
Performance Analysis of Elliptic Curve Cryptography for
SSL

Vipul Gupta
Sun Microsystems, Inc.

2600 Casey Avenue
Mountain View, CA 94303

vipul.gupta@sun.com

Sumit Gupta
Sun Microsystems, Inc.

2600 Casey Avenue
Mountain View, CA 94303

gupta.sumit@sun.com

Sheueling Chang
Sun Microsystems, Inc.

2600 Casey Avenue
Mountain View, CA 94303

sheueling.chang@sun.com

ABSTRACT
Elliptic Curve Cryptography (ECC) is emerging as an at-
tractive public-key cryptosystem for mobile/wireless envi-
ronments. Compared to traditional cryptosystems like RSA,
ECC offers equivalent security with smaller key sizes, which
results in faster computations, lower power consumption, as
well as memory and bandwidth savings. This is especially
useful for mobile devices which are typically limited in terms
of their CPU, power and network connectivity.

However, the true impact of any public-key cryptosystem
can only be evaluated in the context of a security proto-
col. This paper presents a first estimate of the performance
improvements that can be expected in SSL (Secure Socket
Layer), the dominant security protocol on the Web today,
by adding ECC support.

Categories and Subject Descriptors
C.4 [Performance of Systems]: Measurement techniques;
E.3 [Data Encryption]: Public key cryptosystems; C.2.2
[Computer Communication Networks]: Network Pro-
tocols—applications

General Terms
Security, Performance

Keywords
Internet Security, Wireless, Secure Socket Layer (SSL), El-
liptic Curve Cryptography (ECC)

1. INTRODUCTION
With the rapid deployment of applications like online bank-

ing, stock trading and corporate remote access, recent years
have seen an explosive growth in the amount of sensitive
data exchanged over the Internet. These days, an increas-
ing number of Internet hosts are battery-powered, wireless,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WiSe’02, September 28, 2002, Atlanta, Georgia, USA.
Copyright 2002 ACM 1-58113-585-8/02/0005 ...$5.00.

handheld devices with strict memory, CPU, latency and
bandwidth constraints [1]. Given these trends, there is a
clear need for efficient, scalable security mechanisms and
protocols that operate well in both wired and wireless envi-
ronments.

Most Internet security protocols (e.g. SSL [2], IPsec) em-
ploy a public-key cryptosystem to derive symmetric-keys
and then use fast symmetric-key algorithms to ensure confi-
dentiality, integrity and source authentication of bulk data.
RSA is the most commonly used public-key cryptosystem
today. The security of a system is only as good as that
of its weakest component; for this reason, the work factor
needed to break a symmetric key must match that needed
to break the public-key cryptosystem used for key establish-
ment. Due to expected advances in cryptanalysis and in-
creases in computing power available to an adversary, both
symmetric and public-key sizes must grow over time to of-
fer acceptable security for a fixed protection life span, and
Table 1 [3] shows this expected key-size growth for various
symmetric and public-key cryptosystems.

Table 1: Computationally equivalent key sizes.
Symmetric ECC RSA/DH/DSA

80 163 1024
128 283 3072
192 409 7680
256 571 15360

As shown in Table 1, the Elliptic Curve Cryptosystem
(ECC), offers the highest strength per bit of any known
public-key cryptosystem today. ECC not only uses smaller
keys for equivalent strength compared to traditional public-
key cryptosystems like RSA, the key size disparity grows as
security needs increase. This makes it especially attractive
for constrained wireless devices because smaller keys result
in power, bandwidth and computational savings. ECC was
first proposed by Victor Miller [5] and independently by Neal
Koblitz [6] in the mid 1980s and today it has evolved into
a mature public-key cryptosystem. It was also recently en-
dorsed by the U.S. government [4].

However, the true benefit and performance impact of any
cryptosystem is closely tied to how it is used within a secu-
rity protocol. In particular, it is imperative that expected
performance improvements at the protocol level be carefully
weighed against the usual costs associated with deploying
any new technology.

This paper describes our work on integrating ECC into the
Secure Socket Layer Protocol and a preliminary evaluation
of the performance impact. We chose SSL because it is
the most popular and trusted security protocol on the Web.
In the form of HTTPS (HTTP secured using SSL), SSL is
single handedly responsible for the widespread adoption of
e-commerce and many emerging wireless devices too now
have SSL capabilities. Our estimates are based on using the
cryptographic execution times on an SSL client and server as
a first approximation for the total processing time in an SSL
transaction. Such an analysis can be generalized to estimate
the performance of a cryptosystem within any other security
protocol as well.

This paper is structured as follows. Section 2 provides
an overview of ECC technology. Section 3 describes the
SSL protocol and its usage of RSA and ECC public-key
cryptosystems. Section 4 summarizes the public-key crypto-
graphic operations needed to establish an SSL connection.
An analytical performance comparison of RSA and ECC
based SSL connections is presented in Section 5. Finally,
we summarize our conclusions and discuss future work in
Section 6.

2. ECC OVERVIEW
At the foundation of every public key cryptosystem is a

hard mathematical problem that is computationally infea-
sible to solve. For instance, RSA and Diffie-Hellman rely
on the hardness of integer factorization and the discrete log-
arithm problem respectively. Unlike these cryptosystems
which operate over integer fields, the Elliptic Curve Cryp-
tosystems (ECC) operates over points on an elliptic curve.

The fundamental mathematical operation in RSA and
Diffie-Hellman is modular integer exponentiation. However,
the core of elliptic curve arithmetic is an operation called
scalar point multiplication, which computes Q = kP (a point
P multiplied k times resulting in another point Q on the
curve). Scalar multiplication is performed through a com-
bination of point-additions (which add two distinct points
together) and point-doublings (which add two copies of a
point together). For example, 11P can be expressed as
11P = (2 ∗ ((2 ∗ (2 ∗ P)) + P)) + P .

The security of ECC relies on the hardness of solving
the Elliptic Curve Discrete Logarithm Problem (ECDLP),
which states that given P and Q = kP , it is hard to find
k. While a brute-force approach is to compute all multiples
of P until Q is found, k would be so large in a real crypto-
graphic application that it would be infeasible to determine
k in this way.

Besides the curve equation, an important elliptic curve pa-
rameter is the base point , G, which is fixed for each curve. In
the Elliptic Curve Cryptosystem, the large random integer
k is kept private and forms the secret key, while the result
Q of multiplying the the private key k with the curve’s base
point G serves as the corresponding public key.

Not every elliptic curve offers strong security properties
and for some curves the ECDLP may be solved efficiently.
Since a a poor choice of the curve can compromise secu-
rity, standards organizations like NIST and SECG have pub-
lished a set of recommended curves [4] with well understood
security properties. The use of these curves is also recom-
mended as a means of facilitating interoperability between
different implementations of a security protocol.

Elliptic Curve Diffie Hellman (ECDH) [7] and Elliptic

Curve Digital Signature Algorithm (ECDSA) [8] are the El-
liptic Curve counterparts of the Diffie-Hellman key exchange
and Digital Signature Algorithm, respectively.

In ECDH key agreement, two communicating parties A
and B agree to use the same curve parameters. They gener-
ate their private keys, kA and kB and corresponding public
keys QA = kA.G and QB = kB .G. The parties exchange
their public keys. Finally each multiplies its private key and
the other’s public key to arrive at a common shared secret
kA.QB = kB .QA = kA.KB .G.

While a description of ECDSA is not provided here, it
similarly parallels DSA.

3. SSL OPERATION

3.1 Overview
Secure Sockets Layer [2] is the most widely deployed and

used security protocol on the Internet today. The protocol
has withstood years of scrutiny by the security community
and is now trusted to secure virtually all sensitive web-based
applications ranging from online banking and stock trading
to e-commerce.

SSL offers encryption, source authentication and integrity
protection for data exchanged over insecure, public networks.
It operates above a reliable transport service like TCP and
has the flexibility to accommodate different cryptographic
algorithms for key agreement, encryption and hashing. How-
ever, the specification does recommend particular combina-
tions of these algorithms, called cipher suites, which have
well-understood security properties. For example, a cipher
suite such as RSA-RC4-SHA would indicate RSA as the key
exchange mechanism, RC4 for bulk encryption, and SHA for
hashing.

The two main components of SSL are the Handshake pro-
tocol and the Record Layer protocol. The Handshake pro-
tocol allows an SSL client and server to negotiate a com-
mon cipher suite, authenticate each other1, and establish
a shared master secret using public-key cryptographic algo-
rithms. The Record Layer derives symmetric-keys from the
master secret and uses them with faster symmetric-key algo-
rithms for bulk encryption and authentication of application
data.

Public-key cryptographic operations are the most com-
putationally expensive portion of SSL processing. SSL al-
lows the re-use of a previously established master secret re-
sulting in an abbreviated handshake that does not involve
any public-key cryptography, and requires fewer and shorter
messages. However, a client and server must perform a full
handshake on their first interaction. Moreover, practical is-
sues such as server load, limited session cache and naive
load balancers can adversely impact the ability to use an
abbreviated handshake. Therefore, speeding up the public-
key operations in SSL still remains a very active area for
research and development.

1Client authentication is optional. Only the server is typi-
cally authenticated at the SSL layer and client authentica-
tion is is achieved at the application layer, e.g. through the
use of passwords sent over an SSL-protected channel. How-
ever, some deployment scenarios do require stronger client
authentication through certificates.

ServerClient

ClientHello (Initial proposal)

(Conveys server’s authenticated

(Rarely used, has acceptable types, CAs)

(Client verifies server’s encryption key

ServerKeyExchange*
CertificateRequest*

(Has client’s RSA verification key)
ServerHelloDone

ServerHello
Certificate*

Certificate*
ClientKeyExchange

}
(Ciphersuite negotiated)

RSA encryption key)

and sends encrypted random secret)

CertificateVerify* (Proves possession of client’s RSA
signing key)

Application Data Application Data

Finished

[ChangeCipherSpec]

[ChangeCipherSpec]

Finished (Ready for bulk encryption, authentication)

Figure 1: RSA-based SSL Handshake

3.2 RSA-based Handshake
Today, the most commonly used public-key cryptosystem

for master-key establishment is RSA. Figure 1 shows the
operation of an RSA-based SSL handshake.

In this type of SSL handshake, the client and server first
exchange random nonces (used for replay protection) and
negotiate a cipher suite with ClientHello and ServerHello

messages. The server then sends its signed RSA public-key
either in the ServerCertificate message or the ServerKeyEx-

change message. To verify the server’s RSA public key,
the client performs an RSA public key operation. Then
the client generates a 48-byte random number (the pre-

master secret), encrypts it with the server’s public key (an
RSA public-key operation), and sends it in the ClientKeyEx-

change message. The server uses its RSA private-key to de-
crypt the premaster secret. Both end-points then use the
premaster secret to create a master secret which, along with
previously exchanged nonces, is used to derive the cipher
keys, initialization vectors and MAC (Message Authentica-
tion Code) keys for bulk encryption by the Record Layer.

The server can optionally request client authentication at
the SSL layer by sending a CertificateRequest message list-
ing acceptable certificate types and certificate authorities.
In this case, besides performing the operations as described
above, the client sends its RSA public-key in a ClientCer-

tificate and proves possession of the corresponding private
key by including a digital signature in the CertificateVer-

ify message. Producing this signature requires the client to
perform an RSA private-key operation.

3.3 ECC-based Handshake
A draft [3] describing the use of ECC with TLS 2 has been

proposed at the IETF, and it forms the basis of our analysis
in this paper.

Since ECC is a public-key cryptographic mechanism, only
the handshake protocol is affected by incorporating ECC
into SSL. Figure 2 shows the operation of an ECC-based SSL
handshake, as specified in [3]. Through the first two mes-
sages (processed in the same way as for RSA) the client and
server negotiate an ECC based cipher suite (for example,
ECDH-ECDSA-RC4-SHA). However, the ServerCertificate

message contains the server’s Elliptic Curve Diffie-Hellman
(ECDH) public key signed by a certificate authority using
the Elliptic Curve Digital Signature Algorithm (ECDSA).
After validating the ECDSA signature, the client conveys
its ECDH public-key to the server in the ClientKeyExchange

2TLS[9] is another name for SSL version 3.1

ServerClient

ClientHello (Initial proposal)

(Has server’s authenticated ECDH

ServerHello
Certificate*

(Ciphersuite negotiated)

(Rarely used, has acceptable types, CAs)
ServerKeyExchange*

CertificateRequest*
ServerHelloDone

Certificate*

public key certified w/ ECDSA signature)

(Has client’s long-term ECDH or
ECDSA public-key)

(Client verifies server’s key,
computes ECDH shared secret)

ClientKeyExchange (If not empty, contains client’s
ephemeral ECDH public key)

CertificateVerify* (If needed, proves possession of client’s
ECDSA signing key)

Application Data Application Data

Finished

[ChangeCipherSpec]

[ChangeCipherSpec]

Finished (Ready for bulk encryption, authentication)

Figure 2: ECC-based SSL Handshake

message. Next, each entity uses its own ECDH private-key
and the other’s public-key to perform an ECDH operation
and arrive at a shared premaster secret. The derivation of
the master secret and symmetric keys is unchanged com-
pared to RSA.

Client authentication is still optional but the actual mes-
sage exchange depends on the type of authentication re-
quested by the server and the kind of certificate a client
possesses. If the client certificate has a long term ECDSA
key, client authentication works similarly to the RSA case
– the client sends its certificate in the ClientCertificate, a
newly generated (ephemeral) ECDH public-key in the Clien-

tKeyExchange, and signs the CertificateVerify message us-
ing its ECDSA private key.

However, if the client’s certificate contains a long-term
ECDH public-key, it is sent to the server in the ClientCer-

tificate message. In this case, the ClientKeyExchange mes-
sage is empty and the CertificateVerify message is not sent.
The client’s ability to generate a valid Finished message im-
plicitly proves possession of the ECDH private-key.

The second form of client authentication is computation-
ally cheaper for both sides but requires the client to have an
ECDH certificate with the same curve parameters as those
in the server certificate. If a client wishes to interact with
multiple servers that use different parameters, it would need
multiple certificates to use the second form of authentica-
tion.

4. PUBLIC-KEY CRYPTOGRAPHY IN SSL
Table 2 summarizes the various public-key cryptographic

operations performed by a client and server in different modes
of the of the SSL handshake.

4.1 Without Client Authentication

1. RSA Handshake

The client performs two RSA public-key operations –
one to verify the server’s certificate and another to
encrypt the premaster secret with the server’s public
key. The Server only performs one RSA private-key
operation to decrypt the ClientKeyExchange message
and recover the premaster secret.

2. ECDH-ECDSA Handshake

The client performs an ECDSA verification to verify

Table 2: Cryptographic operations in an SSL Handshake.

RSA ECDH-ECDSA

Client RSAverify + RSAencrypt ECDSAverify + ECDHop

Server RSAdecrypt ECDHop

(a) Only the server is authenticated

RSA ECDH-ECDSA

Client RSAverify + RSAencrypt + RSAsign (i) ECDSAverify + ECDHop or

(ii) ECDSAverify + ECDSAsign + ECDHop

Server 2 ∗ RSAverify + RSAdecrypt (i) ECDSAverify + ECDHop or

(ii) 2 ∗ ECDSAverify + ECDHop

(b) Both client and server are authenticated

the server’s ECDSA certificate and then an ECDH op-
eration using its private ECDH key and the server’s
public ECDH key to compute the shared premaster.
All the server needs to do is perform an ECDH oper-
ation to arrive at the same secret.

4.2 With Client Authentication

1. RSA Handshake

The client performs two RSA public-key operations
(same as without client authentication) but addition-
ally performs an RSA private-key operation to gen-
erate the CertificateVerify message The server per-
forms two RSA public-key operations (one to verify the
client’s certificate and another to verify the client’s sig-
nature in the CertificateVerify message) and a private-
key operation to decrypt the premaster secret

2. ECDH-ECDSA Handshake

(i) When the client uses an ECDH certificate, both
sides perform an ECDSA verification operation on the
other’s certificate followed by an ECDH operation to
compute the premaster secret.

(ii) When the client uses an ECDSA certificate, the op-
erations required on the two sides are asymmetric. The
client performs an ECDSA verification of the server’s
certificate, an ECDH operation to compute the pre-
master secret and an ECDSA signature to generate
the CertificateVerify message. The server performs an
ECDH operation to compute the premaster secret and
two ECDSA verifications – one to verify the client’s
certificate and another to verify the CertificateVerify

message.

5. PERFORMANCE EVALUATION

5.1 Performance Metrics
While Table 2 identifies the individual cryptographic op-

erations for the two sides in an SSL connection, the relevant
performance metrics for the client and server may be quite
different. An appropriate choice of such metrics is key to
evaluate “perceived” performance accurately. In the case of
a server that aggregates thousands of SSL requests, connec-
tion throughput (number of connections handled per sec-
ond) is important. On the other hand, for a typical client

which sequentially establishes one SSL connection at a time,
connection latency is more important.

As a first approximation, we use the following two metrics
for performance comparisons:

Handshake Crypto Latency This is the total time spent
on performing cryptographic operations on the client
and server. For instance, in the case of an RSA hand-
shake without client authentication, this is the sum of
times spent by the client doing two RSA public key
operations and the server doing one RSA private key
operation.

Server Crypto Throughput This is the rate at which the
server can perform the cryptographic operations needed
in the handshake. The client’s performance is not a
factor because the server can interleave multiple con-
nections from different clients. For instance, in the
case of an ECDH-ECDSA handshake without client
authentication, the Server Crypto Throughput mea-
sured in connections per second is 1000/(ECDHop

time in milliseconds).

Besides the public-key cryptographic operations, a full
handshake also involves other delays due to message pars-
ing, hashing and network latency. Therefore, the handshake
crypto latency serves as a lower bound on the total hand-
shake latency. Similarly, the Server Crypto Throughput fig-
ure only provides an upper bound on the actual SSL con-
nection rate. Section 6 describes our plans regarding an em-
pirical performance study involving actual measurements of
SSL-level performance.

Network round trip delays can be a significant component
of the handshake latency especially in the case of a slow
wireless network such as CDPD. Latencies in the TCP/IP
stack and web server implementation can further add to user
perceived delay.

5.2 Measured algorithm-level performance
As part of adding ECC support to OpenSSL [10], the

most widely used open source implementation of SSL, we
have enhanced the OpenSSL cryptographic library to sup-
port ECDH and ECDSA. We have also added the ability
to generate and process X.509 certificates containing ECC
keys.

Table 3: Measured performance of public-key algorithms (in milliseconds).
RSAencrypt,verify RSAdecrypt,sign ECDSAverify ECDSAsign ECDHop

Ultra-80 1.7 32.1 13.0 6.8 6.1
6.1 205.5 18.1 9.2 8.7

Yopy 10.8 188.7 46.5 24.5 22.9
39.1 1273.8 76.6 39.0 37.7

Table 3 shows the measured performance of primitive RSA,
ECDH, and ECDSA operations using the OpenSSL0.9.6b
speed program (enhanced to include ECC) on two plat-
forms: (i) Yopy, a Linux PDA equipped with a 200MHz
StrongARM processor, and (ii) an Ultra-80TM, a Sun server
equipped with a 450MHz Ultra-SPARC II processor. There
are two rows of numbers for each platform. The top row is
for 1024-bit RSA and 163-bit ECC whereas the bottom row
is for 2048-bit RSA and 193-bit ECC.

The next section uses these measured numbers for the
various plots.

5.3 Analytical SSL-level performance
To simulate various real world usage scenarios, we com-

pare RSA and ECDH-ECDSA handshakes in each of the
following cases:

Case I A Yopy to another Yopy (to model a Peer-to-Peer
scenario of two small wireless handhelds communicat-
ing),

Case II A Yopy client talking to an Ultra 80 server (to
simulate a wireless web scenario of a wireless handheld
requesting a secure page from a webserver), and

Case III An Ultra 80 talking to another Ultra-80 (to model
a usual desktop to webserver interaction).

The comparison in Figure 3(a) uses 1024-bit RSA and
163-bit ECC keys and does not involve client authentica-
tion. In terms of Server Crypto Throughput, ECC is more
than five times better than RSA on the two platforms we
consider. In terms of Handshake Crypto Latency, the com-
parison is more interesting. When both the SSL client and
the server are on the same platform, we notice that ECC is
nearly twice as fast as RSA. However, in the case of the Yopy
client communicating with the Ultra-80 server, RSA beats
out ECC. Compared to Case I, the SSL server is running on
a faster platform in Case II and as shown in Table 3, this
change speeds up the RSA decryption to a greater extent
(from 188.7 ms to 32.1 ms) than it speeds up the ECDH
operation (from 22.9 ms to 6.1 ms). The gain this provides
to RSA puts it ahead of ECC in this situation.

Figure 3(b) compares the same scenarios as Figure 3(a)
but with the addition of client-side authentication. As ex-
pected, client authentication using ECDH certificates per-
forms better than client authentication using ECDSA cer-
tificates. More importantly, ECC beats out RSA on all the
criteria we consider. While ECC’s advantage over RSA in
terms of Server Crypto Throughput is not as spectacular as
before, it is still considerable especially when ECDH certifi-
cates are used.

We repeated these experiments using 2048-bit RSA keys
and 193-bit ECC keys. We found ECC to perform better
than RSA without any exceptions, even for Case II without

client authentication. Figure 4 shows the impact of using
higher key sizes for the Yopy client communicating with the
Ultra-80 server with and without client authentication. It
is clear from the figure that the performance advantage of
ECC over RSA increases at higher key sizes.

6. CONCLUSIONS AND FUTURE WORK
The above analysis suggests that the use of ECC cipher

suites can offer significant performance benefits to SSL clients
and servers especially as security needs increase. Already,
there is significant momentum behind widespread adoption
of the Advanced Encryption Standard (AES) which speci-
fies the use of 128-bit, 192-bit and 256-bit symmetric keys.
As indicated in Table 1, key sizes for public key cryptosys-
tems used to establish AES keys will also need to increase
from current levels. We believe this trend bodes well for
the future of Elliptic Curve Cryptography and not just for
wireless environments.

We have completed implementing ECC cipher suites in
OpenSSL0.9.6b and currently migrating those changes to
the latest OpenSSL version. Webservers and browsers that
use OpenSSL for SSL processing can now use our variant
to communicate securely via ECC cipher suites. We have
validated this claim for Dillo and Lynx, two open-source
browsers, and the Apache web server.

We are now in the process of setting up a testbed that
would allow us to empirically study the impact of using
ECC-based cipher suites. We intend to discuss those results
in a more detailed follow-on publication.

7. ACKNOWLEDGMENTS
The authors would like to thank Hans Eberle, Nils Gura,

and Daniel Finchelstein for their support on this project.

8. ADDITIONAL AUTHORS
Additional authors: Douglas Stebila (Department of Com-

binatorics and Optimization, University of Waterloo, email:
dstebila@uwaterloo.ca).

9. REFERENCES
[1] IDC, “IDC envisions a time when majority of

Internet access will be through wireless devices”, see
http://www.idc.com:8080/communications/press/pr/
CM041000pr.stm

[2] A. Frier, P. Karlton and P. Kocher, “The SSL3.0
Protocol Version 3.0”, see http://home.netscape.com
/eng/ssl3/.

[3] S. Blake-Wilson and T. Dierks, “ECC Cipher Suites
for TLS”, Internet draft <draft-ietf-tls-ecc-01.txt>,
work in progress, Mar. 2001.

������������

������
������
������
������
������
������
������
������
������
������
������
������
������
���

������
������
������
������
������
������
������
������
������
������
������
������
������
���

������
������
���

������
������
���

��������������������

��������������������

20

40

60

80

100

120

140

160

180

200

220

H
an

ds
ha

ke
 C

ry
pt

o
L

at
en

cy
 (

m
s)

Case I Case II Case III

1024-bit RSA
163-bit ECC

	�	
�

��������������
����������
�
�

�
�

�
�

�
�

�
�

�������������������������

��
��
�

0

20

40

60

80

100

120

140

160

180

Se
rv

er
’s

 C
ry

pt
o

R
at

e
(c

on
n/

s)

Yopy Ultra-80

1024-bit RSA
163-bit ECC

(a) Without Client Authentication

������

������
������
������
������
������
������
������
������
������
������
������
������
������
���

������
������
������
������
������
������
������
������
������
������
������
������
������
���

������
������
������
������
������
������
������
������
���

������
������
������
������
������
������
������
������
���

�������������������������

�������������������������

������

������
������
������
������
������
������
���

������
������
������
������
������
������
���

��

��

������
������

������
������

0

50

100

150

200

250

300

350

400

450

H
an

ds
ha

ke
 C

ry
pt

o
L

at
en

cy
 (

m
s)

Case I Case II Case III

1024-bit RSA
163-bit ECC (ECDH client cert)

163-bit ECC (ECDSA client cert)

 � � !�!!�!

"�"�"�""�"�"�""�"�"�"
#�#�#�##�#�#�##�#�#�#

$�$�$�$$�$�$�$$�$�$�$$�$�$�$$�$�$�$$�$�$�$$�$�$�$$�$�$�$$�$�$�$$�$�$�$$�$�$�$$�$�$�$$�$�$�$$�$�$�$$�$�$�$

%�%�%%�%�%%�%�%%�%�%%�%�%%�%�%%�%�%%�%�%%�%�%%�%�%%�%�%%�%�%%�%�%%�%�%%�%�%

&&
&&
&&
&&
&&
&&
&&
&

'�'(�(

)�)�)�))�)�)�))�)�)�))�)�)�))�)�)�))�)�)�)

��*�**�*�*�**�*�*�**�*�*�**�*�*�**�*�*�*

+�+�++�+�++�+�++�+�++�+�++�+�++�+�++�+�++�+�++�+�++�+�++�+�++�+�++�+�++�+�++�+�+

,�,�,,�,�,,�,�,,�,�,,�,�,,�,�,,�,�,,�,�,,�,�,,�,�,,�,�,,�,�,,�,�,,�,�,,�,�,,�,�,

--
--
--
--
--
--
--
--

0

5

10

15

20

25

30

35

40

45

50

55

Se
rv

er
’s

 C
ry

pt
o

R
at

e
(c

on
n/

s)

Yopy Ultra-80

1024-bit RSA
163-bit ECC (ECDH client cert)

163-bit ECC (ECDSA client cert)

(b) With Client Authentication

Figure 3: RSA v/s ECC based handshake on different platforms.

�����
�����
�����
�����

�������������� �����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

50

100

150

200

250

300

H
an

ds
ha

ke
 C

ry
pt

o
L

at
en

cy
 (

m
s)

RSA-1024,ECC-163 RSA-2048,ECC-193

RSA
ECDH-ECDSA

�����
�����
���
���

	�	�	�	
	�	�	�	
	�	�	�	
	�	�	�	
	�	�	�	

�
�

�
�

�
�

�
�

�
�

����������
0

20

40

60

80

100

120

140

160

180

Se
rv

er
’s

 C
ry

pt
o

R
at

e
(c

on
n/

s)

RSA-1024,ECC-163 RSA-2048,ECC-193

RSA
ECDH-ECDSA

(a) Without Client Authentication

�
�
���

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

��������

�����
�����
�����

�����
�����
�����

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

0

200

400

600

800

1000

1200

1400

1600

H
an

ds
ha

ke
 C

ry
pt

o
L

at
en

cy
 (

m
s)

RSA-1024,ECC-163 RSA-2048,ECC-193

RSA
ECDH-ECDSA (ECDH client cert)

ECDH-ECDSA (ECDSA client cert)

��������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������

�����
�����
�����

����� �

!�!�!�!
!�!�!�!
!�!�!�!
!�!�!�!
!�!�!�!
!�!�!�!
!�!�!�!
!�!�!�!
!�!�!�!
!�!�!�!
!�!�!�!
!�!�!�!
!�!�!�!
!�!�!�!
!�!�!�!
!�!�!�!

"�"�"�"
"�"�"�"
"�"�"�"
"�"�"�"
"�"�"�"
"�"�"�"
"�"�"�"
"�"�"�"
"�"�"�"
"�"�"�"
"�"�"�"
"�"�"�"
"�"�"�"
"�"�"�"
"�"�"�"
"�"�"�"

#�#�#
#�#�#
#�#�#
#�#�#
#�#�#
#�#�#
#�#�#
#�#�#
#�#�#
#�#�#
#�#�#
#�#�#

$�$�$
$�$�$
$�$�$
$�$�$
$�$�$
$�$�$
$�$�$
$�$�$
$�$�$
$�$�$
$�$�$
$�$�$

0

5

10

15

20

25

30

35

40

45

50

55

Se
rv

er
’s

 C
ry

pt
o

R
at

e
(c

on
n/

s)

RSA-1024,ECC-163 RSA-2048,ECC-193

RSA
ECDH-ECDSA (ECDH client cert)

ECDH-ECDSA (ECDSA client cert)

(b) With Client Authentication

Figure 4: Impact of using higher key sizes in Case II (Case I and Case III show similar trends).

[4] NIST, “Recommended Elliptic Curves for Federal
Government Use”, July 1999, see
http://csrc.nist.gov/csrc/fedstandards.html.

[5] V. Miller, “Uses of elliptic curves in cryptography”,
Lecture Notes in Computer Science 218: Advances in
Cryptology - CRYPTO ’85, pages 417-426,
Springer-Verlag, Berlin, 1986.

[6] N. Koblitz, “Elliptic curve cryptosystems”,
Mathematics of Computation, 48:203-209, 1987.

[7] ANSI X9.62, “The Elliptic Curve Digital Signature
Algorithm (ECDSA)”, American Bankers Association,
1999.

[8] ANSI X9.63, “Elliptic Curve Key Agreement and Key
Transport Protocols”, American Bankers Association,
1999.

[9] T. Dierks and C. Allen, January 1999. “The TLS
Protocol - Version 1.0.”, IETF RFC 2246, see
http://www.ietf.org/rfc/rfc2246.txt

[10] The OpenSSL Project, see
http://www.openssl.org/.

