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Abstract. Secure protocols for password-based user authentication are
well-studied in the cryptographic literature but have failed to see wide-
spread adoption on the Internet; most proposals to date require extensive
modifications to the Transport Layer Security (TLS) protocol, making
deployment challenging. Recently, a few modular designs have been
proposed in which a cryptographically secure password-based mutual
authentication protocol is run inside a confidential (but not necessarily
authenticated) channel such as TLS; the password protocol is bound
to the established channel to prevent active attacks. Such protocols are
useful in practice for a variety of reasons: security no longer relies on users’
ability to validate server certificates and can potentially be implemented
with no modifications to the secure channel protocol library.

We provide a systematic study of such authentication protocols.
Building on recent advances in modelling TLS, we give a formal definition
of the intended security goal, which we call password-authenticated and
confidential channel establishment (PACCE). We show generically that
combining a secure channel protocol, such as TLS, with a password
authentication protocol, where the two protocols are bound together
using either the transcript of the secure channel’s handshake or the
server’s certificate, results in a secure PACCE protocol. Our prototype
based on TLS is available as a cross-platform client-side Firefox browser
extension and a server-side web application which can easily be installed
on deployed web browsers and servers.

Keywords: password authentication, Transport Layer Security, channel
binding

1 Introduction

Authentication using passwords is perhaps the most prominent and human-
friendly user authentication mechanism widely deployed on the Web. In this
ubiquitous approach, which we refer to as HTML-forms-over-TLS, the user’s
password is sent encrypted over an established server-authenticated Transport
Layer Security (TLS, previously known as Secure Sockets Layer (SSL)) channel in
response to a received HTML form. This approach is subject to many threats: the
main problems with this technique are that security fully relies on a functional



X.509 public key infrastructure (PKI) and on users correctly validating the
server’s X.509 certificate. In practice, these assumptions are unreliable due to
a variety of reasons: the many reported problems with the trustworthiness of
certification authorities (CAs), inadequate deployment of certificate revocation
checking, ongoing threats from phishing attacks, and the poor ability of the
users to understand and validate certificates [1,2]. Hypertext Transport Protocol
(HTTP) basic and digest access authentication [3] has been standardized, and
digest authentication offers limited protection for passwords, but usage is rare.
Public-key authentication of users, e.g. using X.509 certificates, is also rare.

1.1 Password-authenticated key exchange (PAKE)

Password-authenticated key exchange (PAKE) protocols, which were introduced
by Bellovin and Merritt [4], and the security of which was formalized in several
settings [5,6,7], could mitigate many of the risks of the HTML-forms-over-TLS
approach as they do not rely on any PKI and offer stronger protection for client
passwords against server impersonation attacks, such as phishing. PAKE protocols
allow two parties determine whether they both know a particular string while
cryptographically hiding any information about the string. They are resistant
to offline-dictionary attacks: an adversary who observes or participates in the
protocol cannot test many passwords against the transcript. Successful execution
of a PAKE protocol also provides parties with secure session keys which can be
used for encryption.

Despite the many benefits of PAKE, and the presence of a variety of existing
protocols in the academic literature and in standards [8,9,10], PAKE-based
approaches for client authentication have not been adopted in practice. There
is no PAKE standard that has been agreed upon and implemented in existing
web browser and server technologies. This is due to several practical obstacles,
including: patents covering PAKE in general (some of which have recently expired
in the US), patents on proposed standards such as the Secure Remote Password
(SRP) protocol [11], lack of agreement on the appropriate layer within the
networking stack for the integration of PAKE [12], complexity of backwards-
compatible deployment with TLS, and user-interface challenges.

There have been a few proposals to integrate PAKE into TLS by adding
password-based ciphersuites as an alternative to public-key authenticated cipher-
suites. SRP has been standardized as a TLS ciphersuite [13] and has several
reference implementations but none in major web browsers or servers. Abdalla
et al. [14] proposed the provably secure Simple Open Key Exchange (SOKE)
ciphersuite, which uses a variant of the PAKE protocol from [15] that is part
of the IEEE-P1363.2 standard [10]. The J-PAKE protocol [16] is used in a few
custom applications. Common to all PAKE ciphersuite approaches is that the
execution of PAKE becomes part of the TLS handshake protocol: the key output
by PAKE is treated as the TLS pre-master secret, which is then used to derive
further encryption keys according to the TLS specification. An advantage of this
approach is that secure password authentication could subsequently be used in
any application that makes use of TLS, and that standard TLS mechanisms



for key derivation and secure record-layer communication can continue to be
used. However, a major disadvantage is that any new ciphersuites in TLS require
substantial vendor-side modifications of the web browser and server software.
This is problematic for modern web server application architectures within large
organizations, where a TLS accelerator immediately handles the TLS handshake
and encryption, then hands the plaintext off to the first of many application
servers; requiring the TLS accelerator to have access to the list of valid usernames
and passwords may mean a substantial re-architecting. Moreover, using solely
PAKE in TLS means abandoning the web public key infrastructure.

1.2 Running PAKE at the application layer

A better approach for realizing secure password-based authentication on the
web may be to rely on existing TLS implementations to provide confidential
communication between clients and servers, and integrate application-level PAKE
for password-based authentication, without requiring any modifications to the
TLS specification or implementation; in particular, without proposing any new
TLS ciphersuites or changing any of the steps of TLS handshake protocol.

However, if the TLS channel is only assumed to provide confidentiality, not
authentication, then one must use an alternative mechanism to rule out man-in-
the-middle attacks on the TLS channel. Since it is the password-based protocol
that provides mutual authentication, there should be a binding between the TLS
channel and the password-based protocol. There are several potential values which
might be used for binding: the transcript of the TLS handshake protocol, the TLS
master secret key (or a value derived from it, such as the TLS Finished message),
or even the server’s certificate. A recent standard [17] describes three TLS channel
bindings, two of which are relevant to us: tls-unique in which the binding string
is the Finished message, and tls-server-end-point in which the binding
string is the hash of the server’s certificate. Notably, TLS channel bindings do
not change the TLS protocol itself: all TLS protocol messages, ciphersuites, data
transmitted, and all other values are entirely unchanged. Rather, TLS channel
bindings expose an additional value to the application that can be obtained
locally, thereby requiring minimal changes to TLS implementations.

The high-level approach of running PAKE at the application level is given in
Figure 1. Using PAKE at the application-level supplements, rather than replaces,
the use of public key certificates.

Several recent works have proposed protocols of this form. Oiwa et al.
[18,19,20,21] published an Internet-Draft that employs an ISO-standardized
PAKE protocol (KAM3 [8, §6.3],[22]) and binds it to the TLS channel using
either the server’s certificate or the TLS master secret key, but no formal justifi-
cation is given for security of the combined construction.

Dacosta et al. [23] proposed the DVCert protocol which aims to achieve direct
validation of the TLS server certificates by using a modification of the protocol
from [24] for secure server-to-client password-based authentication. Dacosta et
al. used an automated cryptographic protocol verifier, ProVerif, to demonstrate
that their protocol does not leak password information without addressing any



further security properties of secure channels. In particular, the analysis carried
out in [23] is insufficient for showing the actual benefit of using PAKE protocols
to strengthen the security of the TLS channel: Dacosta et al. simply show that
the protocol does not leak password information, which is not surprising since
they build on a PAKE protocol which already did not leak information. Rather,
the security goals of the overall channel must be fully modelled to provide a
complete analysis. This is where our model for PACCE fills the gap: it explains
the expected security goals from the combination of PAKE and TLS. While we
have no reason to expect that the protocol from [23] is insecure, our model would
enable such an analysis of that protocol.

Outside of the world of TLS, the Off-the-Record Messaging protocol [25,26]
uses a PAKE-like password authentication functionality that is based on secure
two-party computation techniques to authenticate the long-term public keys used
in establishing confidential (yet deniable) channel, but with no justification for
the security of the combined construction.

1.3 Contributions

We analyze the modular approach to secure password authentication on the web,
in which a secure channel protocol such as TLS is combined—in a black box
way—with a password-authentication protocol. The black-box approach enables
smooth integration of PAKE functionality with secure channels such as TLS
without requiring any modification to the original channel protocol specification,
nor requiring abandoning public key certificates for server authentication.

At a high level, in our approach, a normal secure channel is established with
no assumptions on correct validation of certificates; then a PAKE protocol is run
within the secure channel to demonstrate (a) mutual knowledge of the password,
and (b) absence of a man-in-the-middle attack on the channel; once the PAKE
succeeds, the parties continue application communication. Notably, the session
key established by the PAKE is not used for symmetric encryption; while it could
replace the secure channel session key, in practice, such as in TLS, there is no
standardized mechanism to do so. Moreover, using the existing channel session
key is fine provided we bind the execution of the PAKE and the original channel
establishment in a provably secure way. We show how to realize this binding
using available TLS standards.

Our formal approach is as follows.
First, we define formally in Section 2 the security property we aim for in

our protocol: since the most suitable definition for the security of the combined
TLS handshake and record layer protocols is the authenticated and confidential
channel establishment (ACCE) model of Jager et al. [27], we give a corresponding
password-based ACCE (PACCE) notion. We apply our PACCE model to analyzing
strong passwords in TLS; as ACCE has been used to analyze many real world
protocols (SSH [28], EMV [29], and QUIC), PACCE should be suitable for strong
password variants of those.

Next, we define the various primitives we employ to achieve this goal; these
include the original ACCE notion, as well as an unauthenticated confidential
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Fig. 1: High-level approach for combining secure password authentication with a
TLS channel to establish a single password-authenticated secure channel.

channel establishment (CCE) protocol. Rather than using a PAKE protocol,
we actually employ a newly defined tag-based password authentication (tPAuth)
protocol, which provides mutual authentication based on knowledge of a shared
password, with acceptance only if both parties input the same, possibly public,
tag to the protocol.

Then, when we run the tPAuth protocol inside the established confidential
channel, we bind the two protocols together by setting the tag to be either
the transcript of the channel establishment or the long-term public key used
by the server in the channel establishment. We prove in Sections 4 and 5 that
both of these tags are sufficient to achieve the end result of a password-based
authenticated and confidential channel establishment (PACCE) protocol. Our
two security theorems provide a qualitative distinction between those two tags
as binding mechanisms because they use slightly different assumptions on the
confidential channel establishment protocol: when the tag used is the transcript,
it suffices to use a CCE protocol, but when the tag used is the server’s public
key, we require the underlying protocol to be an ACCE protocol. (These results
give the first security justification of two standardized TLS channel binding
mechanisms, tls-unique and tls-server-end-point [17].)

Applicability of results to other approaches. Our results, by employing the
CCE/ACCE frameworks, are generic and could be applicable to constructions
employing a wide variety of protocols, not just TLS. These results justify the
general approach of the recent proposals of Oiwa et al.’s protocol [18,19,20,21]
and Dacosta et al.’s DVCert protocol [23]. We caution that our theorems do not
immediately imply security of those particular protocols for several reasons.

Our theorems depend on a formal construction called a tag-based password
authentication (tPAuth) protocol. Only the tSOKE protocol we describe in
Appendix B is known to be a secure tPAuth. For most PAKE protocols, such as
the PAK protocol employed by Dacosta et al., it seems not hard to modify the
PAKE security proof to demonstrate tPAuth, but this requires additional work
for each particular protocol.

Oiwa et al. provide three channel binding mechanisms: the server’s TLS
certificate, the server host string (e.g., http://www.example.com:80), and the
server’s TLS master secret key.



– Our results do not address the cryptographic security of server host string
binding; indeed, Oiwa et al. intend for this mode mainly to be used when
TLS is not employed.

– Section 5.3 provides a justification for the use of the TLS server certificate,
though as noted our results only apply when the PAKE is also a tPAuth.

– Section 4.4 provides a justification for the use of the TLS Finished message,
whereas Oiwa et al. allow use of the TLS master secret key. Since the TLS
handshake will not complete unless both parties compute the same Finished

messages, our results also justify the use of the TLS master secret key for
channel binding, though security of the whole construction again is not
implied by our results due to the caveat above that our results only apply
with the PAKE is also shown to be a tPAuth.
Dacosta et al.’s DVCert protocol only provides server-to-client password-based

authentication, whereas our PACCE notion provides mutual authentication.
Implementation. In Section 6, we demonstrate the practical merit of our

approach with a reference implementation for the Mozilla Firefox web browser and
the Apache web server that takes advantage of the modularity of the construction.
– On the client side, our implementation is achieved entirely as a Firefox

extension: it is a cross-platform Javascript-based bundle that can be installed
by the user at run-time, without any modifications to the source code of the
Firefox browser or its TLS library, Network Security Services (NSS).

– On the server side, our implementation is achieved entirely as a cross-platform
PHP application: it can be added at run-time without any modifications to
the source code of the Apache web server or its TLS library, OpenSSL.

Binding the password authentication protocol to the TLS channel is achieved
using the server’s TLS certificate as the tag; both Firefox and Apache have
APIs exposing the server’s certificate to the extension and PHP application,
respectively; the server certificate is one of two channel binding mechanisms
standardized for TLS [17]. The source code size of our implementation is quite
small. Our pure Javascript implementation is completely cross-platform and
provides tolerable performance, with total round-trip time under half a second
on a laptop, while our native C implementation using OpenSSL libraries provides
high client and server performance with a total protocol execution time, including
network latency in a corporate network, around 109ms. Our implementation is
available for immediate download.

Though the ultimate goal of this line of work would be for such a protocol to
be built into the browser, our Javascript extension may be amenable to gradual
deployment to seed adoption while still achieving good performance, especially
when making use of native libraries.

2 Password-authenticated confidential channels

The security goal for our main construction is that it be a secure password-
authenticated and confidential channel establishment (PACCE) protocol, which is
a new password-based variant of the ACCE model of Jager et al. [27]. ACCE



seems to be the most suitable for describing the security requirements of real-
world secure channel protocols such as TLS [27,30,31,32] and SSH [28], and so it
is natural to adapt it to the password setting.

A PACCE protocol is a two-party protocol that proceeds in two stages: in the
handshake stage both participants perform an initial cryptographic handshake to
establish session keys which are then used in the record layer stage to authenticate
and encrypt the transmitted session data.3 At some time during execution, the
parties may accept the session as being legitimately authenticated, or reject. The
main difference in PACCE compared to the original ACCE model is the use of
passwords instead of long-term public keys for authentication.

At a high level, a PACCE protocol is secure if the adversary cannot break
authentication, meaning it cannot cause a party to accept without having in-
teracted with its intended partner, and cannot break the confidential channel,
meaning it cannot read or inject ciphertexts.

We consider the standard client-server communication model where a party
is either a client C or a server S. For each client-server pair (C, S) there exists a
corresponding password pwC,S drawn from a dictionary D.

An instance of party U ∈ {C, S} in a session s is denoted as Πs
U . Each instance

Πs
U records several variables:

– Πs
U .pid: the partner identity with which Πs

U believes to be interacting in the
protocol session.

– Πs
U .ρ ∈ {init, resp}: the role of this instance in the session, either initiator

or responder. init(Πs
U ) and resp(Πs

U ) denote Πs
U ’s view of who the initiator

and responder are in the session, namely (U,Πs
U .pid) when Πs

U .ρ = init, and
(Πs

U .pid, U) when Πs
U .ρ = resp.

– Πs
U .T : a transcript composed of all messages sent and received by the instance

in temporal order.
– Πs

U .α ∈ {active, accept, reject}: the status of this instance.
– Πs

U .k: the session key computed by this stage; initially set to empty ∅; when
non-empty, it consists of two symmetric keys Πs

U .k
enc and and Πs

U .k
dec for

encryption and decryption with some stateful length-hiding authenticated
encryption scheme [27] used to provide confidentiality in the record layer
stage. If Πs

U .α = accept, then Πs
U .k 6= ∅

– Πs
U .b ∈ {0, 1}: a randomly sampled bit used in the Encrypt oracle.

Two instances Πs
U and Πs′

U ′ are said to be partnered if and only if Πs
U .pid = U ′,

Πs′

U ′ .pid = U , Πs
U .ρ 6= Πs′

U ′ .ρ, and their transcripts form matching conversa-

tions [27], denoted Πs
U .T ≈ Πs′

U ′ .T .

The adversary A controls all communications and can interact with parties
using certain oracle queries. Normal operation of the protocol is modelled by the
following queries:

3 In the original ACCE model, these stages were called the pre-accept and post-accept
stages respectively. In PACCE, the parties may start sending encrypted data before
accepting, so we have renamed the stages to handshake and record layer, which is
suggestive of TLS, but of course can be used to model any appropriate protocol.



– Sendpre(Πs
U ,m): This query is answered as long as Πs

U .k = ∅. In response the
incoming message m is processed by Πs

U and any outgoing message which
is generated as a result of this processing is given to A. Special messages
m = (init, U ′) and m = (resp, U ′) are used to initialize the instance as
initiator or responder, respectively, and to specify the identity of the intended
partner U ′. Note that processing of m may eventually lead to the end of the
handshake stage, in which case Πs

U either computes Πs
U .k and switches to

the record layer stage or terminates with a failure.
– Encrypt(Πs

U ,m0,m1, len, head),
– Decrypt(Πs

U , C, head): The Encrypt and Decrypt queries proceed as defined in
the original ACCE definition [27] and are omitted due to space restrictions.
Note that, compared with ACCE, we allow protocol messages to be sent
on the encrypted channel: If Πs

U .α = active, then the returned plaintext
message m is processed as a protocol message; the resulting outgoing message
m′ is encrypted using Encrypt(Πs

U ,m
′,m′, len(m′), head) and the resulting

ciphertext C is returned to A. Otherwise, when Πs
U .α = accept, the output

of Decrypt is returned to A.
Furthermore, the adversary may obtain some secret information:
– RevealSK(Πs

U ): Return Πs
U .k.

– Corrupt(C, S): Return pwC,S .
Note that, compared with AKE models like the eCK model [33] that use public
key authentication, password-based protocols cannot tolerate ephemeral key
leakage while maintaining resistence to offline dictionary attacks, hence we do
not include an ephemeral key leakage query.

Definition 1 (PACCE security). An adversary A is said to (t, ε)-break a
PACCE protocol if A runs in time t and at least one of the following two
conditions hold:
1. A breaks authentication: When A terminates, then with probability at least

ε + O(n/|D|) where n is the number of initialized PACCE instances there
exists an instance Πs

U such that
(a) Πs

U .α = accept, and
(b) A did not issue Corrupt(init(Πs

U ), resp(Πs
U )) before Πs

U accepted, and

(c) A did not issue RevealSK(Πs
U ) or RevealSK(Πs′

U ′) for any Πs′

U ′ that is
partnered to Πs

U , and

(d) there is no unique instance Πs′

U ′ that is partnered to Πs
U .

2. A breaks authenticated encryption: When A terminates and outputs a triple
(U, s, b′) such that conditions (a)–(c) from above hold, then we have that∣∣Pr [b′ = Πs

U .b]− 1
2

∣∣ ≥ ε+O(n/|D|).
A PACCE protocol is (t, ε)-secure if there is no A that (t, ε)-breaks it; it is secure
if it is (t, ε)-secure for all polynomial t and negligible ε in security parameter κ.

Observe that Definition 1 accounts for online dictionary attacks against PACCE
protocols by using a lower bound ε+O(n/|D|) for the adversarial success prob-
ability, which models A’s ability to test at most one password (or a constant
number) from the dictionary D in a single session.



3 Generic construction

Our generic construction for secure PACCE between a client C and a server S
from password-based authentication and a secure channel is as follows. First, the
channel establishment protocol (CCE or ACCE) is run until it accepts. Then,
using the secure channel, the two parties run a tag-based password authentication
(tPAuth) protocol where the tag is a binding value from the secure channel;
when the tPAuth protocol accepts, then the parties accept in the overall PACCE
protocol, and then continue to use the channel for communication. Our two
constructions in Sections 4 and 5 differ only in the way the tPAuth is bound to the
established channel: the tag is either the transcript of the channel establishment
protocol or the long-term public key of the server.

We now concretely describe the combination of a tPAuth protocol with TLS,
as detailed in Figure 2. C and S first build up a standard TLS channel: that
is, they execute a normal TLS handshake, then exchange ChangeCipherSpec

messages to start authenticated encryption within the TLS record layer, and then
exchange their Finished messages for explicit key confirmation. Once Finished

messages are successfully exchanged, the parties continue using the authenticated
encryption mechanism of the TLS record layer to communicate messages of the
tag-based password-authentication protocol tPAuth. In our first construction
this binding is achieved by using the Finished messages as the tag; note that
Finished messages depend on the (hash of the) entire TLS handshake transcript.
In our second construction the tag is the server’s certificate (which includes the
server’s public key) that was communicated by S in its Certificate message of
the TLS handshake. Upon successful completion of the password authentication
phase both parties continue using session keys and authenticated encryption
mechanism of the established TLS channel for secure communication.

4 Construction #1: Binding using CCE transcript

Our first generic PACCE protocol ΓT := ΓT (π, ξ) is constructed as in Section 3
from a confidential channel establishment (CCE) protocol π and a tag-based
password authentication (tPAuth) protocol ξ where the tag τ used is the transcript
T of the CCE handshake stage. We will see that, because we are using the full
transcript from the channel establishment to bind the two protocols together, we
need not rely on any authenticity properties of the channel, and thus can use a
CCE protocol, not an ACCE protocol.

4.1 Building block: CCE

As a building block in our analysis we use the notion of confidential channel
establishment (CCE) that differs from (P)ACCE in that it is supposed to guar-
antee only confidentiality (and integrity) of the established channel, but not
authentication of partners; hence, security is only assured for sessions in which
the adversary A remains passive during the handshake stage. We thus model
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verify auth2
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application data application data

Fig. 2: Protocol message diagram for TLS with tunnelled tag-based password
authentication, with example messages for the tSOKE protocol. TLS.tag is either
TLS.Finished or TLS.Certificate. † denotes optional messages.

CCE by slightly modifying the PACCE model from Section 2. The differences are
explained in Appendix A. Every secure (P)ACCE protocol is also CCE-secure:
if we ignore the authentication aspects, then we still get confidential channel
establishment in sessions where the adversary is passive during the handshake.

TLS does, when public keys are managed and used properly, provide strong
authentication based on public keys, and can be proven ACCE-secure [27]. But,
as we observed in the introduction, practice suggests we cannot rely on the
web PKI to provide ideal authentic distribution and mapping of public keys to
identities. TLS can in practice be seen as a CCE protocol: even though long-term
public keys may be used in TLS, we are not confident in their authenticity, so
we only take TLS to provide CCE security.

4.2 Building block: tag-based password authentication

Tag-based authentication [34] accounts for the use of auxiliary, possibly public,
strings (tags) in authentication protocols — each party uses a tag, in addition
to the authentication factor, and the protocol guarantees that if parties accept



then their tags match. This concept was introduced in [34] for public key-
based authentication protocols and then generalized in [35] for other types of
authentication factors, including passwords and biometrics. In our analysis we
will use a tag-based password authentication protocol, denoted tPAuth.

The model of tPAuth can be described using the setting of PACCE protocols
from Section 2. A tPAuth session is executed between a client instance Πs

C

and a server instance Πs′

S on input the corresponding password pwC,S from the
dictionary D and some tag τ ∈ {0, 1}∗. A tPAuth session is successful if both
instances use the same password pwC,S and tag τ as their input. The security of
tPAuth protocols, extends the traditional password authentication requirement
that accounts for online dictionary attacks with the requirement of tag equality,
and is achieved formally by an extended definition of partnering. The details of
tPAuth security appear in Appendix B.

In Appendix B, we present tSOKE, a tag-based variant of the Simple Open
Key Exchange (SOKE) variant [14]. An example of the tSOKE message flow
can be seen in Figure 2. Since SOKE is a password-authenticated key exchange
protocol, it does establish a secure session key; however, we only use its properties
of mutual authentication and resistance to dictionary attacks. The tag is inserted
into the key used for explicit key confirmation; it does not need resistance to
dictionary attacks since it is known to the adversary, and thus is not used in the
Diffie–Hellman portion like the password.

4.3 Security analysis of construction #1

Theorem 1 (CCE + tPAuthτ=TCCE
=⇒ PACCE). The generic construction of a

PACCE protocol ΓT (π, ξ) from a CCE protocol π and a tPAuth protocol ξ, with the
tag equal to the transcript TCCE from the CCE handshake stage, is PACCE-secure,
assuming the underlying protocols are secure.

The proof consists of a sequence of games. In the first game, the simulator
continues to simulate the CCE portion of the protocol but undetectably replaces
the tPAuth simulation with that of a real tPAuth challenger. Next, the simulator
aborts if any of its instances accept without a partnered instance existing; this will
correspond to a violation of authentication in the underlying tPAuth challenger.
In the third game, the simulator now undetectably replaces the CCE simulation
with that of a real CCE challenger. An adversary who can win against the
resulting PACCE simulator can be used to win against the underlying CCE
challenger. The proof appears in the full version [36].

4.4 Using tls-unique channel binding

The tls-unique channel binding mechanism [17] can be used to instantiate
construction #1. For tls-unique the channel binding string is the first Finished
message, which is the output of a pseudorandom function on the hash of the TLS
handshake transcript.



It is straightforward to see that if the Finished message is used as the tag for
channel binding instead of the full transcript in an analogous generic construction
Γfin(π, ξ), and the hash function H is collision-resistant and the pseudorandom
function PRF is secure, then Γfin is a secure PACCE. This follows by noting
that, except with negligible probability, the parties must use the same transcript
in order to arrive at the same tag, and then the proof of Theorem 1 applies.

5 Construction #2: Binding using server public key

Our second generic PACCE protocol Γpk := Γpk(π, ξ) is constructed as in Section 3
from an authenticated and confidential channel establishment (ACCE) protocol
π and a tPAuth protocol ξ where the tag τ used is the long-term public key used
by the server in the ACCE protocol.

Because we are using only the server’s long-term public key, and not the full
transcript from the channel establishment, to bind the two protocols together,
we now must rely on some authenticity properties of the channel. However, we
will not be relying on users to correctly validate the server’s public key or decide
which long-term server public key corresponds with which password: from the
external perspective, the protocol is still a PACCE protocol, with authentication
only coming from passwords, not from long-term server public keys.

5.1 Building block: ACCE (with key registration)

ACCE [27] is currently the most complete model for the security properties of
the core TLS protocol. We use a variant of ACCE as a building block in our
generic construction. The first variation is that we allow for either server-only or
mutual authentication, as in Giesen et al. [32]; when server-only authentication
is used, only client instances are legitimate targets for breaking authentication.
The second variation is in how static public keys are distributed. In typical AKE
and ACCE models, it is simply assumed that parties have authentic copies of
all static public keys, abstracting the problem away. Since we will use ACCE
as a building block under the assumption that the “static” public keys are not
to be trusted as authentic, we allow the adversary to cause any public key to
be accepted as a static public key using a Register query; only sessions where
the key is not an adversary-registered key are legitimate targets for breaking.
The formal differences between the ACCE model with key registration and the
original ACCE model appear in the full version [36].

5.2 Security analysis of construction #2

Theorem 2 (ACCE + tPAuthτ=pk =⇒ PACCE). The generic construction of
a PACCE protocol ΓT (π, ξ) from an ACCE protocol π and a tPAuth protocol ξ,
with tag set to the server’s public key pk from the ACCE handshake stage, is
PACCE-secure, assuming the underlying protocols are secure.



In the first game, the simulator simulates the ACCE portion of the protocol
and undetectably replaces the tPAuth portion using messages that it obtains
from a real tPAuth challenger. Next, the simulator aborts if any of its instances
accept without an instance whose tPAuth transcripts and the input tags match,
which corresponds to an attack against the tPAuth protocol. In the third game,
the simulator will use messages obtained from a real ACCE challenger such
that it can use any adversary who wins against the resulting PACCE simulator
to break the security of the ACCE protocol; when the adversary uses its own
long-term public keys (which is allowed since they are not authenticated), we
use the key registration functionality of the (modified) ACCE challenger. Due to
space constraints, the proof appears in the full version [36].

5.3 Using tls-server-end-point channel binding

The tls-server-end-point channel binding mechanism [17] can be used to
instantiate construction #2. For tls-server-end-point the channel binding
string is the hash of the server’s X.509 certificate. Note that the certificate
contains the server’s public key as a canonically identifiable substring.

It is straightforward to see that if the hash of the certificate is used as the
tag for channel binding instead of the raw public key in an analogous generic
construction Γcert(π, ξ), and the hash function is second-preimage-resistant, then
Γcert is a secure PACCE. This follows by noting that an active adversary must
use a certificate that hashes to the same value as the server’s certificate.

6 Implementation

As an important motivation for our modular protocol design was the ability to
modularly implement the protocol, we produced a prototype to demonstrate this.

For the tag-based password authentication protocol, we propose tSOKE, a
tag-based version of the SOKE protocol [14], a highly efficient Diffie–Hellman
based PAKE; see Appendix B for details of tSOKE. We used the NIST P-192
elliptic curve group [37].

We implemented the client side of the protocol as an extension for Mozilla
Firefox (320 lines of custom Javascript, plus libraries), and the server side of the
protocol as a PHP application (210 lines of custom PHP code, plus libraries) on
an Apache web server. No modifications to the source code of the underlying web
browser (Firefox) or the underlying web server (Apache with OpenSSL) were
required—in particular, we did not have to alter the SSL/TLS implementation
and we did not have to recompile Firefox or Apache. Since the mechanism that
the server code uses to obtain the certificate of the TLS connection is an Apache
CGI (Common Gateway Interface) variable, any server-side language would work,
not just PHP.

Our implementation is available online under an open-source license at http:
//www.douglas.stebila.ca/research/papers/MSD14/ and http://eprints.

qut.edu.au/76270.
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(a) Login notification bar.

(c) Login success notification bar.

(d) Login failure notification bar. (b) Login dialog box.

Fig. 3: User interface for Mozilla Firefox extension.

6.1 Firefox extension

The client-side Firefox extension is written in Javascript and uses an existing
Firefox API to obtain the certificate of the TLS connection. The client imple-
mentation of our protocol (excluding underlying cryptographic primitives) is
just 320 lines of Javascript code. Cryptographic operations can be done in either
pure Javascript (relying on about 1400 lines of code from Wu’s Javascript ellip-
tic curve cryptography and big integer arithmetic implementation4 and about
6KB of minified Javascript from the Stanford Javascript Crypto Library5 for
the PBKDF2 algorithm) or can make use of native C OpenSSL libraries using
Firefox’s js-ctypes API6.

When the extension detects (using an appropriate triggering mechanism; see
the full version [36]) a page that supports the protocol, it displays a notification
bar that secure password authentication is supported (Figure 3(a)). The user
then clicks on the “Login” button in the notification bar to bring up the password
entry dialog box (Figure 3(b)). Note that the notification bar is displayed using
Firefox’s API for notifications, similar to how alerts are rendered for missing
plugins. By using the standard notification mechanism, we provide a trusted
UI path to the notification bar, and then, through the login button on that
bar, a trusted UI path to the dialog box, somewhat mitigating concerns about
the difficulty of providing a trusted UI path in browser-based secure password
authentication [38,12]. The status of the mutual authentication is displayed in
the notification bar (Figures 3(c), (d)); if successful the browser is redirected to
the URL indicated by the server.

At present, Firefox is the only web browser whose extension APIs offer partial
implementation of the channel bindings for TLS from RFC5929 [17], providing
access to the certificate of the page’s TLS connection. The APIs for Google
Chrome and Apple Safari extensions do not seem to permit this ability so far,
nor does the API for Microsoft Internet Explorer browser toolbars. However, our
modular approach is still validated, in that Chrome, Safari, and IE would only
need to implement the recommendations from [17] such that our extension could

4 http://www-cs-students.stanford.edu/~tjw/jsbn/
5 http://crypto.stanford.edu/sjcl/
6 https://developer.mozilla.org/en-US/docs/Mozilla/js-ctypes

http://www-cs-students.stanford.edu/~tjw/jsbn/
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do the rest of the protocol, rather than requiring the full protocol be implemented
within the core browser source code as many other approaches require.

Branding. Our prototype allows the server to specify some limited “branding”
customizations to the login dialog box, including displaying a logo and explanatory
text, as can be seen in Figure 3(b). A common objection to server-specified
branding is that the protocol becomes insecure due to phishing attacks: while it
is true that an attacker could put in a different logo or text in Figure 3(b), the
attacker gains nothing in doing so: the protocol cryptographically protects the
password, even when the user’s browser runs the protocol with attacker’s server.
At best, the attacker can interrupt communication, but will gain no information.
Our limited branding does not give the attacker enough power to completely
spoof the user interface and trick the user into using the attacker’s own dialog
box, due to the trusted UI path via the browser notfication bar.

6.2 Performance

In Table 1, we report timings for our implementation. Timings reported are an
average of 10 timings, with standard deviation. The total runtime of the protocol
includes the network latency for the communication within a corporate network
where the client and server machines were located. The average ping time on the
network was 48.55 ms (stdev. 37.76).

We report two different sets of timings: “cross-platform” timings, using pure
Javascript on the client side and PHP with built-in GMP libraries on the server
side; and “native” timings, using calls to OpenSSL for cryptographic operations
on both the client side and the server side.

The average total runtime from when the user clicked “Login” after entering
their password until the protocol completes was 487.72 ms (stdev. 49.93) using
cross-platform code, and 109.04 ms (stdev. 47.96) using native code. In comparison,
the average total runtime of password authentication based on an HTML form
over TLS in our setting takes 66.16 ms (stdev. 27.80)). The difference of about
40ms with our native code implementation corresponds to one additional round
trip and is unlikely to be perceptible by the users. Our native cryptographic
code is further comparable to Dacosta et al.’s reported performance of DVCert
on laptops [23]. Our protocol implementation includes a variety of operations
beyond cryptographic computations, so the total runtime is greater than the sum
of cryptographic runtime and communication time.

7 Discussion

7.1 TLS channel bindings

The tls-unique channel binding works with all TLS ciphersuites, whereas
the tls-server-end-point binding only works with TLS ciphersuites that use
certificate-based server authentication, though these are most widely used in
practice.



Operation Pure Javascript Native C HTML form + SSL

Client cryptographic 354.06± 5.12 5.32± 0.23 —
computations

Server cryptographic 36.27± 2.20 6.34± 0.48 —
computations

Total runtime 487.72± 49.93 109.04± 47.96 66.16± 27.80

Software: Mozilla Firefox 21.0, Apache 2.2.22, PHP 5.4.14, GMP 5.1.1, MySQL 5.5.28, OpenSSL
1.0.1e, Mac OS X 10.8.3.

Hardware: 2.6 GHz Intel Core i7 (3720QM), 16 GB of RAM.

Network: Corporate network, ping time 48.55± 37.76ms

Table 1: Average runtime in ms (± standard deviation) of extension using cross-platform
Javascript cryptographic code, native C (OpenSSL) cryptographic code, compared with
standard passwords submitted using an HTML form over SSL.

tls-server-end-point may be easier to deploy on the server side since
the server certificate is often fixed for long periods, and thus more suitable for
multi-server architectures where for example an SSL accelerator handles the TLS
connection and then passes the plaintext onto one of potentially many layers
of application servers. tls-server-end-point is also easily deployable on the
client side: for example, the Firefox extension API already makes the server
certificate, but not the Finished message, available.

In some sense tls-unique is a stronger channel binding string: with it, we can
achieve security of our generic construction using only CCE security of the TLS
channel, whereas with tls-server-end-point we rely on the stronger ACCE
security notion of TLS. In the end, both allow us to achieve our goal.

TLS keying material exporters [39] are another option for binding to the TLS
channel, as they allow an application to obtain keying material derived from the
master secret key for a given label. However, TLS channel bindings appear to be
the preferred mechanism, and so we focus on them.

7.2 Challenges with PAKE

Although PAKE protocols have been known in the literature since their invention
1992, they have seen almost no deployed adoption for user authentication in
real-world protocols and implementations, with the exception of the use of the
socialist millionaires’ protocol in the Off-the-Record Messaging (OTR) protocol
for private instant messaging [26]. Engler et al. [12] recently identified several
challenges—divided into two classes, user interface and deployment challenges—to
adopting cryptographic protocols for password authentication in the web. It has
also been noted that the myriad patents related to PAKE have had a negative
impact on adoption [40].

Deployment challenges This modular architecture may address certain deploy-
ment challenges. Engler et al. ask “What is the appropriate layer in the networking



stack to integrate PAKE protocols?” They compare two proposed options: TLS-
SRP [13] and an earlier draft of the HTTPS-PAKE approach of Oiwa et al. [20].
Adding SRP as a TLS ciphersuite has benefits in that, once implemented, allows
multiple applications to use the same TLS implementation. But many drawbacks
are identified by Engler et al., including: (i) the need to integrate the application
layer with the TLS layer on both the client side (necessitating a complex API
between the TLS library and the web browser, for example) and on the server
side (which could negatively affect the ability of HTTPS load balancers to termi-
nate TLS connections and then hand them off to web application servers); and
(ii) the difficulty of supporting multiple authentication realms within the same
domain. HTTPS-PAKE, running as an HTTP authentication mechanism at the
application layer, avoids both of these problems. The version of HTTPS-PAKE
reviewed by Engler et al. did not have cryptographically strong binding between
the two protocols and thus could not prevent man-in-the-middle attacks, but
later revisions addressed that issue. Our modular approach avoids the problems
that Engler et al. identify for TLS-SRP.

Our approach also better handles the transition from unauthenticated en-
crypted browsing to authenticated encrypted browsing: a user may browse an
HTTPS site for a while before logging in; with TLS-SRP, a new TLS connection
is required (and the mechanism for triggering a new TLS connection is unclear);
it is much easier to trigger the authentication at the application layer when it is
required.

User interface challenges Engler et al. [12] identify several user interface chal-
lenges. We do not aim to fully solve all these challenges in our prototype, as
demonstrating a convincing solution to these challenges requires critical exami-
nation by usability experts and appropriate user studies. Nonetheless, we have
endeavoured to follow some best practices that may at least partially address the
identified UI challenges.

It is essential for the security of PAKE protocols that the user always enter
their password into a secure dialog box. If the entry mechanism can be spoofed by
an attacking website, then the user could be tricked into entering their password
directly into a textfield controlled by the attacker. Thus, there must be a trusted
path to the dialog box in the UI, usually achieved by placing the password entry
visibly in the browser chrome (i.e., the parts of the window that make up the
browser UI, such as the location bar, rather than the page content). In our
prototype, we follow this practice by using Firefox’s notification bar. It has been
suggested that permitting users to customize notification bars helps to reduce
spoofing attacks [38].

The second and third of Engler et al.’s UI challenges are about how to train
users to use the system in the first place, and how to communicate failures to users
in a way that they do not fall back on insecure methods. Both of these remain
a challenge for usability designers, though again, delivering failure notifications
via Firefox’s trusted path for notifications may provide some benefit. Providing
forgotten password resets securely remains an open challenge both in practice
and in theory and is outside the scope of our goals.



The final challenge noted by Engler et al. is on how to allow website designers
to customize and brand the login dialog without compromising security; it has
been suggested that lack of customization and branding was a contributing factor
to the lack of adoption of HTTP basic and digest authentication. Our prototype
allows the server to provide a few customizations to the login dialog box, including
a logo, some explanatory text, as shown in Figure 3(b). While an attacker could
use stolen images, the benefit to the attacker is minimal since the password entry
will be cryptographically protected.

Adoption challenges A final challenge for any new security technology is facilitat-
ing widespread adoption. Such protocols see a “network effect”: it is only useful
for a client Alice to use the technology if there are many Bobs who support it,
and vice versa. In the end, any secure password authentication technology will
be most successful once built in to all major web browsers and web application
frameworks. In the meantime, the modular approach in this paper is suitable for
gradual deployment. For example, an organization can internally standardize on
the use of this approach by deploying an extension to all of its users’ browsers
without needing to wait for the browser vendor to support the protocol. The
more adoption via extension, the more evidence for interest in the technology,
and the greater incentive for vendors to provide a native implementation.
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A Confidential channel establishment (CCE)

The model of CCE protocols can be described using the setting of PACCE
protocols from Section 2, with a few differences. The first difference is that there
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passive in the handshake stage are considered. The oracles RevealSK, Encrypt and
Decrypt remain unchanged. The following definition of CCE security is obtained
from Definition 1 by considering the above mentioned modifications.

Definition 2 (CCE security). An adversary A is said to (t, ε)-break a CCE
protocol if A runs in time t and, when A terminates and outputs a triple (U, s, b′)
such that
(a) Πs

U .α = accept, and

(b) there exists an instance Πs′

U ′ that is partnered to Πs
U , and

(c) A did not issue RevealSK(Πs
U ) or RevealSK(Πs′

U ′) for any Πs′

U ′ that is partnered
to Πs

U ,
then

∣∣Pr [b′ = Πs
U .b]− 1

2

∣∣ ≥ ε.
B Tag-based password authentication (tPAuth)

The model of tPAuth can be described using the setting of PACCE protocols from
Section 2. A tPAuth session is executed between a client instance Πs

C and a server

instance Πs′

S on input the corresponding password pwC,S from the dictionary
D and some tag τ ∈ {0, 1}∗. A tPAuth session is successful if both instances
use the same password pwC,S and tag τ as their input. The requirement on tag

equality leads to the extended definition of partnering: two instances Πs
C and Πs′

S

are partnered if Πs
C .pid = S, Πs′

S .pid = C, Πs
C .T ≈ Πs′

S′ .T (matching transcripts),

and Πs
C .τ = Πs′

S .τ (equal tags).
A tPAuth adversary A is active and interacts with instances of U ∈ {C, S}

using the following oracles:
– Send(Πs

U ,m): This query is identical to Sendpre from the PACCE model
except for one important difference — when A initializes some instance Πs

U

using the special messages m = (init, U ′, τ) or m = (resp, U ′, τ) then it
additionally provides as input a tag τ which will be used by the instance in
the tPAuth session. This essentially gives A full control over the tags that
are used in the protocol.

– Corrupt(C, S): This query reveals the corresponding password pwC,S .
The security of tPAuth protocols, defined in the following, extends the traditional
password authentication requirement that accounts for online dictionary attacks
with the requirement of tag equality, which is implied by condition 3 due to the
extended definition of partnering.

Definition 3 (tPAuth security). An adversary A is said to (t, ε)-break a
tPAuth protocol if after the termination of A that runs in time t with probability
at least ε+O(n/|D|) where n is the number of initialized tPAuth instances there
exists an instance Πs

U such that
1. Πs

U .α = accept, and
2. A did not issue Corrupt(init(Πs

U ), resp(Πs
U )) before Πs

U accepted, and

3. there is no unique instance Πs′

U ′ that is partnered to Πs
U .



A tPAuth protocol is (t, ε)-secure if there is no A that (t, ε)-breaks it; it is secure
if it is (t, ε)-secure for all polynomial t and negligible ε in security parameter κ.

Our tagged variant tSOKE of the Simple Open Key Exchange (SOKE) protocol
[14] is shown in Figure 4, and is a secure tPAuth protocol (see full version [36]).



System parameters

Elliptic curve group nistp192 with generator G of order n
Second generator G′ constructed verifiably at random with 〈G〉 = 〈G′〉
G′ = (0x8da36f68628a18107650b306f22b41448cb60fe5712dd57a,

0x1f64a649852124528a09455de6aad151b4c0a9a8c2e8269c)
(constructed verifiably at random [41, §3.1.3.2] with seed string “This is the seed string for the web passwords protocol.”)

Registration stage (takes place over a secure channel)

Client A Server B
1. Enter username idA.
2. Enter password pwAB .
3. salt← {0, 1}128.
4. Choose iteration counter c ∈ N+.
5. h← PBKDF2(SHA-256, pwAB , salt, c, 256)

6.
idA,salt,c,h−−−−−−→

7. Store salt, c, h for idA.

Login stage

Client A Server B
Input: tag τ Input: tag τ

1. Enter username idA.
2. Enter password pwAB .
3. x←R {2, . . . , n− 1}
4. X ← xG

5.
idA,X−−−−−−→

6. Look up salt, c, h for idA.
7. y ←R {2, . . . , n− 1}
8. Y ← yG
9. Y ∗ ← Y + (h mod n)G′

10.
salt,c,Y ∗←−−−−−−

11. h← PBKDF2(SHA-256, pwAB , salt, c, 256)
12. Y ← Y ∗ − (h mod n)G′

13. Z ← xY Z′ ← yX
14. pms← SHA-256(idA, h, τ,X, Y

∗, Z) K ← SHA-256(idA, h, τ,X, Y
∗, Z)

15. A1 ← SHA-256(pms, “auth1”)

16.
A1−−−−−−→

17. Abort if A1 6= SHA-256(pms, “auth1”)
18. A2 ← SHA-256(pms, “auth2”)

19.
A2←−−−−−−

20. Abort if A2 6= SHA-256(pms, “auth2”)
21. Accept Accept

Fig. 4: tSOKE protocol registration and login stages
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