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Cryptographic building blocks
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TLS 1.3
handshake

Signed Diffie–Hellman
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Diffie-Hellman key exchange

Digital signature

Authenticated encryption



Cryptographic building blocks
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Public-key 
cryptography

RSA or elliptic 
curve 

signatures

Elliptic curve 
Diffie–Hellman
key exchange

Symmetric 
cryptography

AES
encryption

AES GCM 
integrity

Based on 
difficulty of 

factoring large 
numbers

– not quantum 
resistant!

Based on difficulty of 

computing discrete 
logarithms

– not quantum resistant!



Post-quantum cryptography
a.k.a. quantum-resistant 
algorithms

Cryptography believed to 
be resistant to attacks by 
quantum computers

Uses only classical 
(non-quantum) operations 
to implement

Hash-based 
& symmetric

Multivariate 
quadratic

Code-based Lattice-
based

Elliptic 
curve 

isogenies
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NIST Post-quantum Crypto Project timeline

8http://www.nist.gov/pqcrypto

2022-23

Draft
standard

Nov.
2017

Submission
deadline

Mar.
2019

Round 2
deadline

Round 1: 
69 schemes
1/3 signatures
2/3 PKE

Round 2:
26 schemes
9 signatures
17 PKE

Oct.
2020

Round 3
deadline

Round 3:
Finalists: 
• 3 signatures
• 4 PKE
Alternates:
• 3 signatures
• 5 PKE

2024

Final
standard

Dec.
2016

Call for PQ
proposals

2022-23

Round 4

http://www.nist.gov/pqcrypto


NIST Round 3

Key encapsulation mechanisms
• Code-based: Classic McEliece
• Lattice-based: Kyber, NTRU, Saber

• At most one of these 3 will be 
standardized

Signatures
• Lattice-based: Dilithium, Falcon

• At most one of these 2 will be 
standardized

• Multivariate: Rainbow

Key encapsulation mechanisms
• Code-based: BIKE, HQC
• Lattice-based: 

FrodoKEM, NTRU Prime
• Isogeny-based: SIKE

Signatures
• Symmetric-based: 

Picnic, SPHINCS+
• Multivariate: GeMSS

Finalists Alternate candidates

9



TLS 1.3
handshake

Signed Diffie–Hellman
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TLS 1.3
handshake

Signed Diffie–Hellman
Post-Quantum!!!
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Confidence in quantum-resistance

Fast computation Small communication

Pick ≤ 2



NIST Round 3 KEM Finalists

Based on Round 2 submission documents; AVX2 runtimes normalized 13



NIST Round 3 Signature Finalists

Based on Round 2 submission documents; AVX2 runtimes normalized 14



Paths to standardization and adoption

15

NIST NIST round 3 
selection

NIST draft 
standard

FIPS 
standard

CFRG CFRG 
standard

TLS working 
group TLS standard

Implementers Early 
prototypes

Preliminary 
adoption

Standard 
adoption

FIPS-certified 
adoption

Certificate 
authorities

CA/B Forum 
guidelines Deployment



What is “post-quantum TLS”?

16

Post-quantum 
key exchange

• Easiest to 
implement

• Easy backwards 
compatibility

• Needed soonest: 
harvest now & 
decrypt later with 
quantum 
computer

Classical+PQ
key exchange

• Easy to 
implement

• Possibly in 
demand during 
pre-FIPS-
certification 
period

Post-quantum 
signatures

• Requires 
coordination with 
certificate 
authorities

• Less urgently: 
can’t retroactively 
break channel 
authentication

Classical+PQ
signatures

• May not make 
sense in the 
context of a 
negotiated 
protocol like TLS

Alternative 
protocol designs

• Harder to 
implement; may 
require state 
machine or 
architecture 
changes



Outline
Classical + PQ key exchange

Alternative protocol designs 
(KEMTLS)

17



https://openquantumsafe.org https://github.com/open-quantum-safe



Classical + PQ key exchange
Douglas Stebila, Scott Fluhrer, Shay Gueron
https://datatracker.ietf.org/doc/html/draft-ietf-tls-hybrid-design-03

https://datatracker.ietf.org/doc/html/draft-ietf-tls-hybrid-design-03


Why use two (or more) algorithms?

20

1. Reduce risk from break of one algorithm

2. Ease transition with improved backwards compatibility

3. Standards compliance during transition



Why use two (or more) algorithms?

21

1. Reduce risk from break of one algorithm
• Enable early adopters to get post-quantum security without abandoning 

security of existing algorithms
• Retain security as long as at least one algorithm is not broken
• Uncertainty re: long-term security of existing cryptographic assumptions
• Uncertainty re: newer cryptographic assumptions

2. Ease transition with improved backwards compatibility

3. Standards compliance during transition



Why use two (or more) algorithms?

22

1. Reduce risk from break of one algorithm

2. Ease transition with improved backwards compatibility
• Design backwards-compatible data structures with old algorithms that 

can be recognized by systems that haven't been upgraded, but new 
implementations will use new algorithms

• May not be necessary for negotiated protocols like TLS

3. Standards compliance during transition



Why use two (or more) algorithms?

23

1. Reduce risk from break of one algorithm

2. Ease transition with improved backwards compatibility

3. Standards compliance during transition
• Early adopters may want to use post-quantum before standards-

compliant (FIPS-)certified implementations are available
• Possible to combine (in a certified way) keying material from FIPS-

certified (non-PQ) implementation with non-certified keying material



Terminology

24

•“Hybrid”
•“Composite”
•“Dual algorithms”
•“Robust combiner” [HKNRR05]

[HKNRR05] Harnik, Kilian, Naor, Reingold, Rosen. Eurocrypt 2005.



Hybrid key exchange in TLS 1.3

Define data structures 
for negotiation, 
communication, and 
shared secret 
calculation for hybrid 
key exchange

•Hybrid/composite 
certificates or digital 
signatures

•Selecting which post-
quantum algorithms to 
use in TLS

Goals Non-goals



Mechanism
Main idea: 
Each desired 
combination of 
traditional + post-
quantum algorithm will 
be a new (opaque) key 
exchange “group”

• Negotiation: new named groups 
for each desired combination will 
need to be standardized

• Key shares: concatenate key 
shares for each constituent 
algorithm

• Shared secret calculation: 
concatenate shared secrets for 
each constituent algorithm and 
use as input to key schedule



Other design options

• 2 vs ≥2 
algorithms

• More flexibility / 
granularity in 
algorithm 
selection

• Extension for 
representing 
algorithm options 
and constraints

• Separately list 
key shares for 
each algorithm

• Use extensions 
for extra key 
shares

• => More efficient 
communication

• Apply KDF before 
inserting into key 
schedule

• XOR shares
• Insert into 
different parts of 
TLS key schedule

Negotiation Key shares Shared secret 
calculation



Securely combining keying material

28

Is it okay to use 
concatenation?

ss = k1 || k2

ss = H(k1 || k2)

Note concatenation is the 
primary hybrid method 
approved by NIST.

• Assume at least one of k1 or 
k2 is indistinguishable from 
random.

• If H is a random oracle, then 
ss is indistinguishable from 
random.

• If k1 and k2 are fixed length 
and H is a dual PRF in either 
half of its input, then ss is 
indistinguishable from 
random.

https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-56Cr2.pdf#page=10

https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-56Cr2.pdf


What if Diffie–Hellman isn’t the only risky 
primitive?

29

•Aviram et al.: What if 
hash function in TLS 
1.3 isn’t collision-
resistant?
• Not unreasonable 
question: MD5 and 
SHA-1 collision 
resistance broken

Þ General problems in 
TLS 1.3 related to
transcript hashing and
authentication /
session matching

Þ What about hybrid 
shared secret 
calculation?

Aviram, Dowling, Komargodski, Paterson, Ronen, Yogev. Concatenating secrets may be dangerous, August 2021. 
https://github.com/nimia/kdf_public

https://github.com/nimia/kdf_public


Is it safe to use concatenation? ss = H(k1 || k2)

30

Aviram et al.: 
If:

• H is not collision-resistant
• (and H-collisions can be found 

within lifetime of TLS session)
• k1 is adversary-controlled and variable 

length
• ephemeral keys are reused

then it possible to learn k2.

• Based on attack on APOP 
(MD5-based challenge response 
protocol); similar to CRIME attack.

• Possible but significant assumptions:
• Need long session lifetime
• Ephemeral key reuse

• Assumption not satisfied:
• k1 is fixed-length for all standardized TLS 

1.3 DH groups

• Worthwhile exercise: given existence of 
long-lived hard-to-upgrade 
implementations, how robust should 
our protocol designs be to algorithm 
failure?

Aviram, Dowling, Komargodski, Paterson, Ronen, Yogev. Concatenating secrets may be dangerous, August 2021. 
https://github.com/nimia/kdf_public

https://github.com/nimia/kdf_public


Composite certificates 
at the LAMPS working group
Led by Mike Ounsworth from Entrust Datacard
and Massimiliano Pala from CableLabs
(I’m not involved – just including here FYI)



LAMPS working group
• “Limited Additional Mechanisms for PKIX and SMIME”

• PKIX: Public key infrastructure a.k.a. X.509 certificates
• SMIME: Secure email (encrypted/signed)

• LAMPS charter now includes milestones related to PQ
• draft-ounsworth-pq-composite-keys-00
• draft-ounsworth-pq-explicit-composite-keys-00
• draft-ounsworth-pq-composite-sigs-05
• draft-ounsworth-pq-composite-encryption-00

https://datatracker.ietf.org/wg/lamps/about/

https://datatracker.ietf.org/wg/lamps/about/


Composite OR versus Composite AND
In an asynchronous setting:
How is a credential with two public keys meant to 
be used?

• Must both algorithms be used? (Composite AND)
• Is either algorithm okay? (Composite OR)



Alternative protocol designs: KEMTLS
Peter Schwabe, Douglas Stebila, Thom Wiggers
ACM CCS 2020. https://eprint.iacr.org/2020/534
ESORICS 2021. https://eprint.iacr.org/2021/779
Sofía Celi, Peter Schwabe, Douglas Stebila, Nick Sullivan, Thom Wiggers. 
https://datatracker.ietf.org/doc/html/draft-celi-wiggers-tls-authkem-00

34

https://eprint.iacr.org/2020/534
https://eprint.iacr.org/2021/779
https://datatracker.ietf.org/doc/html/draft-celi-wiggers-tls-authkem-00


Authenticated key exchange

35

•Two parties establish a shared secret over a 
public communication channel



Vast literature on AKE protocols

36

• Many security definitions capturing various adversarial 
powers: BR, CK, eCK, …

• Different types of authentication credentials: public key, 
shared secret key, password, identity-based, …

• Additional security goals: weak/strong forward secrecy, 
key compromise impersonation resistance, post-compromise 
security, …

• Additional protocol functionality: multi-stage, ratcheting, …
• Group key exchange
• Real-world protocols: TLS, SSH, Signal, IKE, ISO, EMV, …
• …



Explicit
authentication

Alice is assured that 
only Bob would be 

able to compute the 
shared secret

37

Alice receives 
assurance that she 

really is talking to Bob

Implicit
authentication



Explicitly authenticated key exchange:
Signed Diffie–Hellman

38

Alice Bob

(pkA, skA) SIG.KeyGen() (pkB , skB) SIG.KeyGen()

obtain pkB obtain pkA

x $ {0, . . . , q � 1}
X  g

x
X

y $ {0, . . . , q � 1}
Y  g

y

�B  SIG.Sign(skB , AkBkXkY )Y,�B

�A  SIG.Sign(skA, AkBkXkY ) �A

k  H(sid, Y x) k  H(sid,Xy)

application data

using authenticated encryption



Implicitly authenticated key exchange:
Double-DH

39

Alice Bob

skA $ {0, . . . , q � 1} skB  $ {0, . . . , q � 1}
pkA  g

skA pkB  g
skB

obtain pkB obtain pkA

x $ {0, . . . , q � 1} y $ {0, . . . , q � 1}
X  g

x
Y  g

y
X

Y

k  H(sid, pk
skA
B kY x) k  H(sid, pk

skB
A kXy)

application data

using authenticated encryption

Ephemeral DH

Static DH



Problem
post-quantum 

signatures
are big

40



Signature scheme Public key (bytes) Signature (bytes)

RSA-2048 Factoring 272 256

Elliptic curves Elliptic curve discrete logarithm 32 32

Dilithium Lattice-based (MLWE/MSIS) 1,184 2,044
Falcon Lattice-based (NTRU) 897 690
XMSS Hash-based 32 979
Rainbow Multi-variate 60,192 66

41



Solution
use 

post-quantum KEMs 
for authentication

42



Key encapsulation mechanisms (KEMs)

43

An abstraction of Diffie–Hellman key exchange
<latexit sha1_base64="RDVfI7FP0yyVQqr+2G8wBIqhKDQ=">AAACQ3icbVDLSgNBEJz1bXxFPXoZjEIECbs5qEdRREGECEaFJITZSW8cMjO7zPSKYdnf8Gu8xn/wG7yJRwU3D8SoBQPV1d10TfmRFBZd98WZmJyanpmdm88tLC4tr+RX165tGBsOVR7K0Nz6zIIUGqooUMJtZIApX8KN3znu92/uwVgR6ivsRtBQrK1FIDjDTGrm3a1i1NmltrND621AS+uK4Z0NkvOTi7T0XUD3FHRa3NnKNf MFt+QOQP8Sb0QKZIRKM/9Rb4U8VqCRS2ZtzXMjbCTMoOAS0lw9thAx3mFtqGVUMwW2kQx+ltLtTGnRIDTZ00gH6s+NhClru8rPJgdWf/f64n+9WozBQSMROooRNB8eCmJJMaT9mGhLGOAouxlh3IjMK+V3zDCOWZhjVx6GVsc00LESCCrtx+X9DucvuS6XvL2Se1kuHB6NgpsjG2STFIlH9skhOSMVUiWcPJIn0iPPTs95dd6c9+HohDPaWSdjcD6/ALcUsLc=</latexit>

(pk, sk) KEM.KeyGen()

<latexit sha1_base64="XPVAcqpbuqaH8/jH2n2W0moLbT0="></latexit>

(ct, k) KEM.Encaps(pk)

<latexit sha1_base64="odAnpH0dxdWK5HcWBvymtpgGo+8=">AAACQnicbVDLSgNBEJz1bXxFPXoZjEIEibse1KP4AEGECEYDSQizk944ZGZ2mekVw7Kf4dd41Y/wF7yJVw9uHoKJFgxUV3fTNeVHUlh03TdnYnJqemZ2bj63sLi0vJJfXbu1YWw4VHgoQ1P1mQUpNFRQoIRqZIApX8Kd3znt9e8ewFgR6hvsRtBQrK1FIDjDTGrm97Y6tN4GtLSuGN7bILk8v0pLP8UZcBbZtGg7u5TjzlaumS +4JbcP+pd4Q1IgQ5Sb+a96K+SxAo1cMmtrnhthI2EGBZeQ5uqxhYjxDmtDLaOaKbCNpP+xlG5nSosGocmeRtpXf28kTFnbVX422Tc83uuJ//VqMQZHjUToKEbQfHAoiCXFkPZSoi1hgKPsZoRxIzKvlN8zwzhmWY5ceRxYHdFAx0ogqLQXlzcezl9yu1/yDkru9X7h+GQY3BzZIJukSDxySI7JBSmTCuHkiTyTF/LqvDjvzofzORidcIY762QEztc31+aw0A==</latexit>

k  KEM.Decaps(sk, ct)

<latexit sha1_base64="PTKmRgTTD1VvdUJnVXjDNS/R8xM=">AAACFXicbVC7TsMwFHV4lvIqMLJYtEhMVdIBGCtYGItEH1IbVY5701q1nch2EFXUX2AtP8OGWJn5FwacNgNtOZKlo3Pu1T0+QcyZNq777Wxsbm3v7Bb2ivsHh0fHpZPTlo4SRaFJIx6pTkA0cCahaZjh0IkVEBFwaAfj+8xvP4PSLJJPZhKDL8hQspBRYjKpEo8r/VLZrbpz4HXi5aSMcjT6pZ/eIKKJAGkoJ1p3PTc2fkqUYZTDtNhLNMSEjskQupZKIkD76TzrFF9aZYDDSNknDZ6rfzdSIrSeiMBOCmJGetXLxP+8bmLCWz9lMk4MSLo4FCYcmwhnH8cDpoAaPrGEUMVsVkxHRBFqbD1LV14WUZc0kIlgBsS0aOvyVstZJ61a1buuuo+1cv0uL66AztEFukIeukF19IAaqIkoGqFXNENvzsx5dz6cz8XohpPvnKElOF+/66GfrQ==</latexit>

pk

<latexit sha1_base64="qvRR5ShOI+DZk1O2A7o45sTKiQM=">AAACFXicbVDLTsJAFJ36RHyhLt00gokr0rJQl0Q3LjGRRwINmQ63MGFm2szcGknDL7jFn3Fn3Lr2X1zYQhcCnmSSk3PuzT1z/Ehwg47zbW1sbm3v7Bb2ivsHh0fHpZPTlgljzaDJQhHqjk8NCK6giRwFdCINVPoC2v74PvPbz6AND9UTTiLwJB0qHnBGMZMqDCv9UtmpOnPY68TNSZnkaPRLP71ByGIJCpmgxnRdJ0IvoRo5EzAt9mIDEWVjOoRuShWVYLxknnVqX6bKwA5CnT6F9lz9u5FQacxE+umkpDgyq14m/ud1YwxuvYSrKEZQbHEoiIWNoZ193B5wDQzFJCWUaZ5mtdmIasowrWfpyssi6pIGKpYcQU6LaV3uajnrpFWrutdV57FWrt/lxRXIObkgV8QlN6ROHkiDNAkjI/JKZuTNmlnv1of1uRjdsPKdM7IE6+sX5NifqQ==</latexit>

ct



Signature scheme Public key (bytes) Signature (bytes)

RSA-2048 Factoring 272 256

Elliptic curves Elliptic curve discrete logarithm 32 32

Dilithium Lattice-based (MLWE/MSIS) 1,184 2,044
Falcon Lattice-based (NTRU) 897 690
XMSS Hash-based 32 979
Rainbow Multi-variate 60,192 66

44

KEM Public key (bytes) Ciphertext (bytes)

RSA-2048 Factoring 272 256

Elliptic curves Elliptic curve discrete logarithm 32 32

Kyber Lattice-based (MLWE) 800 768
NTRU Lattice-based (NTRU) 699 699
Saber Lattice-based (MLWR) 672 736
SIKE Isogeny-based 330 330
SIKE compressed Isogeny-based 197 197
Classic McEliece Code-based 261,120 128



Implicitly authenticated KEX is not new

45

•DH-based: SKEME, 
MQV, HMQV, …

•KEM-based: 
BCGP09, FSXY12, …

• RSA key transport in 
TLS ≤ 1.2

• Lacks forward secrecy
• Signal, Noise, Wireguard

• DH-based
• Different protocol flows

• OPTLS
• DH-based
• Requires a non-interactive key 

exchange (NIKE)

In theory In practice



KEMTLS
handshake

KEM for 
ephemeral key exchange

KEM for 
server-to-client

authenticated key exchange

Combine shared secrets

46



Algorithm choices

47

KEM for ephemeral 
key exchange

KEM for authenticated 
key exchange

Signature scheme for 
intermediate CA

Signature scheme for 
root CA



Algorithm choices

48

KEM for ephemeral 
key exchange

• IND-CCA (or IND-1CCA)
• Want small public key 

+ small ciphertext

KEM for authenticated 
key exchange

• IND-CCA
• Want small public key 

+ small ciphertext

Signature scheme for 
intermediate CA

• Want small public key 
+ small signature

Signature scheme for 
root CA

• Want small signature



4 scenarios

49

1. Minimize size when intermediate certificate 
transmitted

2. Minimize size when intermediate certificate 
not transmitted (cached)

3. Use solely NTRU assumptions
4. Use solely module LWE/SIS assumptions



Signed KEX 
versus

KEMTLS
Labels ABCD:
A = ephemeral KEM
B = leaf certificate
C = intermediate CA
D = root CA
Algorithms: (all level 1)
Dilithium, 
eCDH X25519, 
Falcon, 
Kyber, 
NTRU, 
Rainbow,
rSA-2048, 
SIKE, 
XMSS’

50Rustls client/server with some AVX2 implementations. Emulated network: latency 31.1 ms, bandwidth 1000 Mbps, 0% packet loss. Average of 100000 iterations.



Signed KEX 
versus

KEMTLS
Labels ABCD:
A = ephemeral KEM
B = leaf certificate
C = intermediate CA
D = root CA
Algorithms: (all level 1)
Dilithium, 
eCDH X25519, 
Falcon, 
Kyber, 
NTRU, 
Rainbow,
rSA-2048, 
SIKE, 
XMSS’

51Rustls client/server with some AVX2 implementations. Emulated network: latency 31.1 ms, bandwidth 1000 Mbps, 0% packet loss. Average of 100000 iterations.



KEMTLS benefits
• Size-optimized KEMTLS requires < ½ communication of size-

optimized PQ signed-KEM
• Speed-optimized KEMTLS uses 90% fewer server CPU cycles 

and still reduces communication
• NTRU KEX (27 μs) 10x faster than Falcon signing (254 μs)

• No extra round trips required until client starts sending 
application data

• Smaller trusted code base (no signature generation on 
client/server)



Security analyses of KEMTLS

53

• In the original paper
•Proves session key 
security and 
authentication in the 
multi-stage key exchange 
model

•Using provable security 
paradigm

Two new works underway using Tamarin 
prover (a symbol model checker)
1. Tamarin analog of the multi-stage key 

exchange model from the paper
• https://github.com/dstebila/KEMTLS-

Tamarin/

2. Modification of full-scale TLS 1.3 
Tamarin model to use KEMTLS
• https://github.com/thomwiggers/TLS13Tam

arin

Pen-and-paper Formal verification

https://github.com/dstebila/KEMTLS-Tamarin/
https://github.com/thomwiggers/TLS13Tamarin


Security

54

Security model: multi-
stage key exchange, 
extending [DFGS21]
•Key indistinguishability
•Forward secrecy
•Implicit and explicit 
authentication

Ingredients in security 
proof:
• IND-CCA for long-term 
KEM

• IND-1CCA for ephemeral 
KEM

• Collision-resistant hash 
function

• Dual-PRF security of HKDF
• EUF-CMA of HMAC

[DFGS21] Dowling, Fischlin, Günther, Stebila. Journal of Cryptology, 2021. https://eprint.iacr.org/2020/1044

https://eprint.iacr.org/2020/1044


Security subtleties: authentication

55

•Client’s first application 
flow can’t be read by 
anyone other than 
intended server, but 
client doesn’t know 
server is live at the time 
of sending

•Explicit authentication 
once key confirmation 
message transmitted

•Retroactive explicit 
authentication of earlier 
keys 

[DGK06] Di Raimondo, Gennaro, Krawczyk. ACM CCS 2006. https://eprint.iacr.org/2006/280

Implicit authentication Explicit authentication

https://eprint.iacr.org/2006/280


Security subtleties: downgrade resilience

56

• Choice of cryptographic 
algorithms not 
authenticated at the time 
the client sends its first 
application flow

• MITM can’t trick client into 
using undesirable 
algorithm

• But MITM can trick them 
into temporarily using 
suboptimal algorithm

•Formally model 3 levels 
of downgrade-resilience:
1. Full downgrade 

resilience
2. No downgrade 

resilience to 
unsupported algorithms

3. No downgrade 
resilience



Security subtleties: forward secrecy

57

Does compromise of a 
party’s long-term key 
allow decryption of past 
sessions?

• Weak forward secrecy 1: 
adversary passive in the test 
stage

• Weak forward secrecy 2: 
adversary passive in the test 
stage or never corrupted 
peer’s long-term key

• Forward secrecy: adversary 
passive in the test stage or 
didn’t corrupt peer’s long-term 
key before acceptance



Variant: KEMTLS with client authentication

58

1. Client has a long-term KEM public key
2. Client transmits it encrypted under key derived 

from 
a) server long-term KEM key exchange
b) ephemeral KEM key exchange

•Preserves client confidentiality
•Adds extra round trip



Variant: Pre-distributed public keys

59

What if server public 
keys are pre-
distributed?

• Cached in a browser
• Pinned in mobile apps
• Embedded in IoT 
devices

• Out-of-band (e.g., DNS)
• TLS 1.3: RFC 7924

Different from TLS 1.3 
pre-shared symmetric 
key mode

• PSK is a harder(?) key 
management problem

• Different compromise 
model



Variant: Pre-distributed public keys

60

• Alternate KEMTLS protocol flow 
when server certificates are 
known in advance

• Resumption-style mechanism 
that avoids the downsides of 
symmetric-key TLS PSK

• Given server’s long-term key, 
client can send ciphertext in 
ClientHello

• Also allow to send client 
certificate in ClientHello

Get a 1-RTT, 
TLS 1.3-shape 
handshake with

implicit authentication



KEMTLS-PDK
handshake

server-only auth.

KEM for 
ephemeral key exchange

KEM for 
server-to-client

authenticated key exchange

Combine shared secrets

61



KEMTLS-PDK
handshake

mutual auth

KEM for 
ephemeral key exchange

KEM for 
server-to-client authenticated key exchange

KEM for 
client-to-server authenticated key exchange

Combine shared secrets

62



Benefits from pre-distributed key variant

63

•Additional bandwidth savings
•Makes some PQ algorithms viable

• Large public keys, small ciphertexts/signatures: 
Classic McEliece and Rainbow

•Client authentication 1 round-trip earlier if 
proactive

•Explicit server authentication 1 round-trip earlier 
• => better downgrade resilience



Other security properties
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• Client certificate encrypted
• Server certificate encrypted
• Server identity not 
protected

• Due to Server Name 
Indication extension

• May be able to combine 
KEMTLS-PDK with 
Encrypted ClientHello?

• KEMTLS and KEMTLS-PDK 
don’t use signatures for 
authentication

• Yields offline deniability
• Judge cannot distinguish 

honest transcript from forgery
• Does not yield online 

deniability
• When one party doesn’t follow 

protocol or colludes with jduge

Anonymity Deniability



TLS ecosystem is complex – lots to consider!
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•Datagram TLS
•Use of TLS handshake in other protocols 

• e.g. QUIC
•Application-specific behaviour
•PKI involving KEM public keys
•Long tail of implementations
•Middle-box behaviour
•…



X.509 certificates for KEM public keys:
Proof of possession
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How does requester prove possession of corresponding 
secret keys?

• Interactive challenge-response protocol: RFC 4210 Sect. 5.2.8.3
• Send certificate back encrypted under subject public key RFC 4210 

Sect. 5.2.8.2
• Weird confidentiality requirement on certificate. Maybe broken by Certificate 

Transparency?
• Non-interactive certificate signing requests: Not a signature scheme!

• Research in progress: Can build a not-too-inefficient Picnic-like signature 
scheme from the KEM operation

• Kyber proof of possession: 227 KB, < 1 sec proof generation and verifcation



Transitioning the TLS protocol to post-quantum cryptography
Douglas Stebila

Prototypes
Open Quantum Safe project
https://eprint.iacr.org/2019/1447 • https://openquantumsafe.org • 
https://github.com/open-quantum-safe/

Hybrid key exchange
in TLS 1.3
Working towards standardization
https://datatracker.ietf.org/doc/html/draft-ietf-tls-hybrid-design-03

Alternative protocol design: 
KEMTLS
Implicitly authenticated TLS without 
handshake signatures using KEMs
• Saves bytes on the wire, server cycles
• Variants for client authentication and pre-

distributed public keys
• Lots of work to make viable in TLS 

ecosystem, including certificates
https://eprint.iacr.org/2020/534 • https://eprint.iacr.org/2021/779
https://datatracker.ietf.org/doc/html/draft-celi-wiggers-tls-authkem-00
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https://www.douglas.stebila.ca/research/presentations/

https://eprint.iacr.org/2019/1447
https://openquantumsafe.org/
https://github.com/open-quantum-safe/
https://datatracker.ietf.org/doc/html/draft-ietf-tls-hybrid-design-03
https://eprint.iacr.org/2020/534
https://eprint.iacr.org/2021/779
https://datatracker.ietf.org/doc/html/draft-celi-wiggers-tls-authkem-00
https://www.douglas.stebila.ca/research/presentations/
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When will a large-scale 
quantum computer be 
built?
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“I estimate a 1/7 
chance of breaking 
RSA-2048 by 2026 

and a 1/2 chance by 
2031.”

— Michele Mosca, 
University of Waterloo

https://eprint.iacr.org/2015/1075
http://qurope.eu/system/files/u7/93056_Quantum%20Manifesto_WEB.pdf
https://globalriskinstitute.org/publications/quantum-threat-timeline/

https://eprint.iacr.org/2015/1075
http://qurope.eu/system/files/u7/93056_Quantum%20Manifesto_WEB.pdf
https://globalriskinstitute.org/publications/quantum-threat-timeline/


Appendix: KEMTLS
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KEMTLS



KEMTLS
with client 

authentication



TLS 1.3 and KEMTLS size of public key objects
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TLS 1.3 and KEMTLS crypto & handshake time
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KEMTLS-PDK overview
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KEMTLS-PDK
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KEMTLS-PDK
with proactive 

client 
authentication
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Communication 
sizes

KEMTLS

TLS 1.3 w/cached 
server certs

KEMTLS-PDK
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Handshake times, unilateral authentication
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Handshake times, mutual authentication
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https://openquantumsafe.org https://github.com/open-quantum-safe



liboqs
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•C library with common 
API for post-quantum 
signature schemes and 
key encapsulation 
mechanisms

•MIT License
•Builds on Windows, 
macOS, Linux; x86_64, 
ARM v8

•Version 0.7.1 to be 
released in December 
2021

•Includes all Round 3 
finalists and alternate 
candidates
• (except GeMSS)

https://openquantumsafe.org/liboqs/

https://openquantumsafe.org/liboqs/


TLS 1.3 implementations
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OQS-OpenSSL 
1.1.1

OQS-OpenSSL 3 
provider

OQS-BoringSSL

PQ key exchange in TLS 1.3 Yes Yes Yes

Hybrid key exchange in TLS 1.3 Yes Coming soon Yes

PQ certificates and signature authentication in TLS 
1.3

Yes No Yes

Hybrid certificates and signature authentication in TLS 
1.3

Yes No No

https://openquantumsafe.org/applications/tls/

Using draft-ietf-tls-hybrid-design for hybrid key exchange

Interoperability test server running at https://test.openquantumsafe.org

https://openquantumsafe.org/applications/tls/
https://test.openquantumsafe.org/


Applications
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•Demonstrator 
application integrations 
into:
• Apache
• nginx
• haproxy
• curl
• Chromium
• Wireshark

• In most cases required 
few/no modifications to 
work with updated 
OpenSSL

•Runnable Docker images 
available for download

https://openquantumsafe.org/applications/tls/#demo-integrations

https://openquantumsafe.org/applications/tls/


Benchmarking
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•Benchmarking portal at 
https://openquantumsafe.org/benchmarking/

•Core algorithm speed and memory usage
•TLS performance in ideal network conditions
•Intel AVX2 and ARM 64

https://openquantumsafe.org/benchmarking/

