
Authenticated Network Time Synchronization

Benjamin Dowling
Queensland University of Technology

b1.dowling@qut.edu.au

Douglas Stebila
McMaster University

stebilad@mcmaster.ca

Greg Zaverucha
Microsoft Research

gregz@microsoft.com

Abstract

The Network Time Protocol (NTP) is used by many
network-connected devices to synchronize device time
with remote servers. Many security features depend on the
device knowing the current time, for example in deciding
whether a certificate is still valid. Currently, most services
implement NTP without authentication, and the authen-
tication mechanisms available in the standard have not
been formally analyzed, require a pre-shared key, or are
known to have cryptographic weaknesses. In this paper
we present an authenticated version of NTP, called ANTP,
to protect against desynchronization attacks. To make
ANTP suitable for large-scale deployments, it is designed
to minimize server-side public key operations by infre-
quently performing a key exchange using public key cryp-
tography, then relying solely on symmetric cryptography
for subsequent time synchronization requests; moreover,
it does so without requiring server-side per-connection
state. Additionally, ANTP ensures that authentication
does not degrade accuracy of time synchronization. We
measured the performance of ANTP by implementing it
in OpenNTPD using OpenSSL. Compared to plain NTP,
ANTP’s symmetric crypto reduces the server throughput
(connections/second) for time synchronization requests
by a factor of only 1.6. We analyzed the security of ANTP
using a novel provable security framework that involves
adversary control of time, and show that ANTP achieves
secure time synchronization under standard cryptographic
assumptions; our framework may also be used to analyze
other candidates for securing NTP.

Keywords: time synchronization, Network Time Pro-
tocol (NTP), provable security, network security

1 Introduction

The Network Time Protocol (NTP) is one of the Internet’s
oldest protocols, dating back to RFC 958 [15] published
in 1985. In the simplest NTP deployment, a client device

sends a single UDP packet to a server (the request), who
responds with a single packet containing the time (the
response). The response contains the time the request was
received by the server, as well as the time the response
was sent, allowing the client to estimate the network delay
and set their clock. If the network delay is symmetric, i.e.,
the travel time of the request and response are equal, then
the protocol is perfectly accurate. Accuracy means that
the client correctly synchronizes its clock with the server
(regardless of whether the server clock is accurate in the
traditional sense, e.g., synchronized with UTC).

The importance of accurate time for security. There
are many examples of security mechanisms which (often
implicitly) rely on having an accurate clock:
• Certificate validation in TLS and other protocols.

Validating a public key certificate requires confirm-
ing that the current time is within the certificate’s
validity period. Performing validation with a slow
or inaccurate clock may cause expired certificates to
be accepted as valid. A revoked certificate may also
validate if the clock is slow, since the relying party
will not check for updated revocation information.
• Ticket verification in Kerberos. In Kerberos, authen-

tication tickets have a validity period, and proper
verification requires an accurate clock to prevent
authentication with an expired ticket.
• HTTP Strict Transport Security (HSTS) policy du-

ration. HSTS [10] allows website administrators to
protect against downgrade attacks from HTTPS to
HTTP by sending a header to browsers indicating
that HTTPS must be used instead of HTTP. HSTS
policies specify the duration of time that HTTPS
must be used. If the browser’s clock jumps ahead,
the policy may expire re-allowing downgrade attacks.
A related mechanism, HTTP Public Key Pinning [7]
also relies on accurate client time for security.

For clients who set their clocks using NTP, these se-
curity mechanisms (and others) can be attacked by a

mailto:b1.dowling@qut.edu.au
mailto:stebilad@mcmaster.ca
mailto:gregz@microsoft.com


network-level attacker who can intercept and modify NTP
traffic, such as a malicious wireless access point or an
insider at an ISP. In practice, most NTP servers do not
authenticate themselves to clients, so a network attacker
can intercept responses and set the timestamps arbitrarily.
Even if the client sends requests to multiple servers, these
may all be intercepted by an upstream network device
and modified to present a consistently incorrect time to
a victim. Such an attack on HSTS was demonstrated by
Selvi [28], who provided a tool to advance the clock of
victims in order to expire HSTS policies. Malhotra et
al. [12] present a variety of attacks that rely on NTP being
unauthenticated, further emphasizing the need for authen-
ticated time synchronization. (Confidentiality, however,
is not a requirement for time synchronization, since all
time synchronization is public. Similarly, client-to-server
authentication is not a goal.)

NTP security today. Early versions of NTP had no
standardized authentication method. NTPv3 added an
authentication method using pre-shared key symmetric
cryptography. An extension field in the NTP packet added
a cryptographic checksum, computed over the packet.
In NTPv3 negotiation of keys and algorithms must be
done out-of-band. For example, NIST offers a secure
time server, and (symmetric) keys are transported from
server to client by postal mail [21]. Establishing pre-
shared symmetric keys with billions of client PCs and
other NTP-synchronizing devices would be impractical.
NTPv4 introduced a public key authentication mechanism
called Autokey which has not seen widespread adoption;
and unfortunately, Autokey uses small 32-bit seeds that
can be easily brute forced to then forge packets. A more
recent proposal is the Network Time Security (NTS) pro-
tocol [31], which we discuss in §2.3.

Most NTP servers do not support NTP authentica-
tion, and NTP clients in desktop and laptop operating
systems will set their clocks based on unauthenticated
NTP responses. On Linux and OS X, by default the
client either polls a server periodically, or creates an NTP
request when the network interface is established. In
both cases the system clock will be set to any time spec-
ified by the NTP response. On Windows, by default
clients will synchronize their clock every nine hours (us-
ing time.microsoft.com), and ignore responses that
would change the clock by more than 15 hours. These two
defaults reduce the opportunity for a man-in-the-middle
(MITM) attacker to change a victim clock and the amount
by which it may be changed, but cumulative small-scale
changes can build over time to large-scale time inaccu-
racies. Teichel et al. used this technique when attacking
time-synchronization secured by TESLA-like protocols
[33]. In Windows domains (a network of computers, of-
ten in an enterprise), the domain controller provides the
time with an authenticated variant of NTPv3 [14].

1.1 Contributions

We present the ANTP protocol for authenticated network
time synchronization, along with results on its perfor-
mance and security. ANTP protocol messages are trans-
ported in the extension fields of NTP messages. ANTP
allows a server to authenticate itself to a client using pub-
lic key certificates and public key exchange, and provides
cryptographic assurance using symmetric cryptography
that no modification of the packets has occurred in transit.
Like other authenticated time synchronization protocols
using public keys [31], we assume an out-of-band method
for certificate validation exists, as certificate validation
requires an accurate clock. We follow the direction set
by the IETF Informational document “Security Require-
ments of Time Protocols in Packet-Switched Networks”
(RFC 7384) [20] to determine what cryptographic, com-
putational, and storage properties ANTP should achieve.

ANTP has three phases. In the negotiation phase, the
client and server agree on which cryptographic algorithms
to use; this phase would be carried out quite infrequently,
on the order of monthly or less. In the key exchange
phase, the client and server use public key cryptography
to establish a symmetric key that the server will use to
authenticate later time synchronization responses; this
phase would also be carried out infrequently, say monthly.
In the time synchronization phase, the client sends a time
synchronization request, and the server replies with an
NTP response that is symmetrically authenticated using
the key established in the key exchange phase; this may
be done frequently, perhaps daily or more often. No-
tably, the server need not keep per-client state: the server
offloads any such state to the client by encrypting and
authenticating it under a long-term symmetric key, and
the client sends that ciphertext back to the server with
each subsequent request.

The time synchronization phase of ANTP can be run in
a “no-cryptographic-latency” mode: here, the server sends
two response packets, the first being the unauthenticated
NTP packet, and the second being the same NTP packet
(with unchanged timestamps) along with the ANTP ex-
tensions providing authentication. The client measures
the roundtrip time based on the unauthenticated response,
but does not update its clock until authenticating the re-
sponse. In this way, no time synchronization inaccuracy is
added by the time required to compute the authentication
tag over the outgoing timestamp. Since the latency of
ANTP’s time synchronization phase is nearly as fast as
unauthenticated simple NTP time synchronization (only
21 microseconds slower at 50% load in our implementa-
tion as reported below), we make this mode optional since
plain ANTP may be sufficiently accurate for general use.

ANTP performance. Performance constraints on time
synchronization protocols are driven by the fact that time

time.microsoft.com


Phase Throughput Latency within LAN (µs) Latency across US (ms)
50% load 90% load 50% load 90% load

ANTP – Negotiation – RSA 58 240 186 ± 26 202 ± 44 76.3 ± 0.1 77.5 ± 0.1
ANTP – Negotiation – ECDH 146 808 172 ± 35 233 ± 133 75.3 ± 0.1 75.3 ± 0.1

ANTP – Key Exchange – RSA 1 754 891 ± 125 997 ± 348 75.8 ± 0.2 76.9 ± 0.5
ANTP – Key Exchange – ECDH 13 210 197 ± 56 344 ± 142 74.7 ± 0.2 75.4 ± 0.4

ANTP – Time Synchronization 175 644 168 ± 35 230 ± 160 73.5 ± 0.1 73.7 ± 0.1

ANTP – All 3 phases – RSA – 2255 ± 587 2646 ± 345 226.6 ± 6.2 258.0 ± 35
ANTP – All 3 phases – ECDH – 1325 ± 499 2252 ± 1172 231.8 ± 10.5 223.3 ± 6.7

NTP 291 926 147 ± 34 181 ± 136 72.4 ± 0.1 74.0 ± 0.1

Table 1: Performance results for each phase of ANTP (top), a complete 3-phase execution of ANTP (middle), and NTP
(bottom). Throughput: mean completed phases per second. Latency: mean and standard deviation of the latency of
server responses at either 50% or 90% server load on a local area network (reported in microseconds) and across the
United States (between Virginia and California) (reported in milliseconds). All are computed over 5 trials, top and
bottom over 100 seconds each; see Section 4.2 for details.

servers are heavily loaded, and must provide responses
promptly. ANTP’s design allows it to achieve high per-
formance while maintaining high security. The frequently
performed time synchronization phase uses only symmet-
ric cryptography, making it only slightly more expensive
than simple NTP time synchronization. Since the ses-
sion key established in the key exchange phases is reused
across many time synchronization phases, expensive pub-
lic key operations are amortized, and can be separately
load-balanced. And, as noted above, ANTP offloads state
to clients, leaving the server stateless.

We implemented ANTP in OpenNTPD’s [34] imple-
mentation of NTP, using OpenSSL’s libcrypto library
(but not SSL/TLS) [35] for cryptographic computations.
Table 1 reports the performance of our implementation,
compared with unauthenticated simple NTP. ANTP does
decrease throughput and increase latency, but the im-
pact is quite reasonable. On a single core of a server,
ANTP can support 175k authenticated time synchroniza-
tion phase connections per second, a factor of 1.6 fewer
than the 291k unauthenticated simple NTP connections
per second. Latency for time synchronization (over a 1
gigabit per second local area network) at 50% load in-
creases from 147 microseconds for unauthenticated sim-
ple NTP to 168 microseconds for ANTP’s time synchro-
nization phase. The other two phases, negotiation and
key exchange, will be performed far less frequently on
average by clients. Throughput of negotiation phases is
bandwidth-, not CPU-, limited. For exchange, we imple-
mented methods: 2048-bit RSA key transport and static-
ephemeral elliptic curve Diffie–Hellman key exchange
using the NIST P-256 curve; as expected, both of these
are substantially more expensive than time synchroniza-
tion phases, but are also performed far less frequently.

Protocol Auth. Security Server Round
type operations trips

NTPv0–v2 — — — 1

NTPv3 sym. key no proof 1 hash 1
sym. key

NTPv4 pub. key flaws 2
n pub. key, 4

Autokey (§. 2.3) 1
n +1 sym. key

tlsdate [3] pub. key relies 2
n pub. key† 4

on TLS 5
n +7 sym. key† stateful

NTS [31] pub. key ProVerif 3
n pub. key, 4

proof [32] 2
n +2 sym. key

ANTP pub. key proof 1
n pub. key, 3

(Fig. 3) (Sec. 6) 6
n +2 sym. key

Table 2: Comparison of time synchronization proto-
cols. Server operations per time synchronization in-
cludes public key decryptions, symmetric key encryp-
tions/decryptions, and hashes/KDFs/MACs. a

n + b de-
notes a operations that can be amortized over n time
synchronizations plus b operations per time sync.
† tlsdate operation counts vary based on ciphersuite.

Details of our implementation and testing methodology,
as well as more results, appear in Section 4.

ANTP compares well with other authentication meth-
ods for NTP, as seen in Table 2. ANTP uses fewer amor-
tized public key operations compared to NTPv4 Autokey
and NTS and has fewer rounds. NTPv3 using symmet-
ric key operations is more lightweight, but is highly re-
stricted in that it only supports symmetric authentication
via pre-established symmetric keys, making it unsuitable
for deployment with billions of devices.

Because ANTP is designed-for-purpose, it is also more



efficient than applying general purpose security protocols
to NTP. For example, one might consider simply applying
TLS or DTLS to NTP packets to obtain authentication.
Unfortunately, TLS and DTLS do not achieve full state-
lessness as is desirable for high throughput applications
that need to resist denial of service attacks. TLS and
DTLS both require that the server maintain state during
the initial handshake (which requires 3 round trips) and
during session resumption handshakes (which requires 2
round trips). While the server can offload state between
the initial handshake and the session resumption using
session tickets, there is no standardized mechanism to
do so during the handshakes. DTLS servers also must
maintain mappings between clients and sessions, as UDP
does not provide this functionality. ANTP avoids these
problems by having the server offload state at every step.
ANTP is also much more efficient in terms of communi-
cation size, as TLS/DTLS have a variety of extensions
that consume substantial bandwidth.

ANTP security. ANTP’s design is supported by a thor-
ough analysis of its cryptographic security using the prov-
able security paradigm. To do so, we extend existing
frameworks for key exchange and secure channels [5, 11]
to develop a novel framework that handles protocols
where time plays a central role. The adversary in our
security analysis is a network attacker capable of delet-
ing, reordering, editing, and creating messages between
parties. Since our model is about time synchronization,
parties in our model have local clocks, and the adver-
sary is given complete control over the initialization of
all clocks, as well as the ability to increment the time
of parties not involved in a protocol run. This allows
us to model the ability of an adversary to delay packet
transmission: this is particularly important in the case of
NTP, where delaying packets asymmetrically can cause
the client to synchronize to an inaccurate time. This dif-
fers from previous security frameworks that model time,
such as ones introduced by Schwenk [27] (which uses a
global time counter to model timestamps) and Basin et
al. [4] (where the adversary cannot influence the offset or
rate-of-change of the party clocks.)

We then show that ANTP achieves secure time syn-
chronization as defined by our model, under standard as-
sumptions on the security of the cryptographic primitives
(key encapsulation mechanism, hash function, authenti-
cated encryption, message authentication code, and key
derivation function) used to construct the protocol.

2 Network Time Protocols

Here we review the two most commonly deployed time
synchronization protocols, NTP and SNTP, as well as a
recent proposal called Network Time Security [31].

2.1 The Network Time Protocol

The Network Time Protocol (NTP) was developed by
Mills in 1985 [15], and revised in 1988, 1989, 1992 and
2010 (NTPv1 [9], NTPv2 [16], NTPv3 [17] and NTPv4
[18] respectively). NTP is designed to synchronize the
clocks of machines directly connected to hardware clocks
(known as primary servers) to machines without hard-
ware clocks (known as secondary servers). NTP protects
against Byzantine traitors by querying multiple servers,
selecting a majority clique and updating the local clock
with the majority offset. This assumes the attacker can
only influence some minority of the queried servers.

2.2 The Simple Network Time Protocol

The Simple Network time Protocol (SNTP) is a variant
of NTP that uses an identical message format [17] but
only queries a single server when requesting time syn-
chronization. Windows and OS X by default synchro-
nize using a single time source (time.windows.com and
time.apple.com respectively). Our construction lends
itself well to SNTP, as it authenticates time samples from
a single server. Security analysis is also easier as we can
avoid the more complex sorting and filtering algorithms of
NTP, and client and server behaviours are simpler. Note
that SNTP and NTP client request messages are the same.

SNTP has three distinct stages: (1) the creation and
transmission of req by the client; (2) the processing of
req by the server, and transmission of resp; and (3) the
processing of resp and clock update by the client. An
abstraction of the protocol behaviour can be found in
Figure 1, including the client’s clock update procedure.
Though the format of NTP packets is identical for both
client and server NTP messages, we use req to indicate a
NTP packet in client mode, and resp to indicate a NTP
packet in server mode, omitting packet content details.

1. The client creates an SNTP req packet, sets
transmit timestamp (t1) to Now() and sends the
message.1

2. The server creates an SNTP resp packet
with all fields identical to the received req,
but signalling Server mode. The server
sets originate timestamp to the value
transmit timestamp from req. The server
also sets receive timestamp (t2) to Now()
immediately after receipt of req, and sets
transmit timestamp (t3) to Now() immediately
before sending the message to the client.

3. Upon receiving resp, the client notes the cur-
rent time from Now() and saves it as t4.
If resp.originate timestamp is not equal to

1Now() denotes a party reading its local clock’s current time.



Client Server

t1← Now()

req← t1
req−→ t2← Now()

...
t3← Now()

t4← Now()
resp←− resp← t2‖t3

RTT← (t4− t1)− (t3− t2)
θ̃3← RTT/2
offset← 1

2 (t2 + t3− t1− t4)
time← Now()+offset

Figure 1: Simple Network Time Protocol (SNTP). Now()
denotes the procedure that outputs the local machine’s
current time. RTT denotes the total round-trip delay the
client observes and θ̃3 denotes the approximation of the
propagation time from server to client. The time of the
server receiving req is denoted t2 and sending resp is t3.
Note that offset = t3 + θ̃3− t4, which we will use in our
correctness analysis of ANTP.

req.transmit timestamp, the client aborts the
protocol run. The client calculates the total round-
trip time RTT and the local clock offset offset as in
Figure 1.

(The rest of the fields in the NTP packets are irrele-
vant for calculating the local clock offset and correcting
the local clock for a single-source time synchronization
protocol. These extra fields in the NTP packet are used
primarily for ranking multiple distinct time sources.)

From this, we can compute a bound of the amount of
error that is introduced to the clock update procedure via
asymmetric packet delay when the packets are unmod-
ified. Asymmetric packet delay is the scenario where
the propagation time from client to server is not equal
to the propagation time from server to client. Let θ1 be
the propagation time from client to server, θ2 the server
processing time and θ3 the propagation time from server
to client. θ3 is approximated in SNTP by θ̃3 =

RTT
2 , where

RTT = (t4− t1)− (t3− t2) = θ1 +θ3.
The actual offset is offsetactual = t3 +θ3− t4. The ap-

proximated offset is computed as offset = 1
2 (t2 + t3 −

t1 − t4). When θ1 = θ3, then offset = t3 + θ̃3 − t4 and
offset = offsetactual . In the worst possible case, packet
delivery is instantaneous, and the entire roundtrip time
is asymmetric delay. The client approximates the off-
set as above, and thus the error introduced this way is
1
2 |(θ1−θ3)| ≤ RTT .

The error that a passive adversary with the ability to
delay packets can introduce does not exceed the RTT:
clients can abort the protocol run when RTT grows too
large, giving them some control over the worst-case error.

2.3 NTP Security and Other Related Work
In terms of security, early versions of NTP (NTP to
NTPv2) had no standardized authentication method.

NTPv3 symmetric key authentication. NTPv3 pre-
sented a method for authenticating time synchronization –
using pre-shared key symmetric cryptography. NTPv3’s
added additional extension fields to the NTP packet, con-
sisting of a 32-bit key identifier, and a 64-bit crypto-
graphic checksum. The specification of NTPv3 describes
the checksum as the encryption of the NTP packet with
DES, but notes that other algorithms could be negotiated.
The distribution of keys and negotiation of algorithms
was considered outside the scope of NTP.

NTPv4 Autokey public key authentication. NTPv4 in-
troduced a method for using public key cryptography for
authentication, known as the Autokey protocol. Autokey
is designed to prevent inaccurate time synchronization by
authenticating the server to the client, and verifying no
modification of the packet has occurred in transit. Au-
tokey is designed to work over the top of authenticated
NTPv3. Autokey uses MD5 and a variety of Schnorr-
like [26] identification schemes to prevent malicious at-
tacks, but as an analysis of Autokey by Röttger shows
[23], there are multiple weaknesses inherent in the Au-
tokey protocol, including use of small seed values (32 bits)
and allowing insecure identification schemes to be negoti-
ated. The size of the seed allows a MITM adversary with
sufficient computational power to generate all possible
seed values and use the cookie to authenticate adversarial-
chosen NTP packets. This weakness alone allows an
attacker in control of the network to break authentication
of time synchronization, thus NTP with the Autokey pro-
tocol is not a secure time synchronization protocol [30].
Mills describes his experiments on demonstrating reliabil-
ity and accuracy of network time synchronization using
NTPv2 implementations [19], but does not offer a formal
security analysis of NTP. Mills does show that honest
deployment of NTP in networks can offer time synchro-
nization accuracy to within a few tens of milliseconds
after only a few synchronizations. ANTP was originally
intended as a means to addressing the vulnerabilities in
the Autokey protocol, but with many changes to mini-
mize public key and symmetric key operations, message
bandwidth. While inspiration for ANTP is the Autokey
protocol, the design diverged significantly enough to con-
sider it a separate protocol design.

Network Time Security draft-12. The Network Time
Security protocol (NTS) [31] is an IETF Internet-Draft
that uses public key infrastructure in order to secure time
synchronization protocols such as NTP and the Precision
Time Protocol (PTP) [1]. However, NTS is costly in
terms of server-side public key operations, is a four round-
trip protocol, requires clients to manage public/private



key pairs and digital certificates, and does not have an
equivalent to ANTP’s no-cryptographic-latency feature.

We note NTS is a work-in-progress and future revisions
may be updated to address these issues. We discovered in
draft-06 a flaw in the Association Phase that would allow
MITM adversaries to perform downgrade attacks and
communicated our findings to the authors. This has since
been fixed and the following is an overview of draft-12.

NTS evolved as an attempt to fix the weaknesses in
Autokey and has inherited many design choices from
the Autokey protocol, in particular protocol flow and
key derivation strategy using secret server seeds. Sim-
ilarly to the Autokey protocol, NTS servers reuse the
randomness server seed used to generate a shared secret
key (referred to as a cookie) for each client by cookie =
HMAC(server seed,Hash(client public key certificate)),
encrypting this value and a client-chosen nonce with the
client public key, authenticating the server by digitally
signing the cookie with the server private key. Note that
the client public key certificate in NTS serves to ensure
the confidentiality and uniqueness of the cookie for each
client using a different public key certificate. It does not
serve to authenticate the client to the server. In ANTP
clients do not need a certificate, only the server.

In the Association Phase NTS requires the server digi-
tally sign the server assoc message, which (in draft-12)
includes the client’s selection of hash and public key en-
cryption algorithms in addition to a client nonce. The
server must compute costly public key operations over
these values for each association phase. As a result, a
NTS server requires three public key operations per client
to establish a shared secret cookie.
NTS draft-06 attack. Here we briefly describe our
downgrade attack on NTS draft-06 and below. Figure 2
shows the NTS draft-06 Association Phase, which differs
to the previously described draft-12. (This is analogous
to the Negotiation Phase in ANTP.) In assocc, the client
sends the highest version of NTS that it supports, in addi-
tion to lists of hash and public key encryption algorithms.
The server responds with a signature over the server host-
name, the negotiated version, and the negotiated hash
and public key encryption algorithms. This does not
contain the server’s received values of the client’s sup-
ported version and algorithms, so it is straightforward
for a MITM attacker to strip assocc of strong hash and
public key encryption algorithms. If the client supports
weak algorithms, this can translate into a full break of
time-synchronization security by recovery of the cookie,
similarly to attacks on weak Diffie-Hellman groups in
TLS [2].
tlsdate. Another solution for synchronizing time is
Appelbaum’s tlsdate [3], which uses timestamps in the
nonces of TLS handshakes to fetch the time. However,
this requires stateful servers, is not as accurate as cur-

rent solutions and will no longer function when servers
transition to TLS 1.3 (as the proposed protocol no longer
includes timestamps in the nonces).

3 Authenticated NTP

In this section we present the Authenticated Network Time
Protocol (ANTP): a new variant of NTP designed to allow
an SNTP client to authenticate a single NTP server and
output a time counter within some accuracy margin of
the server time counter. Our new protocol ANTP allows
an ANTP server to authenticate itself to an ANTP client,
as well as provide cryptographic assurances that no mod-
ification of the packets has occurred in transit. ANTP
messages, much like Autokey and NTS, are included in
the extension fields of NTP messages. We summarize the
novel features of ANTP below:
• The client is capable of authenticating the server,

and all messages from the server. Replay attacks are
explicitly prevented for the client.
• The server does not need to keep state for each client.
• The server does only one public key operation per

client in order to generate a shared secret key.
• The shared secret key can be used for multiple time

synchronization attempts by the same client.
• The client has a “no-cryptographic-latency” option

to avoid additional error in the approximation of θ̃3
due to cryptographic operations.

3.1 Protocol Description

ANTP is divided into four separate phases. A detailed
protocol flow can be found in Figure 3, and exact message
formatting can be found in the full version [6].
• Setup: The server chooses a long term key s for

the authenticated encryption algorithm. This is used
to encrypt and authenticate offloaded server state
between phases.
• Negotiation Phase: The client and server communi-

cate supported algorithms; the server sends its certifi-
cate and state C1, an authenticated encryption (using
s) of the hash of the message flow. The value C1 will
be later used to authenticate negotiation.
• Key Exchange Phase: The client uses a key encap-

sulation mechanism (KEM) based on the server’s
public key from its certificate to establish a shared
key with the server. The client sends the KEM ci-
phertext and encrypted state C1 to the server. The
server derives the shared key k, then encrypts it (us-
ing s) to compute C2. The server replies with a MAC
(for key confirmation) and offloaded state C2 (for use
in the next phase).



Client Server

Association phase

assocc← versc‖namec‖ ~Hashc‖ ~Encc
assocc−→ (versn,Hash,Enc)← negotiate(assocc,verss, ~Hashs, ~Encs)

σ ← Sign(sks,versn‖names‖Hash‖Enc)
assocs←− assocs← versn‖names‖Hash‖Enc‖σ‖certs

Figure 2: A description of the Network Time Security draft-06 Association Phase. vers is the NTS version indicator;
namec and names are the hostnames of the client and server respectively.

• Time Synchronization Phase: The client sends a
time synchronization request and includes offloaded
server state C2. The server recovers shared key k
from C2 and uses it to authenticate the response,
which the client verifies. The client can also re-
quest “no-cryptographic-latency” time synchroniza-
tion, where the server will immediately reply without
authentication, and then send a second message with
authentication.

3.2 Design Rationale and Discussion

Of the security properties discussed in RFC 7384 [20],
ANTP achieves the following: protection against manipu-
lation, spoofing, replay and delay attacks; authentication
of the server (if ANTP is applied in a chain, implicit
authentication of primary server); key freshness; avoids
degradation of time synchronization; minimizes compu-
tational load; minimizes per-client storage requirements
of the server. The following properties from [20] are
only partly addressed by ANTP, which we explain in fur-
ther detail below: resistance against the rogue master,
cryptographic DoS, and time-protocol DoS attacks.

Stateless server. While storage costs are gener-
ally not an issue, synchronizing state between multiple
servers implementing a high-volume network endpoint
like time.windows.com is still expensive and compli-
cated to deploy. For reliability and performance these
servers are often in multiple data centres, spread across
multiple geographic regions. In ANTP the server regen-
erates per-client state as needed. Our construction uses
authenticated encryption (AE) in a similar manner to TLS
Session Tickets [24] for session resumption, where the
server authenticates and encrypts its per-client state using
a long-term symmetric key, then sends the ciphertext to
the client for storage. The client responds with the cipher-
text in order for the server to decrypt and recover state.
The server periodically refreshes the long-term secret key
for the AE scheme (the intervals are dependent on the
security requirements of the AE scheme).

No-cryptographic-latency mode. In SNTP, the accu-
racy is bounded by the total roundtrip time of the time

synchronization phase. If we build a secure authentication
protocol over SNTP, then the total accuracy of the new au-
thenticated protocol is also bound by the total round-trip
time of the time synchronization phase.

Since cryptographic computations over the synchro-
nization messages adds asymmetrically to propagation
time, it introduces error in the approximation of propa-
gation time θ̃3, so authentication operations degrade the
accuracy of the transmit timestamp in the resp. As
noted above, ANTP includes a “no-cryptographic-latency”
mode to reduce error due to authentication: during the
Time Synchronization Phase, at the client’s option, the
server will immediately process a resp as in Figure 1
and sends it to the client, without authentication. The
server subsequently creates an ANTP ServerResp mes-
sage, and sends the resp with ServerResp in the NTP
extension fields of the saved resp. A client can then use
the time when receiving the initial resp to set its clock,
but only after verifying authentication with the ANTP
ServerResp, aborting if authentication fails, if either
message wasn’t received, or if messages were received in
incorrect order. Here, cryptographic processing time does
not introduce asymmetric propagation time. (The TESLA
broadcast authentication protocol of Perrig et al. [22] de-
lays authentication as well, to improve efficiency rather
than accuracy as in ANTP.)

Efficient cryptography. Public key operations are com-
putationally expensive, especially in the case of a server
servicing a large pool of NTP clients. ANTP only re-
quires a single public key operation per-client to ensure
authentication and confidentiality of the premaster secret
key material. The client can reuse the shared secret key
on multiple subsequent time synchronization requests
with that server. ANTP uses a key encapsulation mech-
anism for establishing the shared secret key. We allow
either static-ephemeral elliptic curve Diffie-Hellman key
exchange or key transport using RSA public key encryp-
tion. While one might ordinarily avoid use of RSA or
static-ephemeral DH for key exchange since they do not
provide forward secrecy, this is not a concern for ANTP
since we do not need confidentiality as the contents of the
messages (time synchronization data) are public.



Client Server
supported algorithms ~algC supported algorithms ~algS

long-term secret s
certificate certS for the KEM keypair (pkS,skS)

Negotiation phase

α ← in-progress
nc←${0,1}256

m1← ~algC‖nc
m1−→ (KDF,Hash,KEM,MAC)← negotiate( ~algC, ~algS)

h← Hash(m1‖ ~algS‖certS)
C1← AuthEncs(01‖h‖KDF‖Hash‖KEM‖MAC)

Verify certS
m2←− m2← ~algS‖certS‖C1

pkS← parse(cert)

Key exchange phase

(KDF,Hash,KEM,MAC)← negotiate( ~algC, ~algS)

h← Hash(m1‖ ~algS‖certS)
(e, pms)← KEM.Encap(pks)

m3←C1‖e
m3−→ b‖h‖KDF‖Hash‖KEM‖MAC← AuthDecs(C1)

If b 6= 01, then α ← reject and abort
pms← KEM.Decap(skS,e)

k← KDF(pms,⊥,“ANTP”, len) k← KDF(pms,⊥,“ANTP”, len)
C2← AuthEncs(02‖k‖KDF‖Hash‖KEM‖MAC)
τ1←MAC(k,h‖m3‖C2)

Verify τ1 =MAC(k,h‖m3‖C2)
m4←− m4←C2‖τ1

If verify fails, then α ← reject and abort

Time synchronization phase p = 1, . . . ,n

α ← in-progress
nc2←${0,1}256

t1← Now()

m5← t1‖nc2‖C2
m5−→ t2← Now()

b‖k‖KDF‖Hash‖KEM‖MAC← AuthDecs(s,C2)
If b 6= 02, then α ← reject or abort
t3← Now()[

m∗6←−
]

m∗6← t1‖t2‖t3
τ2←MAC(k,m5‖t1‖t2‖t3)

t4← Now()
m6←− m6← t1‖t2‖t3‖τ2

RTT← (t4− t1)− (t3− t2)
If RTT > E, then α ← reject and abort
Verify τ2 =MAC(k,m5‖t1‖t2‖t3)
If verify fails, then α ← reject and abort
offset = 1

2 (t3 + t2− t1− t4)
timep← Now()+offset
α ← acceptp
If p = n, then terminate

Figure 3: Authenticated NTP (ANTPE ), where E is a fixed upper bound on the desired accuracy. The pre-determined
negotiation function negotiate takes as input two ordered lists of algorithms and returns a single algorithm. n denotes
the maximum number of synchronization phases, and p denotes the current synchronization phase. [m∗6] indicates an
optional message sent based on a “no-cryptographic-latency” flag present in m5, omitted in this figure. Note that if
KEM.Decap or AuthDec fails for any ANTP server, the server simply stops processing the message, aborts, and allows
the client to time-out. If certificate validation fails, the client aborts the protocol run. Each of the messages contains an
identifier flag to prevent confusion between MACs. The protocol in the figure is an abstraction: messages m1 . . .m4 and
the cryptographic components of m5 and m6 are sent as extensions of NTP messages, and detailed message structure
can be found in the full version [6]. Authenticated Encryption schemes are not negotiated as they are entirely opaque to
the client.



Key freshness and reuse. ANTP allows multiple time
synchronization phases for each session using the same
shared secret key k but with a new nonce in each Time
Synchronization Phase to prevent replay attacks and en-
sure uniqueness of the protocol flow. This reuse can
continue until either the client restarts the negotiation
phase or the server rotates public keys or authenticated
encryption keys.
Denial of service attacks. Against a man-in-the-middle,
some types of denial-of-service (DoS) attacks are unavoid-
able, as the adversary may always drop messages.

Amplification attacks can be of concern. Unauthenti-
cated SNTP has a roughly 1:1 ratio of attacker work to
server work, in that one attack packet causes one packet
in response, and a small computational effort is required
by the server. In ANTP, the cryptographic operations
do allow some amplification of work. Based on the ex-
perimental results in Table 1, the negotiation and time
synchronization phases have less than a 1:2 ratio of at-
tacker work to server work. As for the key exchange
phase, the server performs a public key operation while a
malicious client may not. However, a server under attack
can temporarily stop responding to key exchange requests
while still responding to time synchronization requests,
and since most honest clients will perform key exchange
infrequently, their service will not be denied.

Another amplification can be caused by the no-
cryptographic-latency feature, since two response packets
are sent for each request. This mode can be turned off
during attack, the server indicating with a flag that it does
not (currently) support this feature.

Finally, in the negotiation phase the server’s response
is also considerably larger than the client request (be-
cause it includes a certificate), but, like the key exchange
phase, the negotiation phase may be temporarily disabled
without denying service to clients who already have estab-
lished a premaster secret. Another option is to replace the
server certificate chain with a URL where the client can
download it. Depending on the size of the certificate(s)
this could reduce the bandwidth amplification consider-
ably. This last mitigation requires detailed analysis, which
we leave to future work.
Certificate validation. When using digital certificates to
authenticate public keys, the synchronization of the issuer
and the relying party is an underlying assumption. This
serves to highlight a significant problem – how do you
securely authenticate time using public key infrastructure
without previously having time synchronization with the
issuer? For our construction this must be done once, and
we assume that the client has some out-of-band method
for establishing the trustworthiness of public keys, per-
haps using OCSP [25] with nonces to ensure freshness of
responses, by the user manually setting the time for first
certificate validation, or shipping a trusted certificate with

the operating system. Since certificate validity periods
typically range from months to years, if the user is assured
of time synchronization with the issuer to be within range
of hours or days and that range sits comfortably within
the certificate validation period, this is a viable solution.

ANTP to NTP downgrade. ANTP servers are also NTP
servers, since ANTP is implemented as an NTP extension.
This eases deployment; older clients can continue using
NTP, while newer clients can use ANTP. However, a net-
work adversary can drop the ANTP extension from the
request, and the server will respond with NTP (having in-
terpreted the request as NTP). For this reason, clients that
send an ANTP request must only update their clock based
on a valid ANTP response, and ignore NTP responses.
For similar reasons, clients are not recommended to im-
plement a fall back from ANTP to NTP.

4 Implementation and Performance

Here we describe our instantiation of ANTP in terms of
cryptographic primitives used as well as its implementa-
tion and results on its performance.2

4.1 Instantiation and Implementation

We instantiate ANTP using the following cryptographic
algorithms. We use AES128-GCM as the symmetric
encryption algorithm for the server to encrypt and de-
crypt state, SHA-256 as the hash algorithm, and HMAC-
SHA256 as the MAC and key derivation function. We sup-
port two key encapsulation mechanisms, RSA key trans-
port and static-ephemeral elliptic curve Diffie-Hellman:
• RSA key transport: In KeyGen, the public key and

secret key are a 2048-bit RSA key pair. Encap is
defined by selecting a key pms←${0,1}128 and en-
crypting pms using the RSA public key with RSA-
PKCS#1.5 encryption; Decap performs decryption
with the corresponding RSA secret key. The shared
secret is k← KDF(pms,⊥,“ANTP”, len).
• Static-ephemeral elliptic curve Diffie–Hellman: Let

P be the generator (base point) of the NIST-P256
elliptic curve group of prime order q. In KeyGen,
the secret key is sk←$Zq and the public key is
pk = sk · P, where · denotes scalar–point multi-
plication. In Encap, select r←$Zq and compute
c← r ·P and pms← X(r · pk), where X(Q) gives
the x-coordinate of elliptic curve point Q. In Decap,
compute pms← X(sk · c). The shared secret is k←
KDF(pms,⊥,“ANTP”‖c, len). This is the ECIES-
KEM [29] which is IND-CCA secure under the el-

2Our implementation code and benchmarking tools can be found at
https://github.com/DowlingBJ/AuthenticatedNTP.

https://github.com/DowlingBJ/AuthenticatedNTP


liptic curve discrete logarithm assumption in the ran-
dom oracle model [8].

We implemented ANTP by extending OpenNTPD ver-
sion 1.92 [34]. Our implementation relies on OpenSSL
version 1.0.2f [35] for its cryptographic components; no-
tably, this version includes a high-speed assembly imple-
mentation of the NIST P-256 curve; AES-GCM encryp-
tion/decryption uses the AES-NI instruction.

4.2 Performance

Methodology. We collected performance measurements
for each of the negotiation, key exchange, and time syn-
chronization phases. We wanted to know the maximum
number of connections per second that could be supported
in each phase, as well as the latency a client would ex-
perience for a typical server. For comparison we also
collected performance measurements for unauthenticated
NTP time synchronization phases.

Our throughput and LAN latency experiments were
carried out in the following environment on our local area
network. We had two machines acting as clients, and
a single server machine running ANTP. The server had
an Intel Core i7-4770 (Haswell) processor with 4 cores
running at 3.4 GHz with 15.6 GiB of RAM; we used two
similar client machines, which in our experiments were
always sufficient to saturate the server. The clients and
server were connected over an isolated 1 gigabit LAN.
The server was running Linux Mint 17.2 with no other
software installed.

Our latency experiments across the US were carried
out between two Amazon AWS m4.2xlarge instances,
the server in the US East (N. Virginia) region and the
client in the US West 1 (N. California) region. These
instances each had eight virtual CPUs, each of which
was an Intel Xeon E5-2676 v3 (Haswell) core running at
2.4 GHz, with 32 GiB of RAM, and 1 Gbps of dedicated
bandwidth; the instances were running Ubuntu 14.04 with
no other software installed.

It is important to note that OpenNTPD is not multi-
threaded, so the OpenNTPD server process runs on a
single core, regardless of the number of cores on the
machine. As the key exchange phase is CPU bound, in a
threaded server implementation we expect key exchange
phase throughput to increase linearly with the number of
CPU cores until bandwidth is saturated.

For testing throughput (connections/second), we used
our own multi-threaded UDP flooding benchmarking tool
that sends static packets and collects the number of re-
sponses, the average latency of those responses, and the
number of dropped packets. We tuned the number of
queries per second to ensure that the server’s (single) core
had around 95% utilization, and that more client packets
were sent than being processed, but not so many more that

performance became degraded (i.e., the server dropped
less than 1% of packets being received per second).

For testing individual phase latency, we again used our
UDP benchmarking tool, this time measuring latency of
a subset of connections while maintaining a particular
background ANTP load at the server (either 50% or 90%
of supported throughput), to measure the latency a client
would experience at an unloaded or loaded server.

For testing total protocol runtime, we instrumented
the OpenNTPD client to report the runtime of a single
complete (all three phases) ANTP synchronization, again
with background ANTP load as above.
Results – individual phases.

Table 1 shows the results of each phase. Results re-
ported are the average of 5 trials to prevent outlier results.
For throughput and individual phase latency, each trial
was run for 100 seconds. For throughput, Table 1 reports
the number of response packets received at the client
machine.

Negotiation phases. The lower throughput of RSA and
ECDH negotiation messages (compared to NTP) is due
to larger message size of ANTP messages, as network
bandwidth was saturated for this measurement. Latency
for ECDH negotiation at 90% load is higher compared to
RSA negotiation at 90% load; at that load level, a much
larger number of ECDH packets are being sent than RSA
packets, so CPU load in the ECDH is higher even though
they have the same bandwidth consumption, leading to
higher latency for ECDH negotiation.

Key exchange phases. As expected, server key ex-
change throughput is higher when ECC is used for pub-
lic key operations compared to RSA. This difference is
explained by the relative costs of the underlying crypto-
graphic operations: using OpenSSL’s speed command
for benchmarking individual crypto operations, the run-
time of ECC NIST P-256 point multiplication is 8.62×
faster than RSA 2048 private key operations, whereas we
observe a 7.54× improvement in throughput for ANTP’s
ECDH key exchange over ANTP’s RSA key exchange.
Latency on the local network for RSA key exchange is
approximately 2.9× that of ECDH key exchange at 90%
load.

Time synchronization phases. While ANTP time syn-
chronization phases are more computationally intensive
than unauthenticated NTP, throughput is reduced by only
a factor of approximately 1.6. Since this phase is CPU
bound, we expect a multi-threaded server implementation
to increase ANTP throughput. Latency increase on the
local network for ANTP at 50% load is only about 14%
and at 90% load is about 27%.
Results and extrapolation – all 3 phases. Since each
client makes a full 3-phase time synchronization (negoti-
ation, followed by key exchange, followed by time syn-
chronization) relatively infrequently, it does not make



sense to measure server throughput for complete 3-phase
time synchronizations. We did measure latency of a 3-
phase time synchronization to note the performance that
a client would perceive on its initial synchronization. As
expected, the total runtime of a client exceeds the sum of
the latencies from each individual phase due to the client
performing its own cryptographic operations.

It is interesting to note that latency slows as the server
approaches load capacity. Future work on OpenNTPD
and other NTP servers could include optimizations to re-
duce latency and improve time synchronization accuracy
under increasing load.

We can extrapolate from the individual phase results
the client pool that ANTP could feasibly support running
on the same hardware. For example, Windows by de-
fault polls time servers every 9 hours [13]. Assuming
this is true for all clients (and that the clients synchronize
uniformly across the period) 175,644 time synchroniza-
tion requests per second would correspond to a pool of
5,755,502,592 clients.

ANTP clients would choose how often to restart the ne-
gotiation phase and we recommend doing so periodically
to ensure the attack window from exposure of the symmet-
ric key is limited. If keys are re-exchanged monthly, this is
a ratio of 1:1:1440 for expected negotiation, key exchange,
and time synchronization messages, which increases to
1:1:8640 if clients re-exchanged every 6 months. From
these or other expected ratios, one could extrapolate the
expected performance impact of using ANTP over NTP.

5 Security Framework

In this section we introduce our new time synchronization
provable security framework for analyzing time synchro-
nization protocols such as ANTP, NTP, and the Precision
Time Protocol. It builds on both the Bellare–Rogaway
model [5] for authenticated key exchange and the Jager
et al. framework for authenticated and confidential chan-
nel establishment [11]. Neither of those models however
includes time.

Our framework models time as a counter that each
party separately maintains, as the goal of the protocol is
to synchronize these disparate counters. Additionally, the
adversary in our execution environment has the ability to
initialize each protocol run with a new time counter in-
dependent of the party’s own counter, and controls when
protocol runs can increment their counter, effectively giv-
ing the adversary complete control of both the latency of
the network and the computation time of the parties.

5.1 Execution Environment
There are np parties P1, . . . ,Pnp , each of whom is a proto-
col participant. Each party generates a long-term key-pair

(ski, pki), and can run up to ns instances of the protocol
which are referred to as sessions. We denote the sth ses-
sion of a party Pi as πs

i . Note that each session πs
i has

access to the long-term key pair of the party Pi. In ad-
dition, we denote with T and Tc the full transcript and
server-session maintained client transcript Tc.

Per-Session Variables. The following variables are
maintained by each session:
• ρ ∈ {client,server}: the role of the party.
• id ∈ {1, ...,np}: the identity of the party.
• pid ∈ {1, . . . ,np}: the believed identity of the part-

ner.
• α ∈ {accept,reject,in-progress}: the session

status.
• k ∈ {0,1}128: the session key.
• Tc ∈ {{0,1}∗, /0}: if ρ = server, the transcript of

client messages, otherwise Tc = /0.
• T ∈ {0,1}∗: the transcript of messages sent and re-

ceived.
• time ∈ N: a counter maintained by the session.

Adversary Interaction. The adversary schedules and
controls all interactions between protocol participants.
The adversary has control of all communication, able to
create, delete, reorder or modify messages at will. The
adversary can compromise long-term and session keys.
Additionally, the adversary is able to set the clock of
a party to an arbitrary time when a session begins and
control the rate at which time progresses during the exe-
cution of a session. The following queries model normal
execution with adversary control of time:
• Create(i,r, t): The adversary activates a new session

with party Pi, initializing πs
i .ρ = r and πs

i .time = t.
Note that if πs

i .ρ = client, then πs
i responds with

the first message of the protocol run.
• Send(i,s,m,~∆): The adversary sends a message m

to a session πs
i . Party Pi processes the message m

and responds according to protocol specification,
updating per-session variables and outputting some
message m∗ if necessary. During message process-
ing, the party may execute multiple calls to a dis-
tinguished Now() procedure, modelling the party
reading its current time from memory; immediately
before the `th such call to the Now() procedure, the
session’s πs

i .time variable is incremented by ∆`.
These queries model compromise of secret data:
• Reveal(i,s): The adversary receives the session key

k of the session πs
i .

• Corrupt(i): The adversary receives the long-term
secret-key ski of the party Pi.

The following query allows additional adversary control
of the clock:



• Tick(i,s,∆): The adversary increments the counter
πs

i .time by ∆.
The vector ~∆ in Send is necessary due to subtleties

in the security framework: An adversary cannot issue
Tick queries to a session during the processing of a Send
query, but a party may read its clock multiple times while
processing a message and thus expect to receive differ-
ent clock times. The vector ~∆ in the Send query allows
adversary control of this clock rate.

Note that our model assumes that during execution
of a session, the clocks between two parties advance at
the same rate, otherwise it does not make sense for two
parties to try to synchronize their clocks at all. This im-
plicitly assumes that the parties are in the same reference
frame. Additionally, while computer clocks may progress
at different rates, we are assuming that, over a relatively
short period of time, like the few seconds for an execu-
tion of the protocol, the difference in clock rate will be
negligible. This will be formalized in Definitions 3 and
4 with the condition that the adversary advances the time
of matching sessions symmetrically: a Tick( j, t,∑`

i=1 ∆l)
must be issued if session π t

j matching πs
i exists when

Send(i,s,m,~∆) is issued.
Security Experiment. The time synchronization secu-
rity experiment is played between a challenger C who
implements all np parties according to the execution en-
vironment and protocol specification, and an adversary
A. After the challenger generates the long-term key pairs,
the adversary receives the list of public keys and interacts
with the challenger using the queries described above.
Eventually the adversary terminates.

5.2 Security Definitions
The goal of the adversary, formalized in this section, is to
break time synchronization security by causing any client
session to complete a session with a time counter such that
|πs

i .time−π t
j.time| > δ , (where π t

j is the partner of the
session πs

i such that π t
j.id = πs

i .pid, and δ is an accuracy
margin) or cause a session πs

i to accept a protocol run
without having a matching session π t

j. The adversary
controls the initialization of the party’s clock in each
session, and the rate at which the clock advances during
each session, with the restriction that during execution
of a session the adversary must advance the party and its
peer at the same rate.

5.2.1 Matching Conversations and Authentication

Authentication is defined similarly to the approach of Bel-
lare and Rogaway [5], by use of matching conversations.
We use the variant of matching conversations employed
by Jager et al. [11], and modify the definition to reflect
client authentication of stateless servers.

Definition 1 (Matching Conversations). We say a session
πs

i matches a session π t
j if πs

i .ρ 6= π t
j.ρ and πs

i .T prefix-
matches π t

j.T . For two transcripts T and T ′, we say that
T is a prefix of T ′ if |T | 6= 0 and T ′ is identical to T for
the first |T | messages in T ′. Two transcripts T and T ′

prefix-match if T is a prefix of T ′, or T ′ is a prefix of T .

Prefix-matching prevents an adversary from trivially
winning the experiment by dropping the last protocol
message after a session has accepted. Note that since
our focus is clients authenticating stateless servers, our
authentication definition is one-sided.

Definition 2 (Stateless Server Authentication). We say
that a session πs

i accepts maliciously if:
• πs

i .α = accept;
• πs

i .ρ = client;
• no Reveal(i,s) or Reveal( j, t) queries were issued

before πs
i .α ← accept and π t

j matches πs
i ;

• no Reveal( j, t ′) queries were issued before πs
i .α ←

accept and π t ′
j .Tc = π t

j.Tc;
• no Corrupt( j) query was ever issued before πs

i .α←
accept, where j = πs

i .pid;
but there exists no session π t

j such that πs
i matches π t

j.
We define Advauth

T (A) as the probability of A forcing
any session πs

i of time synchronization protocol T to
accept maliciously.

In the above definition, the first Reveal condition pre-
vents A from trivially winning the experiment by access-
ing the session key of the Test session. Similarly the
Corrupt condition prevents A from trivially winning by
decrypting the premaster secret with the session partner’s
public key. The possibility exists for an adversary to triv-
ially win the experiment by replaying client messages to
a second session and querying the second session with
Reveal. Disallowing Reveal queries in general is clearly
too restrictive, so we prevent this in the second Reveal
condition by disallowing Reveal queries to server sessions
with matching client transcripts.

5.2.2 Correct and Secure Time Synchronization

The goal of a time synchronization protocol is to ensure
that the difference between the two parties’ clocks is
within a specified bound. A protocol is δ -correct if that
difference can be bounded in honest executions of the
protocol, and δ -accurate secure if that difference can be
bounded even in the presence of an adversary.

Definition 3 (δ -Correctness). A protocol T satisfies δ -
correctness if, in the presence of a passive adversary that
faithfully delivers all messages and increments in each
partner session symmetrically, then the client and server’s



clocks are within δ of each other. More precisely, in the
presence of a passive adversary, for all sessions πs

i where
• πs

i .α = accept;
• πs

i .ρ = client;

• whenever A queries Send(i,s,m,~∆) or
Send( j, t,m′,~∆′), A also queries Tick( j, t,∑`

i=1 ∆`)
or Tick(i,s,∑`

i=1 ∆′`), respectively; and
• whenever A queries Tick(i,s,∆), or Tick( j, t,∆′),
A also queries Tick( j, t,∆) or Tick( j, t,∆′), respec-
tively;

we must also have that |πs
i .time−π t

j.time| ≤ δ .

Definition 4 (δ -Accurate Secure Time Synchronization).
We say that an adversary A breaks the δ -accuracy of a
time synchronization protocol if whenA terminates, there
exists a session πs

i with partner id πs
i .pid = j such that:

• πs
i .α = accept;

• πs
i .ρ = client

• A made no Corrupt( j) query before πs
i .α ←

accept;
• A made no Reveal(i,s) or Reveal( j, t) query before

πs
i .α ← accept and π t

j matches πs
i ;

• while πs
i .α = in-progress and A queried

Send(i,s,m,~∆) or Send( j, t,m′,~∆′) (where πs
i

matches π t
j), then A also queried Tick( j, t,∑`

i=1 ∆`)

or Tick(i,s,∑∆
i=1 ∆′`), respectively;

• while πs
i .α = in-progress and A queried

Tick(i,s,∆), or Tick( j, t,∆′) (where πs
i matches π t

j),
then A also queried Tick( j, t,∆) or Tick(i,s,∆′), re-
spectively; and
• |πs

i .time−π t
j.time|> δ .

The probability an adversary A has in breaking δ -
accuracy of a time synchronization protocol T is denoted
Advtime

T ,δ (A).

5.3 Multi-Phase Protocols

Our construction in Section 3 has a single run of the ne-
gotiation and key exchange phases, followed by multiple
time synchronization executions reusing the negotiated
cryptographic algorithms and shared secret key. To model
the security of such multi-phase time synchronization pro-
tocols, we further extend our framework so that a single
session can include multiple time synchronization phases.
The differences from the model described in the previous
section are detailed below.

Per-Session Variables. The following variables are
added or changed:
• n ∈ N: the number of time synchronization phases

allowed in this session.

• timep, for p ∈ {1, . . . ,n}: the time recorded at the
conclusion of phase p.
• α ∈ {acceptp,rejectp,in-progressp}, for p ∈
{1, . . . ,n}: the status of the session. Note that, when
phase p concludes and α← acceptp is set, the party
also sets timep← time.

Adversary Interaction. The adversary can direct the
client to run an additional time synchronization phase
with a new Resync query, and the client will respond
according the protocol specification. The Create query in
this setting is also changed:
• Create(i,r, t,n): Proceeds as for Create(i,r, t), and

also sets πs
i .n← n.

• Resync(i,s,~∆) - The adversary indicates to a ses-
sion πs

i to begin the next time synchronization phase.
Party Pi responds according to protocol specifica-
tion, updating per-session variables and outputting
some message m∗ if necessary. During message
processing, immediately before the `th call to the
Now() procedure, the session’s πs

i .time variable is
incremented by ∆`.

The goal of the adversary is also slightly different to ac-
count for the possibility of breaking time synchronization
of any given time synchronization phase: the adversary’s
goal is to cause a client session to have any phase where
its time is desynchronized from the server’s. In partic-
ular, for there to be some client instance πs

i and some
phase p such that |πs

i .timep−π t
j.timep|> δ where π t

j is
the partner of session πs

i . Again the adversary in general
controls clock ticks and can tick parties at different rates,
however must tick clocks at the same rate when phases
have switched back to being in-progress.

Definition 5 (δ -Accurate Secure Multi-Phase Time Syn-
chronization). We say that an adversary A breaks the
δ -accuracy of a multi-phase time synchronization proto-
col if when A terminates, there exists a phase p session
πs

i with partner id πs
i .pid = j such that:

• πs
i .ρ = client

• πs
i .α = acceptq for some q≥ p;

• A did not make a Corrupt( j) query before πs
i .α ←

acceptp was set;
• A did not make a Reveal(i,s) or Reveal( j, t) query

before πs
i .α ← acceptp was set and π t

j matches πs
i ;

• while πs
i .α = in-progress and A queried

Send(i,s,m,~∆) or Send( j, t,m′,~∆′), then A also
queried Tick( j, t,∑`

i=1 ∆`) or Tick(i,s,∑`
i=1 ∆′`), re-

spectively;
• while πs

i .α = in-progress and A queried
Tick(i,s,∆), or Tick( j, t,∆′), then A also queried
Tick( j, t,∆) or Tick(i,s,∆′), respectively; and
• |πs

i .timep−π t
j.timep|> δ .



The probability an adversary A has in breaking δ -
accuracy of multi-phase time synchronization protocol
T is denoted Advmulti-time

T ,δ (A).

6 Security of ANTP

Here we present ANTP correctness and security theorems.

6.1 Correctness
Theorem 1 (Correctness of ANTP). Fix E ∈ N. ANTPE
is an E-correct time synchronization protocol as defined
in Definition 3.

Proof. When analyzing ANTP in terms of correctness,
we can restrict analysis to data that enters the clock-update
procedure as input, as the rest of the protocol is designed
to ensure authentication and does not influence the ses-
sion’s time counter. This allows us to narrow our focus to
SNTP, which is the time synchronization core of ANTP.

We first focus on a single time synchronization phase.
At the beginning of the time synchronization phase of
ANTP, the client will send an NTP request (req) which
contains t1, the time the client sent req. Note that the
adversary is restricted to delivering the messages faith-
fully as a passive adversary, and also must increment the
time of each protocol participant symmetrically. The ad-
versary otherwise has complete control over the passage
of time. Thus θ1, θ2, θ3 are non-negative but otherwise
arbitrary values selected by the adversary (where θ1 is
the propagation time from client to server, θ2 is server
processing time and θ3 is propagation time from server
to client). Thus the client computes the round-trip time
of the protocol as: RTT = (t4− t1)− (t3− t2) = θ1 +θ3
and approximates the server-to-client propagation time as
θ̃3 =

1
2 (θ1 +θ3).

When the client-to-server and server-to-client propa-
gation times are equal (θ1 = θ3) then θ̃3 = θ3, and the
values t3 and t2 allow the client to exactly account for θ2.
The time counter is updated by time+offset = t3+ θ̃3−t4,
and upon completion the client’s clock is exactly synchro-
nized with the server’s clock.

When θ1 6= θ3, we have that θ3 − θ̃3 = 1
2 (θ3 − θ1),

so the statistics t1, ..., t4 do not allow the client to ex-
actly account for client-to-server propagation time θ3;
the client’s updated time may be off by up to 1

2 (θ3−θ1).
Fortunately, we can bound this value by E: we know
that 1

2 (θ3−θ1)≤ 1
2 (θ1 +θ3), and furthermore we know

that ANTPE will only accept time synchronization when
1
2 (θ1 + θ3) ≤ E, so in sessions that accept (assuming a
passive adversary) we have that the client’s clock is at
most 1

2 (θ3−θ1)≤ E different from the server’s clock.
Now moving to the multi-phase setting, we note that

this analysis of the correctness of ANTP applies to each

separate time synchronization phase: since the client’s
(t1, t4) values are only used to calculate the total round-
trip time of the time synchronization phase, thus if the
rate-of-time for both client and server during the phase is
the same, each phase is also E-accurate in the presence
of a passive adversary, even if the adversary dramatically
changes the rate-of-time for partners between time syn-
chronization phases.

6.2 Security
Security of a single 3-phase execution of ANTP in the
sense of Definition 4 is given by Theorem 2 below. Secu-
rity of multiple phases in the sense of Definition 5 follows
with a straightforward adaptation.

Intuitively, the bound on the possible error that an A
can introduce without altering packets is as in Section 3.
It follows then that if all messages are securely authenti-
cated, and the only inputs to the clock-update procedure
are either: authenticated via messages, or the round trip
delay RTT; then any attacker can only introduce at most E
error into the clock-update procedure (where E ≥ RTT).

Theorem 2 (Security of ANTP). Fix E ∈ N and let λ be
the length of the nonces in m1 and m5 (in our instantiation,
λ = 256). Assuming the key encapsulation mechanism
KEM (with keyspace KEM.K) is IND-CCA-secure, the
message authentication code MAC is EUF-CMA-secure,
the hash function Hash is collision-resistant, and the key
derivation function KDF and authenticated encryption
scheme AE are secure, then ANTPE is a E-accurate se-
cure time synchronization protocol as in Definition 4. In
particular, there exist algorithms B3, . . . ,B8, described in
the proof of the theorem, such that, for all adversaries A,
we have

Advtime
ANTPE ,E(A)≤

n2
pn2

s

2λ−2 +n2
pn2

s

(
Advcoll

Hash(BA3 )

+Advauth-enc
AE (BA4 )+Advind-cca

KEM (BA5 )

+Advkdf
KDF(BA6 )+Advauth-enc

AE (BA7 )

+Adveuf-cma
MAC (BA8 )

)
where np and ns are the number of parties and sessions
created by A during the experiment.

The standard definitions for security of the un-
derlying primitives and the corresponding advantages
Advauth-enc

AE (A), Advind-cca
KEM (A), Advcoll

Hash(A), Adveuf-cma
MAC

(A), and Advkdf
KDF(A) are given in the full version [6].

Proof. From Theorem 1, ANTPE is an E-correct time
synchronization protocol in the sense of Definition 3.
Thus all passive adversaries have probability 0 of break-
ing E-accuracy of ANTPE . If we show that the advantage



Advauth
ANTPE

(A) of any adversaryA of breaking authentica-
tion security (i.e., to accept without session matching) of
ANTPE is small, then it follows that the advantage of any
active adversary A in breaking E-accuracy of ANTPE is
similarly small. In other words, it immediately is the case
that Advtime

ANTPE ,E(A)≤ Advauth
ANTPE

(A).
We now focus on bounding Advauth

ANTPE
(A). In order to

show that an active adversary has negligible probability
in breaking ANTPE authentication, we use a proof struc-
tured as a sequence of games. We let Pr(breaki) denote
the probability that the adversary causes some session to
accept maliciously in game i. We iteratively change the
security experiment, and demonstrate that the changes
are either failure events with negligible probability of
occurring or that if the changes are distinguishable we
can construct an adversary capable of breaking an un-
derlying cryptographic assumption. Since the client will
only accept synchronization if all three phases are prop-
erly authenticated, the advantage of an active adversary is
negligible given our cryptographic assumptions.

Game 0. This is the original time synchronization game
described in § 4: Advauth

ANTPE
(A) = Pr(break0).

Game 1. In this game, we abort the simulation if
any nonce is used in two different sessions by client
instances. There are at most 2nsnp nonces used by
client instances, each λ bits. The probability that a
collision occurs among these values is (2nsnp)

2/2λ , so:

Pr(break0)≤ Pr(break1)+
n2

s n2
p

2λ−2 .

Game 2. Here, we guess the first client session to accept
maliciously, aborting if incorrect. We select randomly
from two indices (i,s)←${1, . . . ,np}× {1, . . . ,ns} and
abort if πs

i is not the first session to accept maliciously.
Now the challenger responds to Reveal(i,s) queries (if
πs

i .α = accept) by aborting the game, as it follows that
the guessed session cannot accept maliciously. There are
at most npns client sessions, and we guess the first session
to accept maliciously with probability at least 1/npns, so
Pr(break1)≤ npns Pr(break2).

Game 3. Here we guess the partner session to
πs

i , by selecting from two indices ( j, t)←${1, . . . ,np}×
{1, . . . ,ns} and abort if π t

j is not the partner session to πs
i .

Now, the challenger answers Corrupt( j) and Reveal( j, t)
queries before πs

i .α← accept by aborting the game, as it
follows that the guessed session cannot accept maliciously.
There are at most npns server sessions, and we guess the
partner of the first session to accept maliciously with prob-
ability at least 1/npns, so Pr(break2)≤ npns Pr(break3).

Game 4. Here we abort if a hash collision occurs,
by computing all hash values honestly and aborting if
there exists two evaluations (in,Hash(in)),(în,Hash(în))
such that in 6= în but Hash(in) = Hash(în). The simula-
tor interacts with a Hash-collision challenger, outputting

the collision if found. Thus: Pr(break3) ≤ Pr(break4)+
Advcoll

Hash(BA3 ).

Game 5. In this game, we abort if in server session π t
j

the ciphertext received in m3 is not equal to the ciphertext
sent in m1 but the output of AuthDecs is not ⊥.

We construct an algorithm BA4 that simulates Game
4 identically, except to interact with an AE challenger
in the following way: When Pj needs to run AuthEnc
or AuthDec, BA4 uses its oracles to compute the required
value. In server session π t

j, when BA4 receives a ciphertext
in m3 that was not equal to the ciphertext sent in m1 but the
output of the AuthDec oracle is not⊥, this corresponds to
a ciphertext forgery, and thus: Pr(break4)≤ Pr(break5)+
Advauth-enc

AE (BA4 ).

Game 6. In this game, sessions πs
i and π t

j compute
the session key k by applying KDF to a random secret
pms′←$KEM.K, rather than the pms that was encapsu-
lated using KEM.Encap and transmitted in ciphertext e.
Any algorithm used to distinguish Game 5 from Game 6
can be used to construct an algorithm capable of distin-
guishing KEM encrypted values via plaintext, thus break-
ing IND-CCA security of the key encapsulation mecha-
nism.

We construct a simulator BA5 that interacts with a KEM
challenger. BA5 activates party Pj with the public key pk
received from the challenger. BA5 responds identically to
queries from A as in Game 5, except as follows:
• BA5 computes the KEM ciphertext e for the session

πs
i by obtaining a challenge (e, pms) from its KEM

challenger.
• BA5 computes πs

i .k← KDF(pms, . . .)
• In any Pj session where m3 contains the challenge

ciphertext above, BA5 computes the session key as
k← KDF(pms, . . .).
• In any other Pj session where m3 does not contain

the challenge ciphertext above, BA5 queries the ci-
phertext to its Decap oracle to obtain the premaster
secret and uses that as its input to KDF to compute
the session key k.
• BA5 never needs to answer a Corrupt( j) query be-

cause of Game 3.
When the random bit b sampled by the KEM ind-cca chal-
lenger is 0, pms is truly the decapsulation of the ciphertext
e, in which case BA5 perfectly simulates of Game 5. When
b = 1, pms is random and independent of e, in which case
BA5 perfectly simulates Game 6. Observe that BA5 never
asks the challenge ciphertext e to its decapsulation oracle.

An adversary capable of distinguishing Game 5 from
Game 6 can therefore be used to break IND-CCA security
of KEM, so Pr(break5)≤ Pr(break6)+Advind-cca

KEM (BA5 ).

Game 7. In this game, we replace the secret key k in
sessions πs

i and π t
j with a uniformly random value k′ from



{0,1}lKDF where lKDF is the length of the KDF output, in-
stead of being computed honestly via k←KDF(pms, . . .).

In Game 6, we replaced the premaster secret value
pms with a uniformly random value from KEM.K. Thus,
any algorithm that can distinguish Game 6 from Game
7 can distinguish the output of KDF from random. We
explicitly construct such a simulator BA6 that interacts
with a KDF challenger, and proceeds identically to Game
6, except: when computing k for πs

i , BA6 queries the KDF
challenger with pms; and when computing k for π t

j, BA6
sets π t

j.k = πs
i .k. When the random bit b sampled by

the KDF challenger is 0, k = KDF(pms, . . .), and BA6
provides a perfect simulation of Game 6. When b = 1,
k←${0,1}lKDF and BA6 provides a perfect simulation of
Game 7.

An adversary capable of distinguishing Game 6 from
Game 7 can therefore distinguish the output of KDF from
random, so Pr(break6)≤ Pr(break7)+Advkdf

KDF(BA6 ).

Game 8. In this game, in session π t
j we replace the con-

tents of the ciphertext C2 sent in m3 with a random string
of the same length, and abort if the ciphertext received in
m5 is not equal to the ciphertext sent in m3 but the output
of the AuthDecs algorithm is not ⊥.

We construct an algorithm BA7 that interacts with
an AE challenger in the following way: BA7 acts ex-
actly as in game 7 except for sessions run by party Pj.
In session π t

j, for the computation of C2, BA7 picks a
uniformly random binary string z′ of length equal to
z = k‖KDF‖Hash‖KEM‖MAC and submits (z,z′) to its
AuthEnc oracle. For all other computations that Pj in-
volving AuthEncs or AuthDecs, BA7 submits the query its
respective AuthEnc or AuthDec oracle.

When the random bit b sampled by the AE challenger
is 0, C2 contains the encryption of z, so BA7 provides a
perfect simulation of Game 7. When b = 1, C2 contains
the encryption of z′, so BA7 provides a perfect simula-
tion of Game 8. An adversary capable of distinguish-
ing Game 7 from Game 8 can therefore break the con-
fidentiality of AE and guess b. Additionally, if BA7 re-
ceives a ciphertext in m5 that was not equal to the ci-
phertext sent in m3 but the output of the AuthDec or-
acle is not ⊥, this corresponds to a ciphertext forgery,
and thus BA7 has broken the integrity of AE. Thus,
Pr(break7)≤ Pr(break8)+Advauth-enc

AE (BA7 ).
The effect of Game 8 is that, in the target session and

its partner, the key used in the MAC computations is
independent of the values transmitted.

Game 9. In this game, we abort when the session πs
i ac-

cepts maliciously. We do this by constructing a simulator
BA8 that interacts with the MAC challenger, but computes
τ1 and τ2 for π t

j by querying h‖m3‖C2 and m5‖t1‖t2‖t3
to the MAC challenger. BA8 verifies MAC tags for πs∗

i∗

by again querying h‖m3‖C2 and m5‖t1‖t2‖t3 to the MAC

challenger and ensuring the MAC challenger’s output is
equal to the tag to be verified. Note that now that the
key k is substituted for the key maintained by the MAC
challenger: k was already uniformly random and indepen-
dent of the protocol run, and by Game 2 and Game 3, the
simulator already responds to Reveal queries to πs

i and π t
j

by aborting the security experiment. Thus these changes
to the game are indistinguishable. When πs

i .α← accept,
BA8 checks Pj to see if there is a matching session. Since
by Game 1 all protocol flows are unique (by unique
nonces), if Pj has no matching session the adversary
must have produced a valid MAC tag τ̂1 or τ̂2 such that
MAC(k,h‖m3‖C2) = τ̂1 or MAC(k,m5‖t1‖t2‖t3) = τ̂2
and (by Game 8) the key k is uniformly random. BA8 sub-
mits the appropriate pair (h‖m3‖C2, τ̂1), (m5‖t1‖t2‖t3, τ̂2)
to the MAC challenger and aborts. Thus, Pr(break8) ≤
Pr(break9)+Adveuf-cma

MAC (BA8 ).

Analysis of Game 9. We now show that an active adver-
sary has a probability negligibly close to 0 of forcing a
client session πs∗

i∗ to accept maliciously in Game 9.
We briefly summarize the changes in games.

1. Nonces no longer collide for honest parties. Each
transcript πs

i .T will have unique honest matching
session π t

j.
2. Guess target session; C aborts if Reveal(i,s) query

asked.
3. Guess partner session; C aborts if Corrupt( j) or

Reveal( j, t) query asked.
4. Hash values no longer collide for honest parties.

Note h is now unique for each negotiation phase,
via Game 1.

5. C1 is not forged in session π t
j.

6. Replace premaster secret pms in target session πs
i

with a random value, rather than key encapsulated in
KEM ciphertext e. Note k is unique and computed
via shared secret data.

7. Replace k with uniformly random data of same
length when computing τ . Thus verification of τ

in Time Synchronization and Key Exchange phases
is done via a uniformly random key, independent of
the protocol run.

8. C2 is not forged in session π t
j and contains random

data.
9. MAC tags in session πs

i are not forged.
After all of the game changes, πs

i is a target session
where: no Reveal(i,s) or Reveal( j, t) queries were is-
sued before πs

i .α ← accept; no Corrupt( j) query was
ever issued before πs

i .α ← accept, where πs
i .pid = j;

and πs
i only accepts if τ1 =MAC(k,h‖m3‖C2) and τ2 =

MAC(k,m5‖t1‖t2‖t3). By unforgeability these tags can-
not be generated by A and by Game 1 the protocol flow
of each session is unique. τ1 and τ2 verification will



thus only occur if πs
i .T = π t

j.T , as τ1 is over all mes-
sages in the negotiation and key exchange phase, and τ2
is over all messages in the time synchronization phase
and thus πs

i will only accept if π t
j.T prefix-matches πs

i .T .
Thus, no client session accepts maliciously in Game 9:
Pr(break9) = 0.

Summing all of the probabilities yields the desired
bound, showing that ANTPE is a E-accurate secure time
synchronization protocol.

6.3 Multi-Phase Security
Multi-phase security of ANTPE can be established in a
similar way to single-phase security as in the previous
section, with minor changes to the games in the proof
to enable guessing of the first phase session to accept
maliciously.

Theorem 3 (Multi-Phase Security of ANTP). Fix E,n ∈
N. Under the same assumptions as in Theorem 2, ANTPE
is a E-accurate secure multi-phase time synchronization
protocol as defined in Definition 5. In particular, there
exist algorithms B3, . . . ,B8 described in the proof of The-
orem 2, such that, for all adversaries A, we have that

Advmulti-time
ANTPE ,E(A)≤

n2
pn2

s

2λ−2 +n2
pn2

s n
(

Advcoll
Hash(BA3 )

+Advauth-enc
AE (BA4 )+Advind-cca

KEM (BA5 )

+Advkdf
KDF(BA6 )+Advauth-enc

AE (BA7 )

+Adveuf-cma
MAC (BA8 )

)
where np, ns, n are the maximum number of parties, ses-
sions and phases created by A during the experiment.

Proof. The proof for Theorem 3 is identical to the proof
to Theorem 2 except as follows.

A new game is inserted between Game 3 and Game
4 that guesses the first time synchronization phase p ∈
{1, . . . ,n} that the target session πs

i will accept mali-
ciously: by Theorem 2, we know that a session πs

i will
not accept maliciously for time synchronization phase
p = 1, so by this step we know that πs

i matches π t
j up to

and including phase p−1.
We also edit the final game (MAC challenger) so that

B aborts if πs
i accepts maliciously in phase p. We do this

by editing the final game in the following way: When pro-
cessing m5 for π t

j in the guessed phase p (we indicate this
with m5p) B will also compute τ2p by querying the MAC
challenger with m5p‖t1p‖t2p‖t3p, and verifies the τ2p for
πs

i by querying the MAC challenger with m5p‖t1p‖t2p‖t3p
and accepting only if the output from the MAC challenger
matches the τp in m6p. Following the same structure as
the proof to Theorem 2, we have that k is a uniformly
random key generated independently from the protocol

run and this change is indistinguishable. Verification of τ

will only occur if πs
i .T = π t

j.T up to phase p, as τ1 is over
all messages in the negotiation and key exchange phase,
and τp is over all messages in phase p.

7 Discussion

In this work we introduced a new authenticated time syn-
chronization protocol called ANTP, designed to securely
synchronize the time of a client and server, using public
key infrastructure. Our design allows a server to perform
a single public key operation per client during the infre-
quently performed key exchange phase, and then use only
faster symmetric key operations for each subsequent time
synchronization request from that client. This efficient
design means that the throughput of ANTP time syn-
chronization phases is reduced by a factor of only 1.6×
compared to NTP. Our protocol has been designed such
that servers sharing the same long-term secret can han-
dle different phases of the same client for load-balancing
purposes. Furthermore, the server need not even store
per-client state, instead securely offloading storage of that
state to the client.

ANTP is accompanied by a provable security analy-
sis showing that it provides secure time synchronization
within user-specified accuracy bounds. The analysis is
carried out in a new provable security framework. A novel
aspect of our new framework, when compared with the
long line of work on authentication definitions, is that
our framework models an adversary with the ability to
control the flow of time, meaning the adversary can initial-
ize different parties’ clocks to different times, and even
control the rate at which their clocks are advanced. The
security framework can be used for the analysis of other
time synchronization protocols such as the Network Time
Security (NTS) protocol and the Precision Time Protocol
(PTP).

Several interesting open problems in the area of secure
time synchronization remain. Since ANTP uses public
keys, it inherits problems associated with public key in-
frastructure, such as the dangers of certificate authority
compromise. All existing time synchronization proto-
cols that rely on public keys, including ours, need to
initially validate the certificate of the time server, specifi-
cally that it is within its validity period. While nonces can
be combined with OCSP responses to check freshness,
this cannot completely solve the “first-boot” problem. A
detailed study of denial of service attacks against secure
time synchronization protocols including ANTP would
also be worthwhile, giving detailed consideration to both
the cost of cryptographic operations in practice and the
bandwidth amplification afforded by directing protocol
responses to a victim.



Acknowledgements
We thank Gleb Sechenov at the Queensland University of
Technology for assistance in setting up the network for
the experiments. B.D. and D.S. were supported in part
by Australian Research Council (ARC) Discovery Project
grant DP130104304. Part of this work performed while
B.D. was an intern at Microsoft Research and while D.S.
was at QUT.

References
[1] IEEE Std 1588 for a Precision Clock Synchronization Protocol for

Networked Measurement and Control Systems Networked Mea-
surement and Control Systems. Tech. rep., IEEE Instrumentation
and Measurement Society, 2008.

[2] ADRIAN, D., BHARGAVAN, K., DURUMERIC, Z., GAUDRY, P.,
GREEN, M., HALDERMAN, J. A., HENINGER, N., SPRINGALL,
D., THOMÉ, E., VALENTA, L., VANDERSLOOT, B., WUSTROW,
E., BÉGUELIN, S. Z., AND ZIMMERMANN, P. Imperfect forward
secrecy: How diffie-hellman fails in practice. In ACM CCS 15
(Oct. 2015), I. Ray, N. Li, and C. Kruegel:, Eds., ACM Press,
pp. 5–17.

[3] APPELBAUM, J. tlsdate, 2015. https://github.com/

ioerror/tlsdate.

[4] BASIN, D., CAPKUN, S., SCHALLER, P., AND SCHMIDT, B.
Formal reasoning about physical properties of security protocols.
ACM Trans. Inf. Syst. Secur. 14, 2 (Sept. 2011), 16:1–16:28.

[5] BELLARE, M., AND ROGAWAY, P. Random oracles are practical:
A paradigm for designing efficient protocols. In ACM CCS 93
(Nov. 1993), V. Ashby, Ed., ACM Press, pp. 62–73.

[6] DOWLING, B., STEBILA, D., AND ZAVERUCHA, G. Authenti-
cated network time synchronization. Cryptology ePrint Archive,
Report 2015/171, 2015. http://eprint.iacr.org/2015/

171.

[7] EVANS, C., PALMER, C., AND SLEEVI, R. Public Key Pinning
Extension for HTTP. RFC 7469 (Proposed Standard), Apr. 2015.

[8] GALINDO, D., MARTIN, S., AND VILLAR, J. L. Evaluating
elliptic curve based KEMs in the light of pairings. Cryptology
ePrint Archive, Report 2004/084, 2004. http://eprint.iacr.
org/2004/084.

[9] HEDRICK, C. Routing Information Protocol. RFC 1058 (Historic),
June 1988.

[10] HODGES, J., JACKSON, C., AND BARTH, A. HTTP Strict Trans-
port Security (HSTS). RFC 6797 (Proposed Standard), Nov. 2012.

[11] JAGER, T., KOHLAR, F., SCHÄGE, S., AND SCHWENK, J. On
the security of TLS-DHE in the standard model. In CRYPTO 2012
(Aug. 2012), R. Safavi-Naini and R. Canetti, Eds., vol. 7417 of
LNCS, Springer, Heidelberg, pp. 273–293.

[12] MALHOTRA, A., COHEN, I. E., BRAKKE, E., , AND GOLDBERG,
S. Attacking the Network Time Protocol. In NDSS 2016 (Feb.
2016), Internet Society.

[13] MICROSOFT CORPORATION. Windows Time Service Tools
and Settings. Microsoft Developer Network, May 2012. https:
//msdn.microsoft.com/de-de/library/cc773263%28v=

ws.10%29.aspx#w2k3tr_times_tools_uhlp.

[14] MICROSOFT CORPORATION. [MS-W32T]: W32Time Remote
Protocol. Microsoft Developer Network, May 2014. https:

//msdn.microsoft.com/en-us/library/cc249627.aspx.

[15] MILLS, D. Network Time Protocol (NTP). RFC 958, Sept. 1985.

[16] MILLS, D. Network Time Protocol (version 2) specification and
implementation. RFC 1119 (Internet Standard), Sept. 1989.

[17] MILLS, D. Network Time Protocol (Version 3) Specification,
Implementation and Analysis. RFC 1305 (Draft Standard), Mar.
1992.

[18] MILLS, D., MARTIN, J., BURBANK, J., AND KASCH, W. Net-
work Time Protocol Version 4: Protocol and Algorithms Specifi-
cation. RFC 5905 (Proposed Standard), June 2010.

[19] MILLS, D. L. On the accuracy and stablility of clocks synchro-
nized by the network time protocol in the internet system. ACM
SIGCOMM Computer Communication Review 20, 1 (1989), 65–
75.

[20] MIZRAHI, T. Security Requirements of Time Protocols in Packet
Switched Networks. RFC 7384 (Informational), Oct. 2014.

[21] NATIONAL INSTITUTE FOR STANDARDS AND TECHNOLOGY
(NIST). The NIST Authenticated NTP Service. http://www.

nist.gov/pml/div688/grp40/auth-ntp.cfm.
[22] PERRIG, A., CANETTI, R., TYGAR, J., AND SONG, D. The

TESLA broadcast authentication protocol. RSA CryptoBytes 5,
Summer (2002).

[23] RÖTTGER, S. Analysis of the NTP Autokey Protocol. Masters
Thesis, Technische Universität Braunschweig, Feb. 2012. http:
//zero-entropy.de/autokey_analysis.pdf.

[24] SALOWEY, J., ZHOU, H., ERONEN, P., AND TSCHOFENIG,
H. Transport Layer Security (TLS) Session Resumption with-
out Server-Side State. RFC 5077 (Proposed Standard), Jan. 2008.

[25] SANTESSON, S., MYERS, M., ANKNEY, R., MALPANI, A.,
GALPERIN, S., AND ADAMS, C. X.509 Internet Public Key
Infrastructure Online Certificate Status Protocol - OCSP. RFC
6960 (Proposed Standard), June 2013.

[26] SCHNORR, C.-P. Efficient identification and signatures for smart
cards. In CRYPTO’89 (Aug. 1990), G. Brassard, Ed., vol. 435 of
LNCS, Springer, Heidelberg, pp. 239–252.

[27] SCHWENK, J. Modelling time, or a step towards reduction-
based security proofs for OTP and kerberos. Cryptology ePrint
Archive, Report 2013/604, 2013. http://eprint.iacr.org/
2013/604.

[28] SELVI, J. Bypassing HTTP Strict Transport Security. In Black
Hat Europe (2014). https://www.blackhat.com/docs/eu-

14/materials/eu-14-Selvi-Bypassing-HTTP-Strict-

Transport-Security-wp.pdf.
[29] SHOUP, V. ISO/IEC 18033-2:2006: Information technology –

security techniques – encryption algorithms – part 2: Asymmetric
ciphers. Tech. rep., 2006. See also http://shoup.net/iso/

std6.pdf.
[30] SIBOLD, D., AND RÖTTGER, S. Analysis of NTP’s Autokey

Protocol, 2012. https://www.ietf.org/proceedings/83/

slides/slides-83-tictoc-1.pdf.
[31] SIBOLD, D., RÖTTGER, S., AND TEICHEL, K. Net-

work Time Security. IETF Internet-Draft, Jan. 2016.
https://tools.ietf.org/html/draft-ietf-ntp-

network-time-security-12.
[32] TEICHEL, K., SIBOLD, D., AND MILIUS, S. First Results of a

Formal Analysis of the Network Time Security Specification. In
Security Standardisation Research. Springer, 2015, pp. 218–245.

[33] TEICHEL, K., SIBOLD, D., AND MILIUS, S. An Attack Possi-
bility on Time Synchronization Protocols Secured with TESLA-
Like Mechanisms, 2016. https://www8.cs.fau.de/staff/

milius/AttackPossibilityTimeSyncTESLA.pdf.
[34] THE OPENBSD PROJECT. OpenNTPD version 5.7p4, Mar. 2015.

http://www.openntpd.org/.
[35] THE OPENSSL PROJECT. OpenSSL version 1.0.2f, Jan. 2016.

https://www.openssl.org/.

https://github.com/ioerror/tlsdate
https://github.com/ioerror/tlsdate
http://eprint.iacr.org/2015/171
http://eprint.iacr.org/2015/171
http://eprint.iacr.org/2004/084
http://eprint.iacr.org/2004/084
https://msdn.microsoft.com/de-de/library/cc773263%28v=ws.10%29.aspx#w2k3tr_times_tools_uhlp
https://msdn.microsoft.com/de-de/library/cc773263%28v=ws.10%29.aspx#w2k3tr_times_tools_uhlp
https://msdn.microsoft.com/de-de/library/cc773263%28v=ws.10%29.aspx#w2k3tr_times_tools_uhlp
https://msdn.microsoft.com/en-us/library/cc249627.aspx
https://msdn.microsoft.com/en-us/library/cc249627.aspx
http://www.nist.gov/pml/div688/grp40/auth-ntp.cfm
http://www.nist.gov/pml/div688/grp40/auth-ntp.cfm
http://zero-entropy.de/autokey_analysis.pdf
http://zero-entropy.de/autokey_analysis.pdf
http://eprint.iacr.org/2013/604
http://eprint.iacr.org/2013/604
https://www.blackhat.com/docs/eu-14/materials/eu-14-Selvi-Bypassing-HTTP-Strict-Transport-Security-wp.pdf
https://www.blackhat.com/docs/eu-14/materials/eu-14-Selvi-Bypassing-HTTP-Strict-Transport-Security-wp.pdf
https://www.blackhat.com/docs/eu-14/materials/eu-14-Selvi-Bypassing-HTTP-Strict-Transport-Security-wp.pdf
http://shoup.net/iso/std6.pdf
http://shoup.net/iso/std6.pdf
https://www.ietf.org/proceedings/83/slides/slides-83-tictoc-1.pdf
https://www.ietf.org/proceedings/83/slides/slides-83-tictoc-1.pdf
https://tools.ietf.org/html/draft-ietf-ntp-network-time-security-12
https://tools.ietf.org/html/draft-ietf-ntp-network-time-security-12
https://www8.cs.fau.de/staff/milius/AttackPossibilityTimeSyncTESLA.pdf
https://www8.cs.fau.de/staff/milius/AttackPossibilityTimeSyncTESLA.pdf
http://www.openntpd.org/
https://www.openssl.org/

	Introduction
	Contributions

	Network Time Protocols
	The Network Time Protocol
	The Simple Network Time Protocol
	NTP Security and Other Related Work

	Authenticated NTP
	Protocol Description
	Design Rationale and Discussion

	Implementation and Performance
	Instantiation and Implementation
	Performance

	Security Framework
	Execution Environment
	Security Definitions
	Matching Conversations and Authentication
	Correct and Secure Time Synchronization

	Multi-Phase Protocols

	Security of ANTP
	Correctness
	Security
	Multi-Phase Security

	Discussion

