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Post-quantum crypto

Classical crypto with no known exponential qguantum speedup

Hash-based Code-based Multivariate Lattice-
based

 Merkle  McEliece * multivariate NTRU
signatures  Niederreiter quadratic learning with
« Sphincs errors
ring-LWE

Isogenies

supersingular
elliptic curve
isogenies
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Quantum-safe crypto

Classical post-quantum crypto

Hash-based Code-based Multivariate Lattice- Isogenies
based

» Merkle * McEliece * multivariate * NTRU * supersingular
signatures « Niederreiter quadratic « learning elliptic curve
* Sphincs with errors Isogenies
* ring-LWE

Quantum crypto

Quantum key distribution

Quantum random number
generators

Quantum channels

Quantum blind computation
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Today's agenda

Quantum computing and its impact on cryptography (Mosca)
LWE-based cryptography (Stebila)

Isogeny-based cryptography (Jao)

Additional topics

- Security models for post-quantum cryptography (Jao) ‘ |
' Daniel J. Bernstein
- Applications (Stebila) = Johannes Buchmann

Erik Dahmen
Editors

s W~

Topics excluded: Post-Quantum
- Code-based cryptography Cryptography
- Hash-based signatures
- Multivariate cryptography

) Springer
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Learning with errors problems
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Solving systems of linear equations

secret
7xX4 4x1 7Tx1
Z13 ZlS ZIS

Linear system problem: given blue, find red
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Solving systems of linear equations

secret
7xX4 4x1 7Tx1
le ZlS ZIS

Linear system problem: given blue, find red
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Learning with errors problem

random secret small noise
7xX4 4x1 Tx1 7Tx1
le Zl3 Z13 ZIS
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Learning with errors problem

random secret small noise
7xX4 4x1 Tx1
Z13 7 Z13

13
l x I + =

Search LWE problem: given blue, find red




SAC Summer School * 2017-08-14 Post-Quantum Cryptography ¢ Part 2 « LWE-based cryptography

Search LWE problem

Let n, m, and q be positive integers. Let xs and x. be distributions over Z.

Let s & x7. Let a; & U(Zy), e & Xe, and set b; < (a;,s) +e; mod g, for
1=1,...,m.

The search LWE problem for (n,m,q, xs, Xe) is to find s given (a;, b;)" ;.
In particular, for algorithm A, define the advantage
lwe $ 5 $ n $
Adv (A) = Pr [S%XS;ai%M(Zq);eikxe;

n,m,q,Xs;Xe
bi < (ai,s;) + emod g : A((a;, 0;);2,) = S)] :
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Decision learning with errors problem

random secret small noise looks random
7xX4 4x1 Tx1 7Tx1
Z13 Zl3 Z13 ZlS

11

12

Decision LWE problem: given blue, distinguish green from random
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Decision LWE problem

Let n and ¢ be positive integers. Let xs and x. be distributions over Z. Let

s & X=. Define the following two oracles:

e O, s a il U(Zy), e il Xe; return (a, (a,s) + e mod q).

e U: a iZ/{(ZZ’), P U(Zy); return (a, u).

The decision LWE problem for (n,q, xs, Xe) is to distinguish O, ¢ from
U.

In particular, for algorithm A, define the advantage

Adyaiwe (A) = |Pr(s il 7 : A%es() =1) —Pr(AY() = 1)

n,q,Xs;Xe
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Choice of error distribution

- Usually a discrete Gaussian distribution of width s = «.q for error rate o < 1

- Define the Gaussian function

ps(x) = exp(—||x|*/s°)

- The continuous Gaussian distribution has probability density function

f(x) = ps(x)/ o ps(z)dz = ps(x)/s"
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Short secrets

- The secret distribution Xs was originally taken to be the uniform distribution

- Short secrets: use Xs = Xe

- There's a tight reduction showing that LWE with short secrets is hard if LWE
with uniform secrets is hard
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Toy example versus real-world example

7X4 752X 8
Z13 Z215

8

/—/%

752

752 x 8 x 15 bits = 11 KiB
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Ring learning with errors problem

random
7xX4
le

Each row is the cyclic
shift of the row above
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SAC Summer School * 2017-08-14

Ring learning with errors problem

random
7xX4
le

Each row is the cyclic
shift of the row above

with a special wrapping rule:
X wraps to —x mod 13.
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SAC Summer School * 2017-08-14

Ring learning with errors problem

random
7xX4
le

_ Each row is the cyclic

shift of the row above

with a special wrapping rule:
X wraps to —x mod 13.

So | only need to tell you the first row.
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Ring learning with errors problem

secret

+ 0—-1x+ 12+ 1X°3 small noise
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Ring learning with errors problem

secret

small noise

X

Search ring-LWE problem: given blue, find red
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Search ring-LWE problem

Let R =7Z[X]/(X™ + 1), where n is a power of 2.

Let ¢ be an integer, and define R, = R/qR, i.e., R, = Z,| X]/(X™ 4+ 1).

Let xs and x. be distributions over R,. Let s il Xs- Let a i UR,), e & Xe
and set b < as + e.

The search ring-LWE problem for (n,q, xs, xe) is to find s given (a,b).

In particular, for algorithm A define the advantage

Adv;l‘ﬁxs’xe(A) = Pr s & Xs; @ il U(R,);e il Xe; b as+e: A(a,b) = s| .
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Decision ring-LWE problem

Let n and g be positive integers. Let xs and x. be distributions over R,. Let

s & Xs. Define the following two oracles:

e O,, 5 a & UR,), e & Xe; return (a,as + e).

o U: a,ut U(R,); return (a,u).

The decision ring-LWE problem for (n,q, xs, X.) is to distinguish O, _ ,
from U.

In particular, for algorithm A, define the advantage

Advi™e (4) = |Pr(s & R, : AOxe=() = 1) — Pr(AV() = 1)

n,q,Xs;Xe
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Problems

Computational Decision
LWE problem LWE problem

with or without

23

short secrets

Computational Decision
ring-LWE problem ring-LWE problem
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Search-decision equivalence

- Easy fact: If the search LWE problem is easy, then the decision LWE problem
IS easy.

- Fact: If the decision LWE problem is easy, then the search LWE problem is
easy.
- Requires 1 q calls to decision oracle

- Intuition: test the each value for the first component of the secret, then move on to the next
one, and so on.
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NTRU problem

For an invertible s € R} and a distribution x on R, define N, to be the
distribution that outputs e/s € R, where e & X-

The NTRU learning problem is: given independent samples a; € R, where
every sample is distributed according to either: (1) Ny, for some randomly
chosen s € R, (fixed for all samples), or (2) the uniform distribution, distinguish
which is the case.
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"Lattice-based”
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Hardness of decision LWE — "lattice-based"

worst-case gap shortest

vector problem (GapSVP)

poly-time [Regev05, BLPRS13]

decision LWE
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Lattices

Let B = {b1,b,} C Z;*" be a set of linearly independent basis vectors for Z.
Define the corresponding lattice

i=1
(In other words, a lattice is a set of integer linear combinations.)

Define the minimum distance of a lattice as

A(L)= min |v| .
velL\{0}
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Shortest vector problem

The shortest vector problem (SVP) is: given a basis B for some lattice £ =
L(B), find a shortest non-zero vector, i.e., find v € L such that ||v| = A1 (L).

The decision approximate shortest vector problem (GapSVPv) 1s: given
a basis B for some lattice £ = £(B) where either A\;(£) < 1 or A (L) > 7,
determine which is the case.
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Regev's iterative reduction

Theorem. [Reg05] For any modulus ¢ < 2roly(n) and any discretized Gaussian
error distribution y of parameter ag > 2y/n where 0 < a < 1, solving the
decision LWE problem for (n,q,U,x) with at most m = poly(n) samples is
at least as hard as quantumly solving GapSVP, and SIVP, on arbitrary n-

dimensional lattices for some v = O(n/a).

The polynomial-time reduction is extremely non-tight: approximately O(n'?).

[Regev; STOC 2005]
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Solving the (approximate) shortest vector problem

The complexity of GapSVP. depends heavily on how v and n relate, and get
harder for smaller ~.

Algorithm Time Approx. factor ~
LLL algorithm poly(n) 2f2(nloglogn/logn)
various 2f2(nlogn) poly(n)
various 2£2(n) time and space poly(n)
Sch87 282n/k) 2k
NP N co-NP > /n
NP-hard no()

In cryptography, we tend to use v =~ n.
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Picking parameters

- Estimate parameters based on - Based on reductions:
runtime of lattice reduction - Calculate required runtime for

algorithms. GapSVP or SVP based on
tightness gaps and constraints in
each reduction

- Pick parameters based on best
known GapSVP or SVP solvers or
known lower bounds

- Based on cryptanalysis:
- Ignore tightness in reductions.

- Pick parameters based on best
known LWE solvers relying on
lattice solvers.
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Ring-LWE LWE

7X4 752 %8
Z13 Z215

Cyclic structure

— Save communication, 752

more efficient computation

4 KiB representation

752 x 8 x 15 bits = 11 KiB
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Why consider (slower, bigger) LWE"?

Generic vs. ideal lattices

- Ring-LWE matrices have - Currently, best algorithms for ideal
additional structure lattice problems are essentially
- Relies on hardness of a problem in the same as for generic lattices
ideal lattices - Small constant factor improvement in
some cases
. LWE matrices have - Very recent quantum polynomial time

algorithm for Ideal-SVP

no additional structure (http://eprint.iacr.org/2016/885) but

- Relies on hardness of a problem in not immediately applicable to ring-
generic lattices LWE
- NTRU also relies on a problem in It we want to eliminate this

a type of ideal lattices additional structure, can we still
get an efficient protocol?
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Public key encryption from LWE
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Regev's public key encryption scheme

Let n,m, q,x be LWE parameters.

o KeyGen(): s il L. A il g ". e il X(Zg"). b+ As +e.

Return pk < (A,b), sk < s.

o Enc(pk,z € {0,1}): s & 1{0,1}™. b’ « s’A. v/ « (s, b).
c < x - encode(v’). Return (b’, ¢).

e Dec(sk,(b’,c)): v+ (b’,s). Return decode(v).

[Regev; STOC 2005]
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Encode/decode

encode(r € {0,1}) <z - {gJ

decode(T € Z,) < {O’ itz e [-[1],14)

1, otherwise

[Regev; STOC 2005]
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Lindner—Peikert public key encryption

Let n,q,x be LWE parameters.

o KeyGen(): s & x(Z"). A &7z e & x(Z"). b+ As+e.

~

Return pk < (A,b) and sk + s.

o Enc(pk,z € {0,1}): s’ & x(Z"). & & x(Z"). b« s'A + €. " & (7).
v+ (s’,b) + €. ¢ < encode(x) + v’'. Return ctxt < (b’,c).

e Dec(sk, (b,¢)): v+ (b',s). Return decode(c — v).

[Lindner, Peikert; CT-RSA 2011]
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Correctness

Sender and receiver approximately compute the same shared secret s’As

7 =(s',by+e" =s"(As+e)+e’' =s'As+ (s, e) + e’ ~s'As
v=(b,s)=(s’A+e)s=sAs+ (€,s) ~s'As
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Difference between Regev and Lindner—Peikert
Regev:

e Bob’s public key is s’ A where s’ il {0,1}™

e Encryption mask is (s’, b)
Lindner—Peikert:

e Bob’s public key is s’A + e’ where s’ & Ye

e Encryption mask is (s’,b) + "

In Regev, Bob’s public key is a subset sum instance. In Lindner—Peikert, Bob’s
public key and encryption mask is just another LWE instance.
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IND-CPA security of Lindner—Peikert

Indistinguishable against chosen plaintext attacks

Theorem. If the decision LWE problem is hard, then Lindner—Peikert is IND-
CPA-secure. Let n,q,x be LWE parameters. Let A be an algorithm. Then
there exist algorithms B;, By such that

AdVIS P (A) < Adva™ (Ao By) + Adva™e (Ao By)

[’I’L,q,X] n,q,Xx n,q,x

[Lindner, Peikert; CT-RSA 2011]
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Game 0:

—_

_ =
= O

— Decision-LWE —

A Euzrm

S, e & X(Z3)

b+ As+e

s, e & X(Zy)

b« s'A + ¢

e & X(Z,)

V' < s'b+e”

co < encode(0) + v’
¢, < encode(1) + ¥’
b < U({0,1})

. return

(A7 B? Bla Cb*)

Game 1:

Post-Quantum Cryptography ¢ Part 2 « LWE-based cryptography

IND-CPA security of Lindner—Peikert

10:

A S Uz

b uzr)

s’ e & X(Zy)

b’ s'A +é

e & X (Zy)

v «—s'b+e’

co < encode(0) + v’
¢, < encode(1) + v’
b < U({0,1})
return

(A7 Ba Bla Cb*)

Game 2:

<

[b'[[5'] « s'[A] ] e

-|——|— o

co < encode(0)

c1 <— encode(1)

b & u ({0,1})

return

(A7 Ba Bla Cb*)
[Lindner, Peikert; CT-RSA 2011]
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Game 2: — Decision-LWE —

co < encode
c1 < encode
b* & U({0,1)
return

(A7 Bv Blv Cb*)

N——

Post-Quantum Cryptography ¢ Part 2 « LWE-based cryptography

IND-CPA security of Lindner—Peikert

Game 3: —s Rewrite —

3 (
4: ¢o < encode(0) +
5: ¢1 < encode(1) +
6: b* & U({0,1}
7: return

(A7 ba bla Cb*)

N———

Game 4:

1: A i U(ngn)
2: f) i U(ZZ)
3. b)) & u(znt)

© br & uU{o,1})
5: return (A,b,b’ )

Independent of hidden bit

[Lindner, Peikert; CT-RSA 2011]
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Public key validation

- No public key validation possible in IND-CPA KEMs/PKEs from LWE/ring-
LWE

- Key reuse in LWE/ring-LWE leads to real attacks following from search-

decision equivalence
- Comment in [Peikert, PQCrypto 2014]
- Attack described in [Fluhrer, Eprint 2016]

- Need to ensure usage is okay with just IND-CPA

- Or construct IND-CCA KEM/PKE using Fujisaki-Okamoto transform or
quantum-resistant variant [Targhi-Unruh, TCC 2016] [Hofheinz et al., Eprint 2017]
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Direct key agreement
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LWE and ring-LWE public key encryption and key

exchange

Regev
STOC 2005

- Public key encryption from LWE

Lyubashevsky, Peikert, Regev
Eurocrypt 2010

- Public key encryption from ring-LWE

Lindner, Peikert
ePrint 2010, CT-RSA 2011

- Public key encryption from LWE and
ring-LWE

- Approximate key exchange from LWE

Ding, Xie, Lin
ePrint 2012

- Key exchange from LWE and ring-LWE
with single-bit reconciliation

Peikert
PQCrypto 2014

- Key encapsulation mechanism based
on ring-LWE and variant single-bit
reconciliation

Bos, Costello, Naehrig, Stebila
IEEE S&P 2015

- Implementation of Peikert's ring-LWE
key exchange, testing in TLS 1.2
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Basic LWE key agreement (unauthenticated)

Based on Lindner—Peikert LWE public key encryption scheme

public: “big” Ain Z "xm

Alice Bob
secret: secret:
random “small’ s, e in qu random “small” s’ e'in Zq”

b=As +e

>
b'=s'A+e'
<

shared secret: shared secret:
b's = s'’As + e's = S'As s'’b = s'As

These are only approximately equal = need rounding
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Rounding

- Each coefficient of the polynomial is an integer modulo g
- Treat each coefficient independently

- Techniques by Ding [Din12] and Peikert [Pei14]

[Ding; eprint 2012] [Peikert; PQCrypto 2014]
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Basic rounding

- Round either to 0 or g/2
- Treat g/2 as 1

ql4 This works
most of the time:
prob. failure 2-1.

round
to0 0

Not good enough:
we need exact key
agreement.

3q/4
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Rounding (Peikert)

Bob says which of two regions
the value is in: &y or o™ qid

3q/4

3q/4
[Peikert; PQCrypto 2014]



SAC Summer School * 2017-08-14 Post-Quantum Cryptography ¢ Part 2 « LWE-based cryptography

Rounding (Peikert)

- If | alice — bob | < q/8, then this always works.

alice
alice

alice

- Security not affected: revealing ‘, or ™ leaks no information

[Peikert; PQCrypto 2014]
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Exact LWE key agreement (unauthenticated)

public: “big” Ain Z "xm

Alice Bob
secret: secret:
random “small’ s, e in qu random “small” s’ e'in Zq”
b=As+e
>

b’=s’A+e’,l,or <

shared secret: shared secret:
round(b's) round(s'b)
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Post-Quantum Cryptography ¢ Part 2 « LWE-based cryptography

Exact ring-LWE key agreement (unauthenticated)

public: “big” ain R, = Z [x]/(x"+1)

Alice

secret:
random “small” s, e in R,

b=aess+e

Bob

secret:
random “small” s’, e’in Rq

b’=a-s’+e’, 4, or &

>

shared secret:
round(s « b’)

shared secret:
round(b ¢ s’)
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Exact LWE key agreement — "Frodo”

Alice Bob
seedp < U 0,1}
A (0. 1}%) A generated
A <+ Gen(seedp)
pseudorandomly

S.E & xgzgxﬁr
B+ AS+E seedp, B

>
€ {0,1}° xz7*™ A <« Gen(seedy )

Secure if
decision learning
with errors

Uses two matrix forms of LWE:
* Public key is n x n matrix
« Shared secret is m x n matrix

problem is hard

(and Gen is a random

oracle).

K < rec C)
[Bos et al.; ACM CCS 2016]
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Rounding

- We extract 4 bits from each of
the 64 matrix entries in the
shared secret.

- More granular form of Peikert’s
rounding.

Parameter sizes, rounding, and
error distribution all found via
search scripts.

Error distribution

1400
1200
1000
800
600
400
200

1206

- Close to discrete Gaussian in

terms of Renyi divergence
(1.000301)

- Only requires 12 bits of
randomness to sample
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Parameters

“Recommended”

- 144-Dbit classical security,
130-bit quantum security,

Post-Quantum Cryptography ¢ Part 2 « LWE-based cryptography

All known variants of the sieving algorithm require a
list of vectors to be created of this size

“Paranoid”

- 177-bit classical security,
161-bit quantum security,

103-bit plausible lower bound «~——— 128-bit plausible lower bound

-n=752, m=8,q=2"

-n=864, m=8,q=2"

- ¥ = approximation to rounded - ¥ = approximation to rounded
Gaussian with 11 elements Gaussian with 13 elements

- Failure: 2-389

- Failure: 2338

- Total communication: 22.6 KiB - Total communication: 25.9 KiB
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Exact ring-LWE key agreement — "BCNS15"

BCNS15
Public parameters: n,q,x, a <sU(Ry)
Alice Bob
s, € <s X (1)
|I~)<—as+e|ERq SN s’ e «sx(R,)
‘b’ —as’ + eje R,
e” s y(R,
U+ bs'+€"|e R,
V <3 V) € qu
] e ¢+ (v/2), € {0,1}"
ka < rec2<|2b’slc) € {0,1}" kg + |v/2], € {0,1}"

[Bos, Costello, Naehrig, Stebila} IEEE S&P 2015]
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Parameters

160-bit classical security,
80-bit quantum security

-n=1024

- q = 2321

- ¥ = discrete Gaussian with
parameter sigma = 8/sqrt(2m)

- Failure: 2-12800

- Total communication: 8.1 KiB
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Implementation aspect 1:

Polynomial arithmetic

- Polynomial multiplication in R, = Z [x]/(x'%2*+1) done with Nussbaumer’s FFT:

If 2™ = rk, then

RIX] (—<§~[f]1>> X
(X2"+1) (XF—-2Z)

- Rather than working modulo degree-1024 polynomial with coefficients in Z,
work modulo:

- degree-256 polynomial whose coefficients are themselves polynomials modulo a degree-4
polynomial,

- or degree-32 polynomials whose coefficients are polynomials modulo degree-8 polynomials
whose coefficients are polynomials

c Or...
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Implementation aspect 2:

Sampling discrete Gaussians

1 _ 2
Dy o (x) = ge_ﬁ for x € Z,0 =~ 3.2,5 =8

- Security proofs require “small” elements sampled within statistical distance
2-128 of the true discrete Gaussian
- We use inversion sampling: precompute table of cumulative probabilities
- For us: 52 elements, size = 10000 bits
- Sampling each coefficient requires six 192-bit integer comparisons and there
are 1024 coefficients
- 51 + 1024 for constant time
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Sampling is expensive

Operation . Cycles .
constant-time non-constant-time
sample < y 1042 700 668 000
FFT multiplication 342 800 —
FFT addition 1660 —
dbl(-) and crossrounding (-),. , 23 500 21 300
rounding ||, , 5500 3,700
reconciliation rec(-, -) 14400 6 800

[Bos, Costello, Naehrig, Stebila; IEEE S&P 2015]
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“NewHope”

Alkim, Ducas, Poppelman, Schwabe.
USENIX Security 2016

- New parameters
- Different error distribution
- Improved performance

- Pseudorandomly generated
parameters

- Further performance
iImprovements by others
[GS16,LN16,AOPP317,...]

Google Security Blog

Experimenting with Post-Quantum Cryptography
July 7, 2016

[w [i] Elements Console Sources Network Timeline Profiles Application Security Audits

) Overview ® https://play.google.com

View requests in Network Panel
Main Origin

Connection
® https://play.google.com

rotocol TLS 1.2

Secure Origins change
® https://www.gstatic.com Cipher Suite AES_256_GCM
® https://Ih3.googleuserconte
® https://lh4.googleuserconte Certificate
® https://IhS.googleuserconts
@® https://lh6.googleuserconte Subject  *.google.com
® https://Ih3.ggpht.com SAN *.google.com
® https://Ihd.ggpht.com *.android.com
@ https://lh5.ggpht.com Show more (52 total
® https://books.google.com Valid From  Thu, 23 Jun 2016 08:33:56 GMT
® https://ajax.googleapis.com Valid Until Thu, 15 Sep 2016 08:31:00 GMT

® https://www.google.com

@ hitps/fwww.google-analyti ~ Issuer  Google Internet Authority G2

https://security.googleblog.com/2016/07/experimenting-with-post-quantum.html
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Implementations

Our implementations

- Ring-LWE BCNS15
- LWE Frodo

Pure C implementations
Constant time

Post-Quantum Cryptography ¢ Part 2 « LWE-based cryptography

Compare with others

- RSA 3072-bit (OpenSSL 1.0.1f)
-ECDH nistp256 (OpenSSL)
Use assembly code

- Ring-LWE NewHope
-NTRU EES743EP1

- SIDH (Isogenies) (MSR)

Pure C implementations
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Post-quantum key exchange performance

T Gpeod | Communication

RSA 3072-bit Fast 4 ms Small 0.3 KiB
ECDH nistp256 Very fast 0.7 ms Very small  0.03KiB
Code-based Very fast 0.5 ms Very large 360K
NTRU Very fast  03-1.2ms Medium 1 KiB

Ring-LWE Very fast  02-15ms Medium 2-4 KiB
LWE Fast 1.4 ms Large 11 KiB

SIDH Med.—slow  15-400 ms Small 0.5 KiB

See [Bos, Costello, Ducas, Mironov, Naehrig, Nikolaenko, Raghunathan, Stebila, ACM CCS 2016] for details/methodology
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Other applications of LWE
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Fully homomorphic encryption from LWE

o KeyGen(): s il X(Z7)

e Enc(sk,pu € Zz): Pick ¢ € Zy such that (s,c) = e mod q where e € Z
satisfies e = © mod 2.

e Dec(sk,c): Compute (s,c) € Zg, represent this ase € Z N |[—4, ).
Return u’ < e mod 2.

[Brakerski, Vaikuntanathan; FOCS 2011]
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Fully homomorphic encryption from LWE

C1 + C2 encrypts puy + uo:

<Sa C1 + CZ> — <Svcl> + <S,C2> = €1 1+ €2 mod q

Decryption will work as long as the error e; 4+ e; remains below ¢/2.

[Brakerski, Vaikuntanathan; FOCS 2011]
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Fully homomorphic encryption from LWE

Let c; ®co = (c1,i-¢2,5)i; € 232 be the tensor product (or Kronecker product).

c1 ® co is the encryption of uq s under secret key s ® s:

<S®Sacl ®02> — <S7C1> ' <Sac2> — €1 - €2 mod q

Decryption will work as long as the error ey - es remains below ¢q/2.

[Brakerski, Vaikuntanathan; FOCS 2011]
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Fully homomorphic encryption from LWE

- Error conditions mean that the number of additions and multiplications is
limited.

- Multiplication increases the dimension (exponentially), so the number of
multiplications is again limited.

- There are techniques to resolve both of these issues.
- Key switching allows converting the dimension of a ciphertext.
- Modulus switching and bootstrapping are used to deal with the error rate.
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Digital signatures (Lyuashevsky 2011]

e KeyGen(): S & {—d,...,0,...,d}m<k A& zmxm T AS,
Secret key: S; public key: (A, T).

e Sion(S.u): vy il Y":c<— H(Ay.u); z <+ Sc+y.
|With prob. p(z) output (z,c), else restart Sign.| s =eie —=eliier

o Viy((A,T), u,(z,c)): Accept iff ||z|| < noy/m and ¢ = H(Az — Tc, p)

[Lyubashevsky; Eurocrypt 2012]



Post-quantum signature sizes

RSA 3072-bit Small 0.3 KiB Small 0.3 KiB
ECDSAnistp256 Very small  003kiB Very small 0.03 KiB
Hash-based (stateful) Small 0.9 KiB Medium 3.6 KiB
Hash-based (stateless) Small 1KiB Large 32 KiB
S2llgE-0EEine Medium  15-8kiB Medium 3-9 KiB
(ignoring tightness)

Lattice-based - -
(respecting tightness) very large 1950 KB Small 1218
SIDH Small e Very large fomis

See [Bindel, Herath, McKague, Stebila PQCrypto 2017] for details
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Summary
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Summary

- LWE and ring-LWE problems

- Search, decision, short secrets
- Reduction from GapSVP to LWE

- Public key encryption from LWE
- Regev
- Lindner—Peikert

- Key exchange from LWE / ring-LWE

- Other applications of LWE
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More reading

- Post-Quantum Cryptography
by Bernstein, Buchmann, Dahmen

- A Decade of Lattice Cryptography
by Chris Peikert
https://web.eecs.umich.edu/~cpeikert/pubs/lattice-survey.pdf




