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Overview

● Design considerations for hybrid modes of key exchange in general

● Case studies: designs and experimental outcomes

○ Key exchange:

§ TLS 1.2 in OpenSSL 1.0.2 and Amazon s2n

§ TLS 1.3 in OpenSSL 1.1.1

§ SSH v2 in OpenSSH 7.9

○ Authentication:

§ TLS 1.3 in OpenSSL 1.1.1

§ SSH v2 in OpenSSH 7.9 2



Design considerations 
for hybrid modes of key exchange

Douglas Stebila, Scott Fluhrer, Shay Gueron. Design issues for hybrid key exchange in TLS 1.3. Internet-Draft. 
Internet Engineering Task Force, July 2019. https://tools.ietf.org/html/draft-stebila-tls-hybrid-design-01 3



Hybrid key exchange

● Multiple sources of interest in using multiple key exchange algorithms 
simultaneously as part of transition to post-quantum crypto
○ Several Internet-Drafts already:

§ TLS 1.2: Schanck, Whyte, Zhang 2016; Amazon 2019

§ TLS 1.3: Schanck, Stebila 2017; Whyte, Zhang, Fluhrer, Garcia-Morchon 2017; Kiefer, 
Kwiatkowski 2018; Stebila, Fluhrer, Gueron 2019

○ Experimental implementations: Google CECPQ1, CECPQ2; Open Quantum Safe; CECPQ2b; …

● Need PQ key exchange before we need PQ authentication because future quantum 
computers could retroactively decrypt, but not retroactively impersonate
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Goals for hybridization

1. Backwards compatibility
○ Hybrid-aware client, hybrid-aware server

○ Hybrid-aware client, non-hybrid-aware server

○ Non-hybrid-aware client, hybrid-aware server

2. Low computational overhead
3. Low latency
4. No extra round trips
5. No duplicate information

● How to negotiate algorithms
● How to convey cryptographic data 

(public keys / ciphertexts)
● How to combine keying material

Design options
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Negotiation: How many algorithms?

2 ≥ 2
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Negotiation: How to indicate which algorithms to use

Negotiate each algorithm 
individually

1. Standardize a name for each 
algorithm

2. Provide a data structure for 
conveying supported algorithms

3. Implement logic negotiating which 
combination

Negotiate pre-defined 
combinations of algorithms

1. Standardize a name for each 
desired combination

● Can use existing negotiation 
data structures and logic
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Which option is preferred may 
depend on how many algorithms are 
ultimately standardized.



Conveying cryptographic data (public keys / ciphertexts)

1) Separate public keys
● For each supported algorithm, 

send each public key / ciphertext in 
its own parseable data structure

2) Concatenate public keys
● For each supported combination, 

concatenate its public keys / 
ciphertext into an opaque data 
structure

#1 requires protocol and 
implementation changes

#2 abstracts combinations into “just 
another single algorithm”
But #2 can also lead to sending 
duplicate values
● nistp256+bike1l1
● nistp256+sikep403
● nistp256+frodo640aes
● sikep403+frodo640aes 8

3x nistp256, 
2x sikep403, 
2x frodo640aes 
public keys



Combining keying material

Top requirement: needs to provide 
“robust” security: 
● Final session key should be secure 

as long as at least one of the 
ingredient keys is unbroken  

● (Most obvious techniques are fine, 
though with some subtleties; see 
Giacon et al. PKC 2018, Bindel et al. 
PQCrypto 2019, … .)

● XOR keys
● Concatenate keys and use directly
● Concatenate keys then apply a 

hash function / KDF
● Extend the protocol’s 

“key schedule” with 
new stages for each key

● Insert the 2nd key into an unused 
spot in the protocol’s key schedule
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Emerging consensus?

● Combining keying material: concatenate keys then apply hash function / KDF

● Number of algorithms: 2 vs ≥ 2: no consensus
● Negotiation: negotiate algorithms separately versus in combination: 

no consensus
○ All(?) implementations to date have negotiated pre-defined combinations

● Conveying public keys: separately versus concatenated: no consensus
○ All(?) implementations to date have used concatenation
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Key exchange case studies
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Case study 1: TLS 1.2 in Amazon s2n

● Multi-level negotiation following TLS 1.2 design style:
○ Top-level ciphersuite with algorithm family: e.g. 

TLS_ECDHE_SIKE_ECDSA_WITH_AES_256_GCM_SHA384

○ Extensions used to negotiate parameterization within family:
§ 1 extension for which ECDH elliptic curve: nistp256, curve25519, …

§ 1 extension for which PQ parameterization: sikep403, sikep504, …

● Session key: concatenate session keys and apply KDF with public key/ciphertext as 
KDF label 

● Experimental results: successfully implemented using nistp256+{bike1l1, sikep503}
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Implementation base for rest of case studies

● Implementations from Open Quantum Safe project’s liboqs library
○ Open-source C library collecting implementations of many round 2 KEMs and signature schemes –

directly from contributors, from NIST submission packages, or via PQClean
○ https://github.com/open-quantum-safe

● Algorithms tested:
○ KEMs: 9 of 17 (BIKE round 1, FrodoKEM, Kyber, LEDAcrypt, NewHope, NTRU, NTS (1 variant), Saber, 

SIKE)

○ Signature schemes: 6 of 9 (Dilithium, MQDSS, Picnic, qTesla (round 1), Rainbow, SPHINCS+)
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Case study 2: TLS 1.2 in OpenSSL 1.0.2
Case study 3: TLS 1.3 in OpenSSL 1.1.1
Case study 4: SSH v2 in OpenSSH 7.9

● Negotiate pairs of algorithms in pre-defined combinations
● Session key: concatenate session keys and use directly in key schedule

● Easy implementation, no change to negotiation logic
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1st circle: PQ only
2nd circle: hybrid ECDH

= success

= fixable by changing
implementation 
parameter

= would violate spec
or otherwise
unresolved error

† = algorithm on testing 
branch

FrodoKEM 976, 1344 
• OpenSSL 1.0.2 / TLS 1.2:

too large for a pre-
programmed buffer size, 
but easily fixed by 
increasing one buffer size

• OpenSSL 1.1.1 / TLS 1.3:
same

NTS-KEM
• OpenSSL 1.0.2 / TLS 1.2:

theoretically within spec’s
limitation of 224 bytes, but 
buffer sizes that large 
caused failures we 
couldn’t track down

• OpenSSL 1.1.1 / TLS 1.3:
too large for spec 
(216-1 bytes)

• OpenSSH: theoretically 
within spec but not within 
RFC’s “SHOULD”, but 
couldn’t resolve bugs 15



Authentication case studies
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1st circle: PQ only
2nd circle: hybrid RSA

= success

= fixable by changing
implementation 
parameter

= would violate spec
or otherwise
unresolved error

† = algorithm on testing 
branch

TLS 1.3:
• Max certificate size: 224-1
• Max signature size: 216-1

OpenSSL 1.1.1:
• Max certificate size: 

102,400 bytes, but 
runtime enlargeable

• Max signature size: 214
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1st circle: PQ only
2nd circle: hybrid RSA

= success

= fixable by changing
implementation 
parameter

= would violate spec
or otherwise
unresolved error

† = algorithm on testing 
branch

OpenSSH maximum 
packet size: 218
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Summary

19



Summary

● Several design choices for hybrid key exchange in network protocols on 
negotiation and transmitting public keys, no consensus

● Protocols have size constraints which prevent some schemes from being used

● Implementations may have additional size constraints which affect some schemes, 
which can be bypassed with varying degrees of success
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Extensions and open questions

Remaining Round 2 candidates
● Welcome help in getting code into our

framework – either directly into liboqs
or via PQClean

Constraints in other parts of the protocol 
ecosystem
● Other client/server implementations
● Middle boxes

Performance
● Latency and throughput in lab 

conditions
● Latency in realistic network conditions 

à la [Lan18]
Use in applications
● Tested our OpenSSL experiment with 

Apache, nginx, links, OpenVPN, with 
reasonable success

● More work to do: 
S/MIME, more TLS clients, … 21
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