
Rethinking Internet protocols
for post-quantum cryptography

Douglas Stebila

Virginia Tech • 2023-02-21

2

3

4

Public-key
cryptography

RSA signatures
Elliptic curve

Diffie–Hellman
key exchange

Symmetric
cryptography

AES
encryption

AES GCM
integrity

SSL/TLS Protocol

5

Client Server

1. Negotiate cryptographic algorithms

2. Authenticate using certificates

3. Establish encryption keys

Message 1

Key

H
AN

D
SH

AK
E

R
EC

O
R

D
 L

AY
ER

Typically
signed Diffie–

Hellman

Authenticated
encryption

Ciphertext Decryption &
verification

Key

Message 1

Message 2 Decryption &
verification

Authenticated
encryption

Ciphertext
Message 2

Internet

6

Handshake:
signed Diffie–Hellman

Record layer:
Advanced Encryption

Standard authenticated
encryption

Diffie–Hellman key exchange

7g is a generator of an abelian group of prime order q

Alice Bob
x ∈R ℤq y ∈R ℤq
X ⟵ gx send X ⟶ Y ⟵ gy

⟵ send Y
k ⟵ Yx = gxy k ⟵ Xy = gxy

8

Public-key
cryptography

RSA signatures
Elliptic curve

Diffie–Hellman
key exchange

Symmetric
cryptography

AES
encryption

AES GCM
integrity

Based on
difficulty of

factoring large
numbers –

not quantum
resistant!

Based on difficulty of

computing discrete

logarithms –

not quantum resistant!

Post-quantum cryptography

9

a.k.a. quantum-resistant algorithms

Cryptography based on computational
assumptions believed to be resistant to attacks
by quantum computers

Uses only classical (non-quantum) operations to
implement

Quantum key distribution

10

Also provides quantum-resistant
confidentiality

Uses quantum mechanics to protect
information

Doesn't require a full quantum computer

But does require quantum
communication devices and channels

=> Not the subject of this talk

11

Post-quantum QKD

Security depends on computational
assumptions

Can be information-theoretically
secure

Works on existing infrastructure Requires new devices and
communication channels

No limitations on communication
distance

Limits on communication distance
without new technology (repeaters)
or additional trusts assumptions

Outline

1. Status of post-quantum
cryptography standardization

2. Making Internet protocols post-
quantum
• Challenges
• Hybrid
• New protocol designs
• New transport designs

3. Next steps
12

Standardization of PQ cryptography

13

Standardizing post-quantum cryptography

14

Aug. 2015 (Jan. 2016)

“IAD will initiate a
transition to quantum
resistant algorithms in
the not too distant
future.”

– NSA Information
Assurance Directorate,

Aug. 2015

Primary goals for post-quantum crypto

15

Confidentiality in the public
key setting

• Public key encryption
schemes

• Alternatively: key encapsulation mechanisms
• KEMs are a generalization of two-party

Diffie–Hellman-style key exchange
• Easy to convert KEM into PKE and vice

versa

Authentication & integrity in
the public key setting

• Digital signature schemes

Families of post-quantum cryptography

16

Hash- & symmetric-based
• Can only be used to make

signatures, not public key
encryption

• Very high confidence in hash-
based signatures, but large
signatures required for many
signature-systems

Code-based
• Long-studied cryptosystems with

moderately high confidence for
some code families

• Challenges in communication
sizes

Multivariate quadratic
• Variety of systems with various

levels of confidence and trade-offs
• Substantial break of Rainbow

algorithm in Round 3

Lattice-based
• High level of academic interest in

this field, flexible constructions
• Can achieve reasonable

communication sizes

Elliptic curve isogenies
• Newest mathematical construction
• Small communication, slower

computation
• Substantial break of SIKE in

Round 4

NIST Post-quantum Crypto Project timeline

17http://www.nist.gov/pqcrypto

Jul. 2022

Round 3
selection

Nov. 2017

Submission
deadline

Mar. 2019

Round 2
deadline

Round 1:
69 schemes
1/3 signatures
2/3 PKE

Round 2:
26 schemes
9 signatures
17 PKE

Oct. 2020

Round 3
deadline

Round 3:
Finalists:
• 3 signatures
• 4 PKE
Alternates:
• 3 signatures
• 5 PKE

2022–2023

Draft
standards

Dec. 2016

Call for PQ
proposals

Selection:
• 3 signatures
• 1 PKE

Oct. 2022

Round 4
deadline

Round 4:
• 4 PKEs

2024?

Final
standard

Jun. 2023

Additional signatures
deadline

http://www.nist.gov/pqcrypto

NIST Round 3 selections and Round 4

Key encapsulation
mechanisms
• Lattice-based: Kyber

Signatures
• Lattice-based: Dilithium,
Falcon

•Hash-based: SPHINCS+

Key encapsulation
mechanisms
• Code-based: BIKE,
Classic McEliece, HQC

• Isogeny-based: SIKE

Signatures
• Call for additional signature
schemes

Selections Round 4

18

Paths to standardization and adoption

20

NIST NIST round 3
selection

NIST draft
standard

FIPS
standard

CFRG CFRG
standard

TLS working
group

TLS PQ
standard

LAMPS X.509
working group

X.509 PQ
standard

Implementers Early
prototypes

Preliminary
adoption

Standard
adoption

FIPS-certified
adoption

Certificate
authorities

CA/B Forum
guidelines Deployment

Will we be ready in time?

21
[Mosca] IEEE Security & Privacy 16(5):38–41, Sep/Oct 2018. https://doi.org/10.1109/MSP.2018.3761723
[Quantum threat] https://evolutionq.com/quantum-threat-timeline-2021.html 21

2032

Mosca – 1/2 chance
of breaking RSA-2048

2027

Mosca – 1/7 chance
of breaking RSA-2048

2036

Quantum threat
survey 50%
likelihood

2022

Selection

2024?

Final
standard

Harvest and decrypt:
record encrypted communication
now, decrypt it once you have a

quantum computer

https://doi.org/10.1109/MSP.2018.3761723
https://evolutionq.com/quantum-threat-timeline-2021.html

Timeline to replace cryptographic algorithms

22

2032

Mosca – 1/2 chance
of breaking RSA-2048

2027

Mosca – 1/7 chance
of breaking RSA-2048

1995

SHA-1
standardized

2001

SHA-2
standardized

2005

SHA-1
weakened

16 years

Jan.
2017

Browsers stop accepting
SHA-1 certificates

2024?

PQ Final
standard

Aug.
2017

First full
collision

for SHA-1

2036

Quantum threat
survey 50%
likelihood

Challenges

23

Trade-offs with post-quantum crypto

24

Confidence in quantum-resistance

Fast computation Small communication

Pick ~2

Trade-offs with post-quantum crypto

25

Confidence in
quantum-
resistance

Small
communication

Fast
computation

Hash-based
signatures

Confidence in
quantum-
resistance

Small
communication

Fast
computation

Lattice-based
cryptography

Confidence in
quantum-
resistance

Small
communication

Fast
computation

RSA and elliptic
curves

TLS handshake:
1.3 KB

TLS handshake:
11.2 KB

TLS handshake:
24.6 KB

Addressing the challenges of using PQ crypto

26

Lack of
confidence in

security

Slow
computation Make better PQ crypto

Large
communication

Addressing the challenges of using PQ crypto

27

Lack of
confidence in

security
"Hybrid": Use multiple

algorithms

Slow
computation

Actually not too bad; research
on algorithmic optimizations;
general CPU improvements

Large
communication

Change how security and
network protocols use PQ

crypto

Increasing
confidence in

security
Hybrid:

Classical + PQ

Douglas Stebila, Scott Fluhrer, Shay Gueron
https://datatracker.ietf.org/doc/draft-ietf-tls-hybrid-design/

Panos Kampanakis, Douglas Stebila, Torben Hansen
https://datatracker.ietf.org/doc/draft-kampanakis-curdle-ssh-pq-ke/

https://datatracker.ietf.org/doc/draft-ietf-tls-hybrid-design/
https://datatracker.ietf.org/doc/draft-kampanakis-curdle-ssh-pq-ke/

29

traditional post-
quantum hybrid

Hybrid approach: use traditional and
post-quantum simultaneously such that
successful attack needs to break both

Why use two (or more) algorithms?

30

1. Reduce risk from break of one algorithm

2. Ease transition with improved backwards compatibility

3. Standards compliance during transition

Why use two (or more) algorithms?

31

1. Reduce risk from break of one algorithm
• Enable early adopters to get post-quantum security without abandoning

security of existing algorithms
• Retain security as long as at least one algorithm is not broken
• Uncertainty re: long-term security of existing cryptographic assumptions
• Uncertainty re: newer cryptographic assumptions

2. Ease transition with improved backwards compatibility

3. Standards compliance during transition

Why use two (or more) algorithms?

32

1. Reduce risk from break of one algorithm

2. Ease transition with improved backwards compatibility
• Design backwards-compatible data structures with old algorithms that

can be recognized by systems that haven't been upgraded, but new
implementations will use new algorithms

• May not be necessary for negotiated protocols like TLS

3. Standards compliance during transition

Why use two (or more) algorithms?

33

1. Reduce risk from break of one algorithm

2. Ease transition with improved backwards compatibility

3. Standards compliance during transition
• Early adopters may want to use post-quantum before standards-

compliant (FIPS-)certified implementations are available
• Possible to combine (in a certified way) keying material from FIPS-

certified (non-PQ) implementation with non-certified keying material

Hybrid key exchange

34

•Use two (or more) key
exchange methods

•Transmit both public keys
•Combine shared secrets
using hash function / key
derivation function
• Some questions on
designing secure dual
PRFs in the standard
model

• Fairly well understood
• Seems likely to be broadly
adopted in first phase of
PQ transition

Hybrid authentication

35

•Use two (or more)
authentication methods

•Transmit both public
keys and signatures

• Significant debate of merits
of and need for hybrid
authentication

• Seems unnecessary in the
context of interactive /
negotiated protocols

• May be relevant for long-
term scenarios like
firmware updates and
document signing

• Counterargument: just use
hash-based signatures

Post-quantum TLS

36

Three
dimensions of
“post-quantum

TLS”

37

#1: Security
goals
• Confidentiality
• Authentication

#2:
Algorithms
• PQ-only
• Hybrid

#3: Impact
• Protocol

changes
• Compatibility
• Performance

What is “post-quantum TLS”?

38

Post-quantum
key exchange

• Easiest to
implement

• Easy backwards
compatibility

• Needed soonest:
harvest now &
decrypt later with
quantum
computer

Classical+PQ
key exchange

• “Hybrid”

• Easy to
implement

• Possibly in
demand during
pre-FIPS-
certification
period

Post-quantum
signatures

• On the web:
requires
coordination with
certificate
authorities

• Less urgently
needed: can’t
retroactively
break channel
authentication

Classical+PQ
signatures

• “Hybrid” or
“Composite”

• May not make
sense in the
context of a
negotiated
protocol like TLS

Alternative
protocol designs

• Harder to
implement; may
require state
machine or
architecture
changes

• Lots of
interesting
research to do!

Pre-shared key
(PSK) mode

• Already
supported!

• Still has the key
distribution
problem

• No PQ forward
secrecy

Likely first to be adopted

Preliminary PQ TLS experiments

39https://openquantumsafe.org/ • https://blog.cloudflare.com/experiment-with-pq/

https://openquantumsafe.org/
https://blog.cloudflare.com/experiment-with-pq/

TLS
performance

Higher
latency &

packet loss

50th percentile

40OQS-OpenSSL 1.1.1, x86_64, AVX2 enabled – https://eprint.iacr.org/2019/1447

https://eprint.iacr.org/2019/1447

TLS
performance

Higher
latency &

packet loss

50th percentile

41OQS-OpenSSL 1.1.1, x86_64, AVX2 enabled – https://eprint.iacr.org/2019/1447

https://eprint.iacr.org/2019/1447

TLS
performance

Higher
latency &

packet loss

50th percentile

42OQS-OpenSSL 1.1.1, x86_64, AVX2 enabled – https://eprint.iacr.org/2019/1447

https://eprint.iacr.org/2019/1447

TLS
performance

Higher
latency &

packet loss

95th percentile

43OQS-OpenSSL 1.1.1, x86_64, AVX2 enabled – https://eprint.iacr.org/2019/1447

https://eprint.iacr.org/2019/1447

TLS
performance

On fast, reliable network links, the cost of public
key cryptography dominates the median TLS
establishment time, but does not substantially affect
the 95th percentile establishment time

On unreliable network links (packet loss rates ≥
3%), communication sizes come to govern
handshake completion time

As application data sizes grow, the relative cost of
TLS handshake establishment diminishes
compared to application data transmission

18

Reducing communication size

Big communications
is bad in

constrained
environments

46

Consumes battery power

Consumes costly mobile data

May exceed available memory
on small devices

Long communication times on
low bandwidth connections

Big communications
is bad in

unconstrained
environments, too

47

Internet protocols running over
UDP (unreliable datagrams)

• Need to fit into single packet ~1.4
KB

Internet protocols running over
TCP (reliable connections)

• Greater chance of delays due to
retransmission of lost packets

• Latency increases in early parts of
communication due to small TCP
window sizes

Reducing communication size

48

Change cryptographic
protocols to use PQ
algorithms more
cleverly/efficiently

Change network
protocols to be more
communication efficient
• Technically about reducing latency

due to communication size, not
reducing communication size itself

Strategy #1: Strategy #2:

Reducing
communication

size

Implicit
authentication:

KEMTLS

Peter Schwabe, Douglas Stebila, Thom Wiggers
ACM CCS 2020. https://eprint.iacr.org/2020/534

Peter Schwabe, Douglas Stebila, Thom Wiggers
ESORICS 2021. https://eprint.iacr.org/2021/779

Sofía Celi, Jonathan Hoyland, Douglas Stebila, Thom Wiggers
ESORICS 2022. https://eprint.iacr.org/2022/1111

Sofía Celi, Peter Schwabe, Douglas Stebila, Nick Sullivan, Thom Wiggers.
https://datatracker.ietf.org/doc/html/draft-celi-wiggers-tls-authkem-00

https://eprint.iacr.org/2020/534
https://eprint.iacr.org/2021/779
https://eprint.iacr.org/2022/1111
https://datatracker.ietf.org/doc/html/draft-celi-wiggers-tls-authkem-00

Authenticated key exchange

50

Two parties
establish a shared secret

over a public communication channel

Explicit
authentication

Alice is assured that
only Bob would be

able to compute the
shared secret

51

Alice receives
assurance that she

really is talking to Bob

Implicit
authentication

Explicitly authenticated key exchange:
Signed Diffie–Hellman

52

Alice Bob

(pkA, skA) SIG.KeyGen() (pkB , skB) SIG.KeyGen()

obtain pkB obtain pkA

x $ {0, . . . , q � 1}
X g

x
X

y $ {0, . . . , q � 1}
Y g

y

�B SIG.Sign(skB , AkBkXkY)Y,�B

�A SIG.Sign(skA, AkBkXkY) �A

k H(sid, Y x) k H(sid,Xy)

application data

using authenticated encryption

Observation:

PQ signatures

are bigger than

PQ public key encryption / KEMs

53

Signature scheme Public key (bytes) Signature (bytes)

RSA-2048 Factoring 272 256

Elliptic curves Elliptic curve discrete logarithm 32 32

Dilithium Lattice-based (MLWE/MSIS) 1,184 2,044
Falcon Lattice-based (NTRU) 897 690
XMSS Hash-based (stateful) 32 979
SPHINCS+ Hash-based (stateless) 32 7,856

54

Signature scheme Public key (bytes) Signature (bytes)

RSA-2048 Factoring 272 256

Elliptic curves Elliptic curve discrete logarithm 32 32

Dilithium Lattice-based (MLWE/MSIS) 1,184 2,044
Falcon Lattice-based (NTRU) 897 690
XMSS Hash-based (stateful) 32 979
SPHINCS+ Hash-based (stateless) 32 7,856

55

KEM Public key (bytes) Ciphertext (bytes)

RSA-2048 Factoring 272 256

Elliptic curves Elliptic curve discrete logarithm 32 32

Kyber Lattice-based (MLWE) 800 768
BIKE Code-based 1,541 1,573
Classic McEliece Code-based 261,120 128
HQC Code-based 2,249 4,481
CSIDH Isogeny-based 64 64

Implicitly authenticated key exchange:
Double-DH

56

Alice Bob

skA $ {0, . . . , q � 1} skB $ {0, . . . , q � 1}
pkA g

skA pkB g
skB

obtain pkB obtain pkA

x $ {0, . . . , q � 1} y $ {0, . . . , q � 1}
X g

x
Y g

y
X

Y

k H(sid, pk
skA
B kY x) k H(sid, pk

skB
A kXy)

application data

using authenticated encryption

Ephemeral DH

Static DH

Key encapsulation mechanisms (KEMs)

57

An abstraction of Diffie–Hellman key exchange
<latexit sha1_base64="RDVfI7FP0yyVQqr+2G8wBIqhKDQ=">AAACQ3icbVDLSgNBEJz1bXxFPXoZjEIECbs5qEdRREGECEaFJITZSW8cMjO7zPSKYdnf8Gu8xn/wG7yJRwU3D8SoBQPV1d10TfmRFBZd98WZmJyanpmdm88tLC4tr+RX165tGBsOVR7K0Nz6zIIUGqooUMJtZIApX8KN3znu92/uwVgR6ivsRtBQrK1FIDjDTGrm3a1i1NmltrND621AS+uK4Z0NkvOTi7T0XUD3FHRa3NnKNf MFt+QOQP8Sb0QKZIRKM/9Rb4U8VqCRS2ZtzXMjbCTMoOAS0lw9thAx3mFtqGVUMwW2kQx+ltLtTGnRIDTZ00gH6s+NhClru8rPJgdWf/f64n+9WozBQSMROooRNB8eCmJJMaT9mGhLGOAouxlh3IjMK+V3zDCOWZhjVx6GVsc00LESCCrtx+X9DucvuS6XvL2Se1kuHB6NgpsjG2STFIlH9skhOSMVUiWcPJIn0iPPTs95dd6c9+HohDPaWSdjcD6/ALcUsLc=</latexit>

(pk, sk) KEM.KeyGen()

<latexit sha1_base64="XPVAcqpbuqaH8/jH2n2W0moLbT0=">AAACRHicbVDLSgNBEJz1bXxFPXoZjEICEnY9qEdRBEEEBZMISQizk944ZGZ2mekVw7Lf4dd41W/wH7yJNxE3D8EYCwaqq7vpmvIjKSy67qszNT0zOze/sJhbWl5ZXcuvb1RtGBsOFR7K0Nz6zIIUGiooUMJtZIApX0LN7572+7V7MFaE+gZ7ETQV62gRCM4wk1p5b6fIcY92S7TRAbS0oRje2SC5OLtMyz/FmeYssmkx6pZ2cq18wS27A9BJ4o1IgYxw1cp/NtohjxVo5JJZW/fcCJsJMyi4hDTXiC1EjHdZB+oZ1UyBbSaDr6V0N1PaNAhN9jTSgfp7I2HK2p7ys8mB2b+9vvhfrx5jcNRMhI5iBM2Hh4JYUgxpPyfaFgY4yl5GGDci80r5HTOMY5bm2JWHodUxDXSsBIJK+3F5f8OZJNX9sndQdq/3C8cno+AWyBbZJkXikUNyTM7JFakQTh7JE3kmL86z8+a8Ox/D0SlntLNJxuB8fQO5QrE8</latexit>

(ct, k) KEM.Encaps(pk)

<latexit sha1_base64="odAnpH0dxdWK5HcWBvymtpgGo+8=">AAACQnicbVDLSgNBEJz1bXxFPXoZjEIEibse1KP4AEGECEYDSQizk944ZGZ2mekVw7Kf4dd41Y/wF7yJVw9uHoKJFgxUV3fTNeVHUlh03TdnYnJqemZ2bj63sLi0vJJfXbu1YWw4VHgoQ1P1mQUpNFRQoIRqZIApX8Kd3znt9e8ewFgR6hvsRtBQrK1FIDjDTGrm97Y6tN4GtLSuGN7bILk8v0pLP8UZcBbZtGg7u5TjzlaumS +4JbcP+pd4Q1IgQ5Sb+a96K+SxAo1cMmtrnhthI2EGBZeQ5uqxhYjxDmtDLaOaKbCNpP+xlG5nSosGocmeRtpXf28kTFnbVX422Tc83uuJ//VqMQZHjUToKEbQfHAoiCXFkPZSoi1hgKPsZoRxIzKvlN8zwzhmWY5ceRxYHdFAx0ogqLQXlzcezl9yu1/yDkru9X7h+GQY3BzZIJukSDxySI7JBSmTCuHkiTyTF/LqvDjvzofzORidcIY762QEztc31+aw0A==</latexit>

k KEM.Decaps(sk, ct)

<latexit sha1_base64="PTKmRgTTD1VvdUJnVXjDNS/R8xM=">AAACFXicbVC7TsMwFHV4lvIqMLJYtEhMVdIBGCtYGItEH1IbVY5701q1nch2EFXUX2AtP8OGWJn5FwacNgNtOZKlo3Pu1T0+QcyZNq777Wxsbm3v7Bb2ivsHh0fHpZPTlo4SRaFJIx6pTkA0cCahaZjh0IkVEBFwaAfj+8xvP4PSLJJPZhKDL8hQspBRYjKpEo8r/VLZrbpz4HXi5aSMcjT6pZ/eIKKJAGkoJ1p3PTc2fkqUYZTDtNhLNMSEjskQupZKIkD76TzrFF9aZYDDSNknDZ6rfzdSIrSeiMBOCmJGetXLxP+8bmLCWz9lMk4MSLo4FCYcmwhnH8cDpoAaPrGEUMVsVkxHRBFqbD1LV14WUZc0kIlgBsS0aOvyVstZJ61a1buuuo+1cv0uL66AztEFukIeukF19IAaqIkoGqFXNENvzsx5dz6cz8XohpPvnKElOF+/66GfrQ==</latexit>

pk

<latexit sha1_base64="qvRR5ShOI+DZk1O2A7o45sTKiQM=">AAACFXicbVDLTsJAFJ36RHyhLt00gokr0rJQl0Q3LjGRRwINmQ63MGFm2szcGknDL7jFn3Fn3Lr2X1zYQhcCnmSSk3PuzT1z/Ehwg47zbW1sbm3v7Bb2ivsHh0fHpZPTlgljzaDJQhHqjk8NCK6giRwFdCINVPoC2v74PvPbz6AND9UTTiLwJB0qHnBGMZMqDCv9UtmpOnPY68TNSZnkaPRLP71ByGIJCpmgxnRdJ0IvoRo5EzAt9mIDEWVjOoRuShWVYLxknnVqX6bKwA5CnT6F9lz9u5FQacxE+umkpDgyq14m/ud1YwxuvYSrKEZQbHEoiIWNoZ193B5wDQzFJCWUaZ5mtdmIasowrWfpyssi6pIGKpYcQU6LaV3uajnrpFWrutdV57FWrt/lxRXIObkgV8QlN6ROHkiDNAkjI/JKZuTNmlnv1of1uRjdsPKdM7IE6+sX5NifqQ==</latexit>

ct

KEMTLS
handshake

KEM for
ephemeral key exchange

KEM for
server-to-client

authenticated key exchange

Combine shared secrets

58

Algorithm choices

59

KEM for ephemeral
key exchange

KEM for authenticated
key exchange

Signature scheme for
intermediate CA

Signature scheme for
root CA

Signed KEX
versus

KEMTLS
Labels ABCD:
A = ephemeral KEM
B = leaf certificate
C = intermediate CA
D = root CA
Algorithms: (all level 1)
Dilithium,
eCDH X25519,
Falcon,
Kyber,
NTRU,
Rainbow,
rSA-2048,
SIKE,
XMSS’

60Rustls client/server with some AVX2 implementations. Emulated network: latency 31.1 ms, bandwidth 1000 Mbps, 0% packet loss. Average of 100000 iterations.

Certificate lifecycle for KEM public
keys
Tim Güneysu, Philip Hodges, Georg Land, Mike Ounsworth, Douglas Stebila, Greg
Zaverucha
ACM CCS 2022. https://eprint.iacr.org/2022/703

61

https://eprint.iacr.org/2022/703

Certificate lifecycle

62

Requestor:
Generate

key

Requestor:
Request

certificate

CA: Verify
certificate
request

and
requestor
identity

CA: Issue
certificate

Requestor:
Use

certificate

Requestor:
Request

revocation

CA:
Revoke

certificate

Proof of possession:
CAs want to verify that the requester has the

corresponding secret key

Certificate requests in the X.509 PKI

63

How does requester prove possession of corresponding
secret keys?

1. Interactive challenge-response protocol [RFC 4210 Sect. 5.2.8.3]
2. Send certificate back encrypted under subject public key

[RFC 4210 Sect. 5.2.8.2]
• Weird confidentiality requirement on certificate.
• Maybe broken by Certificate Transparency or other logging mechanisms?

3. Non-interactive certificate signing requests [RFC 2986]
• CSRs okay for signature schemes, but not for public key encryption or key

encapsulation mechanisms

Goal:
Design non-interactive proof of possession

for lattice-based KEM public keys
(so that we can have the same certificate lifecycle

for KEM certificates to enable KEMTLS)

lattice-based = FrodoKEM (plain LWE), Kyber (module LWE)

64

Possible approaches for non-interactive proof of
possession for (lattice-based) KEM public keys

65

Zero-knowledge
proof of knowledge

Direct lattice-
based ZK

constructions

Generic
approaches

zkSNARKS

Multi-party
computation in the

head (MPCitH)

• Can be efficient and small
• But requires embedding the target KEM parameters in

a larger lattice instance
=> selecting new (non-standardized) parameters

• Moderately efficient
• But not as small as

direct constructions

• Much larger proofs
• Doesn’t require

embedding in another
lattice problem

Our approach

66

Generate the key and a
proof at the same time

Proof of possession via
verifiable generation

FrodoKEM key generation

67https://frodokem.org/

<latexit sha1_base64="uAHS0Pxs3G4SLlEGNnubR2ZZTdI=">AAACbnicbVBbS9xAFJ6NtrXpxdVCX4p06G7BB12S4O1FkBZKHxW6KiTpMpmcdQfnks5MxCXkx/Vn+At8te8+ONnNg6s9MPCd78IZvqzgzNgguOl4S8svXr5aee2/efvu/Wp3bf3UqFJTGFLFlT7PiAHOJAwtsxzOCw1EZBzOssvvjX52BdowJX/ZaQGpIBeSjRkl1lGjbpyUMgfdxKsfWuVqe28nqH2//wcf4uh3Fe7WfbdJtzlhCyfqqnXL+vCgkRI6YThhEsfbYeQMubJmC4dR2h91e8EgmA1+DsIW9FA7x6PuvUvTUoC0lBNj4jAobFoRbRnlUPtJaaAg9JJcQOygJAJMWs1KqPFXx+R4rLR70uIZ+zhREWHMVGTOKYidmKdaQ/5Pi0s7PkgrJovSgqTzQ+OSY6tw0yjOmQZq+dQBQjVzf8V0QjSh1vW+cOV6/tUFDmQpmAVR+66u8Gk5z8FpNAj3BjsnUe/oW1vcCvqEvqBNFKJ9dIR+omM0RBT9RbfoDv3r3HkfvQ3v89zqddrMB7Qw3uYDXGK4vA==</latexit>

Frodo-640
q = 215

n = 640, n = 8
� 2 [�12, . . . , 12]

<latexit sha1_base64="j9joIFZ9/zBne6L4RzVgZ463mrA=">AAAD9XiclVJJbxMxFJ4kLCVsLRy 5WHSQyhYlZVVOpRWix6LSRdQh8jhvEqteBttDGln+KdwQV34PR/4HBzyTgUlbOPAkW2/x95bPL8k4M7bb/d5oti5cvHR56Ur76rXrN24ur9zaNyrXFPao4kofJsQAZxL2LLMcDjMNRCQcDpLjrSJ+8Am0YUq+s7MMBoKMJUsZJTa4hiuNH1jClCohiBw5PAZrtHcO9zGH1BKt1RRPTEYoPHCPn2TWY02YgUSduM6zYLoYG6pZZqvbzjjgOPa473273cYJjJl0IHMBmljwbcwsCPQGZGmjGAtiJ0nqXnmEmURzM3Hv/fDjBxdsywQYJH2MUq0EIsgAjKosu0RkfCHHbshRToAwnbAFOFaBg4IiJ72P/4F+/V/oLSWyfHGAzRq+MFLd2UNUF/qdZCdPOKPoGGZ9FK+VcZO6YkI/dHUa/wjVVe7/6R+oBluB60IhDOEra8qHy6vdTrcUdF7pVcpqVMnOcPknHika4NJSTow56nUzO3BEW0Z58YW5gbARx2QMR0GVJJA0cOUuenQveEYoVTocaVHpXUQ4IoyZiSS8LMc9Gyucf4sd5TZ9OXBMFqxLOi+U5hxZhYrFRiOmgVo+CwoJuxh6RXRCNKE2rP+pKifzVk/5CroKVn070NU7S855ZX+903veefp2fXVjsyJuKboT3Y3Wol70ItqItqOdaC+ize2mbE6bJ61p63PrS+vr/GmzUWFuR6ek9e0XI69RMA==</latexit>

1. Generate A 2 Zn⇥n
q from a seed

2. Sample S $ �n⇥n

3. Sample E $ �n⇥n

4. Compute B $ AS+E

5. Public key: (seedA,B)

6. Secret key: S

https://frodokem.org/

Verifiable generation for FrodoKEM

68

1. Generate and commit to many
allegedly small values for S and E

2. Reveal some of them to prove
they’re small

3. Use the rest for the actual key
generation

This doesn’t prove that all
the unrevealed values are
small, only most of them
with high probability

How do we prove we
actually used them in the
rest of the key
generation?
• MPC-in-the-head à la

Picnic
• Fiat–Shamir to get a

signature scheme

5-round interactive protocol for verifiable generation

69

1. Prover: Generate sufficiently
many small values.
Generate an additive secret
sharing among N parties.
Commit to the shares.
Send commitments.

2. Verifier: Pick some fraction of
the bundles to audit.

3. Prover: Open commitments for
challenged bundles.
Use unaudited bundles to

construct secret key (S, E) and
public key B=AS+E. Commit to
shares of B.
Send commitments and public
key (A, B).

4. Verifier: Select N-1 parties to
audit.

5. Prover: Reveal state of N-1
parties.

6. Verifier: Check state of revealed
parties.

Making it non-interactive

70

• Interactive protocol has soundness 1/N, which isn’t
cryptographically small.

•Repeat 𝜏 times to get soundness 1/N𝜏.
• (Use the same bundles from step 1 in all repetitions.)
•Apply the Fiat–Shamir transform to make it non-
interactive:
• Generate challenges in step 2 and 4 by hashing all
previous commitments with a random oracle.

Performance
trade-offs

52.9 kB / 0.01s
33.4 kB / 0.03s
25.6 kB / 0.1s
17.8 kB / 3.8s

71Intel Core i7-8565U CPU @ 4.6 GHz, gcc 11.2.0

Summary of verifiable generation

73

Verifiable generation
with MPC-in-the-head
yields reasonable proof
sizes and runtimes for
both FrodoKEM and
Kyber at all security
levels

• Smallest sizes can be
competitive with direct
lattice-based ZK
constructions without
needing to embed in a larger
LWE instance with different
parameters

• Order of magnitude smaller
than previous MPC-in-the-
head approaches

Reducing
communication

latency

UDP
request-based

fragmentation in
DNSSEC and

TLS 1.3
Jason Goertzen and Douglas Stebila
https://arxiv.org/abs/2211.14196

Carlos Aguilar-Melchor, Thomas Bailleux, Jason Goertzen, David Joseph, Douglas Stebila
https://arxiv.org/abs/2302.05311

https://arxiv.org/abs/2211.14196
https://arxiv.org/abs/2302.05311

TLS 1.3
connection

establishment

2 round trips before client
starts sending application

data

75

TurboTLS:
connection

establishment with
1 less round trip

Idea: do first TLS
handshake flow over UDP

while doing TCP
handshake in parallel

76

TurboTLS
performance

On short
distance

connections,
starts to make a

difference…

77

TurboTLS
performance

On long
distance

connections,
halves latency
of connection
establishment

78

Wrapping up

79

80

Protocol Key exchange / PKE Authentication Alternatives

TLS 1.3
(secure channel)

Hybrid:
• Draft available
• Academic and industry

experiments, early deployment
PQ only: no activity

Hybrid:
• Debate over merits
PQ only:
• Academic experiments

KEMTLS design for implicit
authentication

TurboTLS for lower latency

Secure Shell (SSH)
(secure channel)

Hybrid:
• Draft available
• Already deployed in OpenSSH

by default
PQ only: no activity

Hybrid:
• Debate over merits
PQ only:
• Already deployed in OpenSSH

IPsec
(secure channel)

Hybrid:
• Draft available

No activity

Certificates (X.509)
(public key infrastructure)

Hybrid: no activity
PQ only:
• Drafts for Kyber

Hybrid:
• Debate over merits
PQ only:
• Drafts for Dilithium

Secure E-Mail
(S/MIME and CMS)
(encryption and/or authentication)

Hybrid:
• Draft available
PQ only:
• Drafts for Kyber

Hybrid:
• Debate over merits
PQ only:
• Drafts for Dilithium, SPHINCS+

Domain Name
Security (DNSSEC)
(authentication)

Not applicable Hybrid: no activity
PQ only:
• Academic research on Falcon,

aggregated hash trees

Request-based fragmentation for
handling large DNSSEC packets

this
talk

this
talk

this
talk

Rethinking Internet protocols for
post-quantum cryptography

Douglas Stebila
Public key cryptography designed to resist
attacks by quantum computers

• Five families of mathematical assumptions

• Standardization of core algorithms under way by
US National Institute of Standards and
Technology

• Starting the process of standardizing post-
quantum cryptography in Internet protocols

Lack of
confidence in

security
"Hybrid": Use multiple

algorithms

Slow
computation

Actually not too bad; research
on algorithmic optimizations;
general CPU improvements

Large
communication

sizes

Change how security and
network protocols use PQ

crypto

81https://www.douglas.stebila.ca/research • https://openquantumsafe.org/

Addressing challenges in using post-quantum
cryptography

this
talk

this
talk

https://eprint.iacr.org/2020/534
https://openquantumsafe.org/

Appendix

82

83

Post-quantum Traditional public
key crypto

Computational assumptions studied since Computational assumptions studied since
1970s / 1980s1970s 1990s/2000s/2010s

Conjecturally resistant to quantum attacks Vulnerable to quantum attacks

Medium to large communication sizes
(700–30000+ bytes)

Small communication sizes
(32–384 bytes)

Sub-millisecond computation times Sub-millisecond computation times

Less flexible for building fancy cryptography Flexible for building fancy crypto

Open Quantum Safe Project

https://openquantumsafe.org/ • https://github.com/open-quantum-safe/

liboqs

key exchange / KEMs signatures

isogenies code-based lattice-
based

multi-variate
polynomial

hash-based
/ symmetric

OpenSSL
S/MIME, TLS 1.3, X.509

OpenSSL 3 provider
BoringSSL

Open
SSH

Language
SDKs

C#, C++, Go,
Java, Python,

Rust

Apache
httpd nginx curl,

links
Open
VPN

C language library,
common API
• x86/x64 (Linux,

Mac, Windows)
• ARM (Android,

Linux)

Integration into forks
of widely used open-
source projects

Use in applications Chromium

Led by University of
Waterloo

Industry partners:
• Amazon Web

Services
• Cisco
• evolutionQ
• IBM Research
• Microsoft Research

Additional contributors:
• Senetas
• PQClean project
• Individuals

Financial support:
• AWS
• Canadian Centre

for Cyber Security
• Cisco
• NLNet
• NSERC
• Unitary Fund
• Verisign

https://openquantumsafe.org/
https://github.com/open-quantum-safe/

Four TLS
1.3 modes

85

Signed Diffie–Hellman,
server-only authentication

Signed Diffie–Hellman,
mutual authentication

Pre-shared key (PSK)

Pre-shared key with ephemeral Diffie–Hellman
(PSK-ECDHE)

Already
PQ!

Defining security for proof of possession

86

Unforgeability:
• Hard to construct a valid
proof of possession for an
honest public key without
the corresponding secret
key

Zero knowledge:
• The proofs of possession
leak no information about
the secret key.

• Need to ensure the proof of
possession composes nicely
with the intended usage of the
key

• Zero knowledge shows the
proof doesn’t undermine the
scheme

• Need to extend unforgeability:
• Use an “auxiliary secret key

usage algorithm” in
unforgeability experiment

• Introduce a notion of KEM
simulatability which FO-based
KEMs have

Uniqueness of small FrodoKEM solutions

87

Recall high-level idea:
1. Generate and commit to

many allegedly small
values for S and E

2. Reveal some of them to
prove they’re small

• We prove a lemma upper-
bounding the probability that a
second FrodoKEM solution
exists with mostly small
solutions

• Choose number of bundles to
audit to ensure no other
mostly small secret key exists

• So proving possession of a
mostly small solution implies
proving possession of the true
secret key

• Similar result for Kyber
This doesn’t prove that all the unrevealed
values are small, only most of them with

high probability

Comparison with other approaches

88

TurboTLS comparison

89

