
Prototyping post-quantum and hybrid key
exchange and authentication in TLS and SSH

Eric Crockett, Christian Paquin, Douglas Stebila

https://eprint.iacr.org/2019/858

NIST 2nd PQC Conference • 2019-08-22

https://github.com/awslabs/s2n
https://github.com/open-quantum-safe/

https://eprint.iacr.org/2019/858
https://github.com/awslabs/s2n
https://github.com/open-quantum-safe/

Overview

● Design considerations for hybrid modes of key exchange in general

● Case studies: designs and experimental outcomes

○ Key exchange:

§ TLS 1.2 in OpenSSL 1.0.2 and Amazon s2n

§ TLS 1.3 in OpenSSL 1.1.1

§ SSH v2 in OpenSSH 7.9

○ Authentication:

§ TLS 1.3 in OpenSSL 1.1.1

§ SSH v2 in OpenSSH 7.9 2

Design considerations
for hybrid modes of key exchange

Douglas Stebila, Scott Fluhrer, Shay Gueron. Design issues for hybrid key exchange in TLS 1.3. Internet-Draft.
Internet Engineering Task Force, July 2019. https://tools.ietf.org/html/draft-stebila-tls-hybrid-design-01 3

Hybrid key exchange

● Multiple sources of interest in using multiple key exchange algorithms
simultaneously as part of transition to post-quantum crypto
○ Several Internet-Drafts already:

§ TLS 1.2: Schanck, Whyte, Zhang 2016; Amazon 2019

§ TLS 1.3: Schanck, Stebila 2017; Whyte, Zhang, Fluhrer, Garcia-Morchon 2017; Kiefer,
Kwiatkowski 2018; Stebila, Fluhrer, Gueron 2019

○ Experimental implementations: Google CECPQ1, CECPQ2; Open Quantum Safe; CECPQ2b; …

● Need PQ key exchange before we need PQ authentication because future quantum
computers could retroactively decrypt, but not retroactively impersonate

4

Goals for hybridization

1. Backwards compatibility
○ Hybrid-aware client, hybrid-aware server

○ Hybrid-aware client, non-hybrid-aware server

○ Non-hybrid-aware client, hybrid-aware server

2. Low computational overhead
3. Low latency
4. No extra round trips
5. No duplicate information

● How to negotiate algorithms
● How to convey cryptographic data

(public keys / ciphertexts)
● How to combine keying material

Design options

5

Negotiation: How many algorithms?

2 ≥ 2

6

Negotiation: How to indicate which algorithms to use

Negotiate each algorithm
individually

1. Standardize a name for each
algorithm

2. Provide a data structure for
conveying supported algorithms

3. Implement logic negotiating which
combination

Negotiate pre-defined
combinations of algorithms

1. Standardize a name for each
desired combination

● Can use existing negotiation
data structures and logic

7

Which option is preferred may
depend on how many algorithms are
ultimately standardized.

Conveying cryptographic data (public keys / ciphertexts)

1) Separate public keys
● For each supported algorithm,

send each public key / ciphertext in
its own parseable data structure

2) Concatenate public keys
● For each supported combination,

concatenate its public keys /
ciphertext into an opaque data
structure

#1 requires protocol and
implementation changes

#2 abstracts combinations into “just
another single algorithm”
But #2 can also lead to sending
duplicate values
● nistp256+bike1l1
● nistp256+sikep403
● nistp256+frodo640aes
● sikep403+frodo640aes 8

3x nistp256,
2x sikep403,
2x frodo640aes
public keys

Combining keying material

Top requirement: needs to provide
“robust” security:
● Final session key should be secure

as long as at least one of the
ingredient keys is unbroken

● (Most obvious techniques are fine,
though with some subtleties; see
Giacon et al. PKC 2018, Bindel et al.
PQCrypto 2019, … .)

● XOR keys
● Concatenate keys and use directly
● Concatenate keys then apply a

hash function / KDF
● Extend the protocol’s

“key schedule” with
new stages for each key

● Insert the 2nd key into an unused
spot in the protocol’s key schedule

9

Emerging consensus?

● Combining keying material: concatenate keys then apply hash function / KDF

● Number of algorithms: 2 vs ≥ 2: no consensus
● Negotiation: negotiate algorithms separately versus in combination:

no consensus
○ All(?) implementations to date have negotiated pre-defined combinations

● Conveying public keys: separately versus concatenated: no consensus
○ All(?) implementations to date have used concatenation

10

Key exchange case studies

11

Case study 1: TLS 1.2 in Amazon s2n

● Multi-level negotiation following TLS 1.2 design style:
○ Top-level ciphersuite with algorithm family: e.g.

TLS_ECDHE_SIKE_ECDSA_WITH_AES_256_GCM_SHA384

○ Extensions used to negotiate parameterization within family:
§ 1 extension for which ECDH elliptic curve: nistp256, curve25519, …

§ 1 extension for which PQ parameterization: sikep403, sikep504, …

● Session key: concatenate session keys and apply KDF with public key/ciphertext as
KDF label

● Experimental results: successfully implemented using nistp256+{bike1l1, sikep503}

12

Implementation base for rest of case studies

● Implementations from Open Quantum Safe project’s liboqs library
○ Open-source C library collecting implementations of many round 2 KEMs and signature schemes –

directly from contributors, from NIST submission packages, or via PQClean
○ https://github.com/open-quantum-safe

● Algorithms tested:
○ KEMs: 9 of 17 (BIKE round 1, FrodoKEM, Kyber, LEDAcrypt, NewHope, NTRU, NTS (1 variant), Saber,

SIKE)

○ Signature schemes: 6 of 9 (Dilithium, MQDSS, Picnic, qTesla (round 1), Rainbow, SPHINCS+)

13

https://github.com/open-quantum-safe

Case study 2: TLS 1.2 in OpenSSL 1.0.2
Case study 3: TLS 1.3 in OpenSSL 1.1.1
Case study 4: SSH v2 in OpenSSH 7.9

● Negotiate pairs of algorithms in pre-defined combinations
● Session key: concatenate session keys and use directly in key schedule

● Easy implementation, no change to negotiation logic

14

1st circle: PQ only
2nd circle: hybrid ECDH

= success

= fixable by changing
implementation
parameter

= would violate spec
or otherwise
unresolved error

† = algorithm on testing
branch

FrodoKEM 976, 1344
• OpenSSL 1.0.2 / TLS 1.2:

too large for a pre-
programmed buffer size,
but easily fixed by
increasing one buffer size

• OpenSSL 1.1.1 / TLS 1.3:
same

NTS-KEM
• OpenSSL 1.0.2 / TLS 1.2:

theoretically within spec’s
limitation of 224 bytes, but
buffer sizes that large
caused failures we
couldn’t track down

• OpenSSL 1.1.1 / TLS 1.3:
too large for spec
(216-1 bytes)

• OpenSSH: theoretically
within spec but not within
RFC’s “SHOULD”, but
couldn’t resolve bugs 15

Authentication case studies

16

1st circle: PQ only
2nd circle: hybrid RSA

= success

= fixable by changing
implementation
parameter

= would violate spec
or otherwise
unresolved error

† = algorithm on testing
branch

TLS 1.3:
• Max certificate size: 224-1
• Max signature size: 216-1

OpenSSL 1.1.1:
• Max certificate size:

102,400 bytes, but
runtime enlargeable

• Max signature size: 214

17

1st circle: PQ only
2nd circle: hybrid RSA

= success

= fixable by changing
implementation
parameter

= would violate spec
or otherwise
unresolved error

† = algorithm on testing
branch

OpenSSH maximum
packet size: 218

18

Summary

19

Summary

● Several design choices for hybrid key exchange in network protocols on
negotiation and transmitting public keys, no consensus

● Protocols have size constraints which prevent some schemes from being used

● Implementations may have additional size constraints which affect some schemes,
which can be bypassed with varying degrees of success

20

Extensions and open questions

Remaining Round 2 candidates
● Welcome help in getting code into our

framework – either directly into liboqs
or via PQClean

Constraints in other parts of the protocol
ecosystem
● Other client/server implementations
● Middle boxes

Performance
● Latency and throughput in lab

conditions
● Latency in realistic network conditions

à la [Lan18]
Use in applications
● Tested our OpenSSL experiment with

Apache, nginx, links, OpenVPN, with
reasonable success

● More work to do:
S/MIME, more TLS clients, … 21

Acknowledgements

● Goutam Tamvada (University of Waterloo)

● Matthew Campagna, Shay Gueron, and Torben Hansen (Amazon Web Services); Christopher Wood; Michele Mosca and John
Schanck (University of Waterloo)

● Open Quantum Safe project
○ Contributors: Nicholas Allen, Maxime Anvari, Mira Belenkiy, Ben Davies, Nir Drucker, Javad Doliskani, Vlad Gheorghiu, Shay Gueron,

Torben Hansen, Andrew Hopkins, Kevin Kane, Karl Knopf, Tancrède Lepoint, Shravan Mishra, Alex Parent, Peter Schwabe, John
Underhill, and Sebastian Verschoor; https://github.com/open-quantum-safe/liboqs/graphs/contributors

○ Financial support from Amazon Web Services, Tutte Institute for Mathematics and Computing
○ In-kind developer time from Amazon Web Services, Cisco Systems, evolutionQ, Microsoft Research

● PQClean (https://github.com/PQClean/PQClean)
○ Matthias J. Kannwischer, Joost Rijneveld, Peter Schwabe, and Thom Wiggers;

https://github.com/PQClean/PQClean/graphs/contributors

● Natural Sciences and Engineering Research Council (NSERC) of Canada Discovery grant RGPIN-2016-05146 and a NSERC
Discovery Accelerator Supplement

22

https://github.com/open-quantum-safe/liboqs/graphs/contributors
https://github.com/PQClean/PQClean/graphs/contributors

Prototyping post-quantum and hybrid key
exchange and authentication in TLS and SSH

Eric Crockett, Christian Paquin, Douglas Stebila

https://eprint.iacr.org/2019/858

NIST 2nd PQC Conference • 2019-08-22

https://github.com/awslabs/s2n
https://github.com/open-quantum-safe/

https://eprint.iacr.org/2019/858
https://github.com/awslabs/s2n
https://github.com/open-quantum-safe/

