
Recent results for KEMTLS
Douglas Stebila

Technology Innovation Institute • 2022-05-12

2

Cryptography @ University of Waterloo

3

• UW involved in 4 NIST PQC Round 3 submissions:
• Finalists: CRYSTALS-Kyber, NTRU
• Alternates: FrodoKEM, SIKE

• Elliptic curves: David Jao, Alfred Menezes, (Scott Vanstone)
• More cryptography: Sergey Gorbunov, Mohammad Hajiabadi, Doug Stinson
• Privacy-enhancing technologies: Ian Goldberg
• Quantum cryptanalysis: Michele Mosca
• Quantum cryptography: Norbert Lütkenhaus, Thomas Jennewein, Debbie

Leung
• Even more cryptography and security: Gord Agnew, Vijay Ganesh, Guang

Gong, Sergey Gorbunov, Anwar Hasan, Florian Kerschbaum

KEMTLS
Reimagining of TLS 1.3
handshake to use
key encapsulation
mechanisms (KEMs) for
implicit authentication,
rather than digital
signatures for explicit
authentication

•Reduce communication
sizes in PQ setting
since PQ KEMs are in
general smaller than
PQ signatures

•Can reduce
computation costs in
some configurations

4

Outline

1. KEMTLS design and
performance

2. Pre-distributed public
keys for faster client
authentication

3. Proving KEMTLS
manually and with
Tamarin

4. Certificate lifecycle for
KEM public keys

5

1. KEMTLS design and performance
Peter Schwabe, Douglas Stebila, Thom Wiggers
ACM CCS 2020. https://eprint.iacr.org/2020/534
Sofía Celi, Peter Schwabe, Douglas Stebila, Nick Sullivan, Thom Wiggers.
https://datatracker.ietf.org/doc/html/draft-celi-wiggers-tls-authkem-00

6

https://eprint.iacr.org/2020/534
https://datatracker.ietf.org/doc/html/draft-celi-wiggers-tls-authkem-00

Authenticated key exchange

7

•Two parties establish a shared secret over a
public communication channel

Vast literature on AKE protocols

8

• Many security definitions capturing various adversarial
powers: BR, CK, eCK, …

• Different types of authentication credentials: public key,
shared secret key, password, identity-based, …

• Additional security goals: weak/strong forward secrecy,
key compromise impersonation resistance, post-compromise
security, …

• Additional protocol functionality: multi-stage, ratcheting, …
• Group key exchange
• Real-world protocols: TLS, SSH, Signal, IKE, ISO, EMV, …
• …

Explicit
authentication

Alice is assured that
only Bob would be

able to compute the
shared secret

9

Alice receives
assurance that she

really is talking to Bob

Implicit
authentication

Explicitly authenticated key exchange:
Signed Diffie–Hellman

10

Alice Bob

(pkA, skA) SIG.KeyGen() (pkB , skB) SIG.KeyGen()

obtain pkB obtain pkA

x $ {0, . . . , q � 1}
X g

x
X

y $ {0, . . . , q � 1}
Y g

y

�B SIG.Sign(skB , AkBkXkY)Y,�B

�A SIG.Sign(skA, AkBkXkY) �A

k H(sid, Y x) k H(sid,Xy)

application data

using authenticated encryption

Implicitly authenticated key exchange:
Double-DH

11

Alice Bob

skA $ {0, . . . , q � 1} skB $ {0, . . . , q � 1}
pkA g

skA pkB g
skB

obtain pkB obtain pkA

x $ {0, . . . , q � 1} y $ {0, . . . , q � 1}
X g

x
Y g

y
X

Y

k H(sid, pk
skA
B kY x) k H(sid, pk

skB
A kXy)

application data

using authenticated encryption

Ephemeral DH

Static DH

Problem
post-quantum

signatures
are big

12

Signature scheme Public key (bytes) Signature (bytes)

RSA-2048 Factoring 272 256

Elliptic curves Elliptic curve discrete logarithm 32 32

Dilithium Lattice-based (MLWE/MSIS) 1,184 2,044
Falcon Lattice-based (NTRU) 897 690
XMSS Hash-based 32 979
Rainbow Multi-variate 60,192 66

13

Solution
use

post-quantum KEMs
for authentication

14

Key encapsulation mechanisms (KEMs)

15

An abstraction of Diffie–Hellman key exchange
<latexit sha1_base64="RDVfI7FP0yyVQqr+2G8wBIqhKDQ=">AAACQ3icbVDLSgNBEJz1bXxFPXoZjEIECbs5qEdRREGECEaFJITZSW8cMjO7zPSKYdnf8Gu8xn/wG7yJRwU3D8SoBQPV1d10TfmRFBZd98WZmJyanpmdm88tLC4tr+RX165tGBsOVR7K0Nz6zIIUGqooUMJtZIApX8KN3znu92/uwVgR6ivsRtBQrK1FIDjDTGrm3a1i1NmltrND621AS+uK4Z0NkvOTi7T0XUD3FHRa3NnKNf MFt+QOQP8Sb0QKZIRKM/9Rb4U8VqCRS2ZtzXMjbCTMoOAS0lw9thAx3mFtqGVUMwW2kQx+ltLtTGnRIDTZ00gH6s+NhClru8rPJgdWf/f64n+9WozBQSMROooRNB8eCmJJMaT9mGhLGOAouxlh3IjMK+V3zDCOWZhjVx6GVsc00LESCCrtx+X9DucvuS6XvL2Se1kuHB6NgpsjG2STFIlH9skhOSMVUiWcPJIn0iPPTs95dd6c9+HohDPaWSdjcD6/ALcUsLc=</latexit>

(pk, sk) KEM.KeyGen()

<latexit sha1_base64="XPVAcqpbuqaH8/jH2n2W0moLbT0=">AAACRHicbVDLSgNBEJz1bXxFPXoZjEICEnY9qEdRBEEEBZMISQizk944ZGZ2mekVw7Lf4dd41W/wH7yJNxE3D8EYCwaqq7vpmvIjKSy67qszNT0zOze/sJhbWl5ZXcuvb1RtGBsOFR7K0Nz6zIIUGiooUMJtZIApX0LN7572+7V7MFaE+gZ7ETQV62gRCM4wk1p5b6fIcY92S7TRAbS0oRje2SC5OLtMyz/FmeYssmkx6pZ2cq18wS27A9BJ4o1IgYxw1cp/NtohjxVo5JJZW/fcCJsJMyi4hDTXiC1EjHdZB+oZ1UyBbSaDr6V0N1PaNAhN9jTSgfp7I2HK2p7ys8mB2b+9vvhfrx5jcNRMhI5iBM2Hh4JYUgxpPyfaFgY4yl5GGDci80r5HTOMY5bm2JWHodUxDXSsBIJK+3F5f8OZJNX9sndQdq/3C8cno+AWyBbZJkXikUNyTM7JFakQTh7JE3kmL86z8+a8Ox/D0SlntLNJxuB8fQO5QrE8</latexit>

(ct, k) KEM.Encaps(pk)

<latexit sha1_base64="odAnpH0dxdWK5HcWBvymtpgGo+8=">AAACQnicbVDLSgNBEJz1bXxFPXoZjEIEibse1KP4AEGECEYDSQizk944ZGZ2mekVw7Kf4dd41Y/wF7yJVw9uHoKJFgxUV3fTNeVHUlh03TdnYnJqemZ2bj63sLi0vJJfXbu1YWw4VHgoQ1P1mQUpNFRQoIRqZIApX8Kd3znt9e8ewFgR6hvsRtBQrK1FIDjDTGrm97Y6tN4GtLSuGN7bILk8v0pLP8UZcBbZtGg7u5TjzlaumS +4JbcP+pd4Q1IgQ5Sb+a96K+SxAo1cMmtrnhthI2EGBZeQ5uqxhYjxDmtDLaOaKbCNpP+xlG5nSosGocmeRtpXf28kTFnbVX422Tc83uuJ//VqMQZHjUToKEbQfHAoiCXFkPZSoi1hgKPsZoRxIzKvlN8zwzhmWY5ceRxYHdFAx0ogqLQXlzcezl9yu1/yDkru9X7h+GQY3BzZIJukSDxySI7JBSmTCuHkiTyTF/LqvDjvzofzORidcIY762QEztc31+aw0A==</latexit>

k KEM.Decaps(sk, ct)

<latexit sha1_base64="PTKmRgTTD1VvdUJnVXjDNS/R8xM=">AAACFXicbVC7TsMwFHV4lvIqMLJYtEhMVdIBGCtYGItEH1IbVY5701q1nch2EFXUX2AtP8OGWJn5FwacNgNtOZKlo3Pu1T0+QcyZNq777Wxsbm3v7Bb2ivsHh0fHpZPTlo4SRaFJIx6pTkA0cCahaZjh0IkVEBFwaAfj+8xvP4PSLJJPZhKDL8hQspBRYjKpEo8r/VLZrbpz4HXi5aSMcjT6pZ/eIKKJAGkoJ1p3PTc2fkqUYZTDtNhLNMSEjskQupZKIkD76TzrFF9aZYDDSNknDZ6rfzdSIrSeiMBOCmJGetXLxP+8bmLCWz9lMk4MSLo4FCYcmwhnH8cDpoAaPrGEUMVsVkxHRBFqbD1LV14WUZc0kIlgBsS0aOvyVstZJ61a1buuuo+1cv0uL66AztEFukIeukF19IAaqIkoGqFXNENvzsx5dz6cz8XohpPvnKElOF+/66GfrQ==</latexit>

pk

<latexit sha1_base64="qvRR5ShOI+DZk1O2A7o45sTKiQM=">AAACFXicbVDLTsJAFJ36RHyhLt00gokr0rJQl0Q3LjGRRwINmQ63MGFm2szcGknDL7jFn3Fn3Lr2X1zYQhcCnmSSk3PuzT1z/Ehwg47zbW1sbm3v7Bb2ivsHh0fHpZPTlgljzaDJQhHqjk8NCK6giRwFdCINVPoC2v74PvPbz6AND9UTTiLwJB0qHnBGMZMqDCv9UtmpOnPY68TNSZnkaPRLP71ByGIJCpmgxnRdJ0IvoRo5EzAt9mIDEWVjOoRuShWVYLxknnVqX6bKwA5CnT6F9lz9u5FQacxE+umkpDgyq14m/ud1YwxuvYSrKEZQbHEoiIWNoZ193B5wDQzFJCWUaZ5mtdmIasowrWfpyssi6pIGKpYcQU6LaV3uajnrpFWrutdV57FWrt/lxRXIObkgV8QlN6ROHkiDNAkjI/JKZuTNmlnv1of1uRjdsPKdM7IE6+sX5NifqQ==</latexit>

ct

Signature scheme Public key (bytes) Signature (bytes)

RSA-2048 Factoring 272 256

Elliptic curves Elliptic curve discrete logarithm 32 32

Dilithium Lattice-based (MLWE/MSIS) 1,184 2,044
Falcon Lattice-based (NTRU) 897 690
XMSS Hash-based 32 979
Rainbow Multi-variate 60,192 66

16

KEM Public key (bytes) Ciphertext (bytes)

RSA-2048 Factoring 272 256

Elliptic curves Elliptic curve discrete logarithm 32 32

Kyber Lattice-based (MLWE) 800 768
NTRU Lattice-based (NTRU) 699 699
Saber Lattice-based (MLWR) 672 736
SIKE Isogeny-based 330 330
SIKE compressed Isogeny-based 197 197
Classic McEliece Code-based 261,120 128

Implicitly authenticated KEX is not new

17

•DH-based: SKEME,
MQV, HMQV, …

•KEM-based:
BCGP09, FSXY12, …

• RSA key transport in
TLS ≤ 1.2

• Lacks forward secrecy
• Signal, Noise, Wireguard

• DH-based
• Different protocol flows

• OPTLS
• DH-based
• Requires a non-interactive key

exchange (NIKE)

In theory In practice

KEMTLS
handshake

KEM for
ephemeral key exchange

KEM for
server-to-client

authenticated key exchange

Combine shared secrets

18

Algorithm choices

19

KEM for ephemeral
key exchange

KEM for authenticated
key exchange

Signature scheme for
intermediate CA

Signature scheme for
root CA

Algorithm choices

20

KEM for ephemeral
key exchange

• IND-CCA (or IND-1CCA)
• Want small public key

+ small ciphertext

KEM for authenticated
key exchange

• IND-CCA
• Want small public key

+ small ciphertext

Signature scheme for
intermediate CA

• Want small public key
+ small signature

Signature scheme for
root CA

• Want small signature

4 scenarios

21

1. Minimize size when intermediate certificate
transmitted

2. Minimize size when intermediate certificate
not transmitted (cached)

3. Use solely NTRU assumptions
4. Use solely module LWE/SIS assumptions

Signed KEX
versus

KEMTLS
Labels ABCD:
A = ephemeral KEM
B = leaf certificate
C = intermediate CA
D = root CA
Algorithms: (all level 1)
Dilithium,
eCDH X25519,
Falcon,
Kyber,
NTRU,
Rainbow,
rSA-2048,
SIKE,
XMSS’

22Rustls client/server with some AVX2 implementations. Emulated network: latency 31.1 ms, bandwidth 1000 Mbps, 0% packet loss. Average of 100000 iterations.

Signed KEX
versus

KEMTLS
Labels ABCD:
A = ephemeral KEM
B = leaf certificate
C = intermediate CA
D = root CA
Algorithms: (all level 1)
Dilithium,
eCDH X25519,
Falcon,
Kyber,
NTRU,
Rainbow,
rSA-2048,
SIKE,
XMSS’

23Rustls client/server with some AVX2 implementations. Emulated network: latency 31.1 ms, bandwidth 1000 Mbps, 0% packet loss. Average of 100000 iterations.

KEMTLS benefits
• Size-optimized KEMTLS requires < ½ communication of size-

optimized PQ signed-KEM
• Speed-optimized KEMTLS uses 90% fewer server CPU cycles

and still reduces communication
• NTRU KEX (27 μs) 10x faster than Falcon signing (254 μs)

• No extra round trips required until client starts sending
application data in server-only auth mode

• Smaller trusted code base (no signature generation on
client/server)

Variant: KEMTLS with client authentication

25

1. Client has a long-term KEM public key
2. Client transmits it encrypted under key derived

from
a) server long-term KEM key exchange
b) ephemeral KEM key exchange

•Preserves client confidentiality
•Adds extra round trip

2. Pre-distributed public keys for
faster client authentication
Peter Schwabe, Douglas Stebila, Thom Wiggers
ESORICS 2021. https://eprint.iacr.org/2021/779
Sofía Celi, Peter Schwabe, Douglas Stebila, Nick Sullivan, Thom Wiggers.
https://datatracker.ietf.org/doc/html/draft-celi-wiggers-tls-authkem-00

26

https://eprint.iacr.org/2021/779
https://datatracker.ietf.org/doc/html/draft-celi-wiggers-tls-authkem-00

Variant: Pre-distributed public keys

27

What if server public
keys are pre-
distributed?

• Cached in a browser
• Pinned in mobile apps
• Embedded in IoT
devices

• Out-of-band (e.g., DNS)
• TLS 1.3: RFC 7924

Different from TLS 1.3
pre-shared symmetric
key mode

• PSK is a harder(?) key
management problem

• Different compromise
model

Variant: Pre-distributed public keys

28

• Alternate KEMTLS protocol flow
when server certificates are
known in advance

• Resumption-style mechanism
that avoids the downsides of
symmetric-key TLS PSK

• Given server’s long-term key,
client can send ciphertext in
ClientHello

• Also allow to send client
certificate in ClientHello

Get a 1-RTT,
TLS 1.3-shape
handshake with

implicit authentication

KEMTLS-PDK
handshake

server-only auth.

KEM for
ephemeral key exchange

KEM for
server-to-client

authenticated key exchange

Combine shared secrets

29

KEMTLS-PDK
handshake

mutual auth

KEM for
ephemeral key exchange

KEM for
server-to-client authenticated key exchange

KEM for
client-to-server authenticated key exchange

Combine shared secrets

30

Benefits from pre-distributed key variant

31

•Additional bandwidth savings
•Makes some PQ algorithms viable

• Large public keys, small ciphertexts/signatures:
Classic McEliece and Rainbow

•Client authentication 1 round-trip earlier if
proactive

•Explicit server authentication 1 round-trip earlier
• => better downgrade resilience

KEMTLS variants
Traditional
communication flow:
1. KEMTLS server-only

authentication
2. KEMTLS mutual

authentication

Pre-distributed server
public keys:
3. KEMTLS-PDK server-only

authentication
4. KEMTLS-PDK mutual

authentication

KEMTLS: ACM CCS 2020 https://eprint.iacr.org/2020/534
KEMTLS-PDK: ESORICS 2021 https://eprint.iacr.org/2021/779 32

https://eprint.iacr.org/2020/534
https://eprint.iacr.org/2021/779

3. Proving KEMTLS manually and with
Tamarin
Peter Schwabe, Douglas Stebila, Thom Wiggers
ACM CCS 2020. https://eprint.iacr.org/2020/534

Peter Schwabe, Douglas Stebila, Thom Wiggers
ESORICS 2021. https://eprint.iacr.org/2021/779

Sofía Celi, Jonathan Hoyland, Douglas Stebila, Thom Wiggers
Coming soon to an eprint server near you!
https://github.com/thomwiggers/TLS13Tamarin
https://github.com/dstebila/KEMTLS-Tamarin/

33

https://eprint.iacr.org/2020/534
https://eprint.iacr.org/2021/779
https://github.com/thomwiggers/TLS13Tamarin
https://github.com/dstebila/KEMTLS-Tamarin/

Security
properties

Key
indistinguishability

Forward secrecy

Implicit and explicit
authentication

Deniability
34

Multi-stage
authenticated key

exchange model for
KEMTLS

→ Bellare–Rogaway AKE model
→ Multi-stage AKE model [FG14]
→ Multi-stage AKE model for TLS 1.3

[DFGS15]

[BR93] Bellare, Rogaway, Crypto’93. [FG14] Fischlin, Günther, ACM CCS 2014.
[DFGS15] Dowling, Fischlin, Günther, Stebila, ACM CCS 2015.

6 session
keys

35

Security subtleties: authentication

36

•Client’s first application
flow can’t be read by
anyone other than
intended server, but
client doesn’t know
server is live at the time
of sending

•Explicit authentication
once key confirmation
message transmitted

•Retroactive explicit
authentication of earlier
keys

Implicit authentication Explicit authentication

Security subtleties: downgrade resilience

37

• Choice of cryptographic
algorithms not
authenticated at the time
the client sends its first
application flow

• MITM can’t trick client into
using undesirable
algorithm

• But MITM can trick them
into temporarily using
suboptimal algorithm

•Formally model 3 levels
of downgrade-resilience:
1. Full downgrade

resilience
2. No downgrade

resilience to
unsupported algorithms

3. No downgrade
resilience

Security subtleties: forward secrecy

38

Does compromise of a
party’s long-term key
allow decryption of past
sessions?

• Weak forward secrecy 1:
adversary passive in the test
stage

• Weak forward secrecy 2:
adversary passive in the test
stage or never corrupted
peer’s long-term key

• Forward secrecy: adversary
passive in the test stage or
didn’t corrupt peer’s long-term
key before acceptance

Security subtleties: deniability

39

•KEMTLS and KEMTLS-PDK don’t use signatures
for authentication

•Yields offline deniability
• Judge cannot distinguish honest transcript from
forgery

•Does not yield online deniability
• When one party doesn’t follow protocol or colludes
with judge

[DGK06] Di Raimondo, Gennaro, Krawczyk. ACM CCS 2006. https://eprint.iacr.org/2006/280

https://eprint.iacr.org/2006/280

Security analyses of KEMTLS & KEMTLS-PDK

40

• Proves session key security
and authentication in the multi-
stage key exchange model

• Using provable security
paradigm

Using Tamarin prover
(a symbolic model checker):
1. Adaptation of full-scale TLS

1.3 Tamarin model of
[CHHSV] to capture KEMTLS
& KEMTLS-PDK

2. Tamarin analog of pen-and-
paper multi-stage key
exchange model

Tamarin prover: https://tamarin-prover.github.io/
[CHHSV] Cremers, Horvat, Hoyland, Scott, van der Merwe. ACM CCS 2017.

Pen-and-paper Formal verification

https://tamarin-prover.github.io/

Pen and paper proof in the multi-stage model

41

Session key
indistinguishability

• For every stage key
• With 1 of 3 levels of

forward secrecy
varying by stage

• Retroactive upgrade
• Adversary powers:

• Network control
• Corrupt long-term

keys
• Reveal session keys

Authentication
(“malicious
acceptance”)

• Expectations varying
by stage

• Retroactive upgrade
• Includes replayability

(non-uniqueness) for
some PDK stages

[BR93] Bellare, Rogaway, Crypto’93. [FG14] Fischlin, Günther, ACM CCS 2014.
[DFGS15] Dowling, Fischlin, Günther, Stebila, ACM CCS 2015.

Cryptographic
assumptions
• IND-CCA for long-term

KEM
• IND-1CCA for

ephemeral KEM
• Collision-resistant hash

function
• Dual-PRF security of

HKDF
• EUF-CMA of HMAC

Limitations of pen-and-paper proofs
•Proof sketches for
session-key
indistinguishability of
remaining variants

•Hand-waving argument
for offline deniability

42

•Fully written out for
session-key
indistinguishability for
KEMTLS and
KEMTLS-PDK server-
only auth variants
• But only as reliable as
the authors and the
readers are

Formal verification using Tamarin
• Tamarin prover is a model checker for security protocols in
the symbolic model

• Protocol and adversary powers are specified as a set of state
machine transitions (“multiset rewriting rules”)

• Security property is specified as a predicate over actions
recorded during state machine transitions

• Tamarin prover explores (infinite) state space of all possible
executions to find an execution trace that violates the
security property or verifies that none exists (or fails to
terminate)

https://tamarin-prover.github.io/ 43

https://tamarin-prover.github.io/

Formal verification using Tamarin
•Tamarin successfully
used on many academic
and real-world
cryptographic protocols

•Especially effective on
key exchange protocols
• Note Tamarin models key
exchange security based
on learning session key,
not indistinguishability

• Tamarin model of TLS 1.3
drafts [CHSV,CHHSV] found several
flaws

• Especially in interactions
between different protocols
modes

• e.g. in TLS 1.3 pre-shared key
resumption

• Expensive: months of person-
effort, 1 week of computation
time, 100 GB RAM

[CHSV] Cremers, Horvat, Scott, van der Merwe, IEEE S&P 2016.
[CHHSV] Cremers, Horvat, Hoyland, Scott, van der Merwe, ACM CCS 2017. 44

Modelling KEMTLS using Tamarin

• Adapt [CHHSV] full-scale Tamarin
model of TLS 1.3 to KEMTLS

• High resolution protocol
specification: captures TLS
message format, internal KDF
structure, …

• Lower resolution security
properties

• Required more human effort to
get proofs running automatically

• Encode pen-and-paper multi-
stage AKE definitions in Tamarin

• Lower resolution protocol
specification: “core cryptographic”
of KEMTLS

• E.g. No TLS message structure
• Higher resolution security

properties
• Simpler to specify and

automatically proves

[CHHSV] Cremers, Horvat, Hoyland, Scott, van der Merwe, ACM CCS 2017.

Approach 1
https://github.com/thomwiggers/TLS13Tamarin

Approach 2
https://github.com/dstebila/KEMTLS-Tamarin

45

https://github.com/thomwiggers/TLS13Tamarin
https://github.com/dstebila/KEMTLS-Tamarin

Lessons learned from formal verification

47

• Higher assurance in protocol
design

• Captures potential interactions
between all 4 protocol variants

• Exhibits difficulty trade-off in
formal verification:
granularity of protocol
specification

versus
granularity of security
properties

• Formal verification identified bugs
in previous work:

• Approach 1 identified minor bugs in
original TLS 1.3 Tamarin model of
[CHHSV]

• Approach 2 identified minor bugs in
security properties stated in original
KEMTLS and KEMTLS-PDK papers

• E.g. Wrong retroactive
authentication stages or
incorrect forward secrecy levels
for some stages

4. Certificate lifecycle for KEM public
keys
Tim Güneysu, Philip Hodges, Georg Land, Mike Ounsworth, Douglas Stebila, Greg
Zaverucha
Coming soon to an eprint server near you!

48

TLS ecosystem is complex – lots to consider!

49

•Datagram TLS
•Use of TLS handshake in other protocols

• e.g. QUIC
•Application-specific behaviour

• e.g. HTTP3 SETTINGS frame not server authenticated
•PKI involving KEM public keys
•Long tail of implementations
•…

Certificate lifecycle

50

Requestor:
Generate

key

Requestor:
Request

certificate

CA: Verify
certificate
request

and
requestor
identity

CA: Issue
certificate

Requestor:
Use

certificate

Requestor:
Request

revocation

CA:
Revoke

certificate

Certificate requests in the X.509 PKI

51

How does requester prove possession of corresponding
secret keys?

1. Interactive challenge-response protocol [RFC 4210 Sect. 5.2.8.3]
2. Send certificate back encrypted under subject public key

[RFC 4210 Sect. 5.2.8.2]
• Weird confidentiality requirement on certificate.
• Maybe broken by Certificate Transparency or other logging mechanisms?

3. Non-interactive certificate signing requests [RFC 2986]
• CSRs okay for signature schemes, but not for public key encryption or key

encapsulation mechanisms

Goal:
Design non-interactive proof of possession

for lattice-based KEM public keys
(so that we can have the same certificate lifecycle

for KEM certificates to enable KEMTLS)

lattice-based = FrodoKEM (plain LWE), Kyber (module LWE)

52

Possible approaches for non-interactive proof of
possession for (lattice-based) KEM public keys

53

Zero-knowledge
proof of knowledge

Direct lattice-
based ZK

constructions

Generic
approaches

zkSNARKS

Multi-party
computation in the

head (MPCitH)

• Can be efficient and small
• But requires embedding the target KEM parameters in

a larger lattice instance
=> selecting new (non-standardized) parameters

• Moderately efficient
• But not as small as

direct constructions

• Much larger proofs
• Doesn’t require

embedding in another
lattice problem

Our approach

54

Generate the key and a
proof at the same time

Proof of possession via
verifiable generation

FrodoKEM key generation

55https://frodokem.org/

<latexit sha1_base64="uAHS0Pxs3G4SLlEGNnubR2ZZTdI=">AAACbnicbVBbS9xAFJ6NtrXpxdVCX4p06G7BB12S4O1FkBZKHxW6KiTpMpmcdQfnks5MxCXkx/Vn+At8te8+ONnNg6s9MPCd78IZvqzgzNgguOl4S8svXr5aee2/efvu/Wp3bf3UqFJTGFLFlT7PiAHOJAwtsxzOCw1EZBzOssvvjX52BdowJX/ZaQGpIBeSjRkl1lGjbpyUMgfdxKsfWuVqe28nqH2//wcf4uh3Fe7WfbdJtzlhCyfqqnXL+vCgkRI6YThhEsfbYeQMubJmC4dR2h91e8EgmA1+DsIW9FA7x6PuvUvTUoC0lBNj4jAobFoRbRnlUPtJaaAg9JJcQOygJAJMWs1KqPFXx+R4rLR70uIZ+zhREWHMVGTOKYidmKdaQ/5Pi0s7PkgrJovSgqTzQ+OSY6tw0yjOmQZq+dQBQjVzf8V0QjSh1vW+cOV6/tUFDmQpmAVR+66u8Gk5z8FpNAj3BjsnUe/oW1vcCvqEvqBNFKJ9dIR+omM0RBT9RbfoDv3r3HkfvQ3v89zqddrMB7Qw3uYDXGK4vA==</latexit>

Frodo-640
q = 215

n = 640, n = 8
� 2 [�12, . . . , 12]

<latexit sha1_base64="j9joIFZ9/zBne6L4RzVgZ463mrA=">AAAD9XiclVJJbxMxFJ4kLCVsLRy 5WHSQyhYlZVVOpRWix6LSRdQh8jhvEqteBttDGln+KdwQV34PR/4HBzyTgUlbOPAkW2/x95bPL8k4M7bb/d5oti5cvHR56Ur76rXrN24ur9zaNyrXFPao4kofJsQAZxL2LLMcDjMNRCQcDpLjrSJ+8Am0YUq+s7MMBoKMJUsZJTa4hiuNH1jClCohiBw5PAZrtHcO9zGH1BKt1RRPTEYoPHCPn2TWY02YgUSduM6zYLoYG6pZZqvbzjjgOPa473273cYJjJl0IHMBmljwbcwsCPQGZGmjGAtiJ0nqXnmEmURzM3Hv/fDjBxdsywQYJH2MUq0EIsgAjKosu0RkfCHHbshRToAwnbAFOFaBg4IiJ72P/4F+/V/oLSWyfHGAzRq+MFLd2UNUF/qdZCdPOKPoGGZ9FK+VcZO6YkI/dHUa/wjVVe7/6R+oBluB60IhDOEra8qHy6vdTrcUdF7pVcpqVMnOcPknHika4NJSTow56nUzO3BEW0Z58YW5gbARx2QMR0GVJJA0cOUuenQveEYoVTocaVHpXUQ4IoyZiSS8LMc9Gyucf4sd5TZ9OXBMFqxLOi+U5hxZhYrFRiOmgVo+CwoJuxh6RXRCNKE2rP+pKifzVk/5CroKVn070NU7S855ZX+903veefp2fXVjsyJuKboT3Y3Wol70ItqItqOdaC+ize2mbE6bJ61p63PrS+vr/GmzUWFuR6ek9e0XI69RMA==</latexit>

1. Generate A 2 Zn⇥n
q from a seed

2. Sample S $ �n⇥n

3. Sample E $ �n⇥n

4. Compute B $ AS+E

5. Public key: (seedA,B)

6. Secret key: S

https://frodokem.org/

Verifiable generation for FrodoKEM

56

1. Generate and commit to many
allegedly small values for S and E

2. Reveal some of them to prove
they’re small

3. Use the rest for the actual key
generation

This doesn’t prove that all
the unrevealed values are
small, only most of them
with high probability

How do we prove we
actually used them in the
rest of the key
generation?
• MPC-in-the-head à la

Picnic
• Fiat–Shamir to get a

signature scheme

5-round interactive protocol for verifiable generation

57

1. Prover: Generate sufficiently
many small values.
Generate an additive secret
sharing among N parties.
Commit to the shares.
Send commitments.

2. Verifier: Pick some fraction of
the bundles to audit.

3. Prover: Open commitments for
challenged bundles.
Use unaudited bundles to

construct secret key (S, E) and
public key B=AS+E. Commit to
shares of B.
Send commitments and public
key (A, B).

4. Verifier: Select N-1 parties to
audit.

5. Prover: Reveal state of N-1
parties.

6. Verifier: Check state of revealed
parties.

Making it non-interactive

58

• Interactive protocol has soundness 1/N, which isn’t
cryptographically small.

•Repeat 𝜏 times to get soundness 1/N𝜏.
• (Use the same bundles from step 1 in all repetitions.)
•Apply the Fiat–Shamir transform to make it non-
interactive:
• Generate challenges in step 2 and 4 by hashing all
previous commitments with a random oracle.

Lots of nice optimizations

59

•Linear operations involving secrets are basically
free in MPC-in-the-head, so multiplying public A
by secret A doesn’t add communication / increase
size of proof

•Can generate lots of values from seeds and use
seed trees to reduce size of proof

•Fast hashing using vectorized instructions

Defining security for proof of possession

60

Unforgeability:
• Hard to construct a valid
proof of possession for an
honest public key without
the corresponding secret
key

Zero knowledge:
• The proofs of possession
leak no information about
the secret key.

• Need to ensure the proof of
possession composes nicely
with the intended usage of the
key

• Zero knowledge shows the
proof doesn’t undermine the
scheme

• Need to extend unforgeability:
• Use an “auxiliary secret key

usage algorithm” in
unforgeability experiment

• Introduce a notion of KEM
simulatability which FO-based
KEMs have

Uniqueness of small FrodoKEM solutions

61

Recall high-level idea:
1. Generate and commit to

many allegedly small
values for S and E

2. Reveal some of them to
prove they’re small

• We prove a lemma upper-
bounding the probability that a
second FrodoKEM solution
exists with mostly small
solutions

• Choose number of bundles to
audit to ensure no other
mostly small secret key exists

• So proving possession of a
mostly small solution implies
proving possession of the true
secret key

• Similar result for Kyber
This doesn’t prove that all the unrevealed
values are small, only most of them with

high probability

Performance
trade-offs

52.9 kB / 0.01s
33.4 kB / 0.03s
25.6 kB / 0.1s
17.8 kB / 3.8s

62Intel Core i7-8565U CPU @ 4.6 GHz, gcc 11.2.0

Performance
trade-offs

650 kB / 0.1s
402 kB / 0.6s
303 kB / 2.6s

203 kB / 85.6s

63
Intel Core i7-8565U CPU @ 4.6 GHz, gcc 11.2.0

Summary of verifiable generation

64

Verifiable generation
with MPC-in-the-head
yields reasonable proof
sizes and runtimes for
both FrodoKEM and
Kyber at all security
levels

• Smallest sizes can be
competitive with direct
lattice-based ZK
constructions without
needing to embed in a larger
LWE instance with different
parameters

• Order of magnitude smaller
than previous MPC-in-the-
head approaches

Recent results for KEMTLS
Douglas Stebila

KEMTLS
Implicitly authenticated TLS
without handshake signatures
using KEMs
• Saves bytes on the wire, server

cycles
• Variants for client authentication and

pre-distributed public keys

1. KEMTLS design and performance
2. Pre-distributed public keys for faster client

authentication
3. Proving KEMTLS manually and with Tamarin

• Two Tamarin models with different levels of granularity

4. Certificate lifecycle for KEM public keys
• Proof of possession via verifiable generation using MPC-in-the-

head

65

https://www.douglas.stebila.ca/research
https://eprint.iacr.org/2020/534 • https://eprint.iacr.org/2021/779
https://datatracker.ietf.org/doc/html/draft-celi-wiggers-tls-authkem-00
https://github.com/thomwiggers/TLS13Tamarin • https://github.com/dstebila/KEMTLS-Tamarin/

https://eprint.iacr.org/2020/534
https://eprint.iacr.org/2021/779
https://datatracker.ietf.org/doc/html/draft-celi-wiggers-tls-authkem-00
https://github.com/thomwiggers/TLS13Tamarin
https://github.com/dstebila/KEMTLS-Tamarin/

Appendix

66

KEMTLS

KEMTLS
with client

authentication

TLS 1.3 and KEMTLS size of public key objects

69

TLS 1.3 and KEMTLS crypto & handshake time

70

KEMTLS-PDK overview

71

KEMTLS-PDK

72

KEMTLS-PDK
with proactive

client
authentication

73

Communication
sizes

KEMTLS

TLS 1.3 w/cached
server certs

KEMTLS-PDK

74

Handshake times, unilateral authentication

75

Handshake times, mutual authentication

76

77

Tamarin runtimes for Approach 2

78

Proof of
possession
comparison

