Hybrid key exchange
in TLS 1.3

draft-stebila-tls-hybrid-design

Douglas Stebila, Scott Fluhrer, Shay Gueron

https://dstebila.github.io/draft-stebila-tls-hybrid-design/

IETF 105 TLSWG « 2019-07-25

https://dstebila.github.io/draft-stebila-tls-hybrid-design/

Motivation and Goals

Multiple sources of interest in using multiple key exchange algorithms

simultaneously as part of transition to post-quantum crypto

o Several Internet-Drafts already:
m TLS 1.2: Schanck, Whyte, Zhang 2016; Amazon 2019
m TLS 1.3: Schanck, Stebila 2017; Whyte, Zhang, Fluhrer, Garcia-Morchon 2017; Kiefer,
Kwiatkowski 2018
o Experimental implementations: Google CECPQ1, CECPQ2; Open Quantum Safe; ...

Need PQ key exchange before we need PQ authentication because future quantum
computers could retroactively decrypt, but not retroactively impersonate
Goal: develop framework in which key exchange in TLS 1.3 can be extended

with additional keyshares
o Should this be Informational? Experimental? Proposed standard?

Non-Goals

e Selecting or specifying one or more post-quantum algorithms to actually use in
TLS

Contained a “menu” of design options
along several axes

D raft_ 0 0 . How to negotiate which algorithms?

How many algorithms?

. How to transmit public key shares?
@ I ETF 1 0 4 . How to combine secrets?

Feedback from working group:

e Avoid changes to key schedule
e Presentone ortwo instantiations
e Specific feedback on some aspects

eligll
@ IETF 105

Kept menu of design choices

Constructed two candidate
instantiations from menu for
discussion

1. Directly negotiate each hybrid

algorithm; separate key shares
Code points for pre-defined
combinations; concatenated key
shares

Additional KDF-based options for
combining keys

Candidate Instantiation 1 — Negotiation

Follows draft-whyte-gsh-tls13-06

NamedGroup enum for supported_groups
extension contains “hybrid markers” with no
pre-defined meaning

Each hybrid marker points to a mappingin an
extension, which lists which combinations the
client proposes; between 2 and 10 algorithms
permitted

supported_groups:
hybrid_marker00, hybrid_marker01,
hybrid_marker02, secp256r1

HybridExtension:

« hybrid_marker00 > secp256rl+sike123+ntru456
« hybrid_marker01 > secp256rl+sike123

« hybrid_marker02 > secp256rl+ntru456

Candidate Instantiation 1 — Conveying keyshares

Client’s key shares:

e Existing KeyShareClientHello allows multiple
key shares
e =>Send 1 key share per algorithm
o secp256rl,sikel23, ntru456
e No changes required to data structures or

logic

Server’s key shares:

e Respond with
NamedGroup = hybrid_markerXX

e Existing KeyShareServerHello only permits
one key share

e =>Squeeze 2+ key shares into single key
share field by concatenation

struct {
KeyShareEntry key_share<2..10>;
} HybridKeyShare;

0
|
v

Candldate |nStant|at|0n PSK -> HKDF-Extract = Early Secret
1 — Combining keys V<ot

Fmm——— > Derive-Secret(...)
v

concatenated 0

shared |

secret -> HKDF-Extract Derive-Secret(., "derived", "")

v v
output ---f-> HKDF-Extract = Handshake Secret

Fmm—— > Derive-Secret(...)
Fmm—— > Derive-Secret(...)
v

Derive-Secret(., "derived", "")
v
0 -> HKDF-Extract = Master Secret

§ —— > Derive-Secret(...)
e T— > Derive-Secret(...)
e T——— > Derive-Secret(...)
e > Derive-Secret(...)

Candidate Instantiation 2 — Negotiation

Follows draft-kiefer-tls-ecdhe-sidh-00, Open enum {
. . /* existing named groups */
Quantum Safe implementation, ... secp256rl (23),

x25519 (0x001D),

ooy

New NamedGroup element standardized for each
desired combination

/* new code points eventually defined for post-quantum algorithms */
PQl (0x?22?),
PQ2 (0x?22?),

ooy

No internal structure to new code points /* new code points defined for hybrid combinations */
secp256rl _PQl (0x?22??),

secp256rl _PQ2 (0x?2??),

x25519 PQ1 (0x??27?),

x25519 PQ2 (0x??27?),

/* existing reserved code points */
ffdhe private_ use (0x01FC..0x01FF),
ecdhe_private use (0xFE00..O0XxFEFF),
(OXFFFF)

} NamedGroup;

Candidate Instantiation 2 — Conveying keyshares

KeyShareClientHello contains an entry for each code point listed in supported_groups
KeyShareServerHello contains a single entry for the chosen code point

KeyShareEntry for hybrid code points is an opaque string parsed with the following
internal structure:

struct {
KeyShareEntry key_share<2..10>;
} HybridKeyShare;

Candidate Instantiation 1

Adds new negotiation logic and ClientHello
extensions

Does not result in duplicate key shares or
combinatorial explosion of NamedGroups

Candidate Instantiation 2

No change in negotiation logic or data structures

No change to protocol logic: concatenation of key
shares and KDFing shared secrets can be handled
“internally” to a method

Results in combinatorial explosion of
NamedGroups

Duplicate key shares will be sent

Next steps?

1. Produce an Informational document that outlines different options and possible
instantiations

Or

2. Produce an Experimental / Proposed Standard describing a single instantiation
a. How to decide among current options? Experiments? Further discussion?

Hybrid key exchange
in TLS 1.3

draft-stebila-tls-hybrid-design

Douglas Stebila, Scott Fluhrer, Shay Gueron

https://dstebila.github.io/draft-stebila-tls-hybrid-design/

IETF 105 TLSWG « 2019-07-25

https://dstebila.github.io/draft-stebila-tls-hybrid-design/

