
Transitioning the TLS protocol
to post-quantum cryptography

Douglas Stebila

https://www.douglas.stebila.ca/research/presentations/
Cryptology and Network Security (CANS) 2021 • 2021-12-14

https://www.douglas.stebila.ca/research/presentations/

2

3

Cryptographic building blocks

4

Public-key
cryptography

RSA or elliptic
curve

signatures

Elliptic curve
Diffie–Hellman
key exchange

Symmetric
cryptography

AES
encryption

AES GCM
integrity

TLS 1.3
handshake

Signed Diffie–Hellman

5

Diffie-Hellman key exchange

Digital signature

Authenticated encryption

Cryptographic building blocks

6

Public-key
cryptography

RSA or elliptic
curve

signatures

Elliptic curve
Diffie–Hellman
key exchange

Symmetric
cryptography

AES
encryption

AES GCM
integrity

Based on
difficulty of

factoring large
numbers

– not quantum
resistant!

Based on difficulty of

computing discrete
logarithms

– not quantum resistant!

Post-quantum cryptography
a.k.a. quantum-resistant
algorithms

Cryptography believed to
be resistant to attacks by
quantum computers

Uses only classical
(non-quantum) operations
to implement

Hash-based
& symmetric

Multivariate
quadratic

Code-based Lattice-
based

Elliptic
curve

isogenies
7

NIST Post-quantum Crypto Project timeline

8http://www.nist.gov/pqcrypto

2022-23

Draft
standard

Nov.
2017

Submission
deadline

Mar.
2019

Round 2
deadline

Round 1:
69 schemes
1/3 signatures
2/3 PKE

Round 2:
26 schemes
9 signatures
17 PKE

Oct.
2020

Round 3
deadline

Round 3:
Finalists:
• 3 signatures
• 4 PKE
Alternates:
• 3 signatures
• 5 PKE

2024

Final
standard

Dec.
2016

Call for PQ
proposals

2022-23

Round 4

http://www.nist.gov/pqcrypto

NIST Round 3

Key encapsulation mechanisms
• Code-based: Classic McEliece
• Lattice-based: Kyber, NTRU, Saber

• At most one of these 3 will be
standardized

Signatures
• Lattice-based: Dilithium, Falcon

• At most one of these 2 will be
standardized

• Multivariate: Rainbow

Key encapsulation mechanisms
• Code-based: BIKE, HQC
• Lattice-based:

FrodoKEM, NTRU Prime
• Isogeny-based: SIKE

Signatures
• Symmetric-based:

Picnic, SPHINCS+
• Multivariate: GeMSS

Finalists Alternate candidates

9

TLS 1.3
handshake

Signed Diffie–Hellman

10

TLS 1.3
handshake

Signed Diffie–Hellman
Post-Quantum!!!

11

12

Confidence in quantum-resistance

Fast computation Small communication

Pick ≤ 2

NIST Round 3 KEM Finalists

Based on Round 2 submission documents; AVX2 runtimes normalized 13

NIST Round 3 Signature Finalists

Based on Round 2 submission documents; AVX2 runtimes normalized 14

Paths to standardization and adoption

15

NIST NIST round 3
selection

NIST draft
standard

FIPS
standard

CFRG CFRG
standard

TLS working
group TLS standard

Implementers Early
prototypes

Preliminary
adoption

Standard
adoption

FIPS-certified
adoption

Certificate
authorities

CA/B Forum
guidelines Deployment

What is “post-quantum TLS”?

16

Post-quantum
key exchange

• Easiest to
implement

• Easy backwards
compatibility

• Needed soonest:
harvest now &
decrypt later with
quantum
computer

Classical+PQ
key exchange

• Easy to
implement

• Possibly in
demand during
pre-FIPS-
certification
period

Post-quantum
signatures

• Requires
coordination with
certificate
authorities

• Less urgently:
can’t retroactively
break channel
authentication

Classical+PQ
signatures

• May not make
sense in the
context of a
negotiated
protocol like TLS

Alternative
protocol designs

• Harder to
implement; may
require state
machine or
architecture
changes

Outline
Classical + PQ key exchange

Alternative protocol designs
(KEMTLS)

17

https://openquantumsafe.org https://github.com/open-quantum-safe

Classical + PQ key exchange
Douglas Stebila, Scott Fluhrer, Shay Gueron
https://datatracker.ietf.org/doc/html/draft-ietf-tls-hybrid-design-03

https://datatracker.ietf.org/doc/html/draft-ietf-tls-hybrid-design-03

Why use two (or more) algorithms?

20

1. Reduce risk from break of one algorithm

2. Ease transition with improved backwards compatibility

3. Standards compliance during transition

Why use two (or more) algorithms?

21

1. Reduce risk from break of one algorithm
• Enable early adopters to get post-quantum security without abandoning

security of existing algorithms
• Retain security as long as at least one algorithm is not broken
• Uncertainty re: long-term security of existing cryptographic assumptions
• Uncertainty re: newer cryptographic assumptions

2. Ease transition with improved backwards compatibility

3. Standards compliance during transition

Why use two (or more) algorithms?

22

1. Reduce risk from break of one algorithm

2. Ease transition with improved backwards compatibility
• Design backwards-compatible data structures with old algorithms that

can be recognized by systems that haven't been upgraded, but new
implementations will use new algorithms

• May not be necessary for negotiated protocols like TLS

3. Standards compliance during transition

Why use two (or more) algorithms?

23

1. Reduce risk from break of one algorithm

2. Ease transition with improved backwards compatibility

3. Standards compliance during transition
• Early adopters may want to use post-quantum before standards-

compliant (FIPS-)certified implementations are available
• Possible to combine (in a certified way) keying material from FIPS-

certified (non-PQ) implementation with non-certified keying material

Terminology

24

•“Hybrid”
•“Composite”
•“Dual algorithms”
•“Robust combiner” [HKNRR05]

[HKNRR05] Harnik, Kilian, Naor, Reingold, Rosen. Eurocrypt 2005.

Hybrid key exchange in TLS 1.3

Define data structures
for negotiation,
communication, and
shared secret
calculation for hybrid
key exchange

•Hybrid/composite
certificates or digital
signatures

•Selecting which post-
quantum algorithms to
use in TLS

Goals Non-goals

Mechanism
Main idea:
Each desired
combination of
traditional + post-
quantum algorithm will
be a new (opaque) key
exchange “group”

• Negotiation: new named groups
for each desired combination will
need to be standardized

• Key shares: concatenate key
shares for each constituent
algorithm

• Shared secret calculation:
concatenate shared secrets for
each constituent algorithm and
use as input to key schedule

Other design options

• 2 vs ≥2
algorithms

• More flexibility /
granularity in
algorithm
selection

• Extension for
representing
algorithm options
and constraints

• Separately list
key shares for
each algorithm

• Use extensions
for extra key
shares

• => More efficient
communication

• Apply KDF before
inserting into key
schedule

• XOR shares
• Insert into
different parts of
TLS key schedule

Negotiation Key shares Shared secret
calculation

Securely combining keying material

28

Is it okay to use
concatenation?

ss = k1 || k2

ss = H(k1 || k2)

Note concatenation is the
primary hybrid method
approved by NIST.

• Assume at least one of k1 or
k2 is indistinguishable from
random.

• If H is a random oracle, then
ss is indistinguishable from
random.

• If k1 and k2 are fixed length
and H is a dual PRF in either
half of its input, then ss is
indistinguishable from
random.

https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-56Cr2.pdf#page=10

https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-56Cr2.pdf

What if Diffie–Hellman isn’t the only risky
primitive?

29

•Aviram et al.: What if
hash function in TLS
1.3 isn’t collision-
resistant?
• Not unreasonable
question: MD5 and
SHA-1 collision
resistance broken

Þ General problems in
TLS 1.3 related to
transcript hashing and
authentication /
session matching

Þ What about hybrid
shared secret
calculation?

Aviram, Dowling, Komargodski, Paterson, Ronen, Yogev. Concatenating secrets may be dangerous, August 2021.
https://github.com/nimia/kdf_public

https://github.com/nimia/kdf_public

Is it safe to use concatenation? ss = H(k1 || k2)

30

Aviram et al.:
If:

• H is not collision-resistant
• (and H-collisions can be found

within lifetime of TLS session)
• k1 is adversary-controlled and variable

length
• ephemeral keys are reused

then it possible to learn k2.

• Based on attack on APOP
(MD5-based challenge response
protocol); similar to CRIME attack.

• Possible but significant assumptions:
• Need long session lifetime
• Ephemeral key reuse

• Assumption not satisfied:
• k1 is fixed-length for all standardized TLS

1.3 DH groups

• Worthwhile exercise: given existence of
long-lived hard-to-upgrade
implementations, how robust should
our protocol designs be to algorithm
failure?

Aviram, Dowling, Komargodski, Paterson, Ronen, Yogev. Concatenating secrets may be dangerous, August 2021.
https://github.com/nimia/kdf_public

https://github.com/nimia/kdf_public

Composite certificates
at the LAMPS working group
Led by Mike Ounsworth from Entrust Datacard
and Massimiliano Pala from CableLabs
(I’m not involved – just including here FYI)

LAMPS working group
• “Limited Additional Mechanisms for PKIX and SMIME”

• PKIX: Public key infrastructure a.k.a. X.509 certificates
• SMIME: Secure email (encrypted/signed)

• LAMPS charter now includes milestones related to PQ
• draft-ounsworth-pq-composite-keys-00
• draft-ounsworth-pq-explicit-composite-keys-00
• draft-ounsworth-pq-composite-sigs-05
• draft-ounsworth-pq-composite-encryption-00

https://datatracker.ietf.org/wg/lamps/about/

https://datatracker.ietf.org/wg/lamps/about/

Composite OR versus Composite AND
In an asynchronous setting:
How is a credential with two public keys meant to
be used?

• Must both algorithms be used? (Composite AND)
• Is either algorithm okay? (Composite OR)

Alternative protocol designs: KEMTLS
Peter Schwabe, Douglas Stebila, Thom Wiggers
ACM CCS 2020. https://eprint.iacr.org/2020/534
ESORICS 2021. https://eprint.iacr.org/2021/779
Sofía Celi, Peter Schwabe, Douglas Stebila, Nick Sullivan, Thom Wiggers.
https://datatracker.ietf.org/doc/html/draft-celi-wiggers-tls-authkem-00

34

https://eprint.iacr.org/2020/534
https://eprint.iacr.org/2021/779
https://datatracker.ietf.org/doc/html/draft-celi-wiggers-tls-authkem-00

Authenticated key exchange

35

•Two parties establish a shared secret over a
public communication channel

Vast literature on AKE protocols

36

• Many security definitions capturing various adversarial
powers: BR, CK, eCK, …

• Different types of authentication credentials: public key,
shared secret key, password, identity-based, …

• Additional security goals: weak/strong forward secrecy,
key compromise impersonation resistance, post-compromise
security, …

• Additional protocol functionality: multi-stage, ratcheting, …
• Group key exchange
• Real-world protocols: TLS, SSH, Signal, IKE, ISO, EMV, …
• …

Explicit
authentication

Alice is assured that
only Bob would be

able to compute the
shared secret

37

Alice receives
assurance that she

really is talking to Bob

Implicit
authentication

Explicitly authenticated key exchange:
Signed Diffie–Hellman

38

Alice Bob

(pkA, skA) SIG.KeyGen() (pkB , skB) SIG.KeyGen()

obtain pkB obtain pkA

x $ {0, . . . , q � 1}
X g

x
X

y $ {0, . . . , q � 1}
Y g

y

�B SIG.Sign(skB , AkBkXkY)Y,�B

�A SIG.Sign(skA, AkBkXkY) �A

k H(sid, Y x) k H(sid,Xy)

application data

using authenticated encryption

Implicitly authenticated key exchange:
Double-DH

39

Alice Bob

skA $ {0, . . . , q � 1} skB $ {0, . . . , q � 1}
pkA g

skA pkB g
skB

obtain pkB obtain pkA

x $ {0, . . . , q � 1} y $ {0, . . . , q � 1}
X g

x
Y g

y
X

Y

k H(sid, pk
skA
B kY x) k H(sid, pk

skB
A kXy)

application data

using authenticated encryption

Ephemeral DH

Static DH

Problem
post-quantum

signatures
are big

40

Signature scheme Public key (bytes) Signature (bytes)

RSA-2048 Factoring 272 256

Elliptic curves Elliptic curve discrete logarithm 32 32

Dilithium Lattice-based (MLWE/MSIS) 1,184 2,044
Falcon Lattice-based (NTRU) 897 690
XMSS Hash-based 32 979
Rainbow Multi-variate 60,192 66

41

Solution
use

post-quantum KEMs
for authentication

42

Key encapsulation mechanisms (KEMs)

43

An abstraction of Diffie–Hellman key exchange
<latexit sha1_base64="RDVfI7FP0yyVQqr+2G8wBIqhKDQ=">AAACQ3icbVDLSgNBEJz1bXxFPXoZjEIECbs5qEdRREGECEaFJITZSW8cMjO7zPSKYdnf8Gu8xn/wG7yJRwU3D8SoBQPV1d10TfmRFBZd98WZmJyanpmdm88tLC4tr+RX165tGBsOVR7K0Nz6zIIUGqooUMJtZIApX8KN3znu92/uwVgR6ivsRtBQrK1FIDjDTGrm3a1i1NmltrND621AS+uK4Z0NkvOTi7T0XUD3FHRa3NnKNf MFt+QOQP8Sb0QKZIRKM/9Rb4U8VqCRS2ZtzXMjbCTMoOAS0lw9thAx3mFtqGVUMwW2kQx+ltLtTGnRIDTZ00gH6s+NhClru8rPJgdWf/f64n+9WozBQSMROooRNB8eCmJJMaT9mGhLGOAouxlh3IjMK+V3zDCOWZhjVx6GVsc00LESCCrtx+X9DucvuS6XvL2Se1kuHB6NgpsjG2STFIlH9skhOSMVUiWcPJIn0iPPTs95dd6c9+HohDPaWSdjcD6/ALcUsLc=</latexit>

(pk, sk) KEM.KeyGen()

<latexit sha1_base64="XPVAcqpbuqaH8/jH2n2W0moLbT0=">AAACRHicbVDLSgNBEJz1bXxFPXoZjEICEnY9qEdRBEEEBZMISQizk944ZGZ2mekVw7Lf4dd41W/wH7yJNxE3D8EYCwaqq7vpmvIjKSy67qszNT0zOze/sJhbWl5ZXcuvb1RtGBsOFR7K0Nz6zIIUGiooUMJtZIApX0LN7572+7V7MFaE+gZ7ETQV62gRCM4wk1p5b6fIcY92S7TRAbS0oRje2SC5OLtMyz/FmeYssmkx6pZ2cq18wS27A9BJ4o1IgYxw1cp/NtohjxVo5JJZW/fcCJsJMyi4hDTXiC1EjHdZB+oZ1UyBbSaDr6V0N1PaNAhN9jTSgfp7I2HK2p7ys8mB2b+9vvhfrx5jcNRMhI5iBM2Hh4JYUgxpPyfaFgY4yl5GGDci80r5HTOMY5bm2JWHodUxDXSsBIJK+3F5f8OZJNX9sndQdq/3C8cno+AWyBbZJkXikUNyTM7JFakQTh7JE3kmL86z8+a8Ox/D0SlntLNJxuB8fQO5QrE8</latexit>

(ct, k) KEM.Encaps(pk)

<latexit sha1_base64="odAnpH0dxdWK5HcWBvymtpgGo+8=">AAACQnicbVDLSgNBEJz1bXxFPXoZjEIEibse1KP4AEGECEYDSQizk944ZGZ2mekVw7Kf4dd41Y/wF7yJVw9uHoKJFgxUV3fTNeVHUlh03TdnYnJqemZ2bj63sLi0vJJfXbu1YWw4VHgoQ1P1mQUpNFRQoIRqZIApX8Kd3znt9e8ewFgR6hvsRtBQrK1FIDjDTGrm97Y6tN4GtLSuGN7bILk8v0pLP8UZcBbZtGg7u5TjzlaumS +4JbcP+pd4Q1IgQ5Sb+a96K+SxAo1cMmtrnhthI2EGBZeQ5uqxhYjxDmtDLaOaKbCNpP+xlG5nSosGocmeRtpXf28kTFnbVX422Tc83uuJ//VqMQZHjUToKEbQfHAoiCXFkPZSoi1hgKPsZoRxIzKvlN8zwzhmWY5ceRxYHdFAx0ogqLQXlzcezl9yu1/yDkru9X7h+GQY3BzZIJukSDxySI7JBSmTCuHkiTyTF/LqvDjvzofzORidcIY762QEztc31+aw0A==</latexit>

k KEM.Decaps(sk, ct)

<latexit sha1_base64="PTKmRgTTD1VvdUJnVXjDNS/R8xM=">AAACFXicbVC7TsMwFHV4lvIqMLJYtEhMVdIBGCtYGItEH1IbVY5701q1nch2EFXUX2AtP8OGWJn5FwacNgNtOZKlo3Pu1T0+QcyZNq777Wxsbm3v7Bb2ivsHh0fHpZPTlo4SRaFJIx6pTkA0cCahaZjh0IkVEBFwaAfj+8xvP4PSLJJPZhKDL8hQspBRYjKpEo8r/VLZrbpz4HXi5aSMcjT6pZ/eIKKJAGkoJ1p3PTc2fkqUYZTDtNhLNMSEjskQupZKIkD76TzrFF9aZYDDSNknDZ6rfzdSIrSeiMBOCmJGetXLxP+8bmLCWz9lMk4MSLo4FCYcmwhnH8cDpoAaPrGEUMVsVkxHRBFqbD1LV14WUZc0kIlgBsS0aOvyVstZJ61a1buuuo+1cv0uL66AztEFukIeukF19IAaqIkoGqFXNENvzsx5dz6cz8XohpPvnKElOF+/66GfrQ==</latexit>

pk

<latexit sha1_base64="qvRR5ShOI+DZk1O2A7o45sTKiQM=">AAACFXicbVDLTsJAFJ36RHyhLt00gokr0rJQl0Q3LjGRRwINmQ63MGFm2szcGknDL7jFn3Fn3Lr2X1zYQhcCnmSSk3PuzT1z/Ehwg47zbW1sbm3v7Bb2ivsHh0fHpZPTlgljzaDJQhHqjk8NCK6giRwFdCINVPoC2v74PvPbz6AND9UTTiLwJB0qHnBGMZMqDCv9UtmpOnPY68TNSZnkaPRLP71ByGIJCpmgxnRdJ0IvoRo5EzAt9mIDEWVjOoRuShWVYLxknnVqX6bKwA5CnT6F9lz9u5FQacxE+umkpDgyq14m/ud1YwxuvYSrKEZQbHEoiIWNoZ193B5wDQzFJCWUaZ5mtdmIasowrWfpyssi6pIGKpYcQU6LaV3uajnrpFWrutdV57FWrt/lxRXIObkgV8QlN6ROHkiDNAkjI/JKZuTNmlnv1of1uRjdsPKdM7IE6+sX5NifqQ==</latexit>

ct

Signature scheme Public key (bytes) Signature (bytes)

RSA-2048 Factoring 272 256

Elliptic curves Elliptic curve discrete logarithm 32 32

Dilithium Lattice-based (MLWE/MSIS) 1,184 2,044
Falcon Lattice-based (NTRU) 897 690
XMSS Hash-based 32 979
Rainbow Multi-variate 60,192 66

44

KEM Public key (bytes) Ciphertext (bytes)

RSA-2048 Factoring 272 256

Elliptic curves Elliptic curve discrete logarithm 32 32

Kyber Lattice-based (MLWE) 800 768
NTRU Lattice-based (NTRU) 699 699
Saber Lattice-based (MLWR) 672 736
SIKE Isogeny-based 330 330
SIKE compressed Isogeny-based 197 197
Classic McEliece Code-based 261,120 128

Implicitly authenticated KEX is not new

45

•DH-based: SKEME,
MQV, HMQV, …

•KEM-based:
BCGP09, FSXY12, …

• RSA key transport in
TLS ≤ 1.2

• Lacks forward secrecy
• Signal, Noise, Wireguard

• DH-based
• Different protocol flows

• OPTLS
• DH-based
• Requires a non-interactive key

exchange (NIKE)

In theory In practice

KEMTLS
handshake

KEM for
ephemeral key exchange

KEM for
server-to-client

authenticated key exchange

Combine shared secrets

46

Algorithm choices

47

KEM for ephemeral
key exchange

KEM for authenticated
key exchange

Signature scheme for
intermediate CA

Signature scheme for
root CA

Algorithm choices

48

KEM for ephemeral
key exchange

• IND-CCA (or IND-1CCA)
• Want small public key

+ small ciphertext

KEM for authenticated
key exchange

• IND-CCA
• Want small public key

+ small ciphertext

Signature scheme for
intermediate CA

• Want small public key
+ small signature

Signature scheme for
root CA

• Want small signature

4 scenarios

49

1. Minimize size when intermediate certificate
transmitted

2. Minimize size when intermediate certificate
not transmitted (cached)

3. Use solely NTRU assumptions
4. Use solely module LWE/SIS assumptions

Signed KEX
versus

KEMTLS
Labels ABCD:
A = ephemeral KEM
B = leaf certificate
C = intermediate CA
D = root CA
Algorithms: (all level 1)
Dilithium,
eCDH X25519,
Falcon,
Kyber,
NTRU,
Rainbow,
rSA-2048,
SIKE,
XMSS’

50Rustls client/server with some AVX2 implementations. Emulated network: latency 31.1 ms, bandwidth 1000 Mbps, 0% packet loss. Average of 100000 iterations.

Signed KEX
versus

KEMTLS
Labels ABCD:
A = ephemeral KEM
B = leaf certificate
C = intermediate CA
D = root CA
Algorithms: (all level 1)
Dilithium,
eCDH X25519,
Falcon,
Kyber,
NTRU,
Rainbow,
rSA-2048,
SIKE,
XMSS’

51Rustls client/server with some AVX2 implementations. Emulated network: latency 31.1 ms, bandwidth 1000 Mbps, 0% packet loss. Average of 100000 iterations.

KEMTLS benefits
• Size-optimized KEMTLS requires < ½ communication of size-

optimized PQ signed-KEM
• Speed-optimized KEMTLS uses 90% fewer server CPU cycles

and still reduces communication
• NTRU KEX (27 μs) 10x faster than Falcon signing (254 μs)

• No extra round trips required until client starts sending
application data

• Smaller trusted code base (no signature generation on
client/server)

Security analyses of KEMTLS

53

• In the original paper
•Proves session key
security and
authentication in the
multi-stage key exchange
model

•Using provable security
paradigm

Two new works underway using Tamarin
prover (a symbol model checker)
1. Tamarin analog of the multi-stage key

exchange model from the paper
• https://github.com/dstebila/KEMTLS-

Tamarin/

2. Modification of full-scale TLS 1.3
Tamarin model to use KEMTLS
• https://github.com/thomwiggers/TLS13Tam

arin

Pen-and-paper Formal verification

https://github.com/dstebila/KEMTLS-Tamarin/
https://github.com/thomwiggers/TLS13Tamarin

Security

54

Security model: multi-
stage key exchange,
extending [DFGS21]
•Key indistinguishability
•Forward secrecy
•Implicit and explicit
authentication

Ingredients in security
proof:
• IND-CCA for long-term
KEM

• IND-1CCA for ephemeral
KEM

• Collision-resistant hash
function

• Dual-PRF security of HKDF
• EUF-CMA of HMAC

[DFGS21] Dowling, Fischlin, Günther, Stebila. Journal of Cryptology, 2021. https://eprint.iacr.org/2020/1044

https://eprint.iacr.org/2020/1044

Security subtleties: authentication

55

•Client’s first application
flow can’t be read by
anyone other than
intended server, but
client doesn’t know
server is live at the time
of sending

•Explicit authentication
once key confirmation
message transmitted

•Retroactive explicit
authentication of earlier
keys

[DGK06] Di Raimondo, Gennaro, Krawczyk. ACM CCS 2006. https://eprint.iacr.org/2006/280

Implicit authentication Explicit authentication

https://eprint.iacr.org/2006/280

Security subtleties: downgrade resilience

56

• Choice of cryptographic
algorithms not
authenticated at the time
the client sends its first
application flow

• MITM can’t trick client into
using undesirable
algorithm

• But MITM can trick them
into temporarily using
suboptimal algorithm

•Formally model 3 levels
of downgrade-resilience:
1. Full downgrade

resilience
2. No downgrade

resilience to
unsupported algorithms

3. No downgrade
resilience

Security subtleties: forward secrecy

57

Does compromise of a
party’s long-term key
allow decryption of past
sessions?

• Weak forward secrecy 1:
adversary passive in the test
stage

• Weak forward secrecy 2:
adversary passive in the test
stage or never corrupted
peer’s long-term key

• Forward secrecy: adversary
passive in the test stage or
didn’t corrupt peer’s long-term
key before acceptance

Variant: KEMTLS with client authentication

58

1. Client has a long-term KEM public key
2. Client transmits it encrypted under key derived

from
a) server long-term KEM key exchange
b) ephemeral KEM key exchange

•Preserves client confidentiality
•Adds extra round trip

Variant: Pre-distributed public keys

59

What if server public
keys are pre-
distributed?

• Cached in a browser
• Pinned in mobile apps
• Embedded in IoT
devices

• Out-of-band (e.g., DNS)
• TLS 1.3: RFC 7924

Different from TLS 1.3
pre-shared symmetric
key mode

• PSK is a harder(?) key
management problem

• Different compromise
model

Variant: Pre-distributed public keys

60

• Alternate KEMTLS protocol flow
when server certificates are
known in advance

• Resumption-style mechanism
that avoids the downsides of
symmetric-key TLS PSK

• Given server’s long-term key,
client can send ciphertext in
ClientHello

• Also allow to send client
certificate in ClientHello

Get a 1-RTT,
TLS 1.3-shape
handshake with

implicit authentication

KEMTLS-PDK
handshake

server-only auth.

KEM for
ephemeral key exchange

KEM for
server-to-client

authenticated key exchange

Combine shared secrets

61

KEMTLS-PDK
handshake

mutual auth

KEM for
ephemeral key exchange

KEM for
server-to-client authenticated key exchange

KEM for
client-to-server authenticated key exchange

Combine shared secrets

62

Benefits from pre-distributed key variant

63

•Additional bandwidth savings
•Makes some PQ algorithms viable

• Large public keys, small ciphertexts/signatures:
Classic McEliece and Rainbow

•Client authentication 1 round-trip earlier if
proactive

•Explicit server authentication 1 round-trip earlier
• => better downgrade resilience

Other security properties

64

• Client certificate encrypted
• Server certificate encrypted
• Server identity not
protected

• Due to Server Name
Indication extension

• May be able to combine
KEMTLS-PDK with
Encrypted ClientHello?

• KEMTLS and KEMTLS-PDK
don’t use signatures for
authentication

• Yields offline deniability
• Judge cannot distinguish

honest transcript from forgery
• Does not yield online

deniability
• When one party doesn’t follow

protocol or colludes with jduge

Anonymity Deniability

TLS ecosystem is complex – lots to consider!

65

•Datagram TLS
•Use of TLS handshake in other protocols

• e.g. QUIC
•Application-specific behaviour
•PKI involving KEM public keys
•Long tail of implementations
•Middle-box behaviour
•…

X.509 certificates for KEM public keys:
Proof of possession

66

How does requester prove possession of corresponding
secret keys?

• Interactive challenge-response protocol: RFC 4210 Sect. 5.2.8.3
• Send certificate back encrypted under subject public key RFC 4210

Sect. 5.2.8.2
• Weird confidentiality requirement on certificate. Maybe broken by Certificate

Transparency?
• Non-interactive certificate signing requests: Not a signature scheme!

• Research in progress: Can build a not-too-inefficient Picnic-like signature
scheme from the KEM operation

• Kyber proof of possession: 227 KB, < 1 sec proof generation and verifcation

Transitioning the TLS protocol to post-quantum cryptography
Douglas Stebila

Prototypes
Open Quantum Safe project
https://eprint.iacr.org/2019/1447 • https://openquantumsafe.org •
https://github.com/open-quantum-safe/

Hybrid key exchange
in TLS 1.3
Working towards standardization
https://datatracker.ietf.org/doc/html/draft-ietf-tls-hybrid-design-03

Alternative protocol design:
KEMTLS
Implicitly authenticated TLS without
handshake signatures using KEMs
• Saves bytes on the wire, server cycles
• Variants for client authentication and pre-

distributed public keys
• Lots of work to make viable in TLS

ecosystem, including certificates
https://eprint.iacr.org/2020/534 • https://eprint.iacr.org/2021/779
https://datatracker.ietf.org/doc/html/draft-celi-wiggers-tls-authkem-00

67

https://www.douglas.stebila.ca/research/presentations/

https://eprint.iacr.org/2019/1447
https://openquantumsafe.org/
https://github.com/open-quantum-safe/
https://datatracker.ietf.org/doc/html/draft-ietf-tls-hybrid-design-03
https://eprint.iacr.org/2020/534
https://eprint.iacr.org/2021/779
https://datatracker.ietf.org/doc/html/draft-celi-wiggers-tls-authkem-00
https://www.douglas.stebila.ca/research/presentations/

Appendix

When will a large-scale
quantum computer be
built?

69

“I estimate a 1/7
chance of breaking
RSA-2048 by 2026

and a 1/2 chance by
2031.”

— Michele Mosca,
University of Waterloo

https://eprint.iacr.org/2015/1075
http://qurope.eu/system/files/u7/93056_Quantum%20Manifesto_WEB.pdf
https://globalriskinstitute.org/publications/quantum-threat-timeline/

https://eprint.iacr.org/2015/1075
http://qurope.eu/system/files/u7/93056_Quantum%20Manifesto_WEB.pdf
https://globalriskinstitute.org/publications/quantum-threat-timeline/

Appendix: KEMTLS

70

KEMTLS

KEMTLS
with client

authentication

TLS 1.3 and KEMTLS size of public key objects

73

TLS 1.3 and KEMTLS crypto & handshake time

74

KEMTLS-PDK overview

75

KEMTLS-PDK

76

KEMTLS-PDK
with proactive

client
authentication

77

78

Communication
sizes

KEMTLS

TLS 1.3 w/cached
server certs

KEMTLS-PDK

79

Handshake times, unilateral authentication

80

Handshake times, mutual authentication

81

https://openquantumsafe.org https://github.com/open-quantum-safe

liboqs

83

•C library with common
API for post-quantum
signature schemes and
key encapsulation
mechanisms

•MIT License
•Builds on Windows,
macOS, Linux; x86_64,
ARM v8

•Version 0.7.1 to be
released in December
2021

•Includes all Round 3
finalists and alternate
candidates
• (except GeMSS)

https://openquantumsafe.org/liboqs/

https://openquantumsafe.org/liboqs/

TLS 1.3 implementations

84

OQS-OpenSSL
1.1.1

OQS-OpenSSL 3
provider

OQS-BoringSSL

PQ key exchange in TLS 1.3 Yes Yes Yes

Hybrid key exchange in TLS 1.3 Yes Coming soon Yes

PQ certificates and signature authentication in TLS
1.3

Yes No Yes

Hybrid certificates and signature authentication in TLS
1.3

Yes No No

https://openquantumsafe.org/applications/tls/

Using draft-ietf-tls-hybrid-design for hybrid key exchange

Interoperability test server running at https://test.openquantumsafe.org

https://openquantumsafe.org/applications/tls/
https://test.openquantumsafe.org/

Applications

85

•Demonstrator
application integrations
into:
• Apache
• nginx
• haproxy
• curl
• Chromium
• Wireshark

• In most cases required
few/no modifications to
work with updated
OpenSSL

•Runnable Docker images
available for download

https://openquantumsafe.org/applications/tls/#demo-integrations

https://openquantumsafe.org/applications/tls/

Benchmarking

86

•Benchmarking portal at
https://openquantumsafe.org/benchmarking/

•Core algorithm speed and memory usage
•TLS performance in ideal network conditions
•Intel AVX2 and ARM 64

https://openquantumsafe.org/benchmarking/

