
Elliptic Curve Cryptography

D. Stebila

School of Mathematical Sciences, QUT

Thursday, August 30, 2012



Outline

1. Cryptography
2. Elliptic curves
3. Elliptic curves in practice
4. Elliptic curves in theory
5. Elliptic curves at QUT

,
D. Stebila » Elliptic Curve Cryptography 2 / 30



Cryptography



Cryptography

Cryptography
Cryptography aims to provide confidentiality and integrity of
communications.

..Alice. Bob. unsecured channel.

Eve

▶ Symmetric key cryptography: Alice and Bob share a secret key k
that Eve does not know. (Fast!)

▶ Public key cryptography: Alice and Bob have each other’s public
keys pkA and pkB but no shared secrets. (Slow!)

,
D. Stebila » Elliptic Curve Cryptography 4 / 30



Cryptography

Cryptography
Cryptography aims to provide confidentiality and integrity of
communications.

..Alice. Bob. unsecured channel.

Eve

▶ Symmetric key cryptography: Alice and Bob share a secret key k
that Eve does not know. (Fast!)

▶ Public key cryptography: Alice and Bob have each other’s public
keys pkA and pkB but no shared secrets. (Slow!)

,
D. Stebila » Elliptic Curve Cryptography 4 / 30



Cryptography

Public key cryptography
Alice generates a pair of related keys:

▶ pkA: her public key, which she gives to anyone who wants to
communicate with her

▶ skA: her private key, which she keeps secret
It should be hard for an attacker to compute skA only given pkA.

Once Alice and Bob get each other’s public keys, they can do:
▶ public key encryption: Alice encrypts a message m under Bob’s

public key pkB to obtain a ciphertext c; only someone who knows skB
can decrypt c and recover the message m

▶ digital signatures: Alice constructs a signature σ for a message m
using skA; anyone with pkA can verify whether (m, σ) came from
someone who knows skA or not

▶ key agreement: Alice and Bob compute a shared key k that they can
use with symmetric encryption
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Cryptography

Cryptography on the web

Suppose Alice wants to securely send her credit card number to bob.com.
1. Alice obtains a true copy of the public key pkB for bob.com.
2. Alice and Bob run a key agreement protocol to get a shared secret k.
3. Alice and Bob use k with a symmetric cipher to encrypt their

communication.

The protocol that implements this is the Secure Sockets Layer (SSL)
protocol, also known as the Transport Layer Security (TLS) protocol,
which is the “s” in “https”.
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Cryptography

Modular arithmetic

a mod n
▶ Let n be a positive integer and a be a non-negative integer.
▶ a mod n is the remainder when a is divided by n.
▶ Example: 12 mod 5 = 2

primitive root modn
▶ Let g and n be positive integers.
▶ g is a primitive root modn if gn−1 mod n = 1 but gi mod n ̸= 1

for any 1 ≤ i < n− 1.

▶ Example:
g g2 g3 g4 g5 g6 mod 7

2 4 8 = 1 2 4 1

3 9 = 2 6 18 = 4 12 = 5 15 = 1
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Cryptography

Diffie–Hellman key exchange (1976)
Goal: Alice and Bob know each other’s public keys and want to establish a
shared secret key.

System parameters: p, a large prime number; g, a primitive root mod p.

Alice Bob
a←R {2, . . . , p− 1} b←R {2, . . . , p− 1}
A← ga mod p B← gb mod p

A−→
B←−

k← Ba mod p k′ ← Ab mod p

If Eve does not interfere:
▶ Alice computes k = Ba = (gb)a = gba mod p
▶ Bob computes k′ = Ab = (ga)b = gab = gba mod p

,
D. Stebila » Elliptic Curve Cryptography 8 / 30



Cryptography

Diffie–Hellman key exchange (1976)
Goal: Alice and Bob know each other’s public keys and want to establish a
shared secret key.
System parameters: p, a large prime number; g, a primitive root mod p.

Alice Bob
a←R {2, . . . , p− 1} b←R {2, . . . , p− 1}
A← ga mod p B← gb mod p

A−→
B←−

k← Ba mod p k′ ← Ab mod p

If Eve does not interfere:
▶ Alice computes k = Ba = (gb)a = gba mod p
▶ Bob computes k′ = Ab = (ga)b = gab = gba mod p

,
D. Stebila » Elliptic Curve Cryptography 8 / 30



Cryptography

Diffie–Hellman key exchange (1976)
Goal: Alice and Bob know each other’s public keys and want to establish a
shared secret key.
System parameters: p, a large prime number; g, a primitive root mod p.

Alice Bob
a←R {2, . . . , p− 1} b←R {2, . . . , p− 1}
A← ga mod p B← gb mod p

A−→
B←−

k← Ba mod p k′ ← Ab mod p

If Eve does not interfere:
▶ Alice computes k = Ba = (gb)a = gba mod p
▶ Bob computes k′ = Ab = (ga)b = gab = gba mod p

,
D. Stebila » Elliptic Curve Cryptography 8 / 30



Cryptography

Diffie–Hellman key exchange (1976)
Goal: Alice and Bob know each other’s public keys and want to establish a
shared secret key.
System parameters: p, a large prime number; g, a primitive root mod p.

Alice Bob
a←R {2, . . . , p− 1} b←R {2, . . . , p− 1}
A← ga mod p B← gb mod p

A−→
B←−

k← Ba mod p k′ ← Ab mod p

If Eve does not interfere:
▶ Alice computes k = Ba = (gb)a = gba mod p
▶ Bob computes k′ = Ab = (ga)b = gab = gba mod p

,
D. Stebila » Elliptic Curve Cryptography 8 / 30



Cryptography

Security of Diffie–Hellman key exchange

If Eve can compute the discrete logarithm of A to the base g (modp)
then she can find a and compute k.

1. Is computing discrete logarithms hard?
▶ We can’t just compute normal logarithms because we are working

integers modulo p.
▶ If p is a very large prime (≥ 1024 bits) and p− 1 is divisible by a large

prime (≥ 160 bits), then there is no known efficient algorithm.
▶ Still an open problem.
▶ Caveat: an efficient quantum algorithm is known, but large-scale

quantum computers can’t be built (yet).
2. Is there any other way of computing k?

▶ Not that we know of. But to prove that’s the case is an open problem.
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Cryptography

Security of Diffie–Hellman key exchange
Let p be a prime and p− 1 be divisible by a suitably large prime. Then the
best known (classical) algorithm for computing discrete logarithms takes

Lp = exp
(

3

√
64

9
(ln p)1/3(ln ln p)2/3

)
operations.

p Lp time in years for 106 PCs
1024 bits 286.8 210.5 = 1390
2048 bits 2116.9 240.6 = 1.6× 1012

4096 bits 2156.5 280.2 = 1.4× 1024

operations per year:

106 PCs× 365 days× 24 hrs× 60 mins× 60 secs× 3× 109 ops = 276.3
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Cryptography

Diffie–Hellman key exchange in a group
▶ A group is a set G along with an operation · which is closed,

associative, has an identity element, and inverses exist.
Example: Q \ {0} under multiplication.

▶ An abelian group is a group where the operation is commutative.
▶ A group has order q if there exists an element g ∈ G such that
{g0, g1, . . . , gq−1} = G; g is called a generator

System parameters: a group G with a generator g of large prime order q

Alice Bob
a←R {2, . . . , q− 1} b←R {2, . . . , q− 1}
A← ga B← gb

A−→
B←−

k← Ba(= gba) k′ ← Ab(= gab)
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Elliptic curves

Elliptic curves

An elliptic curve over R is the set of real points satisfying an equation of
the form

y2 = x3 + ax + b

where a, b ∈ R and 4a3 + 27b2 ̸= 0.

y2 = x3 − x + 1y2 = x3 − x

,
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Elliptic curves

Elliptic curve points as a group

We will construct a group consisting of the points of an elliptic curve under
the operation of point addition.

Define a “point at infinity O”.

P + Q = R P + R = O2P = R

P

Q

R

PR

P

R

From the geometric intuition, we can easily compute algebraic formulas for
point addition, point doubling, and point negation.
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Elliptic curves

Elliptic curve scalar–point multiplication
Having defined point addition and point doubling, we can define
scalar–point multiplication:

kP = P + P + · · ·+ P︸ ︷︷ ︸
k

We can compute kP more efficiently using the double-and-add algorithm:

5P = 2(2(P)) + P

Input: k = (kℓ−1, . . . , k1, k0)2, P
1. Q← O
2. for i from ℓ− 1 to 0 do:

2.1 Q← 2Q
2.2 if ki = 1 then Q← Q + P

Output: Q = kP
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Elliptic curves

Elliptic curves over prime fields

Let p be a prime. An elliptic curve over Zp is the set of integer points
modp satisfying an equation of the form

y2 = x3 + ax + b mod p

where a, b ∈ Zp and 4a3 + 27b2 ̸= 0 mod p.
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Elliptic curves

Elliptic curve Diffie–Hellman key exchange

System parameters: a prime p, an elliptic curve y2 = x3 + ax + b, and a
point P which is a generator of group of prime order q

Alice Bob
a←R {2, . . . , q− 1} b←R {2, . . . , q− 1}
A← aP B← bP

A−→
B←−

k← aB(= abP) k′ ← bA(= baP)
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Elliptic curves

Security of ECDH key exchange

If Eve can compute elliptic curve discrete logarithms, then she can find
a and compute k.

The best known (classical) algorithm for computing elliptic curve discrete
logarithms takes about √q operations.

DH modp ECDH
p Lp q √q time in years for 106 PCs

1024 bits 286.8 174 bits 287 210.5 = 1390
2048 bits 2116.9 235 bits 2117 240.6 = 1.6× 1012

4096 bits 2156.5 321 bits 2157 280.2 = 1.4× 1024

ECDH can achieve the same level of security with much smaller values.
Smaller values =⇒ faster computation.
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Elliptic curves in practice

ECC on the Internet
Most modern major web browsers and web servers support ECC:

▶ Microsoft Internet Explorer and Internet Information Server
▶ Mozilla Firefox∗∗
▶ Google Chrome∗
▶ Apache∗∗

Use of ECC is not too widespread, yet. But in November 2011, Google
changed their configuration so that all their web servers would use ECDH
as their default ciphersuite.

▶ Faster computation.
▶ Better security compared to existing RSA ciphersuites.
▶ Forward security: If Google’s long term public key gets compromised

later, your current encryptions can’t be broken.
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▶ Better security compared to existing RSA ciphersuites.

▶ Forward security: If Google’s long term public key gets compromised
later, your current encryptions can’t be broken.
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Figure 4. Relative costs in an HTTPS transaction for different file sizes.

can be expected to handle a higher page request rate with
lower delays. Figure 5 plots the first-response time reported
by http load as a function of page requests generated per
second. The results shown are for a 30KB page size and
66% session reuse reflecting the shopping cart usage model.
Here again, we notice that the use of ECC allows the

server to handle a larger number of requests (30%-270%
more) compared to RSA. At current security levels and un-
der low load, clients experience comparable latencies for
ECC-160 and RSA-1024. That is, the time taken for public-
key operations is low compared to SSL processing over-
heads and network latencies. However, the saturation point
of the server is reached earlier with RSA-1024 leading to a
sharp increase in latency at around 110 requests per second.
For RSA-2048, clients experience 90ms of latency, primar-
ily due to the RSA operation on the server, even under low
server load. In comparison, the exhibited latency for ECC-
224 is only 35ms or less than 40% of the RSA case.7 In
addition, the server saturation point for ECC-224 is reached
significantly later at around 140 requests per second com-
pared to 40 requests per second for RSA-2048.

7Themeasured roundtrip latency between the client and server was 3ms
for a 15KB ping payload and 6ms for a 30KB payload.

Figure 5. Response time v/s throughput plot
for Apache web server.



Elliptic curves in practice

Side-channel attacks on point multiplication
▶ The basic double-and-add point multiplication algorithm does an

extra operation whenever the key bit is 1.
▶ If an adversary can see when your computer does that extra operation,

she can recover your key.

▶ How? Side-channels such as electricity usage, radiation, or timing.

Figure : Point doubling and point addition
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Elliptic curves in practice

Side-channel attacks on point multiplication

Figure : Point multiplication
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Elliptic curves in practice

Side-channel attacks on point multiplication

Figure : Point multiplication with additions and doublings identified
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Elliptic curves in theory

Elliptic curve pairings

A bilinear pairing is a function e that given ga and gb can compute

e(ga, gb) = e(g, g)ab

Pairings can be used to construct many cryptographic protocols:
▶ 3-party Diffie–Hellman key exchange:

Alice A = ga, Bob B = gb, Charlie C = gc

k = e(g, g)abc = e(B,C)a = e(A,C)b = e(A,B)c

▶ identity-based encryption:
Instead of having to get Bob’s public key, Alice can encrypt a message
based on Bob’s identity, such as bob@gmail.com.
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Elliptic curves in theory

Fermat’s Last Theorem
▶ Theorem (Fermat, 1647). There exist no positive integers a, b, c

that satisfy the equation

an + bn = cn

for any integer n > 2.

▶ Proof. (1637–1994) “I have discovered a truly marvellous proof of
this, which this margin is too narrow to contain.”

▶ Frey (1984). If Fermat’s equation had a solution (a, b, c) for p > 2,
then the elliptic curve

y2 = x(x− ap)(x− bp)

would have unusual properties (violate the modularity theorem).
▶ Wiles (1995). Proof of modularity theorem and Fermat’s Last

Theorem. 100+ pages.
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Elliptic curve cryptography at QUT

Elliptic curve cryptography at QUT
Research:

▶ early implementations of ECC
▶ fast algorithms for ECC and pairings
▶ side-channel-resistant algorithms for ECC
▶ use of ECC and pairings in designing new cryptographic schemes

Teaching:
▶ MAB461 Discrete Mathematics:

modular arithmetic, number theory, RSA public key cryptography
▶ MAN778 Applications of Discrete Mathematics:

advanced number theory, group theory, Diffie–Hellman, introduction
to elliptic curves, provable security

▶ INN355 Cryptology and Protocols:
symmetric and public key cryptography

▶ INN652 Advanced Cryptology: elliptic curve cryptography
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