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Cryptography aims to provide confidentiality and integrity of
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Cryptography

Cryptography

Cryptography aims to provide confidentiality and integrity of
communications.

) unsecured channel
Alice T Bob

Eve

» Symmetric key cryptography: Alice and Bob share a secret key &
that Eve does not know. (Fast!)

» Public key cryptography: Alice and Bob have each other’s public
keys pk4 and pkp but no shared secrets. (Slow!)
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Cryptography

Public key cryptography
Alice generates a pair of related keys:

» pky: her public key, which she gives to anyone who wants to
communicate with her

» sky: her private key, which she keeps secret

It should be hard for an attacker to compute sk, only given pky.
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It should be hard for an attacker to compute sk, only given pky.

Once Alice and Bob get each other's public keys, they can do:

» public key encryption: Alice encrypts a message m under Bob's
public key pkp to obtain a ciphertext c; only someone who knows skp
can decrypt ¢ and recover the message m
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Public key cryptography
Alice generates a pair of related keys:

» pky: her public key, which she gives to anyone who wants to
communicate with her

» sky: her private key, which she keeps secret
It should be hard for an attacker to compute sk, only given pky.

Once Alice and Bob get each other's public keys, they can do:

» public key encryption: Alice encrypts a message m under Bob's
public key pkp to obtain a ciphertext c; only someone who knows skp
can decrypt ¢ and recover the message m

» digital signatures: Alice constructs a signature o for a message m
using ska; anyone with pk4 can verify whether (m, o) came from
someone who knows sk, or not

» key agreement: Alice and Bob compute a shared key k that they can
use with symmetric encryption
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Cryptography

Cryptography on the web

Suppose Alice wants to securely send her credit card number to bob. com.
1. Alice obtains a true copy of the public key pkp for bob. com.
2. Alice and Bob run a key agreement protocol to get a shared secret k.

3. Alice and Bob use k£ with a symmetric cipher to encrypt their
communication.
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Cryptography

Cryptography on the web

Suppose Alice wants to securely send her credit card number to bob. com.
1. Alice obtains a true copy of the public key pkp for bob. com.
2. Alice and Bob run a key agreement protocol to get a shared secret k.

3. Alice and Bob use k£ with a symmetric cipher to encrypt their
communication.

The protocol that implements this is the Secure Sockets Layer (SSL)
protocol, also known as the Transport Layer Security (TLS) protocol,

which is the “s" in “https”.
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Cryptography

Modular arithmetic

a mod n
» Let n be a positive integer and a be a non-negative integer.

» a mod n is the remainder when a is divided by n.

» Example: 12 mod 5 = 2

7/30

D. Stebila » Elliptic Curve Cryptography



Cryptography

Modular arithmetic

a mod n
» Let n be a positive integer and a be a non-negative integer.
» a mod n is the remainder when a is divided by n.

» Example: 12 mod 5 = 2

primitive root modn
» Let g and n be positive integers.
> g is a primitive root modn if ¢°! mod n =1 but ¢¢ mod n # 1
forany 1 <i<n-—1.
gl & | & | & | & |4 mod7
» Example: 2 4 8=1 4 1
319=2 6 18=41]12=5 15=1

\)
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Cryptography

Diffie—Hellman key exchange (1976)

Goal: Alice and Bob know each other’s public keys and want to establish a
shared secret key.
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Diffie—Hellman key exchange (1976)

Goal: Alice and Bob know each other’s public keys and want to establish a
shared secret key.

System parameters: p, a large prime number; g, a primitive root mod p.
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Cryptography

Diffie—Hellman key exchange (1976)

Goal: Alice and Bob know each other’s public keys and want to establish a
shared secret key.

System parameters: p, a large prime number; g, a primitive root mod p.

Alice Bob
a+pr{2,...,p—1} b<pr{2,...,p—1}
A+ ¢ mod p B+ ¢ mod p
A,
B
<_
k+ B* mod p K+ A® mod p
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Cryptography

Diffie—Hellman key exchange (1976)

Goal: Alice and Bob know each other’s public keys and want to establish a
shared secret key.

System parameters: p, a large prime number; g, a primitive root mod p.

Alice Bob
a+pr{2,...,p—1} b<pr{2,...,p—1}
A+ ¢ mod p B+ ¢ mod p
A,
B
<_
k+ B* mod p K+ A® mod p

If Eve does not interfere:
> Alice computes k= B% = (¢*)* = ¢"* mod p
» Bob computes ¥ = A = (¢*)? = ¢° = ¢** mod p
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Cryptography

Security of Diffie-Hellman key exchange

If Eve can compute the discrete logarithm of A to the base g (modp)
then she can find a and compute k.
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Security of Diffie-Hellman key exchange

If Eve can compute the discrete logarithm of A to the base g (modp)
then she can find a and compute k.
1. Is computing discrete logarithms hard?

» We can't just compute normal logarithms because we are working
integers modulo p.
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Security of Diffie-Hellman key exchange

If Eve can compute the discrete logarithm of A to the base g (modp)
then she can find a and compute k.

1. Is computing discrete logarithms hard?
» We can't just compute normal logarithms because we are working
integers modulo p.
» If pis a very large prime (> 1024 bits) and p — 1 is divisible by a large
prime (> 160 bits), then there is no known efficient algorithm.
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» We can't just compute normal logarithms because we are working
integers modulo p.

» If pis a very large prime (> 1024 bits) and p — 1 is divisible by a large
prime (> 160 bits), then there is no known efficient algorithm.

» Still an open problem.

» Caveat: an efficient quantum algorithm is known, but large-scale
quantum computers can't be built (yet).
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Security of Diffie—-Hellman key exchange

If Eve can compute the discrete logarithm of A to the base g (modp)
then she can find a and compute k.

1. Is computing discrete logarithms hard?

» We can't just compute normal logarithms because we are working
integers modulo p.

» If pis a very large prime (> 1024 bits) and p — 1 is divisible by a large
prime (> 160 bits), then there is no known efficient algorithm.

» Still an open problem.

» Caveat: an efficient quantum algorithm is known, but large-scale
quantum computers can't be built (yet).

2. Is there any other way of computing £?
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Cryptography

Security of Diffie—-Hellman key exchange

If Eve can compute the discrete logarithm of A to the base g (modp)
then she can find a and compute k.

1. Is computing discrete logarithms hard?

» We can't just compute normal logarithms because we are working
integers modulo p.

» If pis a very large prime (> 1024 bits) and p — 1 is divisible by a large
prime (> 160 bits), then there is no known efficient algorithm.

» Still an open problem.

» Caveat: an efficient quantum algorithm is known, but large-scale
quantum computers can't be built (yet).

2. Is there any other way of computing £?

» Not that we know of. But to prove that’s the case is an open problem.
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Cryptography

Security of Diffie-Hellman key exchange

Let p be a prime and p — 1 be divisible by a suitably large prime. Then the
best known (classical) algorithm for computing discrete logarithms takes

L, = exp (i’/?(lnp)l/g(ln lnp)2/3>

operations.
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Cryptography

Security of Diffie—-Hellman key exchange

Let p be a prime and p — 1 be divisible by a suitably large prime. Then the
best known (classical) algorithm for computing discrete logarithms takes

L, = exp (i’/?(lnp)l/g(ln lnp)2/3>

operations.
D L, | time in years for 105 PCs
1024 bits 2868 2105 — 1390
2048 bits 2116:9 2406 — 1.6 x 1012
4096 bits 21565 2802 — 1 4 x 10*4

operations per year:

10% PCs x 365 days x 24 hrs x 60 mins x 60 secs x 3 x 10 ops = 2763
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Cryptography

Diffie—-Hellman key exchange in a group

» A group is a set G along with an operation - which is closed,
associative, has an identity element, and inverses exist.
Example: @\ {0} under multiplication.

» An abelian group is a group where the operation is commutative.

» A group has order ¢ if there exists an element g € G such that
{,g' ..., 971} = G; gis called a generator
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Diffie—-Hellman key exchange in a group

» A group is a set G along with an operation - which is closed,
associative, has an identity element, and inverses exist.
Example: @\ {0} under multiplication.

» An abelian group is a group where the operation is commutative.

» A group has order ¢ if there exists an element g € G such that
{,g' ..., 971} = G; gis called a generator

System parameters: a group GG with a generator ¢ of large prime order ¢
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Cryptography

Diffie—-Hellman key exchange in a group

» A group is a set G along with an operation - which is closed,
associative, has an identity element, and inverses exist.
Example: @\ {0} under multiplication.

» An abelian group is a group where the operation is commutative.

» A group has order ¢ if there exists an element g € G such that
{,g' ..., 971} = G; gis called a generator

System parameters: a group GG with a generator ¢ of large prime order ¢

Alice Bob
CL(—R{2,...,(]—1} b%R{Z,...,q—l}
A+ ¢° B+« ¢

A

—

B

<_
k + B(= ¢") K« Ab(= o)
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Elliptic curves

Elliptic curves

An elliptic curve over R is the set of real points satisfying an equation of
the form

V=24 ar+b
where a,b € R and 4a® + 270 #£ 0.

A
AR

B -z Y=o —z+1
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Elliptic curves

Elliptic curve points as a group

We will construct a group consisting of the points of an elliptic curve under
the operation of point addition.
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Elliptic curve points as a group

We will construct a group consisting of the points of an elliptic curve under
the operation of point addition. Define a "point at infinity O".
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Elliptic curves

Elliptic curve points as a group

We will construct a group consisting of the points of an elliptic curve under
the operation of point addition. Define a "point at infinity O".

17 i

P+Q=R 2P=R P+R=0

From the geometric intuition, we can easily compute algebraic formulas for
point addition, point doubling, and point negation.
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Elliptic curves

Elliptic curve scalar—point multiplication

Having defined point addition and point doubling, we can define
scalar—point multiplication:

kP=P+P+---+P
~—_—
k
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Elliptic curves

Elliptic curve scalar—point multiplication

Having defined point addition and point doubling, we can define
scalar—point multiplication:

kP=P+P+---+P
~—_—
k

We can compute kP more efficiently using the double-and-add algorithm:

5P=2(2(P)) + P
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Elliptic curves

Elliptic curve scalar—point multiplication

Having defined point addition and point doubling, we can define
scalar—point multiplication:

kP=P+P+---+P
~—_—
k

We can compute kP more efficiently using the double-and-add algorithm:
5P=2(2(P))+ P

Input: k= (ki—1,..., k1, k)2, P
1. Q« O
2. for i from ¢ — 1 to 0 do:

2.1 Q+2Q
22 ifk;=1then Q+ Q+ P

Output: @ = kP
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Elliptic curves

Elliptic curves over prime fields

Let p be a prime. An elliptic curve over Z, is the set of integer points
mod p satisfying an equation of the form

v¥=2"+ax+b mod p

where a, b € Z, and 4a® +270* 40 mod p.
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Elliptic curves

Elliptic curve Diffie—-Hellman key exchange

System parameters: a prime p, an elliptic curve 1> = 23 + az + b, and a
point P which is a generator of group of prime order ¢
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Elliptic curves

Elliptic curve Diffie—-Hellman key exchange

System parameters: a prime p, an elliptic curve 1> = 23 + az + b, and a
point P which is a generator of group of prime order ¢

Alice Bob
a<r{2,...,q—1} b<pr{2,...,9—1}
A<+ aP B« bP

A,

B

<_

k < aB(= abP) K «+ bA(= baP)
D. Stebila » Elliptic Curve Cryptography
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Elliptic curves

Security of ECDH key exchange

If Eve can compute elliptic curve discrete logarithms, then she can find
a and compute k.

The best known (classical) algorithm for computing elliptic curve discrete
logarithms takes about /g operations.
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Elliptic curves

Security of ECDH key exchange

If Eve can compute elliptic curve discrete logarithms, then she can find

a and compute k.

The best known (classical) algorithm for computing elliptic curve discrete

logarithms takes about /g operations.

DH modp ECDH

b Ly q V4

time in years for 10 PCs

1024 bits 2568 | 174 bits  2%7
2048 bits 21169 | 235 pijts 2117
4096 bits 21565 | 321 bits 2157

2105 — 1390
2406 — 1.6 x 1012
2802 — 1 4 x 10%
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Elliptic curves

Security of ECDH key exchange

If Eve can compute elliptic curve discrete logarithms, then she can find
a and compute k.

The best known (classical) algorithm for computing elliptic curve discrete
logarithms takes about /g operations.

DH modp ECDH

P L, q \/q | time in years for 10% PCs
1024 bits 2868 [ 174 bits 287 2105 — 1390
2048 bits 21169 | 235 bits 2117 2406 — 1.6 x 102
4096 bits 21965 | 321 bits 2157 2802 — 1 4 x 10

ECDH can achieve the same level of security with much smaller values.
Smaller values = faster computation.
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Elliptic curves in practice

ECC on the Internet

Most modern major web browsers and web servers support ECC:
» Microsoft Internet Explorer and Internet Information Server

Mozilla Firefox**

v

v

Google Chrome*
Apache**

\4
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Most modern major web browsers and web servers support ECC:
» Microsoft Internet Explorer and Internet Information Server

Mozilla Firefox**

Google Chrome*

Apache**

v

v

\4

Use of ECC is not too widespread, yet. But in November 2011, Google
changed their configuration so that all their web servers would use ECDH
as their default ciphersuite.

» Faster computation.
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Use of ECC is not too widespread, yet. But in November 2011, Google
changed their configuration so that all their web servers would use ECDH
as their default ciphersuite.

» Faster computation.

» Better security compared to existing RSA ciphersuites.
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Elliptic curves in practice

ECC on the Internet

Most modern major web browsers and web servers support ECC:
» Microsoft Internet Explorer and Internet Information Server

Mozilla Firefox**

Google Chrome*

Apache**

v

v

\4

Use of ECC is not too widespread, yet. But in November 2011, Google
changed their configuration so that all their web servers would use ECDH
as their default ciphersuite.

» Faster computation.
» Better security compared to existing RSA ciphersuites.

» Forward security: If Google's long term public key gets compromised
later, your current encryptions can't be broken.
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ﬂ www.google.com.au Documents Calendar More
The identity of this website has been verified by Google

Internet Authority.
Certificate Information Sign in
ﬂ “Your connection to www.google.com.au is encrypted with
128-bit encryption.
The connection uses TLS 1.0
The connection is encrypted using RC4_128, with SHA1 for
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exchange mechanism

The connection is not compressed. ) Ugl‘
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Elliptic curves in practice

Side-channel attacks on point multiplication

» The basic double-and-add point multiplication algorithm does an
extra operation whenever the key bit is 1.

» If an adversary can see when your computer does that extra operation,
she can recover your key.
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Side-channel attacks on point multiplication

» The basic double-and-add point multiplication algorithm does an
extra operation whenever the key bit is 1.

» If an adversary can see when your computer does that extra operation,
she can recover your key.

» How? Side-channels such as electricity usage, radiation, or timing.
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Elliptic curves in practice

Side-channel attacks on point multiplication

» The basic double-and-add point multiplication algorithm does an
extra operation whenever the key bit is 1.

» If an adversary can see when your computer does that extra operation,
she can recover your key.

» How? Side-channels such as electricity usage, radiation, or timing.

30 S0 7000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000 O 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000 6500 7000

clock cycle clock cycle

Figure : Point doubling and point addition
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Elliptic curves in practice

Side-channel attacks on point multiplication
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Figure : Point multiplication
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Elliptic curves in practice

Side-channel attacks on point multiplication

Figure : Point multiplication with additions and doublings identified
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Elliptic curves in theory

Elliptic curve pairings

A bilinear pairing is a function e that given g® and ¢® can compute

e(g%, 9") = e(g, 9)*"
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Elliptic curves in theory

Elliptic curve pairings

A bilinear pairing is a function e that given g® and ¢® can compute

e(g%, 9") = e(g, 9)*"

Pairings can be used to construct many cryptographic protocols:
» 3-party Diffie-Hellman key exchange:
Alice A = g% Bob B = ¢, Charlie C'= ¢°
k= e(g, g)% = e(B, C)* = e(A, C)" = ¢(A, B)°
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Elliptic curves in theory

Elliptic curve pairings

A bilinear pairing is a function e that given g® and ¢® can compute

e(g%, 9") = e(g, 9)*"

Pairings can be used to construct many cryptographic protocols:
» 3-party Diffie-Hellman key exchange:
Alice A = g% Bob B = ¢, Charlie C'= ¢°
k= e(g, g)abc = 6(B7 C)a = G(A’ O)b = e(Av B)c
» identity-based encryption:

Instead of having to get Bob’s public key, Alice can encrypt a message
based on Bob's identity, such as bob@gmail . com.
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Elliptic curves in theory

Fermat’'s Last Theorem

» Theorem (Fermat, 1647). There exist no positive integers a, b, ¢
that satisfy the equation

a+ b ="

for any integer n > 2.
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» Theorem (Fermat, 1647). There exist no positive integers a, b, ¢
that satisfy the equation

a+ b ="

for any integer n > 2.

» Proof. (1637-1994) "I have discovered a truly marvellous proof of
this, which this margin is too narrow to contain.”
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Fermat’'s Last Theorem

» Theorem (Fermat, 1647). There exist no positive integers a, b, ¢
that satisfy the equation
a®+ bt ="

for any integer n > 2.

» Proof. (1637-1994) "I have discovered a truly marvellous proof of
this, which this margin is too narrow to contain.”

» Frey (1984). If Fermat's equation had a solution (a, b, ¢) for p > 2,
then the elliptic curve

7 = oo~ ")z~ b7)

would have unusual properties (violate the modularity theorem).
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Elliptic curves in theory

Fermat’'s Last Theorem

» Theorem (Fermat, 1647). There exist no positive integers a, b, ¢
that satisfy the equation

a+ b ="

for any integer n > 2.

» Proof. (1637-1994) "I have discovered a truly marvellous proof of
this, which this margin is too narrow to contain.”

» Frey (1984). If Fermat's equation had a solution (a, b, ¢) for p > 2,
then the elliptic curve

7 = oo~ ")z~ b7)

would have unusual properties (violate the modularity theorem).

» Wiles (1995). Proof of modularity theorem and Fermat's Last
Theorem. 100+ pages.
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Elliptic curve cryptography at QUT

Elliptic curve cryptography at QUT
Research:

» early implementations of ECC

» fast algorithms for ECC and pairings

» side-channel-resistant algorithms for ECC

» use of ECC and pairings in designing new cryptographic schemes
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Elliptic curve cryptography at QUT
Research:

» early implementations of ECC

» fast algorithms for ECC and pairings

» side-channel-resistant algorithms for ECC

» use of ECC and pairings in designing new cryptographic schemes
Teaching:

» MAB461 Discrete Mathematics:
modular arithmetic, number theory, RSA public key cryptography

» MAN778 Applications of Discrete Mathematics:
advanced number theory, group theory, Diffie-Hellman, introduction
to elliptic curves, provable security

» INN355 Cryptology and Protocols:
symmetric and public key cryptography

» INNG652 Advanced Cryptology: elliptic curve cryptography
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