
Post-quantum TLS
Douglas Stebila

Indian Workshop on Post-Quantum Cryptography • 2020-11-17https://www.douglas.stebila.ca/research/presentations/

https://www.douglas.stebila.ca/research/presentations/

2

Post-quantum crypto @ University of Waterloo

3

• UW involved in 4 NIST Round 3 submissions:
• Finalists: CRYSTALS-Kyber, NTRU
• Alternates: FrodoKEM, SIKE

• Isogeny-based crypto led by David Jao
• Quantum cryptanalysis led by Michele Mosca
• Post-quantum protocols and implementations (Open
Quantum Safe project) led by Douglas Stebila

• + quantum key distribution, quantum computing, privacy
and security, …

TLS 1.3
handshake

Signed Diffie–Hellman

4

TLS 1.3
handshake

Signed Diffie–Hellman
Post-Quantum!!!

5

Outline

Hybrid

Prototyping with OQS

Benchmarking

New protocol designs
(KEMTLS)

6

Hybrid cryptography
“Dual algorithm”
Combining traditional and post-quantum algorithms

7

Security goals for hybridization

8

•PQ security for early adopters without sacrificing
current security

•“Robust” security:
• Final session key should be secure as long as at
least one of the ingredient keys is unbroken

•Most obvious techniques are fine, though with
some subtleties [GHP18], [BBFGS19]

[GHP18] Giacon, Heuer, Poettering. PKC 2018. https://eprint.iacr.org/2018/024
[BBFGS19] Bindel, Brendel, Fischlin, Goncalves, Stebila. PQCrypto 2019. https://eprint.iacr.org/2018/903

https://eprint.iacr.org/2018/024
https://eprint.iacr.org/2018/903

Functionality goals for hybridization

9

•Backwards compatibility
• Hybrid-aware client, hybrid-aware server
• Hybrid-aware client, non-hybrid-aware server
• Non-hybrid-aware client, hybrid-aware server

•Low computational overhead
•Low latency
•No extra round trips
•No duplicate information

Design options

10

1. How to negotiate
algorithms

2. How to convey
cryptographic data
(public keys /
ciphertexts)

3. How to combine keying
material

• How combine keying
material

• XOR keys
• Concatenate keys and use

directly
• Concatenate keys then

apply a hash function / KDF
• Extend the protocol’s

“key schedule” with
new stages for each key

• Insert the 2nd key into an
unused spot in the protocol’s
key schedule

[SFG19] Stebila, Fluhrer, Gueron. https://tools.ietf.org/html/draft-stebila-tls-hybrid-design-03

https://tools.ietf.org/html/draft-stebila-tls-hybrid-design-03

Draft standards

11

•NIST SP 800-56C
• “Recommendation for Key-Derivation Methods in Key
Establishment Schemes” – includes various
combiners

•Hybrid key exchange in TLS [SFG20]
•Hybrid key exchange in SSH [KSFHS20]
•ETSI
[NIST] https://csrc.nist.gov/publications/detail/sp/800-56c/rev-2/final
[SFG20] Stebila, Fluhrer, Gueron. https://tools.ietf.org/html/draft-ietf-tls-hybrid-design-01
[KSFHS20] Kampanakis, Stebila, Friedl, Hansen, Sikeridis. https://tools.ietf.org/html/draft-kampanakis-curdle-pq-ssh-00

https://csrc.nist.gov/publications/detail/sp/800-56c/rev-2/final
https://tools.ietf.org/html/draft-ietf-tls-hybrid-design-01
https://tools.ietf.org/html/draft-kampanakis-curdle-pq-ssh-00

Protocol constraints

12

• TLS 1.2
• Message size limit: 224 bytes
• Fragment size limit: 214 bytes
• OpenSSL key exchange message buffer: 20,480 bytes

• FrodoKEM level 5: 21,600 bytes public key / ciphertext
• Classic McEliece level 1: 261,120 bytes public key

• TLS 1.3
• Key exchange message size limit: 216 bytes (OpenSSL: 20,000

bytes)
• Certificate size limit: 224 bytes (OpenSSL 216.6 bytes)
• Signature size limit: 216 bytes (OpenSSL 214 bytes)

• Picnic1 level 1: 34,000 bytes signature (but Picnic 3 is small enough)
• Rainbow: 58KB-1.7MB public keys

[CPS19] Crockett, Paquin, Stebila. NIST 2nd PQC Standardization Conference 2019. https://eprint.iacr.org/2019/858

Implementation
patch to fix

N
ee

d
pr

ot
oc

ol
 c

ha
ng

es
 to

 fi
x

https://eprint.iacr.org/2019/858

https://openquantumsafe.org https://github.com/open-quantum-safe

Open Quantum Safe Project

https://openquantumsafe.org/ • https://github.com/open-quantum-safe/

liboqs

key exchange / KEMs signatures

isogenies code-based lattice-
based

multi-variate
polynomial

hash-based
/ symmetric

OpenSSL
S/MIME, TLS 1.3, X.509 BoringSSL

Open
SSH

Language
SDKs

C#, C++, Go,
Java, Python,

Rust

Apache
httpd nginx curl,

links
Open
VPN

C language library,
common API
• x86/x64 (Linux,

Mac, Windows)
• ARM (Android,

Linux)

Integration into forks
of widely used open-
source projects

Use in applications Chromium

Industry partners:
• Amazon Web

Services
• evolutionQ
• IBM Research
• Microsoft Research

Additional contributors:
• Cisco
• Senetas
• PQClean project
• Individuals

Financial support:
• AWS
• Canadian Centre

for Cyber Security
• NSERC

https://openquantumsafe.org/
https://github.com/open-quantum-safe/

Benchmarking post-quantum crypto
in TLS
Christian Paquin, Douglas Stebila, Goutam Tamvada.
PQCrypto 2020.
https://eprint.iacr.org/2019/1447

15

https://eprint.iacr.org/2019/1447

Goal

16

•Measure effect of network latency and packet
loss rate on handshake completion time for post-
quantum connections of various sizes

•Out of scope:
• Effect of different CPU speeds from client or server
• Effect of different post-quantum algorithms on server
throughput

Related work

17

• [BCNS15] and [BCD+16] measured the impact of
their post-quantum key-exchange schemes on the
performance of an Apache server running TLS 1.2

•[KS19] and [SKD20] measured the impact of post-
quantum signatures in TLS 1.3 on handshake time
(with various server distances), and handshake
failure rate and throughput for a heavily loaded
server

[BCNS15] Bos, Costello, Naehrig, Stebila. IEEE S&P 2015. https://eprint.iacr.org/2014/599
[BCD+16] Bos, Costello, Ducas, Mironov, Naehrig, Nikolaenko, Raghunathan, Stebila. ACM CCS 2016. https://eprint.iacr.org/2016/659
[KS19] Kampanakis, Sikeriis. https://eprint.iacr.org/2019/1276
[SKD20] Sikeridis, Kampanaokis, Devetsikiotis. NDSS 2020. https://eprint.iacr.org/2020/071

https://eprint.iacr.org/2014/599
https://eprint.iacr.org/2016/659
https://eprint.iacr.org/2019/1276
https://eprint.iacr.org/2020/071

Related work: Internet-wide experiments

18

Langley, 2016. https://www.imperialviolet.org/2016/11/28/cecpq1.html
Langley, 2018. https://www.imperialviolet.org/2018/12/12/cecpq2.html
Sullivan, Kwiatkowski, Langley, Levin, Mislove, Valenta. NIST 2nd PQC Standardization Conference 2019. https://csrc.nist.gov/Presentations/2019/measuring-
tls-key-exchange-with-post-quantum-kem

2016
Google, with
NewHope in
TLS 1.2

Google,
with “dummy
extensions”

2018 2019
Google and
Cloudflare,

with SIKE and
NTRU-HRSS

in TLS 1.3

https://www.imperialviolet.org/2016/11/28/cecpq1.html
https://www.imperialviolet.org/2018/12/12/cecpq2.html
https://csrc.nist.gov/Presentations/2019/measuring-tls-key-exchange-with-post-quantum-kem

What if you
don’t have

billions of clients
and

millions of
servers?

(Inspired by NetMirage and Mininet)
Emulate the network!

+ more control over
experiment parameters

+ easier to isolate
effects of network

characteristics

– loss in realism
19

Network emulation in Linux

20

•Kernel can create network namespaces:
Independent copies of the kernel’s network stack

•Virtual ethernet devices can be created to
connect the two namespaces

•netem (network emulation) kernel module
• Can instruct kernel to apply a specified delay to
packets

• Can instruct kernel to drop packets with a specified
probability

Network emulation experiment

21

• Client namespace: s_timer (Modified version of OpenSSL
s_time)

• Closes the connection on handshake completion, and records
only the time taken to complete the handshake. i.e. No
application data is exchanged

• Built against OQS-OpenSSL 1.1.1 (OpenSSL fork which adds
post-quantum+classical key exchange and authentication to TLS
1.3)

• Server namespace: nginx, built against OQS-OpenSSL
1.1.1

Code available at https://github.com/xvzcf/pq-tls-benchmark

https://github.com/xvzcf/pq-tls-benchmark

Network emulation experiment (contd.)

22Icons from https://ionicons.com/

s_timer

nginx

s_timer

s_timer

s_timer

nginx

Experiment round-trip times

23

Packet loss
rates

24https://telemetry.mozilla.org

https://telemetry.mozilla.org/

Algorithms evaluated

25Experiments were run on an Ubuntu 18.04 Azure D64s v3 VM, with 64 vCPUs (2.60 GHz Intel Xeon Platinum 8171M) and 256 GiB of RAM

26

Key
exchange
in TLS 1.3
median

ha
nd

sh
ak

e
co

m
pl

et
io

n
tim

e
(m

s)

packet loss rate %

27

Key
exchange
in TLS 1.3
median

ha
nd

sh
ak

e
co

m
pl

et
io

n
tim

e
(m

s)

packet loss rate %

28

Key
exchange
in TLS 1.3
median

ha
nd

sh
ak

e
co

m
pl

et
io

n
tim

e
(m

s)

packet loss rate %

29

Key
exchange
in TLS 1.3
median

ha
nd

sh
ak

e
co

m
pl

et
io

n
tim

e
(m

s)

packet loss rate %

30

Key
exchange
in TLS 1.3
median

ha
nd

sh
ak

e
co

m
pl

et
io

n
tim

e
(m

s)

packet loss rate %

31

Key
exchange
in TLS 1.3
95th percentile

ha
nd

sh
ak

e
co

m
pl

et
io

n
tim

e
(m

s)

packet loss rate %

32

Authentication
in TLS 1.3
median and 95th

percentiles,
lower network
latencies

ha
nd

sh
ak

e
co

m
pl

et
io

n
tim

e
(m

s)

packet loss rate %

Conclusions

18

• On fast, reliable network links, the cost of public key
cryptography dominates the median TLS establishment time, but
does not substantially affect the 95th percentile establishment
time

• On unreliable network links (packet loss rates >= 3%),
communication sizes come to govern handshake completion
time

• As application data sizes grow, the relative cost of TLS
handshake establishment diminishes compared to application
data transmission

Future work

19

•Update the results for Round 3

•Automated benchmarking framework

•Extend the emulation results to bigger networks that
aim to emulate multiple network conditions
simultaneously using NetMirage or Mininet

• Investigate protocols such as SSH, IPsec, and
Wireguard with our emulation framework

Post-quantum TLS
without handshake signatures
Peter Schwabe, Douglas Stebila, Thom Wiggers.
ACM CCS 2020.
https://eprint.iacr.org/2020/534

35

https://eprint.iacr.org/2020/534

TLS 1.3
handshake

Signed Diffie–Hellman
Post-Quantum!!!

36

Problem
post-quantum

signatures
are big

37

Solution
use

post-quantum KEMs
for authentication

38

Implicitly authenticated KEX is not new

39

• DH-based: SKEME, MQV,
HMQV, …

• KEM-based: BCGP09,
FSXY12

• RSA key transport in TLS ≤
1.2

• Lacks forward secrecy
• Signal, Noise, Wireguard

• DH-based
• Different protocol flows

• OPTLS
• DH-based
• Requires a non-interactive

key exchange (NIKE)

In theory In practice

“KEMTLS”
handshake

KEM for
ephemeral key exchange

KEM for
server-to-client

authenticated key exchange

Combine shared secrets

40

Algorithm choices

41

KEM for ephemeral
key exchange

• IND-CCA (or IND-1CCA)
• Want small public key

+ small ciphertext

KEM for authenticated
key exchange

• IND-CCA
• Want small public key

+ small ciphertext

Signature scheme for
intermediate CA

• Want small public key
+ small signature

Signature scheme for
root CA

• Want small signature

4 scenarios

42

1. Minimize size when intermediate certificate
transmitted

2. Minimize size when intermediate certificate
not transmitted (cached)

3. Use solely NTRU assumptions
4. Use solely module LWE/SIS assumptions

Signed KEX
versus

KEMTLS
Labels ABCD:
A = ephemeral KEM
B = leaf certificate
C = intermediate CA
D = root CA
Algorithms: (all level 1)
Dilithium,
ECDH X25519,
Falcon,
GeMSS,
Kyber,
NTRU,
RSA-2048,
SIKE,
XMSS’

43Rustls client/server with AVX2 implementations. Emulated network: latency 31.1 ms, bandwidth 1000 Mbps, 0% packet loss. Average of 100000 iterations.

Signed KEX
versus

KEMTLS
Labels ABCD:
A = ephemeral KEM
B = leaf certificate
C = intermediate CA
D = root CA
Algorithms: (all level 1)
Dilithium,
ECDH X25519,
Falcon,
GeMSS,
Kyber,
NTRU,
RSA-2048,
SIKE,
XMSS’

44Rustls client/server with AVX2 implementations. Emulated network: latency 31.1 ms, bandwidth 1000 Mbps, 0% packet loss. Average of 100000 iterations.

Observations
• Size-optimized KEMTLS requires < ½ communication of size-

optimized PQ signed-KEM
• Speed-optimized KEMTLS uses 90% fewer server CPU cycles

and still reduces communication
• NTRU KEX (27 μs) 10x faster than Falcon signing (254 μs)

• No extra round trips required until client starts sending
application data

• Smaller trusted code base (no signature generation on
client/server)

Security

46

Security model: multi-stage
key exchange, extending
[DFGS21]
• Key indistinguishability
• Forward secrecy
• Implicit and explicit
authentication

Ingredients in security proof:
• IND-CCA for long-term
KEM

• IND-1CCA for ephemeral
KEM

• Collision-resistant hash
function

• Dual-PRF security of HKDF
• EUF-CMA of HMAC

[DFGS21] Dowling, Fischlin, Günther, Stebila. Journal of Cryptology, 2021. https://eprint.iacr.org/2020/1044

https://eprint.iacr.org/2020/1044

Security subtleties: authentication

47

• Client’s first application flow
can’t be read by anyone other
than intended server, but
client doesn’t know server is
live at the time of sending

• Also provides a form of
deniable authentication since
no signatures are used

• Formally: offline deniability
[DGK06]

• Explicit authentication
once key confirmation
message transmitted

•Retroactive explicit
authentication of earlier
keys

[DGK06] Di Raimondo, Gennaro, Krawczyk. ACM CCS 2006. https://eprint.iacr.org/2006/280

Implicit authentication Explicit authentication

https://eprint.iacr.org/2006/280

Security subtleties: downgrade resilience

48

• Choice of cryptographic
algorithms not
authenticated at the time
the client sends its first
application flow

• MITM can’t trick client into
using undesirable
algorithm

• But MITM can trick them
into temporarily using
suboptimal algorithm

• Formally model 3 levels of
downgrade-resilience:

1. Full downgrade resilience
2. No downgrade resilience

to unsupported
algorithms

3. No downgrade resilience

Security subtleties: forward secrecy

49

• Weak forward secrecy 1:
adversary passive in the test
stage

• Weak forward secrecy 2:
adversary passive in the test
stage or never corrupted
peer’s long-term key

• Forward secrecy:
adversary passive in the test
stage or didn’t corrupt peer’s
long-term key before
acceptance

• Can make detailed
forward secrecy
statements, such as:

• Stage 1 and 2 keys are
wfs1 when accepted,
retroactive fs once stage 6
accepts

My most applied, ready for adoption
idea ever!!!!!!

Reviewer 2:
“What about 0-RTT?

What about QUIC and
TCP FastOpen?

What about encrypted
SNI?”

51Reviewer 2 does not like puppies. Don’t be like Reviewer 2. http://relationsinternational.com/dont-be-reviewer-2/

Chris Wood:
Cloudflare

Co-chair of TLS working group

“Server can’t send
application data in its
first TLS flow. Will that
break HTTP/3 where
the server sends a
SETTINGS frame?”

52

Mike Ounsworth:
EntrustDataCard

“How do you do
certificate lifecycle
management with
KEM public keys?”

53

Certificate lifecycle management for KEM
public keys

54

Proof of possession: How does requester prove possession of
corresponding secret keys?

• Not really addressed in practice, since RSA and DL/ECDL keys can
be used for both signing and encryption/KEX

• Can’t sign like in a Certificate Signing Request (CSR)
• Could do interactive challenge-response protocol (or just run

KEMTLS), but need online verification (RFC 4210 Sect. 5.2.8.3)
• Send cert to requestor encrypted under key in the certificate (RFC

4210 Sect. 5.2.8.2) – but maybe broken by Certificate Transparency?
• Zero-knowledge proof of knowledge?

Certificate lifecycle management for KEM
public keys

55

Revocation: How can certificate owner authorize a
revocation request?

• Put a (hash of a) signature public key in the cert which can
be used to revoke the cert?

• Possibly could simplify to just revealing a hash preimage

Conclusions on KEMTLS

56

• Summary of protocol design: implicit authentication via
KEMs

• Saves bytes on the wire and server CPU cycles
• Preserves client request after 1-RTT
• Caching intermediate CA certs brings even greater benefits

• Protocol design is simple to implement, provably secure
• Also have a variant supporting client authentication
• Working with Cloudflare to test within their infrastructure

Post-quantum TLS
Douglas Stebila

https://www.douglas.stebila.ca/research/presentations/

Hybrid PQ + traditional
• Design and security

• https://tools.ietf.org/html/draft-ietf-tls-hybrid-design-01
• https://eprint.iacr.org/2019/858
• https://eprint.iacr.org/2018/903

• Standardization
• https://tools.ietf.org/html/draft-ietf-tls-hybrid-design-01
• https://tools.ietf.org/html/draft-kampanakis-curdle-pq-ssh-00

Prototyping
• Open Quantum Safe project

• https://openquantumsafe.org
• https://github.com/open-quantum-safe/

Benchmarking
• https://eprint.iacr.org/2019/1447
• https://github.com/xvzcf/pq-tls-benchmark
• https://github.com/open-quantum-safe/speed

New protocol design
• Implicit authentication using

KEMs
• https://eprint.iacr.org/2020/534
• https://github.com/thomwiggers/kemtls-experiment/

57

https://www.douglas.stebila.ca/research/presentations/
https://tools.ietf.org/html/draft-ietf-tls-hybrid-design-01
https://eprint.iacr.org/2019/858
https://eprint.iacr.org/2018/903
https://tools.ietf.org/html/draft-ietf-tls-hybrid-design-01
https://tools.ietf.org/html/draft-kampanakis-curdle-pq-ssh-00
https://openquantumsafe.org/
https://github.com/open-quantum-safe/
https://eprint.iacr.org/2019/1447
https://github.com/xvzcf/pq-tls-benchmark
https://github.com/open-quantum-safe/speed
https://eprint.iacr.org/2020/534
https://github.com/thomwiggers/kemtls-experiment/

Appendix

KEMTLS data

58

59https://eprint.iacr.org/2020/534

https://eprint.iacr.org/2020/534

60https://eprint.iacr.org/2020/534

https://eprint.iacr.org/2020/534

