
Integrating post-quantum
cryptography into real-world protocols

Douglas Stebila

https://www.douglas.stebila.ca/research/presentations/
SAC Summer School • 2022-08-22

https://www.douglas.stebila.ca/research/presentations/

2

3

Cryptographic building blocks

4

Public-key
cryptography

RSA or elliptic
curve

signatures

Elliptic curve
Diffie–Hellman
key exchange

Symmetric
cryptography

AES
encryption

AES GCM
integrity

Based on
difficulty of

factoring large
numbers

– not quantum
resistant!

Based on difficulty of

computing discrete
logarithms

– not quantum resistant!

SSL/TLS Protocol

5

Client Server

1. Negotiate cryptographic algorithms

2. Authenticate using certificates

3. Establish encryption keys

Message 1

Key

H
AN

D
SH

AK
E

R
EC

O
R

D
 L

AY
ER

Typically
signed Diffie–

Hellman

Authenticated
encryption

Ciphertext Decryption &
verification

Key

Message 1

Message 2 Decryption &
verification

Authenticated
encryption

Ciphertext
Message 2

Internet

Four TLS
1.3 modes

6

Signed Diffie–Hellman,
server-only authentication

Signed Diffie–Hellman,
mutual authentication

Pre-shared key (PSK)

Pre-shared key with ephemeral Diffie–Hellman
(PSK-ECDHE)

Already
PQ!

Three
dimensions of

“post-quantum
TLS”

7

#1: Security
goals
• Confidentiality
• Authentication

#2:
Algorithms
• PQ-only
• Hybrid

#3: Impact
• Protocol

changes
• Compatibility
• Performance

What is “post-quantum TLS”?

8

Post-quantum
key exchange

• Easiest to
implement

• Easy backwards
compatibility

• Needed soonest:
harvest now &
decrypt later with
quantum
computer

Classical+PQ
key exchange

• “Hybrid”
• Easy to

implement
• Possibly in

demand during
pre-FIPS-
certification
period

Post-quantum
signatures

• On the web:
requires
coordination with
certificate
authorities

• Less urgently
needed: can’t
retroactively
break channel
authentication

Classical+PQ
signatures

• “Hybrid” or
“Composite”

• May not make
sense in the
context of a
negotiated
protocol like TLS

Alternative
protocol designs

• Harder to
implement; may
require state
machine or
architecture
changes

Pre-shared key
(PSK) mode

• Already
supported!

• Still has the key
distribution
problem

• No PQ forward
secrecy

TLS 1.3
handshake

Signed Diffie–Hellman

9

Diffie-Hellman key exchange

Digital signature

Authenticated encryption

TLS 1.3
handshake

Signed Diffie–Hellman
Post-Quantum!!!

10

11

Long standing confidence in quantum-resistance

Fast computation Small communication

Pick ≤ 2

Outline

Part 1: Existing protocol designs
• Classical + PQ key exchange
• Classical + PQ signatures
• Performance

Part 2: Alternative protocol
designs
• KEMTLS

12

Classical + PQ key exchange
Douglas Stebila, Scott Fluhrer, Shay Gueron
https://datatracker.ietf.org/doc/html/draft-ietf-tls-hybrid-design-03

https://datatracker.ietf.org/doc/html/draft-ietf-tls-hybrid-design-03

Why use two (or more) algorithms?

14

1. Reduce risk from break of one algorithm

2. Ease transition with improved backwards compatibility

3. Standards compliance during transition

Why use two (or more) algorithms?

15

1. Reduce risk from break of one algorithm
• Enable early adopters to get post-quantum security without abandoning

security of existing algorithms
• Retain security as long as at least one algorithm is not broken
• Uncertainty re: long-term security of existing cryptographic assumptions
• Uncertainty re: newer cryptographic assumptions

2. Ease transition with improved backwards compatibility

3. Standards compliance during transition

Why use two (or more) algorithms?

16

1. Reduce risk from break of one algorithm

2. Ease transition with improved backwards compatibility
• Design backwards-compatible data structures with old algorithms that

can be recognized by systems that haven't been upgraded, but new
implementations will use new algorithms

• May not be necessary for negotiated protocols like TLS

3. Standards compliance during transition

Why use two (or more) algorithms?

17

1. Reduce risk from break of one algorithm

2. Ease transition with improved backwards compatibility

3. Standards compliance during transition
• Early adopters may want to use post-quantum before standards-

compliant (FIPS-)certified implementations are available
• Possible to combine (in a certified way) keying material from FIPS-

certified (non-PQ) implementation with non-certified keying material

Terminology

18

•“Hybrid”
•“Composite”
•“Dual algorithms”
•“Robust combiner” [HKNRR05]

[HKNRR05] Harnik, Kilian, Naor, Reingold, Rosen. Eurocrypt 2005.

IETF draft: Hybrid key exchange in TLS 1.3

Define data structures
for negotiation,
communication, and
shared secret
calculation for hybrid
key exchange

•Hybrid/composite
certificates or digital
signatures

•Selecting which post-
quantum algorithms to
use in TLS

Goals Non-goals

Mechanism
Main idea:
Each desired
combination of
traditional + post-
quantum algorithm will
be a new (opaque) key
exchange “group”

• Negotiation: new named groups
for each desired combination will
need to be standardized

• Key shares: concatenate key
shares for each constituent
algorithm

• Shared secret calculation:
concatenate shared secrets for
each constituent algorithm and
use as input to key schedule

IETF draft:
Hybrid key
exchange
in TLS 1.3

Current status
•May 2022: Working
group last call

•In progress: Minor
revisions from WGLC

•Then: Park until NIST
Round 3 concludes and
CFRG has reviewed
algorithms

Securely combining keying material

22

Is it okay to use
concatenation?

ss = k1 || k2

ss = H(k1 || k2)

Note concatenation is the
primary hybrid method
approved by NIST.

• Assume at least one of k1 or
k2 is indistinguishable from
random.

• If H is a random oracle, then
ss is indistinguishable from
random.

• If k1 and k2 are fixed length
and H is a dual PRF in either
half of its input, then ss is
indistinguishable from
random.

https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-56Cr2.pdf#page=10

https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-56Cr2.pdf

Classical + PQ signatures

LAMPS working group
• “Limited Additional Mechanisms for PKIX and
S/MIME”
• PKIX: Public key infrastructure a.k.a. X.509 certificates
• S/MIME: Secure email (encrypted/signed)

• LAMPS charter now includes milestones related to PQ
• PQ algorithms in PKIX/X.509 and S/MIME
• Hybrid key establishment
• Dual signatures

https://datatracker.ietf.org/wg/lamps/about/

https://datatracker.ietf.org/wg/lamps/about/

IETF drafts: pq-composite-keys, -sigs

25

Led by Mike Ounsworth from Entrust
and Massimiliano Pala from CableLabs

(I’m not involved – just including here FYI)

https://datatracker.ietf.org/doc/html/draft-ounsworth-pq-composite-keys-02
https://datatracker.ietf.org/doc/html/draft-ounsworth-pq-composite-sigs-07

https://datatracker.ietf.org/doc/html/draft-ounsworth-pq-composite-keys-02
https://datatracker.ietf.org/doc/html/draft-ounsworth-pq-composite-sigs-07

IETF drafts: pq-composite-keys, -sigs

26

How to represent
algorithm

identifiers and
keys

Single algorithm id
representing “composite”, then
an additional field containing
list of algorithms
• Good for prototyping
• Allow for high degree of agility
• Allows ≥ 2 algorithms

https://datatracker.ietf.org/doc/html/draft-ounsworth-pq-composite-keys-02
https://datatracker.ietf.org/doc/html/draft-ounsworth-pq-composite-sigs-07

New algorithm id for
each combination of
algorithms
• Less new processing

logic
• Lower degree of agility

Main question Option #1:
Generic composite

Option #2:
Explicit composite

https://datatracker.ietf.org/doc/html/draft-ounsworth-pq-composite-keys-02
https://datatracker.ietf.org/doc/html/draft-ounsworth-pq-composite-sigs-07

Composite AND versus Composite OR
In an asynchronous setting:
How is a credential with two public keys/signatures
meant to be used?

• Must both algorithms be used? (Composite AND)
• Is either algorithm okay? (Composite OR)

• Must take countermeasures to avoid stripping/separating
context

• Risks of ambiguity

TLS performance
Open Quantum Safe benchmarking. https://openquantumsafe.org/benchmarking/

Christian Paquin, Douglas Stebila, Goutam Tamvada.
PQCrypto 2020. https://eprint.iacr.org/2019/1447

https://openquantumsafe.org/benchmarking/
https://eprint.iacr.org/2019/1447

Base performance – Round 3 KEM Finalists

Based on Round 2 submission documents; AVX2 runtimes normalized 29

smaller is better smaller is better

Base performance – Round 3 Signature Finalists

Based on Round 2 submission documents; AVX2 runtimes normalized 30

TLS performance – ideal conditions

31

2606.6

2226.96
2427.03

2781.69

2274.7

2730.99

294.83 281.82 285.83
0

500

1000

1500

2000

2500

3000

Kyber NTRU Saber

Handshakes per second (higher is better)

Dilithium Falcon Rainbow

OQS benchmarking 2022/06/25 – x86_64 “performance” build – https://openquantumsafe.org/benchmarking/

https://openquantumsafe.org/benchmarking/

TLS
performance

Higher
latency &

packet loss

50th percentile

32OQS-OpenSSL 1.1.1, x86_64, AVX2 enabled – https://eprint.iacr.org/2019/1447

https://eprint.iacr.org/2019/1447

TLS
performance

Higher
latency &

packet loss

50th percentile

33OQS-OpenSSL 1.1.1, x86_64, AVX2 enabled – https://eprint.iacr.org/2019/1447

https://eprint.iacr.org/2019/1447

TLS
performance

Higher
latency &

packet loss

50th percentile

34OQS-OpenSSL 1.1.1, x86_64, AVX2 enabled – https://eprint.iacr.org/2019/1447

https://eprint.iacr.org/2019/1447

TLS
performance

Higher
latency &

packet loss

95th percentile

35OQS-OpenSSL 1.1.1, x86_64, AVX2 enabled – https://eprint.iacr.org/2019/1447

https://eprint.iacr.org/2019/1447

TLS
performance

On fast, reliable network links, the cost of public
key cryptography dominates the median TLS
establishment time, but does not substantially affect
the 95th percentile establishment time

On unreliable network links (packet loss rates ≥
3%), communication sizes come to govern
handshake completion time

As application data sizes grow, the relative cost of
TLS handshake establishment diminishes
compared to application data transmission

18

https://openquantumsafe.org https://github.com/open-quantum-safe

Open Quantum Safe Project

https://openquantumsafe.org/ • https://github.com/open-quantum-safe/

liboqs

key exchange / KEMs signatures

isogenies code-based lattice-
based

multi-variate
polynomial

hash-based
/ symmetric

OpenSSL
S/MIME, TLS 1.3, X.509

OpenSSL 3 provider
BoringSSL

Open
SSH

Language
SDKs

C#, C++, Go,
Java, Python,

Rust

Apache
httpd nginx curl,

links
Open
VPN

C language library,
common API
• x86/x64 (Linux,

Mac, Windows)
• ARM (Android,

Linux)

Integration into forks
of widely used open-
source projects

Use in applications Chromium

Industry partners:
• Amazon Web

Services
• evolutionQ
• IBM Research
• Microsoft Research

Additional contributors:
• Cisco
• Senetas
• PQClean project
• Individuals

Financial support:
• AWS
• Canadian Centre

for Cyber Security
• NSERC
• Unitary Fund

https://openquantumsafe.org/
https://github.com/open-quantum-safe/

liboqs

39

•C library with common
API for post-quantum
signature schemes and
key encapsulation
mechanisms

•MIT License

•Builds on Windows,
macOS, Linux; x86_64,
ARM v8

•Includes all Round 3
finalists and alternate
candidates
• (except GeMSS)

https://openquantumsafe.org/liboqs/

https://openquantumsafe.org/liboqs/

TLS 1.3 implementations

40

OQS-OpenSSL
1.1.1

OQS-OpenSSL
3 provider

OQS-
BoringSSL

PQ key exchange in TLS 1.3 ✔ ✔ ✔

Classical + PQ key exchange in TLS 1.3 ✔ ✔ ✔

PQ certificates and signature authentication
in TLS 1.3 ✔ ✖ ✔

Classical + PQ certificates and signature
authentication in TLS 1.3 ✔ ✖ ✖

https://openquantumsafe.org/applications/tls/

Using draft-ietf-tls-hybrid-design for hybrid key exchange

Interoperability test server running at https://test.openquantumsafe.org

https://openquantumsafe.org/applications/tls/
https://test.openquantumsafe.org/

Applications

41

•Demonstrator
application integrations
into:
• Apache
• nginx
• haproxy
• curl
• Chromium
• Wireshark

• In most cases required
few/no modifications to
work with updated
OpenSSL

•Runnable Docker images
available for download

https://openquantumsafe.org/applications/tls/#demo-integrations

https://openquantumsafe.org/applications/tls/

Paths to standardization and adoption

42

NIST NIST round 3
selection

NIST draft
standard

FIPS
standard

CFRG CFRG
standard

TLS working
group TLS standard

Implementers Early
prototypes

Preliminary
adoption

Standard
adoption

FIPS-certified
adoption

Certificate
authorities

CA/B Forum
guidelines Deployment

Integrating post-quantum cryptography into real-world protocols, part 1
Douglas Stebila

What is post-quantum TLS?
• PSK mode
• PQ key exchange
• Classical + PQ key exchange
• PQ signatures
• Classical + PQ signatures
• Alternative protocol designs

(KEMTLS)

Hybrid key exchange
in TLS 1.3
https://datatracker.ietf.org/doc/html/draft-ietf-tls-hybrid-design-03

Composite certificates
https://datatracker.ietf.org/doc/html/draft-ounsworth-pq-composite-keys-02
https://datatracker.ietf.org/doc/html/draft-ounsworth-pq-composite-sigs-07

Performance
https://eprint.iacr.org/2019/1447
https://openquantumsafe.org/benchmarking/

Open Quantum Safe project
https://openquantumsafe.org • https://github.com/open-quantum-safe/ 43

https://www.douglas.stebila.ca/research/presentations/

https://datatracker.ietf.org/doc/html/draft-ietf-tls-hybrid-design-03
https://datatracker.ietf.org/doc/html/draft-ounsworth-pq-composite-keys-02
https://datatracker.ietf.org/doc/html/draft-ounsworth-pq-composite-sigs-07
https://datatracker.ietf.org/doc/html/draft-ounsworth-pq-composite-keys-02
https://openquantumsafe.org/benchmarking/
https://openquantumsafe.org/
https://github.com/open-quantum-safe/
https://www.douglas.stebila.ca/research/presentations/

