Standardizing Post-Quantum Cryptography at the IETF

Douglas Stebila

https://www.douglas.stebila.ca/research/presentations/

We acknowledge the support of the Natural Sciences and Engineering Research Council of Canada (NSERC).

Real World Post-Quantum Cryptography • 2023-03-26

https://github.com/ietf-wg-pquip/state-of-protocols-and-pqc

Standardizing PQ algorithms

PQ algorithms being standardized

Trade-offs with post-quantum crypto

Confidence in quantum-resistance

Fast computation

Small communication

Trade-offs with post-quantum crypto

RSA and elliptic curves

Lattice-based cryptography

Hash-based signatures

TLS handshake: 1.3 KB TLS handshake: 11.2 KB TLS handshake: 24.6 KB

Challenges putting PQ cryptography into protocols

Challenge: larger communication sizes

Higher bandwidth Higher latency usage

- Impact on hightraffic providers
- Higher power
 usage in battery operated devices
- Larger data in early flows of TCP leads to more round trips if exceeding the TCP congestion window
- More packets on poor-quality links leads to more retransmission

Impossible to fit in some protocols

 e.g. DNSSEC over UDP has problems with packets larger than 1232 bytes [1]

Challenge: KEMs ≠ Diffie–Hellman

 $\begin{array}{c} (pk, sk) \leftarrow \mathsf{KEM}.\mathsf{KeyGen}() \\ \underline{pk} \end{array}$

$$(ct,k) \leftarrow \mathsf{KEM}.\mathsf{Encaps}(pk)$$

ct

 $k \leftarrow \mathsf{KEM}.\mathsf{Decaps}(sk,ct)$

Responder's operation depends on sender's *pk* value

- Can't achieve noninteractive key exchange
- Can't achieve certain types of authenticated key exchange handshake flows
- Problems instantiating other DH-based primitives
 ZK, OPRFs, ...

Challenge: state in stateful hash-based sigs.

Unsafe to reuse portions of secret key in stateful hash-based signatures

- Need to manage state across all devices signing using the same key
 - "The cryptographic module shall not allow for the export of private keying material." [1]

- Need to worry about key exhaustion
 - Establish a limit on number of signatures at key generation time
 - We have parameter sets that can sign 1 trillion times, but with 1.5 hour keygen time

Challenge: many options to choose from

<u>KEMs</u>

• **Kyber**: 1 option for each of 3 security levels

- Pure PQ?
- Hybrid?
 - With what elliptic curves?
 - With what combiner?

<u>Signatures</u>

- **Dilithium**: 1 option for each of 3 security levels
- Falcon: 1 option for each of 2 security levels
- SPHINCS+ 4 options for each of 3 security levels
- XMSS: 44 options across 3 security levels
- LMS: 9+15 options
- Pure PQ?
- Hybrid?
 - With RSA at what level?
 - With what elliptic curve?
- Certificate chain: different algorithms for root/intermediate?

Addressing the challenges of using PQ crypto

Addressing the challenges of using PQ crypto

Hybrid / composite

Hybrid approach: use traditional and post-quantum simultaneously such that successful attack needs to break both

Hybrid and composite terminology

	Composite hybrid	Non-composite hybrid
Protocol fields and messages	Unchanged	Changed to accommodate multiple elements
Cryptographic elements	Combined using a newly defined format	Unchanged

https://datatracker.ietf.org/doc/draft-driscoll-pqt-hybrid-terminology/

Why use two (or more) algorithms?

1. Reduce risk from break of one algorithm

2. Ease transition with improved backwards compatibility and agility

3. Standards compliance during transition

Why use two (or more) algorithms?

1. Reduce risk from break of one algorithm

2. Ease transition with improved backwards compatibility and agility

3. Standards compliance during transition

- Early adopters may want to use post-quantum before standards-compliant (FIPS-)certified implementations are available
- Possible to combine (in a certified way) keying material from certified (non-PQ) implementation with non-certified keying material

Why to <u>not</u> use hybrid

enisa

Information Security

Federal Office

- Increases number of design choices
- Increases implementation complexity
- Increases code size
- Regulatory fracturing:
 - Hybrids required: BSI (Germany), ANSSI (France)
 - Hybrids allowed: ENISA (EU), ETSI
 - Hybrids discouraged: NSA (US)

No decision on hybrids: NCSC (UK), CSE (Canada)

Bottom half of slide from Mike Ounsworth presentation <u>https://pkic.org/events/2023/post-quantum-cryptography-conference/pkic-pqcc-pqc-at-ietf-mike-ounsworth-entrust.pdf</u>; updated 2023-03-27 with corrected information from <u>https://pkic.org/events/2023/post-quantum-cryptography-conference/pkic-pqcc-how-gc-preparing-for-pgc-melanie-anderson-jonathan-hammell-canadian-government.pdf</u>

NSSI

Hybrid key exchange

- Use two (or more) key exchange methods
- Transmit both public keys
- Combine shared secrets using an appropriate mechanism

- Fairly well understood
- Lots of progress in Internet-Drafts and prototypes
- Seems likely to be broadly adopted in first phase of PQ transition

How to combine shared secrets

- 1. Concatenate & hash [1]
- 2. NIST-approved methods (SP 800-56C)
 - Concatenate traditional & PQ shared secret
 - Use as input to one-step or two-step KDFs
 - Including HKDF

Is concatenation safe?

- Yes, if H is a random oracle
- Yes, if H is a dual-PRF
- Not necessarily, if H is not collision resistant and secrets are variable length and reused [2]
- More research to be done here

[1] <u>https://datatracker.ietf.org/doc/draft-ounsworth-cfrg-kem-combiners/</u>
 [2] <u>https://mailarchive.ietf.org/arch/msg/tls/F4SVeL2xbGPaPB2GW_GkBbD_a5M/</u>

Hybrid authentication

- Use two (or more) authentication methods
- Transmit both public keys and signatures
- Validate both signatures

Discussion to be had on when hybrid authentication is desired

- May be unnecessary in the context of interactive / negotiated protocols and short-term authentication
- May be relevant for long-term scenarios like firmware updates and document signing
 - Counterargument: just use hash-based signatures

Standardizing PQ formats and identifiers

Standardizing PQ formats and identifiers

Single protocol-specific

- Examples:
 - TLS signature algorithm or key exchange "group"
 - SSH method name
- To be done in corresponding working group document
- To be added to IANA registry

<u>Used in multiple protocols</u>

- Examples:
 - Private key export format
 - Algorithm naming
 - ASN.1 Object identifiers
- Multiple drafts for Kyber, Falcon, Dilithium, SPHINCS+ key formats
 - Individual drafts
 - LAMPS/COSE working groups

Caution: early prototypes have ad hoc formats and identifiers

Caution: early prototypes may use incompatible algorithm versions (Round 1, 2, ...)

Standardizing PQ use in protocols

Post-quantum TLS

Pre-shared key (PSK) mode

- Already
 implemented
- Still has key distribution problem
- No forward secrecy

Pre-shared kev	Key exchange			
(PSK) mode	PQ-only	Hybrid		
 Already implemented Still has key 	 Fairly easy Needed soon decry 	r to implement est: harvest now, ypt later		
distribution problem • No forward secrecy		 Robust to 1 algorithm break Possibly in demand during pre- certification 		

Pre-shared key	Key ex	change	Authentication		
(PSK) mode	PQ-only	Hybrid	PQ-only	Hybrid / Composite	
 Already implemented Still has key 	 Fairly easy Needed soon decry 	to implement est: harvest now, ypt later	 Requires coord certificate author Less urgently no retroactively bree Size 🔅 	ination with prities eeded: can't eak authentication	
distribution problem • No forward secrecy		 Robust to 1 algorithm break Possibly in demand during pre- certification 		 May not make sense in the context of a negotiated protocol like TLS 	

(PSK) mode PQ-only Hybrid PQ-only Hybrid / Composite protocol designs • Already implemented • Fairly eavy to implement • Fairly eavy to implement • Requires coordination with certificate authorities • e.g. AuthKEI • Still has key distribution problem • Needed so prest: harvest now, distribution problem • Robust to 1 algorithm break • Size ☺ • May not make sense in the context of a negotiated • Lots of interesting	Pre-shared key		Authentication			Alternative		
 Already implemented Still has key distribution problem No forward secrecy No forward secrecy Requires coordination with certificate authorities Requires coordination with certificate authorities Less urgently needed: can't retroactively break authentication Size ③ May not make sense in the context of a negotiated Possibly in demand 	(PSK) mode	PQ-only	Hybrid		PQ-only	Hybrid / Composite		protocol designs
 distribution problem No forward secrecy Robust to 1 algorithm break No forward secrecy No forward demand Robust to 1 algorithm break No forward secrecy No forward secrecy 	 Already implemented Still has key 	 Fairly each Needed soor dec 	y to implement nest: harvest now, rypt later	•	Requires coord certificate author Less urgently no retroactively bre Size 🙁	ination with orities eeded: can't eak authentication	•	e.g. AuthKEM / KEMTLS Harder to implement;
during pre- certification TLS research!	distribution problemNo forward secrecy	 Robust algorith break No forward secrecy Possib deman during certification 	 Robust to 1 algorithm break Possibly in demand during pre- certification 			 May not make sense in the context of a negotiated protocol like TLS 	 may requisite machines tate machines Lots of interesting research! 	state machine changes Lots of interesting research!

Hybrid key exchange in TLS

Network Working Group Internet-Draft Intended status: Informational Expires: 31 August 2023 D. Stebila University of Waterloo S. Fluhrer Cisco Systems S. Gueron U. Haifa, Amazon Web Services 27 February 2023

Hybrid key exchange in TLS 1.3 draft-ietf-tls-hybrid-design-06

Abstract

Hybrid key exchange refers to using multiple key exchange algorithms simultaneously and combining the result with the goal of providing security even if all but one of the component algorithms is broken. It is motivated by transition to post-quantum cryptography. This document provides a construction for hybrid key exchange in the Transport Layer Security (TLS) protocol version 1.3.

Discussion of this work is encouraged to happen on the TLS IETF mailing list tls@ietf.org or on the GitHub repository which contains the draft: https://github.com/dstebila/draft-ietf-tls-hybrid-design.

https://datatracker.ietf.org/doc/draft-ietf-tls-hybrid-design/

• Fairly mature

- Early deployments showing reasonable performance:
 - Chrome experiments
 - Cloudflare
 - Open Quantum Safe
 - WolfSSL
 - ...
- Draft in a holding state pending final version of Kyber by NIST and CFRG
 - Placeholder algorithm identifiers

Post-quantum X.509 certificates

Check out the IETF hackathon on PQC certificates

https://github.com/IETF-Hackathon/pqc-certificates

X.509 certificates – algorithm identifiers

<u>KEMs</u>

- Internet-Draft for:
 - Kyber algorithm identifiers (placeholder OID)

<u>Signatures</u>

- Internet-Drafts for:
 - Dilithium algorithm identifiers (placeholder OID)
 - Hash-based signature algorithm identifiers and data structures
 - HSS/LMS, XMSS
 - SPHINCS+ (placeholder OID)

Composite design choice: how to identify combinations

Option #1: Generic composite

Single algorithm id representing "composite", then an additional field containing list of algorithms

- Good for prototyping
- Allows for high degree of agility
- Allows \geq 2 algorithms

Option #2: Explicit composite

New algorithm id for each combination of algorithms

- Less new processing logic
- Lower degree of agility
 - Easier to test
- Combinatorial explosion of identifiers

Composite design choice: are all component algorithms in a hybrid required?

How is a credential with two public keys/signatures meant to be used?

- Must both algorithms be used? (Composite AND)
- Is either algorithm okay? (Composite OR)
 - Must take countermeasures to avoid stripping/separating context
 - Risks of ambiguity
 - Algorithm deprecation tricky to handle

Hybrid in X.509

<u>Composite keys & signatures</u>

- Internet-Drafts for:
 - Composite public/private keys
 - Composite signatures
 - Threshold composite signatures
 - K-out-of-N required

<u>Non-composite signatures</u>

- Internet-Drafts for:
 - Non-composite authentication (expired)
 - Binding related certificates

PQ in other protocols

Secure Shell (SSH)

<u>Key exchange</u>

- Hybrid KEX Internet-Draft
 available
 - Multiple implementations (Amazon, OQS, wolfSSH, ...)
 - OpenSSH using Streamlined NTRU Prime + x25519
 by default since OpenSSH v9 (April 2022)

<u>Authentication</u>

- No Internet-Drafts for authentication
- Experiments:
 - OQS PQ & hybrid auth
 - OpenSSH using XMSS-based authentication since OpenSSH v7.7 (April 2018)
 - (Not compiled in by default)

IPsec / IKEv2

<u>Key exchange</u>

- RFC for pre-shared keys
- Internet-Drafts for
 - Multiple key exchanges
 - Mechanisms for handling large messages

<u>Authentication</u>

- Internet-Drafts for
 - Hybrid non-composite authentication
 - Negotiation of authentication methods

CMS

Cryptographic Message Syntax; used in S/MIME

<u>Key exchange / PKE</u>

- Internet-Draft for:
 - KEMs in CMS and Kyber specifically

• Composite "for free"

<u>Authentication</u>

RFC for:LMS in CMS

Internet-Draft for:
SPHINCS+ in CMS

DNSSEC

<u>Authentication</u>

- Internet-Drafts for:
 - Stateful hash-based signatures (expired)

<u>Research ideas</u>

- Merkle Tree ladder [1]
- •Request-based fragmentation [2]

OpenPGP

Public key encryption

- Internet-Draft for:
 - Composite PQ/T Kyber + elliptic curves

<u>Digital signatures</u>

- Internet-Draft for:
 - Composite PQ/T
 Dilithium + elliptic
 curves
 - SPHINCS+ (standalone – non-hybrid)

Alternative protocol designs

<u>Strategy #1:</u>

Change cryptographic protocols to use PQ algorithms more cleverly/efficiently

- AuthKEM / KEMTLS [1]
- Merkle Tree certificates [2]

Strategy #2:

Change network protocols to be more communication efficient

- Technically about reducing latency due to communication size, not reducing communication size itself
- DNSSEC ARRF [3]
- TurboTLS [4]

[1] <u>https://kemtls.org/</u> [2] <u>https://datatracker.ietf.org/doc/draft-davidben-tls-merkle-tree-certs/</u>
 [3] <u>https://arxiv.org/abs/2211.14196</u> [4] <u>https://arxiv.org/abs/2302.05311</u>

Wrapping up

Algorithm standardization status

	Kyber	Dilithium	Falcon
Primary standardizer:	NIST	NIST	NIST
Status at NIST:	Draft standard pending	Draft standard pending	Draft standard pending
Status at IETF/IRTF:	CFRG draft available	No draft available	No draft available

	SPHINCS+	XMSS	LMS
Primary standardizer:	NIST	IRTF	IRTF
Status at NIST:	Draft standard pending	Approved in SP 800-208 (2020)	Approved in SP 800-208 (2020)
Status at IETF/IRTF:	No draft available	RFC 8391 (2018)	RFC 8554 (2019) Draft for new parameter sets

Protocol	Key exchange / PKE	Authentication	Alternatives
TLS 1.3 (secure channel)	Drafts: Hybrid Kyber	Prototypes	 AuthKEM / KEMTLS TurboTLS Merkle Tree certs.
X.509 (certificates)	Drafts: • Identifiers for Kyber	 Drafts: Identifiers and formats for Dilithium, LMS, XMSS, SPHINCS+ Composite keys and signatures Threshold composite Binding non-composite certs 	
Secure Shell (SSH) (secure channel)	Drafts: Hybrid Kyber OpenSSH: • Hybrid NTRU Prime	Prototypes	
IPsec (secure channel)	RFCs: PSK Drafts: hybrid, large messages	Drafts: Hybrid non-composite Negotiation 	
CMS (secure email,)	Drafts: KEMs, Kyber	RFCs: LMS Drafts: SPHINCS+	
DNSSEC (Domain Name Security)	Drafts: Stateful HBS		Merkle Tree ladderRequest-based frag.
OpenPGP (secure email)	Drafts: Composite Kyber 	Drafts: Composite Dilithium PQ-only SPHINCS+ 	

https://github.com/ietf-wg-pquip/state-of-protocols-and-pqc

Timeline to replace cryptographic algorithms

Research questions

Being aware of real-world constraints can spawn interesting research questions Observation: PQ signatures are bigger than PQ KEMs keys

- ⇒Implicitly authenticated key exchange would be smaller
- ⇒How to make TLS implicitly authenticated?
- \Rightarrow Paper on KEMTLS

Observation: X.509 certificates might contain KEM public keys

- ⇒Certificate authorities demand proof-of-possession of public keys
- ⇒Users like non-interactive proof of possession (certificate signing requests)
- ⇒How to do non-interactive proof of possession of KEM public keys?
- ⇒Paper on non-interactive proof of Kyber and FrodoKEM keys

Standardizing Post-Quantum Cryptography at the IETF Douglas Stebila

https://www.douglas.stebila.ca/research/

Levels of standardization:

- Algorithms: NIST, IRTF CFRG
- Formats and identifiers: IETF
- Use in protocols: IETF

Trade-offs and challenges:

IETF/IRTF activities:

• Algorithms: Draft for Kyber, RFCs for XMSS & LMS

• Protocols:

- TLS: Draft for hybrid KEX; several prototypes; alt. designs
- X.509: Draft for algorithm identifiers, composite keys and signatures; IETF hackathon <u>https://github.com/IETF-</u> <u>Hackathon/pqc-certificates</u>
- SSH: Draft for hybrid KEX; shipping in OpenSSH
- IPsec, CMS, DNSSEC, OpenPGP
- Working groups:
 - TLS. LAMPS.
 - PQUIP: Post-Quantum Use In Protocols
 <u>https://github.com/ietf-wg-pquip/state-of-protocols-and-pqc</u>

Appendix

Open Quantum Safe Project

https://openquantumsafe.org/ • https://github.com/open-quantum-safe/

Why use two (or more) algorithms?

1. Reduce risk from break of one algorithm

- Enable early adopters to get post-quantum security without abandoning security of existing algorithms
- Retain security as long as at least one algorithm is not broken
- Uncertainty re: long-term security of existing cryptographic assumptions
- Uncertainty re: newer cryptographic assumptions

2. Ease transition with improved backwards compatibility

3. Standards compliance during transition

Why use two (or more) algorithms?

1. Reduce risk from break of one algorithm

2. Ease transition with improved backwards compatibility

- Design backwards-compatible data structures with old algorithms that can be recognized by systems that haven't been upgraded, but new implementations will use new algorithms
- May not be necessary for negotiated protocols like TLS

3. Standards compliance during transition

On **fast, reliable network links**, the cost of public key cryptography dominates the median TLS establishment time, but does not substantially affect the 95th percentile establishment time

TLS performance

On **unreliable network links** (packet loss rates ≥ 3%), communication sizes come to govern handshake completion time

As application data sizes grow, the relative cost of TLS handshake establishment diminishes compared to application data transmission