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SSL/TLS Protocol
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Client Server

1. Negotiate cryptographic algorithms

2. Authenticate using certificates

3. Establish encryption keys

Message 1
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Typically 
signed Diffie–

Hellman

Authenticated 
encryption

Ciphertext Decryption & 
verification

Key

Message 1

Message 2 Decryption & 
verification

Authenticated 
encryption

Ciphertext
Message 2

Internet
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Handshake:
signed Diffie–Hellman

Record layer:
Advanced Encryption 

Standard authenticated 
encryption



Diffie–Hellman key exchange

7g is a generator of an abelian group of prime order q

Alice Bob
x ∈R ℤq y ∈R ℤq
X ⟵ gx send X ⟶ Y ⟵ gy

⟵ send Y
k ⟵ Yx = gxy k ⟵ Xy = gxy
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Public-key 
cryptography

RSA signatures
Elliptic curve 

Diffie–Hellman
key exchange

Symmetric 
cryptography

AES
encryption

AES GCM 
integrity

Based on 
difficulty of 

factoring large 
numbers –

not quantum 
resistant!

Based on difficulty of 

computing discrete 

logarithms –

not quantum resistant!



Post-quantum cryptography
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a.k.a. quantum-resistant algorithms

Cryptography based on computational 
assumptions believed to be resistant to attacks 
by quantum computers

Uses only classical (non-quantum) operations to 
implement



Quantum key distribution

10

Also provides quantum-resistant 
confidentiality

Uses quantum mechanics to protect 
information

Doesn't require a full quantum computer

But does require quantum 
communication devices and channels

=> Not the subject of this talk
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Post-quantum QKD

Security depends on computational 
assumptions

Can be information-theoretically 
secure

Works on existing infrastructure Requires new devices and 
communication channels

No limitations on communication 
distance

Limits on communication distance 
without new technology (repeaters) 
or additional trusts assumptions



Outline

1. Status of post-quantum 
cryptography standardization

2. Making Internet protocols post-
quantum
• Challenges
• Hybrid
• New protocol designs
• New transport designs

3. Next steps
12



Standardization of PQ cryptography
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Standardizing post-quantum cryptography

14

Aug. 2015 (Jan. 2016)

“IAD will initiate a 
transition to quantum 
resistant algorithms in 
the not too distant
future.”

– NSA Information 
Assurance Directorate, 

Aug. 2015



Primary goals for post-quantum crypto

15

Confidentiality in the public 
key setting

• Public key encryption 
schemes

• Alternatively: key encapsulation mechanisms
• KEMs are a generalization of two-party 

Diffie–Hellman-style key exchange
• Easy to convert KEM into PKE and vice 

versa

Authentication & integrity in 
the public key setting

• Digital signature schemes



Families of post-quantum cryptography

16

Hash- & symmetric-based
• Can only be used to make 

signatures, not public key 
encryption

• Very high confidence in hash-
based signatures, but large 
signatures required for many 
signature-systems

Code-based
• Long-studied cryptosystems with 

moderately high confidence for 
some code families

• Challenges in communication 
sizes

Multivariate quadratic
• Variety of systems with various 

levels of confidence and trade-offs
• Substantial break of Rainbow 

algorithm in Round 3

Lattice-based
• High level of academic interest in 

this field, flexible constructions
• Can achieve reasonable 

communication sizes

Elliptic curve isogenies
• Newest mathematical construction
• Small communication, slower 

computation
• Substantial break of SIKE in 

Round 4



NIST Post-quantum Crypto Project timeline

17http://www.nist.gov/pqcrypto

Jul. 2022

Round 3
selection

Nov. 2017

Submission
deadline

Mar. 2019

Round 2
deadline

Round 1: 
69 schemes
1/3 signatures
2/3 PKE

Round 2:
26 schemes
9 signatures
17 PKE

Oct. 2020

Round 3
deadline

Round 3:
Finalists: 
• 3 signatures
• 4 PKE
Alternates:
• 3 signatures
• 5 PKE

2022–2023

Draft
standards

Dec. 2016

Call for PQ
proposals

Selection:
• 3 signatures
• 1 PKE

Oct. 2022

Round 4
deadline

Round 4:
• 4 PKEs

2024?

Final
standard

Jun. 2023

Additional signatures
deadline

http://www.nist.gov/pqcrypto


NIST Round 3 selections and Round 4

Key encapsulation 
mechanisms
• Lattice-based: Kyber

Signatures
• Lattice-based: Dilithium, 
Falcon

•Hash-based: SPHINCS+

Key encapsulation 
mechanisms
• Code-based: BIKE, 
Classic McEliece, HQC

• Isogeny-based: SIKE

Signatures
• Call for additional signature 
schemes

Selections Round 4

18



Paths to standardization and adoption

20

NIST NIST round 3 
selection

NIST draft 
standard

FIPS 
standard

CFRG CFRG 
standard

TLS working 
group

TLS PQ 
standard

LAMPS X.509 
working group

X.509 PQ 
standard

Implementers Early 
prototypes

Preliminary 
adoption

Standard 
adoption

FIPS-certified 
adoption

Certificate 
authorities

CA/B Forum 
guidelines Deployment



Will we be ready in time?

21
[Mosca] IEEE Security & Privacy 16(5):38–41, Sep/Oct 2018. https://doi.org/10.1109/MSP.2018.3761723
[Quantum threat] https://evolutionq.com/quantum-threat-timeline-2021.html 21

2032

Mosca – 1/2 chance
of breaking RSA-2048

2027

Mosca – 1/7 chance
of breaking RSA-2048

2036

Quantum threat 
survey 50% 
likelihood

2022

Selection

2024?

Final
standard

Harvest and decrypt: 
record encrypted communication 
now, decrypt it once you have a 

quantum computer

https://doi.org/10.1109/MSP.2018.3761723
https://evolutionq.com/quantum-threat-timeline-2021.html


Timeline to replace cryptographic algorithms

22

2032

Mosca – 1/2 chance
of breaking RSA-2048

2027

Mosca – 1/7 chance
of breaking RSA-2048

1995

SHA-1
standardized

2001

SHA-2
standardized

2005

SHA-1
weakened

16 years

Jan.
2017

Browsers stop accepting
SHA-1 certificates

2024?

PQ Final
standard

Aug.
2017

First full
collision

for SHA-1

2036

Quantum threat 
survey 50% 
likelihood



Challenges

23



Trade-offs with post-quantum crypto

24

Confidence in quantum-resistance

Fast computation Small communication

Pick ~2



Trade-offs with post-quantum crypto

25

Confidence in
quantum-
resistance

Small
communication

Fast
computation

Hash-based 
signatures

Confidence in
quantum-
resistance

Small
communication

Fast
computation

Lattice-based 
cryptography

Confidence in
quantum-
resistance

Small
communication

Fast
computation

RSA and elliptic 
curves

TLS handshake: 
1.3 KB

TLS handshake: 
11.2 KB

TLS handshake: 
24.6 KB



Addressing the challenges of using PQ crypto

26

Lack of 
confidence in 

security

Slow 
computation Make better PQ crypto

Large 
communication



Addressing the challenges of using PQ crypto

27

Lack of 
confidence in 

security
"Hybrid": Use multiple 

algorithms

Slow 
computation

Actually not too bad; research 
on algorithmic optimizations; 
general CPU improvements

Large 
communication

Change how security and 
network protocols use PQ 

crypto



Increasing 
confidence in 

security
Hybrid: 

Classical + PQ

Douglas Stebila, Scott Fluhrer, Shay Gueron
https://datatracker.ietf.org/doc/draft-ietf-tls-hybrid-design/

Panos Kampanakis, Douglas Stebila, Torben Hansen
https://datatracker.ietf.org/doc/draft-kampanakis-curdle-ssh-pq-ke/

https://datatracker.ietf.org/doc/draft-ietf-tls-hybrid-design/
https://datatracker.ietf.org/doc/draft-kampanakis-curdle-ssh-pq-ke/
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traditional post-
quantum hybrid

Hybrid approach: use traditional and 
post-quantum simultaneously such that 
successful attack needs to break both



Why use two (or more) algorithms?

30

1. Reduce risk from break of one algorithm

2. Ease transition with improved backwards compatibility

3. Standards compliance during transition



Why use two (or more) algorithms?

31

1. Reduce risk from break of one algorithm
• Enable early adopters to get post-quantum security without abandoning 

security of existing algorithms
• Retain security as long as at least one algorithm is not broken
• Uncertainty re: long-term security of existing cryptographic assumptions
• Uncertainty re: newer cryptographic assumptions

2. Ease transition with improved backwards compatibility

3. Standards compliance during transition



Why use two (or more) algorithms?

32

1. Reduce risk from break of one algorithm

2. Ease transition with improved backwards compatibility
• Design backwards-compatible data structures with old algorithms that 

can be recognized by systems that haven't been upgraded, but new 
implementations will use new algorithms

• May not be necessary for negotiated protocols like TLS

3. Standards compliance during transition



Why use two (or more) algorithms?

33

1. Reduce risk from break of one algorithm

2. Ease transition with improved backwards compatibility

3. Standards compliance during transition
• Early adopters may want to use post-quantum before standards-

compliant (FIPS-)certified implementations are available
• Possible to combine (in a certified way) keying material from FIPS-

certified (non-PQ) implementation with non-certified keying material



Hybrid key exchange

34

•Use two (or more) key 
exchange methods

•Transmit both public keys
•Combine shared secrets 
using hash function / key 
derivation function
• Some questions on 
designing secure dual 
PRFs in the standard 
model

• Fairly well understood
• Seems likely to be broadly 
adopted in first phase of 
PQ transition



Hybrid authentication

35

•Use two (or more) 
authentication methods

•Transmit both public 
keys and signatures

• Significant debate of merits 
of and need for hybrid 
authentication

• Seems unnecessary in the 
context of interactive / 
negotiated protocols

• May be relevant for long-
term scenarios like 
firmware updates and 
document signing

• Counterargument: just use 
hash-based signatures



Post-quantum TLS

36



Three 
dimensions of 
“post-quantum 

TLS”

37

#1: Security 
goals
• Confidentiality
• Authentication

#2: 
Algorithms
• PQ-only
• Hybrid

#3: Impact
• Protocol 

changes
• Compatibility
• Performance



What is “post-quantum TLS”?

38

Post-quantum 
key exchange

• Easiest to 
implement

• Easy backwards 
compatibility

• Needed soonest: 
harvest now & 
decrypt later with 
quantum 
computer

Classical+PQ
key exchange

• “Hybrid”

• Easy to 
implement

• Possibly in 
demand during 
pre-FIPS-
certification 
period

Post-quantum 
signatures

• On the web:
requires 
coordination with 
certificate 
authorities

• Less urgently 
needed: can’t 
retroactively 
break channel 
authentication

Classical+PQ
signatures

• “Hybrid” or 
“Composite”

• May not make 
sense in the 
context of a 
negotiated 
protocol like TLS

Alternative 
protocol designs

• Harder to 
implement; may 
require state 
machine or 
architecture 
changes

• Lots of 
interesting 
research to do!

Pre-shared key 
(PSK) mode

• Already 
supported!

• Still has the key 
distribution 
problem

• No PQ forward 
secrecy

Likely first to be adopted



Preliminary PQ TLS experiments

39https://openquantumsafe.org/ • https://blog.cloudflare.com/experiment-with-pq/

https://openquantumsafe.org/
https://blog.cloudflare.com/experiment-with-pq/


TLS 
performance 

Higher 
latency & 

packet loss

50th percentile

40OQS-OpenSSL 1.1.1, x86_64, AVX2 enabled – https://eprint.iacr.org/2019/1447

https://eprint.iacr.org/2019/1447


TLS 
performance 

Higher 
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packet loss
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TLS 
performance 

Higher 
latency & 

packet loss

50th percentile

42OQS-OpenSSL 1.1.1, x86_64, AVX2 enabled – https://eprint.iacr.org/2019/1447

https://eprint.iacr.org/2019/1447


TLS 
performance 

Higher 
latency & 

packet loss

95th percentile

43OQS-OpenSSL 1.1.1, x86_64, AVX2 enabled – https://eprint.iacr.org/2019/1447

https://eprint.iacr.org/2019/1447


TLS 
performance

On fast, reliable network links, the cost of public 
key cryptography dominates the median TLS 
establishment time, but does not substantially affect 
the 95th percentile establishment time

On unreliable network links (packet loss rates ≥ 
3%), communication sizes come to govern 
handshake completion time

As application data sizes grow, the relative cost of 
TLS handshake establishment diminishes 
compared to application data transmission

18



Reducing communication size



Big communications 
is bad in 

constrained
environments

46

Consumes battery power

Consumes costly mobile data

May exceed available memory 
on small devices

Long communication times on 
low bandwidth connections



Big communications 
is bad in

unconstrained
environments, too

47

Internet protocols running over 
UDP (unreliable datagrams)

• Need to fit into single packet ~1.4 
KB

Internet protocols running over 
TCP (reliable connections)

• Greater chance of delays due to 
retransmission of lost packets

• Latency increases in early parts of 
communication due to small TCP 
window sizes



Reducing communication size

48

Change cryptographic 
protocols to use PQ 
algorithms more 
cleverly/efficiently

Change network 
protocols to be more 
communication efficient
• Technically about reducing latency 

due to communication size, not 
reducing communication size itself

Strategy #1: Strategy #2:



Reducing 
communication 

size

Implicit 
authentication: 

KEMTLS

Peter Schwabe, Douglas Stebila, Thom Wiggers
ACM CCS 2020. https://eprint.iacr.org/2020/534

Peter Schwabe, Douglas Stebila, Thom Wiggers
ESORICS 2021. https://eprint.iacr.org/2021/779

Sofía Celi, Jonathan Hoyland, Douglas Stebila, Thom Wiggers
ESORICS 2022. https://eprint.iacr.org/2022/1111

Sofía Celi, Peter Schwabe, Douglas Stebila, Nick Sullivan, Thom Wiggers. 
https://datatracker.ietf.org/doc/html/draft-celi-wiggers-tls-authkem-00

https://eprint.iacr.org/2020/534
https://eprint.iacr.org/2021/779
https://eprint.iacr.org/2022/1111
https://datatracker.ietf.org/doc/html/draft-celi-wiggers-tls-authkem-00


Authenticated key exchange

50

Two parties 
establish a shared secret 

over a public communication channel



Explicit
authentication

Alice is assured that 
only Bob would be 

able to compute the 
shared secret

51

Alice receives 
assurance that she 

really is talking to Bob

Implicit
authentication



Explicitly authenticated key exchange:
Signed Diffie–Hellman

52

Alice Bob

(pkA, skA) SIG.KeyGen() (pkB , skB) SIG.KeyGen()

obtain pkB obtain pkA

x $ {0, . . . , q � 1}
X  g

x
X

y $ {0, . . . , q � 1}
Y  g

y

�B  SIG.Sign(skB , AkBkXkY )Y,�B

�A  SIG.Sign(skA, AkBkXkY ) �A

k  H(sid, Y x) k  H(sid,Xy)

application data

using authenticated encryption



Observation:

PQ signatures

are bigger than

PQ public key encryption / KEMs

53



Signature scheme Public key (bytes) Signature (bytes)

RSA-2048 Factoring 272 256

Elliptic curves Elliptic curve discrete logarithm 32 32

Dilithium Lattice-based (MLWE/MSIS) 1,184 2,044
Falcon Lattice-based (NTRU) 897 690
XMSS Hash-based (stateful) 32 979
SPHINCS+ Hash-based (stateless) 32 7,856

54



Signature scheme Public key (bytes) Signature (bytes)

RSA-2048 Factoring 272 256

Elliptic curves Elliptic curve discrete logarithm 32 32

Dilithium Lattice-based (MLWE/MSIS) 1,184 2,044
Falcon Lattice-based (NTRU) 897 690
XMSS Hash-based (stateful) 32 979
SPHINCS+ Hash-based (stateless) 32 7,856

55

KEM Public key (bytes) Ciphertext (bytes)

RSA-2048 Factoring 272 256

Elliptic curves Elliptic curve discrete logarithm 32 32

Kyber Lattice-based (MLWE) 800 768
BIKE Code-based 1,541 1,573
Classic McEliece Code-based 261,120 128
HQC Code-based 2,249 4,481
CSIDH Isogeny-based 64 64



Implicitly authenticated key exchange:
Double-DH

56

Alice Bob

skA $ {0, . . . , q � 1} skB  $ {0, . . . , q � 1}
pkA  g

skA pkB  g
skB

obtain pkB obtain pkA

x $ {0, . . . , q � 1} y $ {0, . . . , q � 1}
X  g

x
Y  g

y
X

Y

k  H(sid, pk
skA
B kY x) k  H(sid, pk

skB
A kXy)

application data

using authenticated encryption

Ephemeral DH

Static DH



Key encapsulation mechanisms (KEMs)

57

An abstraction of Diffie–Hellman key exchange
<latexit sha1_base64="RDVfI7FP0yyVQqr+2G8wBIqhKDQ=">AAACQ3icbVDLSgNBEJz1bXxFPXoZjEIECbs5qEdRREGECEaFJITZSW8cMjO7zPSKYdnf8Gu8xn/wG7yJRwU3D8SoBQPV1d10TfmRFBZd98WZmJyanpmdm88tLC4tr+RX165tGBsOVR7K0Nz6zIIUGqooUMJtZIApX8KN3znu92/uwVgR6ivsRtBQrK1FIDjDTGrm3a1i1NmltrND621AS+uK4Z0NkvOTi7T0XUD3FHRa3NnKNf MFt+QOQP8Sb0QKZIRKM/9Rb4U8VqCRS2ZtzXMjbCTMoOAS0lw9thAx3mFtqGVUMwW2kQx+ltLtTGnRIDTZ00gH6s+NhClru8rPJgdWf/f64n+9WozBQSMROooRNB8eCmJJMaT9mGhLGOAouxlh3IjMK+V3zDCOWZhjVx6GVsc00LESCCrtx+X9DucvuS6XvL2Se1kuHB6NgpsjG2STFIlH9skhOSMVUiWcPJIn0iPPTs95dd6c9+HohDPaWSdjcD6/ALcUsLc=</latexit>

(pk, sk) KEM.KeyGen()

<latexit sha1_base64="XPVAcqpbuqaH8/jH2n2W0moLbT0="></latexit>

(ct, k) KEM.Encaps(pk)

<latexit sha1_base64="odAnpH0dxdWK5HcWBvymtpgGo+8=">AAACQnicbVDLSgNBEJz1bXxFPXoZjEIEibse1KP4AEGECEYDSQizk944ZGZ2mekVw7Kf4dd41Y/wF7yJVw9uHoKJFgxUV3fTNeVHUlh03TdnYnJqemZ2bj63sLi0vJJfXbu1YWw4VHgoQ1P1mQUpNFRQoIRqZIApX8Kd3znt9e8ewFgR6hvsRtBQrK1FIDjDTGrm97Y6tN4GtLSuGN7bILk8v0pLP8UZcBbZtGg7u5TjzlaumS +4JbcP+pd4Q1IgQ5Sb+a96K+SxAo1cMmtrnhthI2EGBZeQ5uqxhYjxDmtDLaOaKbCNpP+xlG5nSosGocmeRtpXf28kTFnbVX422Tc83uuJ//VqMQZHjUToKEbQfHAoiCXFkPZSoi1hgKPsZoRxIzKvlN8zwzhmWY5ceRxYHdFAx0ogqLQXlzcezl9yu1/yDkru9X7h+GQY3BzZIJukSDxySI7JBSmTCuHkiTyTF/LqvDjvzofzORidcIY762QEztc31+aw0A==</latexit>

k  KEM.Decaps(sk, ct)

<latexit sha1_base64="PTKmRgTTD1VvdUJnVXjDNS/R8xM=">AAACFXicbVC7TsMwFHV4lvIqMLJYtEhMVdIBGCtYGItEH1IbVY5701q1nch2EFXUX2AtP8OGWJn5FwacNgNtOZKlo3Pu1T0+QcyZNq777Wxsbm3v7Bb2ivsHh0fHpZPTlo4SRaFJIx6pTkA0cCahaZjh0IkVEBFwaAfj+8xvP4PSLJJPZhKDL8hQspBRYjKpEo8r/VLZrbpz4HXi5aSMcjT6pZ/eIKKJAGkoJ1p3PTc2fkqUYZTDtNhLNMSEjskQupZKIkD76TzrFF9aZYDDSNknDZ6rfzdSIrSeiMBOCmJGetXLxP+8bmLCWz9lMk4MSLo4FCYcmwhnH8cDpoAaPrGEUMVsVkxHRBFqbD1LV14WUZc0kIlgBsS0aOvyVstZJ61a1buuuo+1cv0uL66AztEFukIeukF19IAaqIkoGqFXNENvzsx5dz6cz8XohpPvnKElOF+/66GfrQ==</latexit>

pk

<latexit sha1_base64="qvRR5ShOI+DZk1O2A7o45sTKiQM=">AAACFXicbVDLTsJAFJ36RHyhLt00gokr0rJQl0Q3LjGRRwINmQ63MGFm2szcGknDL7jFn3Fn3Lr2X1zYQhcCnmSSk3PuzT1z/Ehwg47zbW1sbm3v7Bb2ivsHh0fHpZPTlgljzaDJQhHqjk8NCK6giRwFdCINVPoC2v74PvPbz6AND9UTTiLwJB0qHnBGMZMqDCv9UtmpOnPY68TNSZnkaPRLP71ByGIJCpmgxnRdJ0IvoRo5EzAt9mIDEWVjOoRuShWVYLxknnVqX6bKwA5CnT6F9lz9u5FQacxE+umkpDgyq14m/ud1YwxuvYSrKEZQbHEoiIWNoZ193B5wDQzFJCWUaZ5mtdmIasowrWfpyssi6pIGKpYcQU6LaV3uajnrpFWrutdV57FWrt/lxRXIObkgV8QlN6ROHkiDNAkjI/JKZuTNmlnv1of1uRjdsPKdM7IE6+sX5NifqQ==</latexit>

ct



KEMTLS
handshake

KEM for 
ephemeral key exchange

KEM for 
server-to-client

authenticated key exchange

Combine shared secrets

58



Algorithm choices

59

KEM for ephemeral 
key exchange

KEM for authenticated 
key exchange

Signature scheme for 
intermediate CA

Signature scheme for 
root CA



Signed KEX 
versus

KEMTLS
Labels ABCD:
A = ephemeral KEM
B = leaf certificate
C = intermediate CA
D = root CA
Algorithms: (all level 1)
Dilithium, 
eCDH X25519, 
Falcon, 
Kyber, 
NTRU, 
Rainbow,
rSA-2048, 
SIKE, 
XMSS’

60Rustls client/server with some AVX2 implementations. Emulated network: latency 31.1 ms, bandwidth 1000 Mbps, 0% packet loss. Average of 100000 iterations.



Certificate lifecycle for KEM public 
keys
Tim Güneysu, Philip Hodges, Georg Land, Mike Ounsworth, Douglas Stebila, Greg 
Zaverucha
ACM CCS 2022. https://eprint.iacr.org/2022/703

61

https://eprint.iacr.org/2022/703


Certificate lifecycle

62

Requestor: 
Generate 

key

Requestor: 
Request 

certificate

CA: Verify 
certificate 
request 

and 
requestor 
identity

CA: Issue 
certificate

Requestor: 
Use 

certificate

Requestor: 
Request 

revocation

CA: 
Revoke 

certificate

Proof of possession:
CAs want to verify that the requester has the 

corresponding secret key



Certificate requests in the X.509 PKI

63

How does requester prove possession of corresponding 
secret keys?

1. Interactive challenge-response protocol [RFC 4210 Sect. 5.2.8.3]
2. Send certificate back encrypted under subject public key 

[RFC 4210 Sect. 5.2.8.2]
• Weird confidentiality requirement on certificate. 
• Maybe broken by Certificate Transparency or other logging mechanisms?

3. Non-interactive certificate signing requests [RFC 2986]
• CSRs okay for signature schemes, but not for public key encryption or key 

encapsulation mechanisms



Goal:
Design non-interactive proof of possession 

for lattice-based KEM public keys
(so that we can have the same certificate lifecycle 

for KEM certificates to enable KEMTLS)

lattice-based = FrodoKEM (plain LWE), Kyber (module LWE)

64



Possible approaches for non-interactive proof of 
possession for (lattice-based) KEM public keys

65

Zero-knowledge 
proof of knowledge

Direct lattice-
based ZK 

constructions

Generic 
approaches

zkSNARKS

Multi-party 
computation in the 

head (MPCitH)

• Can be efficient and small
• But requires embedding the target KEM parameters in 

a larger lattice instance 
=> selecting new (non-standardized) parameters

• Moderately efficient
• But not as small as 

direct constructions

• Much larger proofs
• Doesn’t require 

embedding in another 
lattice problem



Our approach

66

Generate the key and a 
proof at the same time

Proof of possession via 
verifiable generation



FrodoKEM key generation

67https://frodokem.org/

<latexit sha1_base64="uAHS0Pxs3G4SLlEGNnubR2ZZTdI="></latexit>

Frodo-640
q = 215

n = 640, n = 8
� 2 [�12, . . . , 12]

<latexit sha1_base64="j9joIFZ9/zBne6L4RzVgZ463mrA=">AAAD9XiclVJJbxMxFJ4kLCVsLRy </latexit>

1. Generate A 2 Zn⇥n
q from a seed

2. Sample S $ �n⇥n

3. Sample E $ �n⇥n

4. Compute B $ AS+E

5. Public key: (seedA,B)

6. Secret key: S

https://frodokem.org/


Verifiable generation for FrodoKEM

68

1. Generate and commit to many 
allegedly small values for S and E

2. Reveal some of them to prove 
they’re small

3. Use the rest for the actual key 
generation

This doesn’t prove that all 
the unrevealed values are 
small, only most of them 
with high probability

How do we prove we 
actually used them in the 
rest of the key 
generation?
• MPC-in-the-head à la 

Picnic
• Fiat–Shamir to get a 

signature scheme



5-round interactive protocol for verifiable generation

69

1. Prover: Generate sufficiently 
many small values.
Generate an additive secret 
sharing among N parties. 
Commit to the shares.
Send commitments.

2. Verifier: Pick some fraction of 
the bundles to audit.

3. Prover: Open commitments for 
challenged bundles. 
Use unaudited bundles to 

construct secret key (S, E) and 
public key B=AS+E. Commit to 
shares of B. 
Send commitments and public 
key (A, B).

4. Verifier: Select N-1 parties to 
audit.

5. Prover: Reveal state of N-1 
parties.

6. Verifier: Check state of revealed 
parties.



Making it non-interactive

70

• Interactive protocol has soundness 1/N, which isn’t 
cryptographically small.

•Repeat 𝜏 times to get soundness 1/N𝜏.
• (Use the same bundles from step 1 in all repetitions.)
•Apply the Fiat–Shamir transform to make it non-
interactive:
• Generate challenges in step 2 and 4 by hashing all 
previous commitments with a random oracle.



Performance 
trade-offs

52.9 kB / 0.01s
33.4 kB / 0.03s
25.6 kB / 0.1s
17.8 kB / 3.8s

71Intel Core i7-8565U CPU @ 4.6 GHz, gcc 11.2.0



Summary of verifiable generation

73

Verifiable generation 
with MPC-in-the-head 
yields reasonable proof 
sizes and runtimes for 
both FrodoKEM and 
Kyber at all security 
levels

• Smallest sizes can be 
competitive with direct 
lattice-based ZK 
constructions without 
needing to embed in a larger 
LWE instance with different 
parameters

• Order of magnitude smaller 
than previous MPC-in-the-
head approaches



Reducing 
communication 

latency

UDP 
request-based 

fragmentation in 
DNSSEC and 

TLS 1.3
Jason Goertzen and Douglas Stebila
https://arxiv.org/abs/2211.14196

Carlos Aguilar-Melchor, Thomas Bailleux, Jason Goertzen, David Joseph, Douglas Stebila
https://arxiv.org/abs/2302.05311

https://arxiv.org/abs/2211.14196
https://arxiv.org/abs/2302.05311


TLS 1.3 
connection 

establishment

2 round trips before client 
starts sending application 

data

75



TurboTLS: 
connection 

establishment with 
1 less round trip

Idea: do first TLS 
handshake flow over UDP 

while doing TCP 
handshake in parallel

76



TurboTLS
performance

On short 
distance 

connections, 
starts to make a 

difference…
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TurboTLS
performance

On long 
distance 

connections, 
halves latency 
of connection 
establishment
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Wrapping up
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Protocol Key exchange / PKE Authentication Alternatives

TLS 1.3
(secure channel)

Hybrid:
• Draft available
• Academic and industry 

experiments, early deployment
PQ only: no activity

Hybrid: 
• Debate over merits
PQ only:
• Academic experiments

KEMTLS design for implicit 
authentication

TurboTLS for lower latency

Secure Shell (SSH)
(secure channel)

Hybrid:
• Draft available
• Already deployed in OpenSSH 

by default
PQ only: no activity

Hybrid:
• Debate over merits
PQ only:
• Already deployed in OpenSSH

IPsec
(secure channel)

Hybrid:
• Draft available

No activity

Certificates (X.509)
(public key infrastructure)

Hybrid: no activity
PQ only:
• Drafts for Kyber

Hybrid:
• Debate over merits
PQ only:
• Drafts for Dilithium

Secure E-Mail
(S/MIME and CMS)
(encryption and/or authentication)

Hybrid:
• Draft available
PQ only:
• Drafts for Kyber

Hybrid:
• Debate over merits
PQ only:
• Drafts for Dilithium, SPHINCS+

Domain Name 
Security (DNSSEC)
(authentication)

Not applicable Hybrid: no activity
PQ only:
• Academic research on Falcon, 

aggregated hash trees

Request-based fragmentation for 
handling large DNSSEC packets

this 
talk

this 
talk

this 
talk



Rethinking Internet protocols for 
post-quantum cryptography

Douglas Stebila
Public key cryptography designed to resist 
attacks by quantum computers

• Five families of mathematical assumptions

• Standardization of core algorithms under way by 
US National Institute of Standards and 
Technology

• Starting the process of standardizing post-
quantum cryptography in Internet protocols

Lack of 
confidence in 

security
"Hybrid": Use multiple 

algorithms

Slow 
computation

Actually not too bad; research 
on algorithmic optimizations; 
general CPU improvements

Large 
communication 

sizes

Change how security and 
network protocols use PQ 

crypto

81https://www.douglas.stebila.ca/research • https://openquantumsafe.org/

Addressing challenges in using post-quantum 
cryptography

this 
talk

this 
talk

https://eprint.iacr.org/2020/534
https://openquantumsafe.org/


Appendix
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Post-quantum Traditional public 
key crypto

Computational assumptions studied since Computational assumptions studied since 
1970s / 1980s1970s 1990s/2000s/2010s

Conjecturally resistant to quantum attacks Vulnerable to quantum attacks

Medium to large communication sizes
(700–30000+ bytes)

Small communication sizes
(32–384 bytes)

Sub-millisecond computation times Sub-millisecond computation times

Less flexible for building fancy cryptography Flexible for building fancy crypto



Open Quantum Safe Project

https://openquantumsafe.org/ • https://github.com/open-quantum-safe/

liboqs

key exchange / KEMs signatures

isogenies code-based lattice-
based

multi-variate 
polynomial

hash-based 
/ symmetric

OpenSSL
S/MIME, TLS 1.3, X.509

OpenSSL 3 provider
BoringSSL

Open
SSH

Language 
SDKs

C#, C++, Go, 
Java, Python, 

Rust

Apache 
httpd nginx curl, 

links
Open
VPN

C language library, 
common API
• x86/x64 (Linux, 

Mac, Windows)
• ARM (Android, 

Linux)

Integration into forks 
of widely used open-
source projects

Use in applications Chromium

Led by University of 
Waterloo

Industry partners:
• Amazon Web 

Services
• Cisco
• evolutionQ
• IBM Research
• Microsoft Research

Additional contributors:
• Senetas
• PQClean project
• Individuals

Financial support:
• AWS
• Canadian Centre 

for Cyber Security
• Cisco
• NLNet
• NSERC
• Unitary Fund
• Verisign

https://openquantumsafe.org/
https://github.com/open-quantum-safe/


Four TLS 
1.3 modes

85

Signed Diffie–Hellman, 
server-only authentication

Signed Diffie–Hellman, 
mutual authentication

Pre-shared key (PSK)

Pre-shared key with ephemeral Diffie–Hellman 
(PSK-ECDHE)

Already 
PQ!



Defining security for proof of possession

86

Unforgeability:
• Hard to construct a valid 
proof of possession for an 
honest public key without 
the corresponding secret 
key

Zero knowledge:
• The proofs of possession 
leak no information about 
the secret key.

• Need to ensure the proof of 
possession composes nicely 
with the intended usage of the 
key

• Zero knowledge shows the 
proof doesn’t undermine the 
scheme

• Need to extend unforgeability:
• Use an “auxiliary secret key 

usage algorithm” in 
unforgeability experiment

• Introduce a notion of KEM 
simulatability which FO-based 
KEMs have



Uniqueness of small FrodoKEM solutions
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Recall high-level idea:
1. Generate and commit to 

many allegedly small 
values for S and E

2. Reveal some of them to 
prove they’re small

• We prove a lemma upper-
bounding the probability that a 
second FrodoKEM solution 
exists with mostly small 
solutions

• Choose number of bundles to 
audit to ensure no other 
mostly small secret key exists

• So proving possession of a 
mostly small solution implies 
proving possession of the true 
secret key

• Similar result for Kyber
This doesn’t prove that all the unrevealed 
values are small, only most of them with 

high probability



Comparison with other approaches
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TurboTLS comparison
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