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Cryptography @ University of Waterloo
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• UW involved in 4 NIST PQC Round 3 submissions:
• Finalists: CRYSTALS-Kyber, NTRU
• Alternates: FrodoKEM, SIKE

• Elliptic curves: David Jao, Alfred Menezes, (Scott Vanstone)
• More cryptography: Sergey Gorbunov, Mohammad Hajiabadi, Doug Stinson
• Privacy-enhancing technologies: Ian Goldberg
• Quantum cryptanalysis: Michele Mosca
• Quantum cryptography: Norbert Lütkenhaus, Thomas Jennewein, Debbie 

Leung
• Even more cryptography and security: Gord Agnew, Vijay Ganesh, Guang

Gong, Sergey Gorbunov, Anwar Hasan, Florian Kerschbaum



KEMTLS
Reimagining of TLS 1.3 
handshake to use 
key encapsulation 
mechanisms (KEMs) for 
implicit authentication, 
rather than digital 
signatures for explicit 
authentication

•Reduce communication 
sizes in PQ setting 
since PQ KEMs are in 
general smaller than 
PQ signatures

•Can reduce 
computation costs in 
some configurations
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Outline

1. KEMTLS design and 
performance

2. Pre-distributed public 
keys for faster client 
authentication

3. Proving KEMTLS
manually and with
Tamarin

4. Certificate lifecycle for
KEM public keys
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1. KEMTLS design and performance
Peter Schwabe, Douglas Stebila, Thom Wiggers
ACM CCS 2020. https://eprint.iacr.org/2020/534
Sofía Celi, Peter Schwabe, Douglas Stebila, Nick Sullivan, Thom Wiggers. 
https://datatracker.ietf.org/doc/html/draft-celi-wiggers-tls-authkem-00
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https://eprint.iacr.org/2020/534
https://datatracker.ietf.org/doc/html/draft-celi-wiggers-tls-authkem-00


Authenticated key exchange
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•Two parties establish a shared secret over a 
public communication channel



Vast literature on AKE protocols
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• Many security definitions capturing various adversarial 
powers: BR, CK, eCK, …

• Different types of authentication credentials: public key, 
shared secret key, password, identity-based, …

• Additional security goals: weak/strong forward secrecy, 
key compromise impersonation resistance, post-compromise 
security, …

• Additional protocol functionality: multi-stage, ratcheting, …
• Group key exchange
• Real-world protocols: TLS, SSH, Signal, IKE, ISO, EMV, …
• …



Explicit
authentication

Alice is assured that 
only Bob would be 

able to compute the 
shared secret

9

Alice receives 
assurance that she 

really is talking to Bob

Implicit
authentication



Explicitly authenticated key exchange:
Signed Diffie–Hellman

10

Alice Bob

(pkA, skA) SIG.KeyGen() (pkB , skB) SIG.KeyGen()

obtain pkB obtain pkA

x $ {0, . . . , q � 1}
X  g

x
X

y $ {0, . . . , q � 1}
Y  g

y

�B  SIG.Sign(skB , AkBkXkY )Y,�B

�A  SIG.Sign(skA, AkBkXkY ) �A

k  H(sid, Y x) k  H(sid,Xy)

application data

using authenticated encryption



Implicitly authenticated key exchange:
Double-DH
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Alice Bob

skA $ {0, . . . , q � 1} skB  $ {0, . . . , q � 1}
pkA  g

skA pkB  g
skB

obtain pkB obtain pkA

x $ {0, . . . , q � 1} y $ {0, . . . , q � 1}
X  g

x
Y  g

y
X

Y

k  H(sid, pk
skA
B kY x) k  H(sid, pk

skB
A kXy)

application data

using authenticated encryption

Ephemeral DH

Static DH



Problem
post-quantum 

signatures
are big
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Signature scheme Public key (bytes) Signature (bytes)

RSA-2048 Factoring 272 256

Elliptic curves Elliptic curve discrete logarithm 32 32

Dilithium Lattice-based (MLWE/MSIS) 1,184 2,044
Falcon Lattice-based (NTRU) 897 690
XMSS Hash-based 32 979
Rainbow Multi-variate 60,192 66
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Solution
use 

post-quantum KEMs 
for authentication

14



Key encapsulation mechanisms (KEMs)
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An abstraction of Diffie–Hellman key exchange
<latexit sha1_base64="RDVfI7FP0yyVQqr+2G8wBIqhKDQ=">AAACQ3icbVDLSgNBEJz1bXxFPXoZjEIECbs5qEdRREGECEaFJITZSW8cMjO7zPSKYdnf8Gu8xn/wG7yJRwU3D8SoBQPV1d10TfmRFBZd98WZmJyanpmdm88tLC4tr+RX165tGBsOVR7K0Nz6zIIUGqooUMJtZIApX8KN3znu92/uwVgR6ivsRtBQrK1FIDjDTGrm3a1i1NmltrND621AS+uK4Z0NkvOTi7T0XUD3FHRa3NnKNf MFt+QOQP8Sb0QKZIRKM/9Rb4U8VqCRS2ZtzXMjbCTMoOAS0lw9thAx3mFtqGVUMwW2kQx+ltLtTGnRIDTZ00gH6s+NhClru8rPJgdWf/f64n+9WozBQSMROooRNB8eCmJJMaT9mGhLGOAouxlh3IjMK+V3zDCOWZhjVx6GVsc00LESCCrtx+X9DucvuS6XvL2Se1kuHB6NgpsjG2STFIlH9skhOSMVUiWcPJIn0iPPTs95dd6c9+HohDPaWSdjcD6/ALcUsLc=</latexit>

(pk, sk) KEM.KeyGen()

<latexit sha1_base64="XPVAcqpbuqaH8/jH2n2W0moLbT0="></latexit>

(ct, k) KEM.Encaps(pk)

<latexit sha1_base64="odAnpH0dxdWK5HcWBvymtpgGo+8=">AAACQnicbVDLSgNBEJz1bXxFPXoZjEIEibse1KP4AEGECEYDSQizk944ZGZ2mekVw7Kf4dd41Y/wF7yJVw9uHoKJFgxUV3fTNeVHUlh03TdnYnJqemZ2bj63sLi0vJJfXbu1YWw4VHgoQ1P1mQUpNFRQoIRqZIApX8Kd3znt9e8ewFgR6hvsRtBQrK1FIDjDTGrm97Y6tN4GtLSuGN7bILk8v0pLP8UZcBbZtGg7u5TjzlaumS +4JbcP+pd4Q1IgQ5Sb+a96K+SxAo1cMmtrnhthI2EGBZeQ5uqxhYjxDmtDLaOaKbCNpP+xlG5nSosGocmeRtpXf28kTFnbVX422Tc83uuJ//VqMQZHjUToKEbQfHAoiCXFkPZSoi1hgKPsZoRxIzKvlN8zwzhmWY5ceRxYHdFAx0ogqLQXlzcezl9yu1/yDkru9X7h+GQY3BzZIJukSDxySI7JBSmTCuHkiTyTF/LqvDjvzofzORidcIY762QEztc31+aw0A==</latexit>

k  KEM.Decaps(sk, ct)

<latexit sha1_base64="PTKmRgTTD1VvdUJnVXjDNS/R8xM=">AAACFXicbVC7TsMwFHV4lvIqMLJYtEhMVdIBGCtYGItEH1IbVY5701q1nch2EFXUX2AtP8OGWJn5FwacNgNtOZKlo3Pu1T0+QcyZNq777Wxsbm3v7Bb2ivsHh0fHpZPTlo4SRaFJIx6pTkA0cCahaZjh0IkVEBFwaAfj+8xvP4PSLJJPZhKDL8hQspBRYjKpEo8r/VLZrbpz4HXi5aSMcjT6pZ/eIKKJAGkoJ1p3PTc2fkqUYZTDtNhLNMSEjskQupZKIkD76TzrFF9aZYDDSNknDZ6rfzdSIrSeiMBOCmJGetXLxP+8bmLCWz9lMk4MSLo4FCYcmwhnH8cDpoAaPrGEUMVsVkxHRBFqbD1LV14WUZc0kIlgBsS0aOvyVstZJ61a1buuuo+1cv0uL66AztEFukIeukF19IAaqIkoGqFXNENvzsx5dz6cz8XohpPvnKElOF+/66GfrQ==</latexit>

pk

<latexit sha1_base64="qvRR5ShOI+DZk1O2A7o45sTKiQM=">AAACFXicbVDLTsJAFJ36RHyhLt00gokr0rJQl0Q3LjGRRwINmQ63MGFm2szcGknDL7jFn3Fn3Lr2X1zYQhcCnmSSk3PuzT1z/Ehwg47zbW1sbm3v7Bb2ivsHh0fHpZPTlgljzaDJQhHqjk8NCK6giRwFdCINVPoC2v74PvPbz6AND9UTTiLwJB0qHnBGMZMqDCv9UtmpOnPY68TNSZnkaPRLP71ByGIJCpmgxnRdJ0IvoRo5EzAt9mIDEWVjOoRuShWVYLxknnVqX6bKwA5CnT6F9lz9u5FQacxE+umkpDgyq14m/ud1YwxuvYSrKEZQbHEoiIWNoZ193B5wDQzFJCWUaZ5mtdmIasowrWfpyssi6pIGKpYcQU6LaV3uajnrpFWrutdV57FWrt/lxRXIObkgV8QlN6ROHkiDNAkjI/JKZuTNmlnv1of1uRjdsPKdM7IE6+sX5NifqQ==</latexit>

ct



Signature scheme Public key (bytes) Signature (bytes)

RSA-2048 Factoring 272 256

Elliptic curves Elliptic curve discrete logarithm 32 32

Dilithium Lattice-based (MLWE/MSIS) 1,184 2,044
Falcon Lattice-based (NTRU) 897 690
XMSS Hash-based 32 979
Rainbow Multi-variate 60,192 66
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KEM Public key (bytes) Ciphertext (bytes)

RSA-2048 Factoring 272 256

Elliptic curves Elliptic curve discrete logarithm 32 32

Kyber Lattice-based (MLWE) 800 768
NTRU Lattice-based (NTRU) 699 699
Saber Lattice-based (MLWR) 672 736
SIKE Isogeny-based 330 330
SIKE compressed Isogeny-based 197 197
Classic McEliece Code-based 261,120 128



Implicitly authenticated KEX is not new

17

•DH-based: SKEME, 
MQV, HMQV, …

•KEM-based: 
BCGP09, FSXY12, …

• RSA key transport in 
TLS ≤ 1.2

• Lacks forward secrecy
• Signal, Noise, Wireguard

• DH-based
• Different protocol flows

• OPTLS
• DH-based
• Requires a non-interactive key 

exchange (NIKE)

In theory In practice



KEMTLS
handshake

KEM for 
ephemeral key exchange

KEM for 
server-to-client

authenticated key exchange

Combine shared secrets

18



Algorithm choices

19

KEM for ephemeral 
key exchange

KEM for authenticated 
key exchange

Signature scheme for 
intermediate CA

Signature scheme for 
root CA



Algorithm choices
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KEM for ephemeral 
key exchange

• IND-CCA (or IND-1CCA)
• Want small public key 

+ small ciphertext

KEM for authenticated 
key exchange

• IND-CCA
• Want small public key 

+ small ciphertext

Signature scheme for 
intermediate CA

• Want small public key 
+ small signature

Signature scheme for 
root CA

• Want small signature



4 scenarios

21

1. Minimize size when intermediate certificate 
transmitted

2. Minimize size when intermediate certificate 
not transmitted (cached)

3. Use solely NTRU assumptions
4. Use solely module LWE/SIS assumptions



Signed KEX 
versus

KEMTLS
Labels ABCD:
A = ephemeral KEM
B = leaf certificate
C = intermediate CA
D = root CA
Algorithms: (all level 1)
Dilithium, 
eCDH X25519, 
Falcon, 
Kyber, 
NTRU, 
Rainbow,
rSA-2048, 
SIKE, 
XMSS’

22Rustls client/server with some AVX2 implementations. Emulated network: latency 31.1 ms, bandwidth 1000 Mbps, 0% packet loss. Average of 100000 iterations.
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KEMTLS benefits
• Size-optimized KEMTLS requires < ½ communication of size-

optimized PQ signed-KEM
• Speed-optimized KEMTLS uses 90% fewer server CPU cycles 

and still reduces communication
• NTRU KEX (27 μs) 10x faster than Falcon signing (254 μs)

• No extra round trips required until client starts sending 
application data in server-only auth mode

• Smaller trusted code base (no signature generation on 
client/server)



Variant: KEMTLS with client authentication

25

1. Client has a long-term KEM public key
2. Client transmits it encrypted under key derived 

from 
a) server long-term KEM key exchange
b) ephemeral KEM key exchange

•Preserves client confidentiality
•Adds extra round trip



2. Pre-distributed public keys for 
faster client authentication
Peter Schwabe, Douglas Stebila, Thom Wiggers
ESORICS 2021. https://eprint.iacr.org/2021/779
Sofía Celi, Peter Schwabe, Douglas Stebila, Nick Sullivan, Thom Wiggers. 
https://datatracker.ietf.org/doc/html/draft-celi-wiggers-tls-authkem-00
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https://eprint.iacr.org/2021/779
https://datatracker.ietf.org/doc/html/draft-celi-wiggers-tls-authkem-00


Variant: Pre-distributed public keys
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What if server public 
keys are pre-
distributed?

• Cached in a browser
• Pinned in mobile apps
• Embedded in IoT 
devices

• Out-of-band (e.g., DNS)
• TLS 1.3: RFC 7924

Different from TLS 1.3 
pre-shared symmetric 
key mode

• PSK is a harder(?) key 
management problem

• Different compromise 
model



Variant: Pre-distributed public keys
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• Alternate KEMTLS protocol flow 
when server certificates are 
known in advance

• Resumption-style mechanism 
that avoids the downsides of 
symmetric-key TLS PSK

• Given server’s long-term key, 
client can send ciphertext in 
ClientHello

• Also allow to send client 
certificate in ClientHello

Get a 1-RTT, 
TLS 1.3-shape 
handshake with

implicit authentication



KEMTLS-PDK
handshake

server-only auth.

KEM for 
ephemeral key exchange

KEM for 
server-to-client

authenticated key exchange

Combine shared secrets

29



KEMTLS-PDK
handshake

mutual auth

KEM for 
ephemeral key exchange

KEM for 
server-to-client authenticated key exchange

KEM for 
client-to-server authenticated key exchange

Combine shared secrets

30



Benefits from pre-distributed key variant

31

•Additional bandwidth savings
•Makes some PQ algorithms viable

• Large public keys, small ciphertexts/signatures: 
Classic McEliece and Rainbow

•Client authentication 1 round-trip earlier if 
proactive

•Explicit server authentication 1 round-trip earlier 
• => better downgrade resilience



KEMTLS variants
Traditional 
communication flow:
1. KEMTLS server-only 

authentication
2. KEMTLS mutual 

authentication

Pre-distributed server 
public keys:
3. KEMTLS-PDK server-only 

authentication
4. KEMTLS-PDK mutual 

authentication

KEMTLS: ACM CCS 2020 https://eprint.iacr.org/2020/534
KEMTLS-PDK: ESORICS 2021 https://eprint.iacr.org/2021/779 32

https://eprint.iacr.org/2020/534
https://eprint.iacr.org/2021/779


3. Proving KEMTLS manually and with 
Tamarin
Peter Schwabe, Douglas Stebila, Thom Wiggers
ACM CCS 2020. https://eprint.iacr.org/2020/534

Peter Schwabe, Douglas Stebila, Thom Wiggers
ESORICS 2021. https://eprint.iacr.org/2021/779

Sofía Celi, Jonathan Hoyland, Douglas Stebila, Thom Wiggers
Coming soon to an eprint server near you!
https://github.com/thomwiggers/TLS13Tamarin
https://github.com/dstebila/KEMTLS-Tamarin/

33

https://eprint.iacr.org/2020/534
https://eprint.iacr.org/2021/779
https://github.com/thomwiggers/TLS13Tamarin
https://github.com/dstebila/KEMTLS-Tamarin/


Security 
properties

Key 
indistinguishability

Forward secrecy

Implicit and explicit 
authentication

Deniability
34



Multi-stage 
authenticated key 

exchange model for 
KEMTLS

→ Bellare–Rogaway AKE model
→ Multi-stage AKE model [FG14]
→ Multi-stage AKE model for TLS 1.3 

[DFGS15]

[BR93] Bellare, Rogaway, Crypto’93. [FG14] Fischlin, Günther, ACM CCS 2014. 
[DFGS15] Dowling, Fischlin, Günther, Stebila, ACM CCS 2015.

6 session 
keys

35



Security subtleties: authentication
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•Client’s first application 
flow can’t be read by 
anyone other than 
intended server, but 
client doesn’t know 
server is live at the time 
of sending

•Explicit authentication 
once key confirmation 
message transmitted

•Retroactive explicit 
authentication of earlier 
keys 

Implicit authentication Explicit authentication



Security subtleties: downgrade resilience

37

• Choice of cryptographic 
algorithms not 
authenticated at the time 
the client sends its first 
application flow

• MITM can’t trick client into 
using undesirable 
algorithm

• But MITM can trick them 
into temporarily using 
suboptimal algorithm

•Formally model 3 levels 
of downgrade-resilience:
1. Full downgrade 

resilience
2. No downgrade 

resilience to 
unsupported algorithms

3. No downgrade 
resilience



Security subtleties: forward secrecy

38

Does compromise of a 
party’s long-term key 
allow decryption of past 
sessions?

• Weak forward secrecy 1: 
adversary passive in the test 
stage

• Weak forward secrecy 2: 
adversary passive in the test 
stage or never corrupted 
peer’s long-term key

• Forward secrecy: adversary 
passive in the test stage or 
didn’t corrupt peer’s long-term 
key before acceptance



Security subtleties: deniability

39

•KEMTLS and KEMTLS-PDK don’t use signatures 
for authentication

•Yields offline deniability
• Judge cannot distinguish honest transcript from 
forgery

•Does not yield online deniability
• When one party doesn’t follow protocol or colludes 
with judge

[DGK06] Di Raimondo, Gennaro, Krawczyk. ACM CCS 2006. https://eprint.iacr.org/2006/280

https://eprint.iacr.org/2006/280


Security analyses of KEMTLS & KEMTLS-PDK

40

• Proves session key security 
and authentication in the multi-
stage key exchange model

• Using provable security 
paradigm

Using Tamarin prover 
(a symbolic model checker):
1. Adaptation of full-scale TLS 

1.3 Tamarin model of 
[CHHSV] to capture KEMTLS 
& KEMTLS-PDK

2. Tamarin analog of pen-and-
paper multi-stage key 
exchange model

Tamarin prover: https://tamarin-prover.github.io/
[CHHSV] Cremers, Horvat, Hoyland, Scott, van der Merwe. ACM CCS 2017.

Pen-and-paper Formal verification

https://tamarin-prover.github.io/


Pen and paper proof in the multi-stage model

41

Session key 
indistinguishability

• For every stage key
• With 1 of 3 levels of 

forward secrecy 
varying by stage

• Retroactive upgrade
• Adversary powers:

• Network control
• Corrupt long-term 

keys
• Reveal session keys

Authentication 
(“malicious 
acceptance”)

• Expectations varying 
by stage

• Retroactive upgrade
• Includes replayability

(non-uniqueness) for 
some PDK stages

[BR93] Bellare, Rogaway, Crypto’93. [FG14] Fischlin, Günther, ACM CCS 2014. 
[DFGS15] Dowling, Fischlin, Günther, Stebila, ACM CCS 2015.

Cryptographic 
assumptions
• IND-CCA for long-term 

KEM
• IND-1CCA for 

ephemeral KEM
• Collision-resistant hash 

function
• Dual-PRF security of 

HKDF
• EUF-CMA of HMAC



Limitations of pen-and-paper proofs
•Proof sketches for 
session-key 
indistinguishability of 
remaining variants

•Hand-waving argument 
for offline deniability

42

•Fully written out for 
session-key 
indistinguishability for 
KEMTLS and 
KEMTLS-PDK server-
only auth variants
• But only as reliable as 
the authors and the 
readers are



Formal verification using Tamarin
• Tamarin prover is a model checker for security protocols in 
the symbolic model

• Protocol and adversary powers are specified as a set of state 
machine transitions (“multiset rewriting rules”)

• Security property is specified as a predicate over actions 
recorded during state machine transitions

• Tamarin prover explores (infinite) state space of all possible 
executions to find an execution trace that violates the 
security property or verifies that none exists (or fails to 
terminate)

https://tamarin-prover.github.io/ 43

https://tamarin-prover.github.io/


Formal verification using Tamarin
•Tamarin successfully 
used on many academic 
and real-world 
cryptographic protocols

•Especially effective on 
key exchange protocols
• Note Tamarin models key 
exchange security based 
on learning session key, 
not indistinguishability

• Tamarin model of TLS 1.3 
drafts [CHSV,CHHSV] found several 
flaws

• Especially in interactions 
between different protocols 
modes

• e.g. in TLS 1.3 pre-shared key 
resumption

• Expensive: months of person-
effort, 1 week of computation 
time, 100 GB RAM

[CHSV] Cremers, Horvat, Scott, van der Merwe, IEEE S&P 2016.
[CHHSV] Cremers, Horvat, Hoyland, Scott, van der Merwe, ACM CCS 2017. 44



Modelling KEMTLS using Tamarin

• Adapt [CHHSV] full-scale Tamarin 
model of TLS 1.3 to KEMTLS

• High resolution protocol 
specification: captures TLS 
message format, internal KDF 
structure, …

• Lower resolution security 
properties

• Required more human effort to 
get proofs running automatically

• Encode pen-and-paper multi-
stage AKE definitions in Tamarin

• Lower resolution protocol 
specification: “core cryptographic” 
of KEMTLS

• E.g. No TLS message structure
• Higher resolution security 

properties
• Simpler to specify and 

automatically proves

[CHHSV] Cremers, Horvat, Hoyland, Scott, van der Merwe, ACM CCS 2017.

Approach 1
https://github.com/thomwiggers/TLS13Tamarin

Approach 2
https://github.com/dstebila/KEMTLS-Tamarin

45

https://github.com/thomwiggers/TLS13Tamarin
https://github.com/dstebila/KEMTLS-Tamarin




Lessons learned from formal verification

47

• Higher assurance in protocol 
design

• Captures potential interactions 
between all 4 protocol variants

• Exhibits difficulty trade-off in 
formal verification: 
granularity of protocol 
specification 

versus 
granularity of security 
properties

• Formal verification identified bugs 
in previous work:

• Approach 1 identified minor bugs in 
original TLS 1.3 Tamarin model of 
[CHHSV]

• Approach 2 identified minor bugs in 
security properties stated in original 
KEMTLS and KEMTLS-PDK papers

• E.g. Wrong retroactive 
authentication stages or 
incorrect forward secrecy levels 
for some stages



4. Certificate lifecycle for KEM public 
keys
Tim Güneysu, Philip Hodges, Georg Land, Mike Ounsworth, Douglas Stebila, Greg 
Zaverucha
Coming soon to an eprint server near you!

48



TLS ecosystem is complex – lots to consider!

49

•Datagram TLS
•Use of TLS handshake in other protocols 

• e.g. QUIC
•Application-specific behaviour

• e.g. HTTP3 SETTINGS frame not server authenticated
•PKI involving KEM public keys
•Long tail of implementations
•…



Certificate lifecycle

50

Requestor: 
Generate 

key

Requestor: 
Request 

certificate

CA: Verify 
certificate 
request 

and 
requestor 
identity

CA: Issue 
certificate

Requestor: 
Use 

certificate

Requestor: 
Request 

revocation

CA: 
Revoke 

certificate



Certificate requests in the X.509 PKI
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How does requester prove possession of corresponding 
secret keys?

1. Interactive challenge-response protocol [RFC 4210 Sect. 5.2.8.3]
2. Send certificate back encrypted under subject public key 

[RFC 4210 Sect. 5.2.8.2]
• Weird confidentiality requirement on certificate. 
• Maybe broken by Certificate Transparency or other logging mechanisms?

3. Non-interactive certificate signing requests [RFC 2986]
• CSRs okay for signature schemes, but not for public key encryption or key 

encapsulation mechanisms



Goal:
Design non-interactive proof of possession 

for lattice-based KEM public keys
(so that we can have the same certificate lifecycle 

for KEM certificates to enable KEMTLS)

lattice-based = FrodoKEM (plain LWE), Kyber (module LWE)

52



Possible approaches for non-interactive proof of 
possession for (lattice-based) KEM public keys

53

Zero-knowledge 
proof of knowledge

Direct lattice-
based ZK 

constructions

Generic 
approaches

zkSNARKS

Multi-party 
computation in the 

head (MPCitH)

• Can be efficient and small
• But requires embedding the target KEM parameters in

a larger lattice instance
=> selecting new (non-standardized) parameters

• Moderately efficient
• But not as small as

direct constructions

• Much larger proofs
• Doesn’t require

embedding in another 
lattice problem



Our approach

54

Generate the key and a 
proof at the same time

Proof of possession via 
verifiable generation



FrodoKEM key generation

55https://frodokem.org/

<latexit sha1_base64="uAHS0Pxs3G4SLlEGNnubR2ZZTdI="></latexit>

Frodo-640
q = 215

n = 640, n = 8
� 2 [�12, . . . , 12]

<latexit sha1_base64="j9joIFZ9/zBne6L4RzVgZ463mrA=">AAAD9XiclVJJbxMxFJ4kLCVsLRy </latexit>

1. Generate A 2 Zn⇥n
q from a seed

2. Sample S $ �n⇥n

3. Sample E $ �n⇥n

4. Compute B $ AS+E

5. Public key: (seedA,B)

6. Secret key: S

https://frodokem.org/


Verifiable generation for FrodoKEM

56

1. Generate and commit to many 
allegedly small values for S and E

2. Reveal some of them to prove 
they’re small

3. Use the rest for the actual key 
generation

This doesn’t prove that all 
the unrevealed values are 
small, only most of them 
with high probability

How do we prove we 
actually used them in the 
rest of the key 
generation?
• MPC-in-the-head à la 

Picnic
• Fiat–Shamir to get a 

signature scheme



5-round interactive protocol for verifiable generation

57

1. Prover: Generate sufficiently 
many small values.
Generate an additive secret 
sharing among N parties. 
Commit to the shares.
Send commitments.

2. Verifier: Pick some fraction of 
the bundles to audit.

3. Prover: Open commitments for 
challenged bundles. 
Use unaudited bundles to 

construct secret key (S, E) and 
public key B=AS+E. Commit to
shares of B.
Send commitments and public 
key (A, B).

4. Verifier: Select N-1 parties to 
audit.

5. Prover: Reveal state of N-1 
parties.

6. Verifier: Check state of revealed 
parties.



Making it non-interactive

58

• Interactive protocol has soundness 1/N, which isn’t 
cryptographically small.

•Repeat 𝜏 times to get soundness 1/N𝜏.
• (Use the same bundles from step 1 in all repetitions.)
•Apply the Fiat–Shamir transform to make it non-
interactive:
• Generate challenges in step 2 and 4 by hashing all 
previous commitments with a random oracle.



Lots of nice optimizations

59

•Linear operations involving secrets are basically 
free in MPC-in-the-head, so multiplying public A 
by secret A doesn’t add communication / increase 
size of proof

•Can generate lots of values from seeds and use 
seed trees to reduce size of proof

•Fast hashing using vectorized instructions



Defining security for proof of possession

60

Unforgeability:
• Hard to construct a valid 
proof of possession for an 
honest public key without 
the corresponding secret 
key

Zero knowledge:
• The proofs of possession 
leak no information about 
the secret key.

• Need to ensure the proof of 
possession composes nicely 
with the intended usage of the 
key

• Zero knowledge shows the
proof doesn’t undermine the
scheme

• Need to extend unforgeability:
• Use an “auxiliary secret key 

usage algorithm” in 
unforgeability experiment

• Introduce a notion of KEM 
simulatability which FO-based 
KEMs have



Uniqueness of small FrodoKEM solutions

61

Recall high-level idea:
1. Generate and commit to 

many allegedly small 
values for S and E

2. Reveal some of them to 
prove they’re small

• We prove a lemma upper-
bounding the probability that a 
second FrodoKEM solution 
exists with mostly small 
solutions

• Choose number of bundles to 
audit to ensure no other 
mostly small secret key exists

• So proving possession of a 
mostly small solution implies 
proving possession of the true 
secret key

• Similar result for Kyber
This doesn’t prove that all the unrevealed 
values are small, only most of them with 

high probability



Performance 
trade-offs

52.9 kB / 0.01s
33.4 kB / 0.03s
25.6 kB / 0.1s
17.8 kB / 3.8s

62Intel Core i7-8565U CPU @ 4.6 GHz, gcc 11.2.0



Performance 
trade-offs

650 kB / 0.1s
402 kB / 0.6s
303 kB / 2.6s

203 kB / 85.6s

63
Intel Core i7-8565U CPU @ 4.6 GHz, gcc 11.2.0



Summary of verifiable generation

64

Verifiable generation 
with MPC-in-the-head 
yields reasonable proof 
sizes and runtimes for 
both FrodoKEM and 
Kyber at all security 
levels

• Smallest sizes can be 
competitive with direct 
lattice-based ZK 
constructions without 
needing to embed in a larger 
LWE instance with different 
parameters

• Order of magnitude smaller 
than previous MPC-in-the-
head approaches



Recent results for KEMTLS
Douglas Stebila

KEMTLS
Implicitly authenticated TLS 
without handshake signatures 
using KEMs
• Saves bytes on the wire, server 

cycles
• Variants for client authentication and 

pre-distributed public keys

1. KEMTLS design and performance
2. Pre-distributed public keys for faster client 

authentication
3. Proving KEMTLS manually and with Tamarin

• Two Tamarin models with different levels of granularity

4. Certificate lifecycle for KEM public keys
• Proof of possession via verifiable generation using MPC-in-the-

head

65

https://www.douglas.stebila.ca/research
https://eprint.iacr.org/2020/534 • https://eprint.iacr.org/2021/779
https://datatracker.ietf.org/doc/html/draft-celi-wiggers-tls-authkem-00
https://github.com/thomwiggers/TLS13Tamarin • https://github.com/dstebila/KEMTLS-Tamarin/

https://eprint.iacr.org/2020/534
https://eprint.iacr.org/2021/779
https://datatracker.ietf.org/doc/html/draft-celi-wiggers-tls-authkem-00
https://github.com/thomwiggers/TLS13Tamarin
https://github.com/dstebila/KEMTLS-Tamarin/


Appendix
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KEMTLS



KEMTLS
with client 

authentication



TLS 1.3 and KEMTLS size of public key objects
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TLS 1.3 and KEMTLS crypto & handshake time
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KEMTLS-PDK overview

71



KEMTLS-PDK
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KEMTLS-PDK
with proactive 

client 
authentication
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Communication 
sizes

KEMTLS

TLS 1.3 w/cached 
server certs

KEMTLS-PDK
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Handshake times, unilateral authentication
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Handshake times, mutual authentication
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Tamarin runtimes for Approach 2
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Proof of 
possession 
comparison


