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Post-quantum crypto @ University of Waterloo
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• UW involved in 4 NIST Round 3 submissions:
• Finalists: CRYSTALS-Kyber, NTRU
• Alternates: FrodoKEM, SIKE

• Isogeny-based crypto led by David Jao
• Quantum cryptanalysis led by Michele Mosca
• Post-quantum protocols and implementations (Open 
Quantum Safe project) led by Douglas Stebila

• + quantum key distribution, quantum computing, privacy 
and security, …



TLS 1.3
handshake

Signed Diffie–Hellman
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TLS 1.3
handshake

Signed Diffie–Hellman
Post-Quantum!!!
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Outline

Hybrid

Prototyping with OQS

Benchmarking

New protocol designs 
(KEMTLS)
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Hybrid cryptography
“Dual algorithm”
Combining traditional and post-quantum algorithms
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Security goals for hybridization
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•PQ security for early adopters without sacrificing 
current security

•“Robust” security:
• Final session key should be secure as long as at 
least one of the ingredient keys is unbroken  

•Most obvious techniques are fine, though with 
some subtleties [GHP18], [BBFGS19]

[GHP18] Giacon, Heuer, Poettering. PKC 2018. https://eprint.iacr.org/2018/024
[BBFGS19] Bindel, Brendel, Fischlin, Goncalves, Stebila. PQCrypto 2019. https://eprint.iacr.org/2018/903

https://eprint.iacr.org/2018/024
https://eprint.iacr.org/2018/903


Functionality goals for hybridization 
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•Backwards compatibility
• Hybrid-aware client, hybrid-aware server
• Hybrid-aware client, non-hybrid-aware server
• Non-hybrid-aware client, hybrid-aware server

•Low computational overhead
•Low latency
•No extra round trips
•No duplicate information



Design options
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1. How to negotiate 
algorithms

2. How to convey 
cryptographic data 
(public keys / 
ciphertexts)

3. How to combine keying 
material

• How combine keying 
material

• XOR keys
• Concatenate keys and use 

directly
• Concatenate keys then 

apply a hash function / KDF
• Extend the protocol’s 

“key schedule” with 
new stages for each key

• Insert the 2nd key into an 
unused spot in the protocol’s 
key schedule

[SFG19] Stebila, Fluhrer, Gueron. https://tools.ietf.org/html/draft-stebila-tls-hybrid-design-03

https://tools.ietf.org/html/draft-stebila-tls-hybrid-design-03


Draft standards
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•NIST SP 800-56C
• “Recommendation for Key-Derivation Methods in Key 
Establishment Schemes” – includes various 
combiners

•Hybrid key exchange in TLS [SFG20]
•Hybrid key exchange in SSH [KSFHS20]
•ETSI
[NIST] https://csrc.nist.gov/publications/detail/sp/800-56c/rev-2/final
[SFG20] Stebila, Fluhrer, Gueron. https://tools.ietf.org/html/draft-ietf-tls-hybrid-design-01
[KSFHS20] Kampanakis, Stebila, Friedl, Hansen, Sikeridis. https://tools.ietf.org/html/draft-kampanakis-curdle-pq-ssh-00

https://csrc.nist.gov/publications/detail/sp/800-56c/rev-2/final
https://tools.ietf.org/html/draft-ietf-tls-hybrid-design-01
https://tools.ietf.org/html/draft-kampanakis-curdle-pq-ssh-00


Protocol constraints
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• TLS 1.2
• Message size limit: 224 bytes
• Fragment size limit: 214 bytes
• OpenSSL key exchange message buffer: 20,480 bytes

• FrodoKEM level 5: 21,600 bytes public key / ciphertext
• Classic McEliece level 1: 261,120 bytes public key

• TLS 1.3
• Key exchange message size limit: 216 bytes (OpenSSL: 20,000 

bytes)
• Certificate size limit: 224 bytes (OpenSSL 216.6 bytes)
• Signature size limit: 216 bytes (OpenSSL 214 bytes)

• Picnic1 level 1: 34,000 bytes signature (but Picnic 3 is small enough)
• Rainbow: 58KB-1.7MB public keys

[CPS19] Crockett, Paquin, Stebila. NIST 2nd PQC Standardization Conference 2019. https://eprint.iacr.org/2019/858

Implementation 
patch to fix

N
ee

d 
pr

ot
oc

ol
 c

ha
ng

es
 to

 fi
x

https://eprint.iacr.org/2019/858


https://openquantumsafe.org https://github.com/open-quantum-safe



Open Quantum Safe Project

https://openquantumsafe.org/ • https://github.com/open-quantum-safe/

liboqs

key exchange / KEMs signatures

isogenies code-based lattice-
based

multi-variate 
polynomial

hash-based 
/ symmetric

OpenSSL
S/MIME, TLS 1.3, X.509 BoringSSL

Open
SSH

Language 
SDKs

C#, C++, Go, 
Java, Python, 

Rust

Apache 
httpd nginx curl, 

links
Open
VPN

C language library, 
common API
• x86/x64 (Linux, 

Mac, Windows)
• ARM (Android, 

Linux)

Integration into forks 
of widely used open-
source projects

Use in applications Chromium

Industry partners:
• Amazon Web 

Services
• evolutionQ
• IBM Research
• Microsoft Research

Additional contributors:
• Cisco
• Senetas
• PQClean project
• Individuals

Financial support:
• AWS
• Canadian Centre 

for Cyber Security
• NSERC

https://openquantumsafe.org/
https://github.com/open-quantum-safe/


Benchmarking post-quantum crypto 
in TLS
Christian Paquin, Douglas Stebila, Goutam Tamvada. 
PQCrypto 2020.
https://eprint.iacr.org/2019/1447
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https://eprint.iacr.org/2019/1447


Goal
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•Measure effect of network latency and packet 
loss rate on handshake completion time for post-
quantum connections of various sizes

•Out of scope:
• Effect of different CPU speeds from client or server
• Effect of different post-quantum algorithms on server 
throughput



Related work
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• [BCNS15] and [BCD+16] measured the impact of 
their post-quantum key-exchange schemes on the 
performance of an Apache server running TLS 1.2

•[KS19] and [SKD20] measured the impact of post-
quantum signatures in TLS 1.3 on handshake time 
(with various server distances), and handshake 
failure rate and throughput for a heavily loaded 
server

[BCNS15] Bos, Costello, Naehrig, Stebila. IEEE S&P 2015. https://eprint.iacr.org/2014/599
[BCD+16] Bos, Costello, Ducas, Mironov, Naehrig, Nikolaenko, Raghunathan, Stebila. ACM CCS 2016. https://eprint.iacr.org/2016/659
[KS19] Kampanakis, Sikeriis. https://eprint.iacr.org/2019/1276
[SKD20] Sikeridis, Kampanaokis, Devetsikiotis. NDSS 2020. https://eprint.iacr.org/2020/071

https://eprint.iacr.org/2014/599
https://eprint.iacr.org/2016/659
https://eprint.iacr.org/2019/1276
https://eprint.iacr.org/2020/071


Related work: Internet-wide experiments
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Langley, 2016. https://www.imperialviolet.org/2016/11/28/cecpq1.html
Langley, 2018. https://www.imperialviolet.org/2018/12/12/cecpq2.html
Sullivan, Kwiatkowski, Langley, Levin, Mislove, Valenta. NIST 2nd PQC Standardization Conference 2019. https://csrc.nist.gov/Presentations/2019/measuring-
tls-key-exchange-with-post-quantum-kem

2016
Google, with 
NewHope in 
TLS 1.2

Google, 
with “dummy 
extensions”

2018 2019
Google and 
Cloudflare, 

with SIKE and 
NTRU-HRSS 

in TLS 1.3

https://www.imperialviolet.org/2016/11/28/cecpq1.html
https://www.imperialviolet.org/2018/12/12/cecpq2.html
https://csrc.nist.gov/Presentations/2019/measuring-tls-key-exchange-with-post-quantum-kem


What if you 
don’t have 

billions of clients 
and 

millions of 
servers?

(Inspired by NetMirage and Mininet)
Emulate the network!

+ more control over 
experiment parameters

+ easier to isolate 
effects of network 

characteristics

– loss in realism
19



Network emulation in Linux
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•Kernel can create network namespaces: 
Independent copies of the kernel’s network stack

•Virtual ethernet devices can be created to 
connect the two namespaces

•netem (network emulation) kernel module
• Can instruct kernel to apply a specified delay to 
packets 

• Can instruct kernel to drop packets with a specified 
probability



Network emulation experiment
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• Client namespace: s_timer (Modified version of OpenSSL 
s_time)

• Closes the connection on handshake completion, and records 
only the time taken to complete the handshake. i.e. No 
application data is exchanged

• Built against OQS-OpenSSL 1.1.1 (OpenSSL fork  which adds 
post-quantum+classical key exchange and authentication to TLS 
1.3)

• Server namespace: nginx, built against OQS-OpenSSL 
1.1.1

Code available at https://github.com/xvzcf/pq-tls-benchmark

https://github.com/xvzcf/pq-tls-benchmark


Network emulation experiment (contd.)

22Icons from https://ionicons.com/

s_timer

nginx

s_timer

s_timer

s_timer

nginx



Experiment round-trip times
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Packet loss 
rates

24https://telemetry.mozilla.org

https://telemetry.mozilla.org/


Algorithms evaluated

25Experiments were run on an Ubuntu 18.04 Azure D64s v3 VM, with 64 vCPUs (2.60 GHz Intel Xeon Platinum 8171M) and 256 GiB of RAM
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Authentication 
in TLS 1.3
median and 95th

percentiles, 
lower network 
latencies
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Conclusions
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• On fast, reliable network links, the cost of public key 
cryptography dominates the median TLS establishment time, but 
does not substantially affect the 95th percentile establishment 
time

• On unreliable network links (packet loss rates >= 3%), 
communication sizes come to govern handshake completion 
time

• As application data sizes grow, the relative cost of TLS 
handshake establishment diminishes compared to application 
data transmission



Future work
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•Update the results for Round 3

•Automated benchmarking framework

•Extend the emulation results to bigger networks that 
aim to emulate multiple network conditions 
simultaneously using NetMirage or Mininet

• Investigate protocols such as SSH, IPsec, and
Wireguard with our emulation framework



Post-quantum TLS 
without handshake signatures
Peter Schwabe, Douglas Stebila, Thom Wiggers. 
ACM CCS 2020.
https://eprint.iacr.org/2020/534
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https://eprint.iacr.org/2020/534


TLS 1.3
handshake

Signed Diffie–Hellman
Post-Quantum!!!
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Problem
post-quantum 

signatures
are big
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Solution
use 

post-quantum KEMs 
for authentication
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Implicitly authenticated KEX is not new

39

• DH-based: SKEME, MQV, 
HMQV, …

• KEM-based: BCGP09, 
FSXY12

• RSA key transport in TLS ≤ 
1.2

• Lacks forward secrecy
• Signal, Noise, Wireguard

• DH-based
• Different protocol flows

• OPTLS
• DH-based
• Requires a non-interactive 

key exchange (NIKE)

In theory In practice



“KEMTLS” 
handshake

KEM for 
ephemeral key exchange

KEM for 
server-to-client

authenticated key exchange

Combine shared secrets

40



Algorithm choices
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KEM for ephemeral 
key exchange

• IND-CCA (or IND-1CCA)
• Want small public key 

+ small ciphertext

KEM for authenticated 
key exchange

• IND-CCA
• Want small public key 

+ small ciphertext

Signature scheme for 
intermediate CA

• Want small public key 
+ small signature

Signature scheme for 
root CA

• Want small signature



4 scenarios
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1. Minimize size when intermediate certificate 
transmitted

2. Minimize size when intermediate certificate 
not transmitted (cached)

3. Use solely NTRU assumptions
4. Use solely module LWE/SIS assumptions



Signed KEX 
versus

KEMTLS
Labels ABCD:
A = ephemeral KEM
B = leaf certificate
C = intermediate CA
D = root CA
Algorithms: (all level 1)
Dilithium, 
ECDH X25519, 
Falcon, 
GeMSS, 
Kyber, 
NTRU, 
RSA-2048, 
SIKE, 
XMSS’

43Rustls client/server with AVX2 implementations. Emulated network: latency 31.1 ms, bandwidth 1000 Mbps, 0% packet loss. Average of 100000 iterations.
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Observations
• Size-optimized KEMTLS requires < ½ communication of size-

optimized PQ signed-KEM
• Speed-optimized KEMTLS uses 90% fewer server CPU cycles 

and still reduces communication
• NTRU KEX (27 μs) 10x faster than Falcon signing (254 μs)

• No extra round trips required until client starts sending 
application data

• Smaller trusted code base (no signature generation on 
client/server)



Security
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Security model: multi-stage 
key exchange, extending 
[DFGS21]
• Key indistinguishability
• Forward secrecy
• Implicit and explicit 
authentication

Ingredients in security proof:
• IND-CCA for long-term 
KEM

• IND-1CCA for ephemeral 
KEM

• Collision-resistant hash 
function

• Dual-PRF security of HKDF
• EUF-CMA of HMAC

[DFGS21] Dowling, Fischlin, Günther, Stebila. Journal of Cryptology, 2021. https://eprint.iacr.org/2020/1044

https://eprint.iacr.org/2020/1044


Security subtleties: authentication
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• Client’s first application flow 
can’t be read by anyone other 
than intended server, but 
client doesn’t know server is 
live at the time of sending

• Also provides a form of 
deniable authentication since 
no signatures are used

• Formally: offline deniability 
[DGK06]

• Explicit authentication 
once key confirmation 
message transmitted

•Retroactive explicit 
authentication of earlier 
keys 

[DGK06] Di Raimondo, Gennaro, Krawczyk. ACM CCS 2006. https://eprint.iacr.org/2006/280

Implicit authentication Explicit authentication

https://eprint.iacr.org/2006/280


Security subtleties: downgrade resilience

48

• Choice of cryptographic 
algorithms not 
authenticated at the time 
the client sends its first 
application flow

• MITM can’t trick client into 
using undesirable 
algorithm

• But MITM can trick them 
into temporarily using 
suboptimal algorithm

• Formally model 3 levels of 
downgrade-resilience:

1. Full downgrade resilience
2. No downgrade resilience 

to unsupported 
algorithms

3. No downgrade resilience



Security subtleties: forward secrecy
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• Weak forward secrecy 1: 
adversary passive in the test 
stage

• Weak forward secrecy 2: 
adversary passive in the test 
stage or never corrupted 
peer’s long-term key

• Forward secrecy: 
adversary passive in the test 
stage or didn’t corrupt peer’s 
long-term key before 
acceptance

• Can make detailed 
forward secrecy 
statements, such as:

• Stage 1 and 2 keys are 
wfs1 when accepted, 
retroactive fs once stage 6 
accepts



My most applied, ready for adoption 
idea ever!!!!!!



Reviewer 2:
“What about 0-RTT? 

What about QUIC and 
TCP FastOpen? 

What about encrypted 
SNI?”

51Reviewer 2 does not like puppies. Don’t be like Reviewer 2. http://relationsinternational.com/dont-be-reviewer-2/



Chris Wood:
Cloudflare

Co-chair of TLS working group

“Server can’t send 
application data in its 
first TLS flow. Will that 
break HTTP/3 where 
the server sends a 
SETTINGS frame?”

52



Mike Ounsworth:
EntrustDataCard

“How do you do 
certificate lifecycle 
management with 
KEM public keys?”

53



Certificate lifecycle management for KEM 
public keys

54

Proof of possession: How does requester prove possession of 
corresponding secret keys?

• Not really addressed in practice, since RSA and DL/ECDL keys can 
be used for both signing and encryption/KEX

• Can’t sign like in a Certificate Signing Request (CSR)
• Could do interactive challenge-response protocol (or just run 

KEMTLS), but need online verification (RFC 4210 Sect. 5.2.8.3)
• Send cert to requestor encrypted under key in the certificate (RFC 

4210 Sect. 5.2.8.2) – but maybe broken by Certificate Transparency?
• Zero-knowledge proof of knowledge?



Certificate lifecycle management for KEM 
public keys

55

Revocation: How can certificate owner authorize a 
revocation request?

• Put a (hash of a) signature public key in the cert which can 
be used to revoke the cert?

• Possibly could simplify to just revealing a hash preimage



Conclusions on KEMTLS
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• Summary of protocol design: implicit authentication via 
KEMs

• Saves bytes on the wire and server CPU cycles
• Preserves client request after 1-RTT
• Caching intermediate CA certs brings even greater benefits

• Protocol design is simple to implement, provably secure
• Also have a variant supporting client authentication
• Working with Cloudflare to test within their infrastructure



Post-quantum TLS
Douglas Stebila

https://www.douglas.stebila.ca/research/presentations/

Hybrid PQ + traditional
• Design and security

• https://tools.ietf.org/html/draft-ietf-tls-hybrid-design-01
• https://eprint.iacr.org/2019/858
• https://eprint.iacr.org/2018/903

• Standardization
• https://tools.ietf.org/html/draft-ietf-tls-hybrid-design-01
• https://tools.ietf.org/html/draft-kampanakis-curdle-pq-ssh-00

Prototyping
• Open Quantum Safe project

• https://openquantumsafe.org
• https://github.com/open-quantum-safe/

Benchmarking
• https://eprint.iacr.org/2019/1447
• https://github.com/xvzcf/pq-tls-benchmark
• https://github.com/open-quantum-safe/speed

New protocol design
• Implicit authentication using 

KEMs
• https://eprint.iacr.org/2020/534
• https://github.com/thomwiggers/kemtls-experiment/
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https://www.douglas.stebila.ca/research/presentations/
https://tools.ietf.org/html/draft-ietf-tls-hybrid-design-01
https://eprint.iacr.org/2019/858
https://eprint.iacr.org/2018/903
https://tools.ietf.org/html/draft-ietf-tls-hybrid-design-01
https://tools.ietf.org/html/draft-kampanakis-curdle-pq-ssh-00
https://openquantumsafe.org/
https://github.com/open-quantum-safe/
https://eprint.iacr.org/2019/1447
https://github.com/xvzcf/pq-tls-benchmark
https://github.com/open-quantum-safe/speed
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Appendix

KEMTLS data
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https://eprint.iacr.org/2020/534
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https://eprint.iacr.org/2020/534

