sk,·)(pk)

5: b
$← {0, 1}

6: c
$← Enc(pk,mb)

7: b′
$← ADec(sk,·6=c)(st, c)

8: // Winning condition:
9: if b = b′ then

10: return 1
11: else
12: return 0
13: end if

(b) Indistinguishability under adaptive cho-
sen ciphertext attack (IND-CCA).

Figure 4: Security experiments for public key encryption.

ciphertext attack (IND-CCA2). The relationships between these and other security notions for
public key encryption have been explored [BDPR98].

We will focus on IND-CPA, the full definition of which is shown in Figure 4a.

Notice that A can guess b with probability 1/2 trivially. We are concerned with how much
better A can do than that, so we are interested in A’s advantage in winning the ind-cpa
experiment for Π:

Advind-cpa
Π (A) =

∣∣∣∣Pr
(
Expind-cpa

Π (A) = 1
)
− 1

2

∣∣∣∣ .

3.2 Basic ElGamal encryption scheme

Let G be a cyclic group of prime order q and let g be a generator of G. The basic ElGamal
public key encryption scheme [ElG84], denoted ElGamal(G, g, q), is shown in Figure 5 below.

KeyGen()

1: x
$← Zq

2: X ← gx

3: return (sk, pk)← (x,X)

Enc(pk = X,m)

1: y
$← Zq

2: c1 ← gy

3: Z ← Xy

4: c2 ← m · Z
5: return c← (c1, c2)

Dec(sk = x, c)

1: return m← c2/c
x
1

Figure 5: Basic ElGamal encryption scheme algorithms.

Exercise 1. Verify that Basic ElGamal encryption satisfied correctness (Definition 4).

3.3 Game hopping

We will write a sequence of games, where the first game (game 0) is the original challenger,
and then make small modifications to the challenger each time. Adjacent games should be
indistinguishable, but the last game should be impossible for the adversary to win.
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Let Si denote the event the adversary wins in game i. We want to bound Pr(S0). We will
seek to bound |Pr(Si)− Pr(Si+1)| and Pr(Sn).

Game hopping makes use of three types of operations:

1. Transitions based on indistinguishability. If the adversary can distinguish between
game i and game i + 1, then that gives a method for distinguishing two distributions
assumed to be indistinguishable.

2. Transitions based on failure events in both games. Game i and game i+ 1 behave
identically unless some failure event F occurs. Thus

Si ∧ ¬F ⇔ Si+1 ∧ ¬F .

The difference lemma then implies that

|Pr(Si)− Pr(Si+1)| ≤ Pr(F ) .

3. Transitions based on failure events in one games. Game i and game i+ 1 behave
identically unless some failure event F occurs in game i+ 1. Thus

Si ⇔ Si+1 ∧ ¬F .

Conditional probability then implies

Pr(Si) = Pr(Si+1 ∧ F ) = Pr(Si+1 | F ) Pr(F ) ≥ Pr(Si+1) Pr(F ) .

4. Transitions based on rewriting. Game i + 1 is just a rewrite of game i, with only
conceptual changes, but no mathematical changes.

3.4 Security of Basic ElGamal encryption

The semantic security of basic ElGamal encryption will be shown based on the security of the
Decisional Diffie–Hellman (DDH) problem [Bon98].

Definition 5 (DDH problem). Let G be a cyclic group of prime order q and let g be a generator
of G. Let A be an algorithm. The decisional Diffie–Hellman (DDH) problem for G is the task of
distinguish triples (gx, gy, gxy) (“real triples”) from triples (gx, gy, gz) (“random triples”), where

x, y, z
$← Zq. Formally, define

Advddh
G,g,q(A) =

∣∣∣Pr
(
x, y

$← Zq : A(gx, gy, gxy) = 1
)
− Pr

(
x, y, z

$← Zq : A(gx, gy, gz) = 1
)∣∣∣ .

We will try to write down a proof of IND-CPA security of Basic ElGamal, then state the
theorem after we’ve figured out what the proof proves.

Proof of semantic security of Basic ElGamal. Let A be an algorithm. The proof proceeds by a
sequence of games.

Game 0. This is the original game.
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Game 0 – IND-CPA with Basic ElGamal

1: x
$← Zq, X ← gx

2: (m0,m1, st)
$← A(X)

3: b
$← {0, 1}

4: y
$← Zq, c1 ← gy, Z ← Xy, c2 ← mb · Z

5: b′
$← A(st, (c1, c2))

6: if b = b′ then
7: return 1
8: else
9: return 0

10: end if

Clearly,

Advind-cpa
ElGamal(G,g,q)(A) =

∣∣∣∣Pr(S0)− 1

2

∣∣∣∣ . (1)

Game 1. This transition is based on indistinguishability. Game 1 is like game 0, except the
value Z is computed as the power of a random exponent.

Game 1

1: x
$← Zq, X ← gx

2: (m0,m1, st)
$← A(X)

3: b
$← {0, 1}

4: y
$← Zq, c1 ← gy, z

$← Zq, Z ← gz , c2 ← mb · Z

5: b′
$← A(st, (c1, c2))

6: if b = b′ then
7: return 1
8: else
9: return 0

10: end if

Claim 1(a).

Pr(S1) =
1

2
. (2)

Proof of Claim 1(a). In game 1, the value Z is uniformly random and independent of X and c1,
so it acts as a one-time pad of mb. Thus, c2 is also uniformly random and independent of X, c1,
and b. Thus, the adversary has no information about b. �

Claim 1(b).
|Pr(S0)− Pr(S1)| ≤ Advddh

G,g,q(BA) , (3)

where B is the following algorithm:

BA(U, V,W )

1: (m0,m1, st)
$← A(U)

2: b
$← {0, 1}

3: C ← mb ·W
4: b′

$← A(st, (V,C))
5: if b = b′ then
6: return 1
7: else
8: return 0
9: end if
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Proof of Claim 1(b). Algorithm B effectively “interpolates” between game 0 and game 1. If B
receives a real triple (gx, gy, gxy), then BA corresponds exactly to game 0, in which case

Pr
(
x, y

$← Zq : BA(gx, gy, gxy) = 1
)

= Pr(S0) .

If B receives a random triple (gx, gy, gz), then BA corresponds exactly to game 1, in which case

Pr
(
x, y, z

$← Zq : BA(gx, gy, gz) = 1
)

= Pr(S1) .

By the definition of Advddh
G,g,q(BA), we have that

Advddh
G,g,q(BA) = |Pr(S0)− Pr(S1)| ,

which yields Claim 1(b). �

Combining equations (1), (3), and (2), we have

Advind-cpa
ElGamal(G,g,q)(A) =

∣∣∣∣Pr(S0)− 1

2

∣∣∣∣ (from equation (1))

≤
∣∣∣∣Pr(S1) + Advddh

G,g,q(BA)− 1

2

∣∣∣∣ (from equation (3))

=

∣∣∣∣12 + Advddh
G,g,q(BA)− 1

2

∣∣∣∣ (from equation (2))

= Advddh
G,g,q(BA)

which yields the theorem below.

Theorem 3 (Semantic security of Basic ElGamal encryption). Let G be a cyclic group of prime
order q and let g be a generator of G. Let A be an algorithm, and let B be the algorithm above.
Then

Advind-cpa
ElGamal(G,g,q)(A) ≤ Advddh

G,g,q(BA) .

Game hopping is useful for complex schemes and protocols built of many cryptographic
components because it allows us to swap them out one-at-a-time.

4 Digital signatures

(This section based in part on section 5 of David Pointcheval’s chapter “Provable Security for
Public Key Schemes” [Poi05].)

4.1 Basic definitions for digital signature schemes

Definition 6 (Digital signature scheme). For a message space M, a digital signature scheme
Σ is a triple of algorithms Σ = (KeyGen,Sign,Ver).

• KeyGen()
$→ (sk, vk): A probabilistic key generation algorithm that takes no input, and

generates a (secret) signing key / (public) verification key pair.

• Sign(sk,m)
$→ σ: A probabilistic signing algorithm that takes as input a signing key sk

and a message m ∈M, and outputs a signature σ.
• Ver(vk,m, σ) → {0, 1}: A deterministic verification algorithm that takes as input a

verification key vk, a message m, and a signature σ, and outputs either 0 (invalid) or 1
(valid).
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Expeuf-cma
Σ (A)

1: // Setup:

2: (sk, vk)
$← KeyGen()

3: // Execution:

4: (m∗, σ∗)
$← ASign(sk,·)(pk)

5: // Winning condition:
6: if Ver(m∗, σ∗, vk) and m∗ was not asked to the Sign oracle then
7: return 1
8: else
9: return 0

10: end if

Figure 6: Security experiment for existential unforgeability under chosen message attack for
digital signature schemes.

Definition 7 (Correctness). A digital signature scheme Σ is correct if for all m ∈ M, all
(sk, vk)← KeyGen(), and all σ ← Sign(sk,m), we have that Ver(vk,m, σ) = 1.

There are several possible security goals for the attacker:

• Key recovery : Compute sk, allowing the attacker to act as the signer.
• Universal forgery : For any message m, compute a valid signature for m.
• Existential forgery : Compute a valid signature σ for some m.

We can give the attacker different powers:

• Key-only attack : The attacker receives vk.
• Known-message attack : The attacker receives a list of message/signature pairs for a

pre-selected list of messages.
• Adaptive chosen-message attack : The attacker may adaptively obtain signatures for

messages of his choosing.

The “best” security notion is existential unforgeability under adaptive chosen message attack
(EUF-CMA). We want to bound

Succeuf-cma
Σ (A) = Pr

(
Expeuf-cma

Σ (A) = 1
)
.

4.2 RSA Full-Domain Hash signature scheme

Let H : {0, 1}∗ → Z∗n be a hash function. The RSA Full-Domain Hash digital signature
scheme [BR93], denoted RSA-FDH, is shown in Figure 7 below.

4.3 The random oracle model

The proof will make use of the following intuition: for the adversary to be able to forge a
signature for a message m, he should have to query H on that message.

In the random oracle model [BR93], we pretend H is a random function H as in Figure 8
that the challenger implements, so that the adversary can only obtain hash values by asking the
challenger for them.
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KeyGen()

1: Pick large random primes p and q
2: n← pq
3: Pick e ∈ Zn such that gcd(e, φ(n)) = 1

(recall φ(n) = (p− 1)(q − 1))
4: d← e−1 mod φ(n)
5: return (sk, vk)← (d, (n, e))

Sign(sk = d,m)

1: return σ ← (H(m))d mod n

Ver(pk = (n, e),m, σ)

1: h← σe mod n
2: if h = H(m)

then
3: return 1
4: else
5: return 0
6: end if

Figure 7: RSA Full-Domain Hash digital signature scheme algorithms.

H : {0, 1}∗ → Z∗n

1: // Initialization
2: HList← ∅
3: // Upon query H(x)
4: if (x, z) ∈ HList for any z then
5: return z
6: else
7: z

$← Z∗n
8: Add (x, z) to HList
9: return z

10: end if

Figure 8: Random oracle H

4.4 Security of RSA-FDH

The EUF-CMA security of RSA-FDH will be shown based on the difficulty of the RSA problem.

Definition 8 (RSA problem). Let n = pq be the product of distinct primes of length λ and e

be an integer relatively prime to φ(n). Given n, e, and y
$← Z∗n, compute x such that xe ≡ y

mod n. If A is an algorithm, we denote A’s probability of success as

Succrsaλ (A) = Pr
(
y

$← Z∗n : x
$← A(n, e, y) : xe ≡ y mod n

)
.

Proof. Proof of EUF-CMA security of RSA Full-Domain Hash in the random oracle model. Let
A be an algorithm. The proof proceeds by a sequence of games. We will be a little less detailed
this time around.

Game 0. This is the original EUF-CMA game for RSA-FDH. Hence,

Succeuf-cma
RSA-FDH(A) = Pr(S0) . (4)

Game 1. In this game, we guess the index c of when m∗ will be first asked to H. Let GoodGuess
be the event we guess correctly. If we guess failed, we abort the game. If GoodGuess occurs,
then game 0 and game 1 behave identically, so we can apply a transition based on a failure event
in one game. Assuming the adversary makes qs queries to Sign and qh queries to H, there are
qs + qh + 1 queries overall, so Pr(GoodGuess) = 1

qs+qh+1 . Thus,

Pr(S1) ≥ Pr(S0)× 1

qs + qh + 1
. (5)
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Game 2. Here we will make use of the y from the RSA problem challenge. When answering
the cth query to H, return y instead.

Since y was chosen at random from Z∗n, the distributions are identical, so

Pr(S2) = Pr(S1) . (6)

Game 3. Now we will make use of the n and e from the RSA problem challenge.

• When answering the cth query to H, return y as in Game 2.
• For all other queries x to H, choose a random s ∈ Z∗n, compute z ← se mod n, and store

(x, s, z) in HList. Return z.
• When asked to sign x, lookup (x, s, z) in HList and return s.

Notice that signatures computed in this way are still valid, they are just computed differently by
the challenger. Moreover, the distributions are identical, so

Pr(S3) = Pr(S2) . (7)

Analysis of Game 3. If the attacker returns a forgery (m∗, σ∗), it must be that m∗ was the
cth query to H, so H(m∗) = y, and that (σ∗)e = H(m∗) = y. Thus, σ∗ is a solution to the RSA
problem for (n, e, y). Thus, game 3 acts as an algorithm B that, with the help of A, solve the
RSA problem.

Pr(S3) = Succrsaλ (BA) . (8)

Combining equations (4)–(8) yields the result stated as the following theorem.

Theorem 4 (EUF-CMA security of RSA-FDH). Let A be an algorithm, and let B be the
algorithm given implicitly in game 3 of the above proof. Assume H is a random oracle, and that
A makes qh random oracle queries and qs signing queries. Then

Succeuf-cma
RSA-FDH(A) ≤ (qs + qh + 1) Succrsaλ (BA) .

This is an example of a non-tight reduction, because there is a factor of (qs + qh + 1) between
the two success probabilities.

5 Remark

It is important to realize that just because a scheme is “provably secure”, it does not mean
that it actually is secure. Koblitz and Menezes, in their series of papers on “Another Look
at Provable Security” [KM04, KM06], take a critical view of the provable security paradigm.
Sometimes proofs are wrong. Sometimes our security definitions do not capture the properties
that are relevant in practice. Sometimes people instantiate schemes in practice with parameters
that do not correspond with the probabilities and non-tightness of the security reduction. And
of course security of cryptosystems can be undermined by poor implementations, attacks on
humans, or simply circumventing the cryptography entirely. Nonetheless, security proofs offer
an indication that at least some classes of attacks are ruled out, and allows cryptographers and
cryptanalysts to focus their efforts on underlying hard problems.
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