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•  Electronic	
  cash	
  

•  SoNware	
  copy	
  protec3on	
  

•  Digital	
  rights	
  management	
  



Therefore,	
  classical	
  one-­‐3me	
  
programs	
  are	
  not	
  possible	
  in	
  
the	
  plain	
  model	
  (even	
  if	
  we	
  
allow	
  computa3onal	
  
assump3ons).	
  

Classical	
  programs	
  can	
  be	
  copied	
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Hardware	
  token	
  model:	
  
assume	
  hardware	
  tokens	
  called	
  one-­‐3me	
  memories	
  (OTMs)	
  

Why	
  use	
  OTMs?	
  
•  Generic	
  objects	
  
•  Independent	
  of	
  protocol	
  
•  Independent	
  of	
  input	
  
•  Could	
  be	
  mass-­‐produced	
  



Classical	
  one-­‐3me	
  programs	
  in	
  the	
  
hardware	
  token	
  model	
  

Goal:	
  a	
  compiler	
  that	
  transforms	
  (f,x)	
  into	
  a	
  one-­‐
3me	
  program.	
  
1.  Goldwasser,	
  Kalai,	
  G.	
  Rothblum	
  (CRYPTO	
  ‘08):	
  

One-­‐3me	
  programs	
  in	
  the	
  string-­‐OTM	
  model,	
  
–  computa3onal	
  security	
  
–  standalone	
  security	
  defini3on	
  

2.  Goyal,	
  Ishai,	
  Sahai,	
  Venkatesan,	
  Wadia	
  (TCC	
  ‘10):	
  
One-­‐3me	
  programs	
  in	
  the	
  bit-­‐OTM	
  model,	
  	
  
–  sta3s3cal	
  (informa3on-­‐theore3c)	
  security	
  
–  universal	
  composability	
  (UC)	
  se`ng	
  



1.  The	
  no-­‐cloning	
  theorem	
  prevents	
  the	
  basic	
  copying	
  aaack.	
  
Could	
  OTPs	
  be	
  possible	
  in	
  the	
  plain	
  quantum	
  model?	
  

2.  OTPs	
  for	
  quantum	
  channels	
  need	
  to	
  handle	
  entangled	
  
inputs:	
  

	
  

Quantum	
  twists	
  



Our	
  ques3ons	
  /	
  results	
  

1.  Does	
  quantum	
  informa3on	
  enable	
  one-­‐3me	
  
programs	
  for	
  classical	
  func3ons	
  in	
  the	
  plain	
  model?	
  	
  
–  NO!	
  (for	
  all	
  but	
  “trivial”	
  func3ons)	
  

2.  Does	
  quantum	
  informa3on	
  enable	
  one-­‐3me	
  
programs	
  for	
  quantum	
  channels	
  in	
  the	
  plain	
  model?	
  	
  
–  NO!	
  (for	
  all	
  but	
  “trivial”	
  channels)	
  

3.  Do	
  quantum	
  one-­‐3me	
  programs	
  exist	
  for	
  quantum	
  
channels	
  in	
  the	
  bit-­‐OTM	
  model?	
  	
  
–  YES!	
  (for	
  all	
  channels,	
  with	
  sta3s3cal	
  UC	
  security)	
  	
  
–  Main	
  techniques:	
  

•  new	
  quantum	
  authen3ca3on	
  code	
  
•  method	
  to	
  compute	
  on	
  authen3cated	
  data.	
  



Related	
  cryptographic	
  tasks	
  
1.  SoNware	
  copy-­‐protec3on	
  

–  Can	
  be	
  evaluated	
  mul3ple	
  3mes,	
  but	
  not	
  “split”	
  or	
  “copied”	
  into	
  two	
  
parts	
  that	
  allow	
  separate	
  execu3ons.	
  	
  

–  Clearly	
  impossible	
  with	
  classical	
  informa3on	
  alone	
  
–  OTPs	
  provide	
  a	
  solu3on	
  	
  
–  Aaronson	
  (CCC	
  ‘09):	
  solu3on	
  in	
  the	
  plain	
  model	
  using	
  quantum	
  

informa3on.	
  
–  Open	
  ques3on:	
  general	
  quantum	
  soNware	
  copy-­‐protec3on	
  based	
  on	
  

standard	
  cryptographic	
  assump3ons.	
  	
  

2.  Program	
  obfusca3on	
  
–  Can	
  be	
  evaluated	
  mul3ple	
  3mes,	
  but	
  the	
  “code”	
  of	
  the	
  program	
  does	
  

not	
  leak	
  any	
  informa3on	
  beyond	
  what	
  can	
  be	
  learned	
  by	
  running	
  the	
  
program.	
  	
  

–  Impossible	
  with	
  classical	
  informa3on	
  alone	
  (Barak,	
  Goldreich,	
  
Impagliazzo,	
  Rudich,	
  Sahai,	
  Vadhan,	
  Yang,	
  CRYPTO	
  ’01).	
  	
  

–  OTPs	
  provide	
  a	
  solu3on	
  	
  
–  Open	
  ques3on:	
  quantum	
  program	
  obfusca3on	
  (in	
  the	
  plain	
  model).	
  	
  



1.	
  IMPOSSIBILITY	
  
Quantum	
  one-­‐3me	
  programs	
  do	
  not	
  
exist	
  in	
  the	
  plain	
  model	
  
	
   	
   	
   	
  …	
  except	
  for	
  some	
  trivial	
  cases	
  



One-­‐3me	
  program	
  for	
  	
  	
  	
  	
  :	
  sender	
  reveals	
  	
  	
  	
  	
  	
  	
  .	
  
	
  
This	
  is	
  “secure”	
  because	
  a	
  single	
  query	
  to	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  will	
  also	
  reveal	
  	
  	
  	
  	
  	
  	
  	
  .	
  	
  	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  
	
  
	
  

“Trivial”	
  one-­‐3me	
  programs	
  



(	
  

Theorem:	
  If	
  f	
  is	
  unlockable,	
  	
  
then	
  f	
  has	
  a	
  secure	
  OTP	
  in	
  the	
  
plain	
  classical	
  model.	
  	
  
	
  
Theorem:	
  If	
  f	
  has	
  a	
  secure	
  OTP	
  	
  
in	
  the	
  plain	
  quantum	
  model,	
  	
  
then	
  f	
  is	
  unlockable.	
  	
  

	
  
	
  

Unlockable	
  
Trivial	
  OTP	
  in	
  plain	
  model	
  

Not	
  unlockable	
  
No	
  OTP	
  in	
  plain	
  quantum	
  model	
  

Unlockable	
  func3ons	
  
A function f is unlockable if there

exists a key input y0 and a recovery

algorithm A that allows computation

of f(x, y) for any y.



Defini3on	
  of	
  quantum	
  OTP	
  

Functionality 3 Ideal functionality FOTP
� for a quantum channel � : (A,B) ! C.

1. Create: Upon input register A from the sender, send create to the receiver and store the
contents of register A.

2. Execute: Upon input register B from the receiver, evaluate � on registers A,B and send the
contents of the output register C to the receiver. Delete any trace of this instance.

Moreover, they are non-reactive since they interact with the sender and the receiver in a single
round. Reactive functionalities are more general, potentially having several rounds of inputs and
outputs and maintaining state between rounds. In Section 2.4 we consider an ideal functionality for
bounded reactive classical one-time programs; the ideal functionality for bounded-reactive OTPs is
specified inAppendix A.

2.3 Alternative view of QOTPs

It will sometimes be helpful, for example in Section 6, for us to have an alternative, functional view
of QOTPs, or the following equivalent.

A non-interactive protocol for evaluation of a channel � : (A,B) ! C consists of (i) an encoding
channel enc : A ! P applied by the sender on its input A that prepares a program state P, and (ii)
a decoding channel dec : (P,B) ! C applied by the receiver on the program state P and its input B
such that dec � enc and � are indistinguishable. This is represented diagrammatically in Figure 1.

(a) Ideal world

⇢ �
A

B
C

(b) Real world

⇢
encA

dec
B

P

C ⇡ �(⇢)

Figure 1: (a) In the ideal world, the receiver obtains the output of the ideal functionality for � on
arbitrary input registers (A,B). (b) In the real world, encoding and decoding maps implement the
functionality, namely dec � enc ⇡ �.

As noted, by the completeness of the dummy-adversary [Unr10], it is su�cient, in order
to establish UC security, to consider only the case of the dummy-adversary who forwards the
program register, P, to the environment. Thus, UC security can be established by exhibiting a
simulator that can re-create a state that is indistinguishable from the joint state (enc⌦ B)(⇢) of
registers (P,B), using only the ideal functionality; recall indistinguishability is from the perspective
of the environment, and could be perfect, statistical, or computational as appropriate. The
corresponding channels are depicted in Figure 2. Here, the simulator (sim1, sim2) consists of
channels sim1 : B ! (B0,M) and sim2 : (C,M) ! (P,B), where M is a private memory register for
the simulator; security holds if the channels sim2 �� � sim1 and enc⌦ B are indistinguishable.

2.4 Classical one-time programs

Our construction relies heavily on classical OTPs, the construction of which is given by Goyal et al. [GIS+10]:

Theorem 3. Let f be a non-reactive, sender-oblivious, polynomial-time computable classical two-
party functionality. Then there exists an e�cient, non-interactive protocol which statistically
classical-UC-emulates FOTP

f

in the FOTM-hybrid model.

9

•  	
  	
  	
  :	
  public	
  channel	
  
•  	
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•  dec:	
  run	
  program	
  state	
  
with	
  receiver’s	
  input	
  

•  C:	
  output	
  

�
⇢ = (A,B)



Security	
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Real	
  world	
  

(a) Real world

⇢

encA

BB

P

(b) Simulator
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sim1B

�A
B0

sim2

M

C
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B

Figure 2: (a) The sender prepares the program register P by applying enc to A. The sender cannot
touch B. (b) A simulator (sim1, sim2) should be able to re-create an indistinguishable state of (P,B)
using only the ideal functionality �.

In Appendix A, we use straightforward techniques to extend this result to sender-oblivious,
polynomial-time computable, bounded reactive classical two-party functionalities. The main result
on reactive OTPs, as used in our construction in Section 3, is:

Corollary 3.1. There exists a non-interactive protocol � that statistically classical-UC-emulates
FBR-OTP
g1,...g`

in the FOTM-hybrid model.

3 Constructing quantum OTPs from OTMs

We now state our main possibility theorem which establishes non-interactive unconditionally secure
quantum computation using OTM tokens.

Theorem 4. Let � be non-reactive, sender-oblivious polynomial-time quantum computable two-party
functionality. Then there exists an e�cient, quantum non-interactive protocol which statistically
quantum-UC-emulates FOTP

� in the case of a corrupt receiver, in the FOTM-hybrid model.

The proof of Theorem 4 follows directly from Theorem 5 below, together with Corollary 3.1, the
quantum lifting theorem, and Lemma 2.

Theorem 5. Let � be a non-reactive, sender-oblivious polynomial-time quantum computable two-
party functionality. Then there exists an e�cient, statistically quantum-UC-secure non-interactive
protocol which realizes FOTP

� in the case of a corrupt receiver, in the FBR-OTP-hybrid model.

The proof of Theorem 5 is presented in the following sections, which we briefly highlight here; a
detailed outline follows in the next section.

1. Section 4 presents our new trap authentication scheme, a type of quantum authentication
code. We show how perform a universal set of quantum gates (X, Y , Z, cnot, i-shift and
⇡/8 phases, and H) on authenticated data without knowing the authentication key.

2. Section 5 presents our protocol for quantum one-time programs and the proof its security.
Since computation on authenticated data requires updates to be performed that are dependent
on the authentication key, our protocol uses a reactive classical one-time program (based
on one-time memories) to allow the receiver to non-interactively implement the required
operations to correctly compute on the sender’s authenticated data.

The following sections 3.1–3.5 provide an overview of the proof and related techniques.

3.1 Quantum authentication codes

A quantum authentication scheme consists of procedures for encoding and decoding quantum
information with a secret classical key k such that an adversary with no knowledge of k who tampers

10
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  indis3nguishability	
  



Unlockable	
  channels	
  
A channel � is unlockable if there

exists a key state ⇠0 and a recovery

algorithm A that allows computation

of �(⇢) for any ⇢.

⇢ ⇠0

�A
B

A

C

K
B

C

output ⇡ �(⇢)

Figure 6: A channel � is unlockable if there exists a key state ⇠0 and a recovery algorithm A that
allows computation of �(⇢) for any ⇢.

6.1 Definition of unlockability

Informally, a function or channel is unlockable if there is a key2 input for the receiver that unlocks
enough information to fully simulate the map.

Definition 8 (Unlockable channel). A channel � : (A,B) ! C is unlockable if there exists a register
K, a key state ⇠0 of (B,K) and a recovery algorithm (i.e., channel) A : (C,K,B) ! C with the
property that A � (�0 ⌦ B) ⇡ �, where the channel �0 is specified by

�0 : A ! (C,K) : ⇢
A

7! (�⌦ K)(⇢A ⌦ ⇠0).

Here, ⇡ can denote perfect, statistical, or (for polynomial-time uniform families of channels {�
n

})
computational indistinguishability; in all cases, the channels �0 and A must have circuits of size
polynomial in the size of the circuit for �. See Figure 6 for a graphical depiction of unlockability.

For completeness let us note that, in the classical case, a function f : A⇥B ! C is unlockable
if there exists a key input b0 2 B and a recovery algorithm A : C ⇥B ! C such that, for all a 2 A
and b 2 B, it holds that f(a, b) = A(f(a, b0), b). Intuitively, an unlockable classical function admits
an algorithm that can compute all values of f(a, ·) given a one-time program for f(a, ·). But this is
okay because a simulator given one-shot oracle access to f(a, ·) can also compute f(a, b) for all b:
this function is “learnable” in one shot and so a simulator can do everything any algorithm can.

Simple examples of unlockable channels include all unitary channels of the form � : X 7! UXU⇤

for some unitary U and all constant channels of the form � : X 7! Tr(X)� for some fixed state �.
Simple examples of unlockable functions include permutations.

6.2 Trivial one-time programs for unlockable channels

We can now see that unlockable channels have OTPs; but trivially so.

Theorem 9 (OTPs for unlockable channels). Let � : (A,B) ! C be a channel specified by a circuit.
If � is unlockable then there exists an e�cient, non-interactive protocol which quantum-UC-emulates
FOTP
� in the plain quantum model. This holds in the perfect, statistical and computational cases.

Proof. We first construct a protocol that implements the functionality of FOTP
� in the plain quantum

model. To show that the protocol is secure, it su�ces according to the discussion in Section 2.3 to
consider just the dummy adversary and show that there exists a simulator which, with access only
to the ideal functionality, emulates the protocol and the dummy adversary.

The protocol is simple.

2Note we use “key” not in the cryptographic sense of a secret key, but in the metaphorical sense of something that
unlocks a lock.
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Theorem:	
  If	
  	
  	
  	
  	
  is	
  unlockable,	
  	
  
then	
  it	
  has	
  a	
  secure	
  QOTP	
  	
  
in	
  the	
  plain	
  quantum	
  model.	
  	
  
	
  
Theorem:	
  If	
  	
  	
  	
  	
  has	
  a	
  secure	
  QOTP	
  
in	
  the	
  plain	
  quantum	
  model,	
  	
  
then	
  it	
  is	
  unlockable.	
  	
  

	
  
	
  

Unlockable	
  
Trivial	
  OTP	
  in	
  plain	
  model	
  

Not	
  unlockable	
  
No	
  OTP	
  in	
  plain	
  quantum	
  model	
  

�

�

(3ghter	
  result	
  than	
  in	
  proceedings	
  version)	
  



2.	
  POSSIBILITY	
  
All	
  quantum	
  channels	
  admit	
  a	
  UC-­‐secure	
  
quantum	
  one-­‐3me	
  program	
  in	
  the	
  
classical	
  one-­‐3me	
  memory	
  model.	
  



Overview:	
  OTPs	
  for	
  quantum	
  channels	
  
in	
  the	
  OTM	
  model	
  

Main	
  idea:	
  “tamper-­‐proof”	
  computa+on	
  

The	
  QOTP	
  includes	
  
–  the	
  sender’s	
  input	
  
–  some	
  auxiliary	
  qubits	
  

encoded	
  in	
  a	
  “tamper-­‐proof”	
  but	
  
malleable	
  way:	
  
•  the	
  receiver	
  is	
  allowed	
  to	
  perform	
  

gates	
  on	
  the	
  encoded	
  data.	
  	
  
At	
  the	
  end,	
  the	
  receiver	
  gets	
  the	
  
output	
  as	
  long	
  as	
  he	
  performed	
  the	
  
sequence	
  of	
  gates	
  as	
  instructed.	
  	
  



Main	
  tools	
  
quantum	
  authen3ca3on	
  
codes	
  	
  
=	
  “tamper-­‐proof	
  encoding”	
  
	
  
Uses	
  a	
  classical	
  key;	
  detects	
  
tampering	
  with	
  high	
  
probability.	
  
	
  
Quantumly,	
  authen3ca3on	
  
implies	
  encryp3on.	
  
•  Barnum,	
  Crépeau,	
  Goaesman,	
  

Smith,	
  Tapp	
  (FOCS	
  2002)	
  

	
  
	
  
	
  

quantum	
  compu3ng	
  on	
  
authen3cated	
  data	
  (QCAD)	
  	
  
=	
  performing	
  gates	
  on	
  
“tamper-­‐proof”	
  encodings.	
  
	
  
QCAD	
  normally	
  requires	
  
classical	
  interac3on	
  with	
  the	
  
sender;	
  we	
  subs3tute	
  this	
  
with	
  a	
  classical,	
  UC-­‐secure	
  
OTP	
  as	
  given	
  by	
  prior	
  work.	
  



Quantum	
  authen3ca3on	
  codes	
  

We	
  use	
  an	
  encode	
  +	
  Pauli	
  encrypt	
  scheme.	
  
•  Pauli	
  encryp3on	
  maps	
  an	
  arbitrary	
  aaack	
  into	
  
a	
  mixture	
  of	
  Pauli	
  aaacks	
  (Pauli	
  twirl)	
  

•  So	
  all	
  we	
  need	
  is	
  a	
  family	
  of	
  codes	
  that	
  is	
  
secure	
  against	
  Pauli	
  aaacks.	
  	
  



Trap	
  authen3ca3on	
  code	
  

Let	
  E	
  be	
  self-­‐dual	
  CSS	
  code	
  
of	
  distance	
  d,	
  encoding	
  1	
  
logical	
  qubit	
  into	
  n	
  physical	
  
qubits.	
  

Theorem:	
  The	
  family	
  of	
  trap	
  
codes	
  is	
  (2/3)d/2–secure	
  
against	
  Pauli	
  aaacks.	
  
	
  
(Trap	
  codes	
  first	
  used	
  
implicitly	
  by	
  Shor	
  and	
  
Preskill	
  (PRL	
  ‘00).)	
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Need	
  a	
  method	
  to	
  
perform	
  gates	
  on	
  
authen3cated	
  (and	
  
encrypted)	
  data.	
  	
  



Gadgets	
  for	
  trap	
  code	
  universal	
  QCAD	
  

Techniques	
  inspired	
  by	
  
fault-­‐tolerant	
  quantum	
  
computa3on.	
  
	
  	
  
QCAD	
  originally	
  established	
  
for	
  the	
  signed	
  polynomial	
  
authen3ca3on	
  code	
  	
  
•  (Ben-­‐Or,	
  Crépeau,	
  Goaesman,	
  

Hassidim,	
  Smith,	
  FOCS	
  2006)	
  

Also	
  known	
  for	
  the	
  Clifford	
  
authen3ca3on	
  code	
  
•  (Dupuis,	
  Nielsen,	
  Salvail	
  	
  CRYPTO	
  ’12)	
  

1.  Measurement:	
  	
  	
  	
  	
  
•  computa3onal	
  basis	
  

measurement	
  of	
  logical	
  
data	
  

•  =	
  qubit-­‐wise	
  measurements	
  
of	
  physical	
  data	
  	
  +	
  classical	
  
decoding	
  

2.  Pauli	
  gates:	
  	
  
–  receiver	
  does	
  nothing	
  
–  sender	
  updates	
  the	
  Pauli	
  

encryp3on	
  key	
  



Gadgets	
  for	
  trap	
  code	
  universal	
  QCAD	
  
3.  CNOT:	
  
–  Bitwise	
  CNOT	
  
–  Simple	
  Pauli	
  key	
  updates	
  

4.  i	
  gate	
  
–  Auxiliary	
  (magic	
  state)	
  
prepared	
  by	
  the	
  sender	
  

–  one-­‐way	
  communica3on	
  
to	
  the	
  sender	
  required	
  

5.  π/8	
  gate	
  
–  Like	
  i-­‐gate,	
  but	
  sender	
  
decodes	
  result	
  and	
  
returns	
  it	
  to	
  the	
  receiver.	
  	
  

	
  
	
  

6.  Hadamard	
  
–  Use	
  gate	
  teleporta3on	
  
(Goaesman	
  and	
  Chuang)	
  

	
  



Encoding	
  and	
  decoding	
  gadgets	
  

How	
  does	
  the	
  receiver	
  get	
  
an	
  authen3cated	
  version	
  
of	
  his	
  input?	
  
•  Use	
  gate	
  teleporta3on!	
  

How	
  does	
  the	
  received	
  get	
  
an	
  unauthen3cated	
  
version	
  of	
  the	
  output?	
  
•  Use	
  gate	
  teleporta3on!	
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Figure 4: Circuits for teleporting through authentication and de-authentication

protocol for c-Ũ (see Section 5.2.3) so we have elected to present only the protocol for c-Ũ in this
paper. Whether or not the controlled-U is necessary for our somewhat simpler security proof is an
interesting unresolved question.

5.2.2 Specification

Let r be the number of gates in c-Ũ that require magic states. After the parties have received their
input registers A,B, a non-interactive protocol for c-Ũ consists of a single message from the sender
to the receiver. This message consists of the following objects:

1. Quantum registers Ã,Bin, B̃in,Bout, B̃out, Ẽ, M̃ = (M̃1, . . . , M̃r

) prepared in specific states de-
scribed in Protocol 2 below.

2. An (r+1)-round reactive classical one-time program (BR-OTP) described in Protocol 3 below.
In order to prepare this message, a code E 2 E and encryption Paulis P, S are chosen uniformly at
random. The Pauli S acts on B̃out and the Pauli P acts on (Ã, B̃in, Ẽ, M̃). (Here and throughout the
paper we adopt the convention that the portion of a multi-register Pauli acting on a single register
is denoted by the register name appearing in a subscript. For example, the portion of P acting
on M̃ is denoted PM̃ and it holds that P = PÃ ⌦ PB̃in

⌦ PẼ ⌦ PM̃.) The registers are prepared as
described in Protocol 2 and Figure 4.

Protocol 2 Message preparation for sender

(Bin, B̃in): Teleport-through-authentication state PB̃in
E|�+i. (See Figure 4(a).)

(B̃out,Bout): Teleport-through-de-authentication state obtained by discarding the syndrome
registers of E⇤S|�+i. (See Figure 4(b).)

Ã: Authenticated input state. Obtained by applying PÃE to the input register A.
Ẽ: Authenticated ancilla PẼE|0i|oni.
M̃: Authenticated magic states PM̃E|µi where |µi = |µ1i · · · |µr

i and |µ1i, . . . , |µr

i are
the r magic states required for c-U .

In addition to these registers, the sender prepares an (r + 1)-round BR-OTP to act as described
in Protocol 3.

This QOTP could be mass-produced The state of the authenticated register Ã depends upon
the state of the sender’s input register A. But the remaining registers could all be prepared (or
mass-produced) before A is received. Furthermore, the BR-OTP also does not depend upon A, but
it does depend upon the authentication key for Ã. This key could be chosen in advance, in which
case the BR-OTP could also be mass-produced before A is received.
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Protocol	
  for	
  QOTP	
  for	
  	
  	
  	
  	
  

To	
  prepare	
  a	
  QOTP:	
   To	
  use	
  a	
  QOTP:	
  

1.  Teleport	
  receiver’s	
  input	
  
through	
  encoding	
  gadget.	
  	
  

2.  Perform	
  target	
  circuit	
  using	
  
QCAD.	
  

3.  Teleport	
  receiver’s	
  output	
  
through	
  decoding	
  gadget.	
  	
  

4.  All	
  classical	
  interac3on	
  is	
  
done	
  via	
  the	
  classical	
  OTP.	
  	
  

•  sender’s	
  	
  
input	
  
encoded	
  

•  encoding	
  
gadget	
  

•  decoding	
  
gadget	
  

•  classical	
  OTP	
  implemen3ng	
  
interac3on	
  for	
  QCAD	
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Simulator	
  for	
  security	
  proof	
  

Simulator	
  prepares	
  fake	
  QOTP	
   Simulator	
  runs	
  the	
  protocol	
  

1.  Extract	
  receiver’s	
  input	
  using	
  
the	
  first	
  half	
  of	
  “encoding	
  
gadget”.	
  	
  

2.  Use	
  this	
  input	
  as	
  input	
  into	
  
the	
  ideal	
  func3onality.	
  

3.  Teleport	
  the	
  output	
  of	
  the	
  
ideal	
  func3onality	
  through	
  
second	
  half	
  of	
  “encoding	
  
gadget”.	
  	
  

4.  Con3nue	
  protocol	
  as	
  in	
  the	
  
real	
  world,	
  ensuring	
  same	
  
output	
  occurs	
  in	
  real	
  and	
  
ideal	
  se`ng.	
  

•  sender’s	
  	
  
input	
  
encoded	
  

•  encoding	
  
gadget	
  

•  decoding	
  
gadget	
  

•  classical	
  OTP	
  implemen3ng	
  
interac3on	
  for	
  QCAD	
  

Auth



Simulator	
  for	
  security	
  proof	
  

Simulator	
  prepares	
  fake	
  QOTP	
   Simulator	
  runs	
  the	
  protocol	
  

1.  Extract	
  receiver’s	
  input	
  using	
  
the	
  first	
  half	
  of	
  “encoding	
  
gadget”.	
  	
  

2.  Use	
  this	
  input	
  as	
  input	
  into	
  
the	
  ideal	
  func3onality.	
  

3.  Teleport	
  the	
  output	
  of	
  the	
  
ideal	
  func3onality	
  through	
  
second	
  half	
  of	
  “encoding	
  
gadget”.	
  	
  

4.  Con3nue	
  protocol	
  as	
  in	
  the	
  
real	
  world,	
  ensuring	
  same	
  
output	
  occurs	
  in	
  real	
  and	
  
ideal	
  se`ng.	
  

•  sender’s	
  	
  
input	
  
encoded	
  

•  encoding	
  
gadget	
  

•  decoding	
  
gadget	
  

•  classical	
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Auth

Proof:	
  
The	
  final	
  states	
  held	
  by	
  the	
  
environment	
  in	
  the	
  real	
  and	
  ideal	
  
world	
  are	
  close	
  in	
  trace	
  distance.	
  	
  
	
  
Proof	
  applies	
  to	
  any	
  encode-­‐
encrypt	
  authen3ca3on	
  scheme	
  
that	
  admits	
  QCAD.	
  
	
  
	
  
	
  
	
  
	
  
	
  



Summary	
  

1.  Quantum	
  informa3on	
  does	
  not	
  allow	
  for	
  QOTPs	
  of	
  
classical	
  func3ons	
  or	
  quantum	
  channels	
  in	
  the	
  plain	
  
model.	
  
–  except	
  for	
  trivial	
  “unlockable”	
  func3ons	
  

2.  UC-­‐secure	
  protocol	
  for	
  QOTPs	
  for	
  quantum	
  channels	
  
in	
  the	
  classical	
  bit	
  one-­‐3me	
  memory	
  (OTM)	
  model.	
  
–  new	
  quantum	
  authen3ca3on	
  code:	
  “trap	
  scheme”	
  
–  method	
  to	
  compute	
  on	
  authen3cated	
  data	
  

Open	
  ques3on:	
  possibility/impossibility	
  of	
  quantum	
  
program	
  obfusca3on.	
  


