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Abstract. In many applications, where encrypted traffic flows from an
open (public) domain to a protected (private) domain, there exists a gate-
way that bridges the two domains and faithfully forwards the incoming
traffic to the receiver. We observe that indistinguishability against (adap-
tive) chosen-ciphertext attacks (IND-CCA), which is a mandatory goal
in face of active attacks in a public domain, can be essentially relaxed
to indistinguishability against chosen-plaintext attacks (IND-CPA) for
ciphertexts once they pass the gateway that acts as an IND-CCA/CPA
filter by first checking the validity of an incoming IND-CCA ciphertext,
then transforming it (if valid) into an IND-CPA ciphertext, and for-
warding the latter to the recipient in the private domain. “Non-trivial
filtering” can result in reduced decryption costs on the receivers’ side.
We identify a class of encryption schemes with publicly verifiable cipher-
texts that admit generic constructions of (non-trivial) IND-CCA/CPA
filters. These schemes are characterized by existence of public algorithms
that can distinguish between valid and invalid ciphertexts. To this end,
we formally define (non-trivial) public verifiability of ciphertexts for
general encryption schemes, key encapsulation mechanisms, and hybrid
encryption schemes, encompassing public-key, identity-based, and tag-
based encryption flavours. We further analyze the security impact of
public verifiability and discuss generic transformations and concrete con-
structions that enjoy this property.

1 Introduction

Transmission of sensitive information over public networks necessitates the use
of cryptographic protection. Modern cryptography offers various techniques, in-
cluding public key encryption (PKE) and identity-based encryption (IBE), by
which the sender can use public information to encrypt a message only the in-
tended receiver can decrypt. These two encryption flavours can be combined into
a common syntax, called general encryption (GE) [1], and for longer messages,
hybrid encryption schemes based on key and data encapsulation techniques, i.e.
the KEM/DEM approach [10], are often more efficient.



The most standard security notion for encryption schemes is indistinguisha-
bility (IND) — a ciphertext may not leak any information about the encrypted
message (except possibly its length) — whose definitions consider different types
of attacks. The strongest is an adaptive chosen-ciphertext attack (CCA), in which
an attacker can ask for decryption of ciphertexts of her own choice (other than
the target ciphertext). IND-CCA-security hence protects encrypted messages of
honest senders despite the threat that receivers may also have to decrypt ci-
phertexts constructed by the adversary. More generally, such threat exists if the
network is susceptible to active attacks. In contrast, if senders are trustworthy
and their messages are delivered over a network that protects authenticity, then
security against chosen-plaintext attacks (CPA) would already provide sufficient
confidentiality guarantees, possibly resulting in better performance.

IND-CCA/CPA Filtering and Its Applications. Consider an intermediate
party, called a gateway, and assume that encrypted sender’s messages are trans-
mitted over a public network until they reach the gateway and are then forwarded
by the gateway over a private network to the receiver, with the gateway being
trusted by the receiver to forward faithfully.

By the above reasoning, IND-CCA security would be required for the en-
crypted traffic from (possibly malicious) senders towards the gateway. But for
messages on the internal network — including from the gateway to the receiver
— IND-CPA security would be sufficient in practice to preserve confidentiality.
If the gateway just forwards all (IND-CCA) ciphertexts from the outside world
without modification, all security goals remain satisfied, but perhaps we can im-
prove efficiency for the receiver by having the gateway do some processing on
ciphertexts before forwarding them.

An often observed difference between IND-CPA and IND-CCA schemes is that
IND-CPA schemes successfully decrypt every given ciphertext, whereas the ma-
jority of IND-CCA schemes typically check ciphertexts for consistency and de-
crypt only those that are “well-formed” [8,10,17,18,19]. For such schemes the
gateway could act as a filter that would sort out inconsistent IND-CCA cipher-
texts. There exist few IND-CCA schemes [4,25,26], that decrypt every ciphertext
to a possibly meaningless (random) message. Such schemes are not well-suited to
filtering since the gateway would need to know the receiver’s private key to de-
cide whether the message is meaningful, which would in general be unacceptable
since it requires trusting gateways for confidentiality, not just integrity.

In this paper, we are interested in solutions that allow an honest-but-curious
gateway to transform IND-CCA-secure traffic from a public network into IND-CPA-
secure traffic for a private network at low cost and while fully preserving con-
fidentiality of encrypted messages; the key step is that the gateway is trusted
to correctly perform a “validity check” of traffic from the public network before
forwarding it on to the private network. Recipient devices on the private network
can then use a more efficient decryption procedure.

Many real applications could benefit from this “sender-gateway-receiver” sce-
nario: for example, sensor networks often consist of many low-powered nodes
that communicate with each other locally and which use a single more pow-



erful gateway device to communicate with the Internet. To protect their local
communications, nodes may have shared keys with the sink which they use in
highly efficient symmetric key algorithms, only needing to resort to more expen-
sive asymmetric algorithms when communicating with the outside world. In our
paradigm, the gateway could take IND-CCA-secure traffic from senders in the
outside world, check it for validity, and convert it to a simpler (IND-CPA-secure)
format to reduce the processing costs for receiving sensor nodes. As a second ex-
ample, mail servers (MTAs) generally receive emails over unprotected networks,
whereas email recipients typically contact these servers to access their emails
after having established an end-to-end authenticated (and possibly encrypted)
channel with them. Hence, for encrypted emails or attachments, the mail server
could perform a “sanity check” and filter out inconsistent ciphertexts, saving the
client from their local processing.

Ciphertext Consistency Checks. IND-CCA-secure schemes where incon-
sistent ciphertexts can be filtered out based on consistency checks seem very
suitable for our purposes. Consistency checks can be either private or public:
the check is private if it requires at least partial knowledge of the private key
(e.g. in [10]), while public checks do not require any secrets (e.g. in [8,17]).

We will focus on IND-CCA-secure cryptosystems with publicly verifiable ci-
phertexts. Interestingly, public verifiability has been treated so-far in a rather
folklore manner, e.g. as a property of concrete schemes, e.g. [8,17,19,18]. To
make use of this property in general, for example to enable “black-box” con-
structions of higher-level security protocols from publicly verifiable encryption
schemes, a more formal and thorough characterization of public verifiability is
merited. We also note that public verifiability has been extensively addressed
in a different context, namely with regard to threshold encryption, where as ob-
served initially in [20] and then provably realized in [32,8,7,22], this property is
useful to make the threshold decryption process of an IND-CCA-secure threshold
encryption scheme non-interactive and robust.

In our applications, public verifiability can immediately be used to detect
and filter out invalid IND-CCA ciphertexts, i.e. by trusting the gateway to per-
form the check. This filtering could also be performed for IND-CCA schemes with
private consistency checks, as long as these checks need only parts of the private
key that are by themselves not sufficient to break IND-CPA security. Existence
of such IND-CCA schemes has been demonstrated by Persiano [27] through his
concept of trapdoor cryptosystems. For instance, he proved that a trapdoor con-
taining private-key components in Cramer-Shoup PKE [10] that are used in the
consistency check cannot be used for an IND-CPA attack (although their dis-
closure allows malleability attacks). Being concerned about IND-CCA-security,
Persiano argued that existence of such trapdoors is a drawback. Taking a look
at trapdoor cryptosystems in [27] from the perspective of our work, we observe
that the gateway could indeed be given trapdoor information to check IND-CCA
consistency without losing IND-CPA security. However, this approach would of-
fer somewhat weaker guarantees in contrast to publicly verifiable schemes: if
the delegated trapdoor keys are ever leaked, then IND-CCA security can never



be recovered. This contrasts with our approach, in which the receiver always
has the potential to obtain IND-CCA security at any particular time simply by
performing more operations.

Contributions. We formalize the property of publicly verifiable ciphertexts for
general encryption, general KEMs, and general KEM/DEM hybrid schemes. Our
definitions emphasize the role of public ciphertext consistency checks within the
decryption procedure. In our approach, decryption algorithms of publicly veri-
fiable schemes follow a strictly modular design where the consistency check can
be performed independently of the remaining “lightweight” decryption proce-
dure. Success or failure of the entire decryption procedure is indicated by the
consistency check, which can be performed by any third party without access to
any secret information. The only exception is the KEM/DEM approach, where
we relax these conditions to account for decryption failures in the DEM part.
Our definitions employ the syntax of generalized encryption by Abdalla et al. [1]
which we extend to also capture tag-based encryption (TBE) [3,17] and to ad-
dress KEMs and the KEM/DEM framework.

With these definitions, we first prove the very general statement that any
IND-CCA-secure scheme with publicly verifiable ciphertexts remains at least
IND-CPA-secure if the underlying consistency check is outsourced from the de-
cryption procedure. In some sense, this gives us the trivial and well-known result
that any IND-CCA-secure ciphertext can be publicly converted into a cipher-
text that still guarantees basic IND-CPA protection (since every IND-CCA-secure
scheme is also IND-CPA-secure). However, the notion of public verifiability is
particular interesting in the case where the verification algorithm is strictly non-
trivial — the public consistency check fails exactly when the IND-CCA-secure
scheme’s decryption algorithm fails — as such publicly verifiable schemes can
readily be used to build the aforementioned IND-CCA/CPA filters.

We provide several constructions (general and concrete) of IND-CCA-secure
schemes with strictly non-trivial publicly verifiability. In addition to existing
schemes, e.g. [8,17,19,18], for which public verifiability was discussed informally,
we first show that two well-known general ways for obtaining IND-CCA secure
schemes offer public verifiability (although not strictly non-trivial public verifi-
ability), namely the Canetti-Halevi-Katz (CHK) transform [9] and the NIZK-
based transform [29,23]. The result on CHK contrasts with the related transform
by Boneh and Katz [6] that uses a message authentication code (MAC) and
does not offer public verifiability. We present a concrete PKE scheme, obtained
through a tweak on the KEM of Kiltz [18], that offers an especially lightweight
decryption procedure for ciphertexts that passed its strictly non-trivial public
verification. In addition to PKE we consider KEMs and give examples of public
key-based, identity-based, and tag-based KEMs with strictly non-trivial pub-
lic verification. Finally, we look into the KEM/DEM paradigm and show that
strictly non-trivial public verification of the KEM partially carries over to the
hybrid scheme — namely, we define a somewhat non-trivial public verification
for hybrid encryption schemes by linking a failure in the hybrid decryption pro-
cess to a verification failure in either the KEM or the DEM, and show that by



outsourcing KEM consistency check the hybrid construction remains at least
IND-CPA-secure.

2 Publicly Verifiable Ciphertexts in General Encryption

2.1 Definition: General Encryption

A general encryption (GE) scheme GE = (PG,KG,Enc,Dec) consists of four
algorithms:

PG(1k): The parameter generation algorithm PG takes input a security param-
eter 1k, k ≥ 0, and returns public parameters par and a master secret key
msk. Public parameters include a description of the identity space IDSp, the
message space MsgSp, and the tag space TagSp.

KG(par,msk, id): On input par, msk, and id ∈ IDSp, the key generation algorithm
KG produces an encryption key ek and decryption key dk.

Enc(par, ek,M, t): On input par, ek, a message M ∈ MsgSp, and a tag t ∈ TagSp,
the encryption algorithm Enc outputs a ciphertext C.

Dec(par, ek, dk, C, t): On input par, ek, dk, C, and a tag t, the deterministic
decryption algorithm Dec returns either a plaintext message M or ⊥ to
indicate that it rejects.

This GE formalism encompasses public-key, identity-based, and tag-based en-
cryption schemes:

PKE: Setmsk = ϵ and assume that IDSp and TagSp contain a single fixed element
that can be omitted as implicit input to the algorithms.

IBE: Consider KG that on input id outputs ek = id and assume that TagSp
contains again a single fixed element that can be omitted as implicit input
to the algorithms.

TBE: Set msk = ϵ and assume that IDSp contains again a single fixed element
that can be omitted as implicit input to the algorithms.

Correctness. A general encryption scheme GE = (PG,KG,Enc,Dec) is correct
if, for all (par,msk) ∈ [PG], all plaintexts M ∈ MsgSp, all identities id ∈ IDSp, all
(ek, dk) ∈ [KG(par,msk, id)], and all tags t ∈ TagSp, we have Dec(par, ek, dk,Enc(
par, ek,M, t), t) = M with probability one, where the probability is taken over
the coins of Enc.

Indistinguishability. The IND-CCA/CPA security games between a challenger
and an adversary A are defined by the experiments in Figure 1 (left column).
The advantage of A in those games is defined as

AdvIND-xxx
A,GE (k) =

∣∣∣Pr(ExpIND-xxx,0
A,GE (k) = 1

)
− Pr

(
ExpIND-xxx,1

A,GE (k) = 1
)∣∣∣ ,

where xxx ∈ {CPA,CCA}. A GE scheme is IND-xxx-secure if the advantage of
any PPT adversary A in the corresponding game is negligible in the security
parameter k.



ExpIND-xxx,b
A,GE (k) :

1. (par,msk)
$← PG(1k)

2. U, V,KList,DList← ∅
3. (st,M0,M1, id

∗, t∗)
$← AOEK,ODK[,ODec]

1 (par)
If A queries OEK(id):
(a) If id ∈ U then return ⊥
(b) U ← U ∪ {id}
(c) (ek[id], dk[id])

$← KG(par,msk, id)
(d) Append (id, ek[id], dk[id]) to KList
(e) Answer A with ek[id]
If A queries ODK(id) :
(a) If id /∈ U then return ⊥
(b) V ← V ∪ {id}
(c) Answer A with dk[id] from KList
If A queries ODec(C, id, t) (if xxx = CCA):
(a) If id /∈ U then return ⊥
(b) M ← Dec(par, ek[id], dk[id], C, t)
(c) Append (C, id, t) to DList
(d) Answer A with M

4. If M0 = M1 or |M0| ̸= |M1| then return ⊥
5. If id∗ /∈ U then return ⊥
6. C∗ $← Enc(par, ek[id∗],Mb, t

∗)

7. b′
$← AOEK,ODK[,ODec]

2 (st, C∗)
Answer queries as above

8. If id∗ ∈ V then return ⊥
9. If (C∗, id∗, t∗) ∈ DList then return ⊥

10. Return 1 if b′ = b, else return 0.

ExpIND-xxx,b
A,GKEM (k) :

1. (par,msk)
$← PG(1k)

2. U, V,KList,DList← ∅
3. (st, id∗, t∗)

$← AOEK,ODK[,ODec]
1 (par)

If A queries OEK(id):
(a) If id ∈ U then return ⊥
(b) U ← U ∪ {id}
(c) (ek[id], dk[id])

$← KG(par,msk, id)
(d) Append (id, ek[id], dk[id]) to KList
(e) Answer A with ek[id]
If A queries ODK(id) :
(a) If id /∈ U then return ⊥
(b) V ← V ∪ {id}
(c) Answer A with dk[id] from KList
If A queries ODec(C, id, t) (if xxx = CCA):
(a) If id /∈ U then return ⊥
(b) K ← Decap(par, ek[id], dk[id], C, t)
(c) Append (C, id, t) to DList
(d) Answer A with K

4. If id∗ /∈ U then return ⊥
5. (C∗,K∗

0 )
$← Encap(par, ek[id∗], t∗)

6. K∗
1

$← KeySp(k)

7. b′
$← AOEK,ODK[,ODec]

2 (st, C∗,K∗
b )

Answer queries as above.
8. If id∗ ∈ V then return ⊥
9. If (C∗, id∗, t∗) ∈ DList then return ⊥

10. Return 1 if b′ = b, else return 0.

Fig. 1. IND-CCA/CPA security experiments for General Encryption (left) and General
Key Encapsulation (right)

2.2 General Encryption with Publicly Verifiable Ciphertexts

In our definition of general encryption with publicly verifiable ciphertexts we
require existence of a separate algorithm for ciphertext validation and that the
scheme’s original decryption procedure can be logically divided into this public
validation check followed by a lightweight decryption algorithm.

Definition 1 (Publicly Verifiable GE). A general encryption scheme GE =
(PG,KG,Enc,Dec) is said to be publicly verifiable with respect to auxiliary algo-
rithms Ver and Dec′ if Dec(par, ek, dk, C, t) has the same input/output behavior
as the following sequence of operations:

1. C ′ ← Ver(par, ek, C, t)
2. If C ′ = ⊥, then return ⊥
3. M ← Dec′(par, ek, dk, C ′, t)
4. Return M

where Ver and Dec′ satisfy the following:



Ver(par, ek, C, t): Given public parameters par, the encryption key ek, a cipher-
text C, and a tag t, this algorithm outputs either ⊥ if the ciphertext fails the
validation or a (transformed) ciphertext C ′. Note that Ver does not take any
secrets as input.

Dec′(par, ek, dk, C ′, t): This deterministic algorithm takes input public parame-
ters par, encryption and decryption keys (ek, dk), a ciphertext C ′, and a tag
t, and outputs a message M or ⊥.

Hereafter, when we say Dec = Dec′ ◦ Ver we mean that Dec can be decomposed
into two algorithms Ver and Dec′ according to the above construction. Note that
all IND-CCA-secure general encryption schemes trivially achieve public verifi-
ability with respect to Ver(par, ek, C, t) := C and Dec′ := Dec. We are often
interested in the case where something non-trivial is occurring in Ver, i.e. where
the consistency check is essential for successful decryption. Note that this sepa-
ration does not formally ensure that Dec′ is more efficient than Dec, though in
practice we are of course interested primarily in such schemes.

Definition 2 (Strictly Non-Trivial Public Verification). Let GE = (PG,
KG,Enc,Dec) be a general encryption scheme that is publicly verifiable with
respect to auxiliary algorithms Ver and Dec′. Let (par,msk) ← PG(1k). Ver
is said to be strictly non-trivial if, for all id ∈ IDSp, all t ∈ TagSp, and
(ek, dk)← KG(par,msk, id),

1. Ver(par, ek, C, t) = ⊥ ⇔ Dec(par, ek, dk, C, t) = ⊥ for all C, and
2. there exists a ciphertext C for which Dec(par, ek, dk, C, t) = ⊥.

Condition 1 requires that successful public verification is both necessary and
sufficient for the decryption algorithm not to fail. Condition 2 formally excludes
IND-CCA-secure schemes where Dec never outputs ⊥ (e.g. [25,26,4] where modi-
fied (challenge) ciphertexts decrypt to random messages) to capture the intuition
that in order to determine whether C carries some meaningful message one must
have at least partial knowledge of the private key (which contradicts the goals
of strictly non-trivial public verification).

Theorem 1 (proven in Appendix A) shows that any IND-CCA-secure GE
scheme with publicly verifiable ciphertexts remains at least IND-CPA-secure if
its decryption algorithm Dec is replaced with Dec′. In the original decryption
procedure a strictly non-trivial verification process may syntactically modify the
ciphertext. For syntactical reasons we must ensure that ciphertexts output by
the encryption algorithm of the new scheme can be processed with Dec′. This
is achieved via post-processing of original ciphertexts using Ver and by viewing
this step as part of the new encryption algorithm.

Theorem 1. Let GE = (PG,KG,Enc,Dec) be an IND-CCA-secure general en-
cryption scheme that is publicly verifiable with respect to Ver and Dec′. Let
Enc′ := Ver ◦ Enc (where ◦ denotes the obvious composition) and let GE′ :=
(PG,KG,Enc′,Dec′). For every IND-CPA adversary A against GE′ there exists
an IND-CCA adversary B against GE such that, for all k ≥ 0, AdvIND-CPA

A,GE′ (k) ≤
AdvIND-CCA

B,GE (k), where B has (asymptotically) the same running time as A.



2.3 Publicly Verifiable Ciphertexts through CHK Transformation

Canetti, Halevi, and Katz [9] described an method for constructing an IND-CCA-
secure public key encryption scheme PKE from any IND-CPA-secure identity-
based encryption scheme IBE with identity-space {0, 1}ℓs(k) and any strongly
unforgeable one-time signature scheme OTS = (KG,Sign,Vrfy) with the verifi-
cation key space {0, 1}ℓs(k) (see [9] for the syntax of OTS and the details of
the original CHK transform; note that one-time signature schemes can be con-
structed from any one-way function [28]). Later, Kiltz [17] showed that CHK
transform works also if the IND-CPA-secure IBE scheme is replaced by a weakly
IND-CCA-secure tag-based encryption scheme TBE with tag-space {0, 1}ℓs(k).

Figure 2 (which uses GE notation) shows that in both cases, the resulting
PKE is public verification with respect to PKE.Ver and PKE.Dec′, but impor-
tantly the public verification is not strictly non-trivial: the IBE or TBE de-
cryption operation may still fail. In the IBE-based case ek = ϵ remains empty
while dk = msk and par are output by IBE.PG. In the TBE-based case ek and
dk are output by TBE.KG using par generated by TBE.PG. Original IBE-based
transform from [9] and its TBE-based version from [17] are obtained using
PKE.Dec = PKE.Dec′ ◦ PKE.Ver.

PKE.Enc(par, ek,M) :

1. (vk, sigk)
$← OTS.KG(1k)

2. If IBE-based:
c← IBE.Enc(par, vk,M)
If TBE-based:
c← TBE.Enc(par, ek,M, vk)

3. σ ← OTS.Sign(sigk, c)
4. Return C = (c, σ, vk)

PKE.Ver(par, ek, C) :

1. (c, σ, vk)← C
2. If OTS.Vrfy(c, σ, vk) = ⊥

then return ⊥
3. Return C′ = (c, vk)

PKE.Dec′(par, ek, dk, C′) :

1. (c, vk)← C′

2. If IBE-based:
uskvk ← IBE.KG(par, dk, vk)
M ← IBE.Dec(par, vk, uskvk, c)
If TBE-based:
M ← TBE.Dec(par, ek, dk, c, vk)

3. Return M

Fig. 2. PKE with Publicly Verifiable Ciphertexts from CHK Transformation

2.4 Publicly Verifiable Ciphertexts using NIZKs

An IND-CPA-secure public key encryption scheme PKE′ = (PG,KG,Enc,Dec) can
be converted into an IND-CCA-secure one using a non-interactive zero-knowledge
(NIZK) proof (P, V ) with simulation soundness, as proven by Sahai [29] based on
the Naor-Yung approach [23]. The private/public key pair of the resulting scheme
PKE is given by (dk, ek) = ((dk1, dk2), (ek1, ek2, ρ)) where (dki, eki), i ∈ {1, 2},
are obtained from two independent runs of PKE′.KG and ρ is the common refer-
ence string of the NIZK proof system for languages of the form (c1, c2, ek1, ek2)
satisfying c1 = PKE′.Enc(par, ek1,M) ∧ c2 = PKE′.Enc(par, ek2,M) where M
(and implicitly random coins used in the encryption process) play the role of the
witness. As demonstrated in Figure 3, IND-CCA schemes output by this transfor-
mation offer public verifiability, though not strictly non-trivial public verifiability



as the PKE′.Dec operation in PKE.Dec′ may output ⊥. This reasoning also ap-
plies to the NIZK-based constructions from [12] and to the first IND-CCA-secure
PKE scheme by Dolev, Dwork, and Naor [11] that uses NIZK-proofs in a slightly
different way. Although NIZK-based schemes are regarded as not efficient, we
notice that their lightweight decryption procedure Dec′ (if the scheme is viewed
from the public verifiability perspective) is as efficient as that of CHK-based
schemes in Figure 2.

PKE.Enc(par, ek,M) :

1. (ek1, ek2, ρ)← ek
2. c1 ← PKE′.Enc(par, ek1,M)
3. c2 ← PKE′.Enc(par, ek2,M)
4. π ← P (M, (c1, c2, ek1, ek2), ρ)
5. Return C = (c1, c2, π)

PKE.Ver(par, ek, C) :

1. (ek1, ek2, ρ)← ek
2. (c1, c2, π)← C
3. If V (ρ, (c1, c2, ek1, ek2), π) = ⊥

then return ⊥
4. Return C′ = c1

PKE.Dec′(par, ek, dk, C′) :

1. (dk1, dk2)← dk
2. c1 ← C′

3. M ← PKE′.Dec(par, ek1, dk1,
c1)

4. Return M

Fig. 3. PKE with Publicly Verifiable Ciphertexts from NIZK-based Transformation

2.5 Our PKE Scheme with Strictly Non-Trivial Publicly Verifiable
Ciphertexts

In this section, we propose a practical IND-CCA-secure PKE scheme, whose
public verification is strictly non-trivial and is well-suited for IND-CCA/CPA
filters described in the introduction due to an especially light algorithm Dec′.
Our construction is inspired by the IND-CCA public-key KEM of Kiltz [18],
which when plugged into a KEM/DEM framework would yield an IND-CCA-
secure PKE scheme (but loose strictly non-trivial public verification as discussed
in Section 4). In contrast, we obtain strictly non-trivial publicly verifiable PKE
in a more direct way, by using the encapsulated key in [18] as a one-time pad
for the message and by linking the resulting ciphertext components together
with a one-time signature, whose verification key is in turn bound to the KEM
ciphertext part through a tweak on the original scheme from [18]. Our scheme
provides strictly non-trivial public verifiability, unlike the schemes presented in
Sections 2.3 and 2.4 based on the CHK and NIZK transformations.

The scheme. Our PG algorithm is similar to [18] except that it uses gap groups:
PG(1k) outputs public parameters par = (G, p, g,DDH,H) where G = ⟨g⟩ is a
multiplicative cyclic group of prime order p, 2k < p < 2k+1, DDH is an efficient
algorithm such that DDH(ga, gb, gc) = 1 ⇔ c = ab (p), and H : G → {0, 1}ℓ1(k)
is a cryptographic hash function such that ℓ1(k) is a polynomial in k. We also
use a strong one-time signature scheme OTS = (KG, Sign,Vrfy) with verification
key space {0, 1}ℓ2(k) such that ℓ2(k) is a polynomial in k and a target colli-
sion resistant hash function TCR : G × {0, 1}ℓ2(k) → Zp. The message space is
MsgSp = {0, 1}ℓ1(k). The scheme works as shown in Figure 4.



PKE.KG(par) :

1. x
$← Z∗

p

2. u← gx, v
$← G

3. ek← (u, v), dk← x
4. Return (ek, dk)

PKE.Enc(par, ek,M) :

1. (u, v)← ek

2. (vk, sigk)
$← OTS.KG(1k)

3. r
$← Z∗

p, c1 ← gr

4. t← TCR(c1, vk), π ← (utv)r

5. K ← H(ur), c2 ←M ⊕K
6. c← (c1, c2, π)
7. σ ← OTS.Sign(sigk, c)
8. Return C = (c, σ, vk)

PKE.Ver(par, ek, C) :

1. (u, v)← ek
2. (c, σ, vk)← C
3. (c1, c2, π)← c
4. t← TCR(c1, vk)
5. If DDH(c1, u

tv, π) ̸= 1 or
OTS.Vrfy(c, σ, vk) = ⊥
return ⊥

6. Return C′ = (c1, c2)

PKE.Dec′(par, ek, dk, C′) :

1. (c1, c2)← C′

2. x← dk
3. K ← H(cx1), M ← c2 ⊕K
4. Return M

Fig. 4. Our PKE with Strictly Non-Trivial Publicly Verifiable Ciphertexts

Security Analysis. First we give intuition why our scheme is IND-CCA-secure.
Let (c∗, σ∗, vk∗) be the challenge ciphertext. As we discussed above, without the
CHK transform, the proposed PKE can be seen as a KEM/DEM combination
which is at least IND-CPA-secure due to Herranz et al. [15]. As for the KEM, the
Hashed Diffie-Hellman (HDH) assumption [2] can be used to prove the IND-CPA
security of the resulting PKE. Note that the message does not depend on vk∗,
and σ∗ is just the signature on c∗. Therefore c∗ being an output of the IND-CPA-
secure scheme hides the value of the chosen b from the adversary.

We now claim that the IND-CCA adversary A may access decryption oracle
but gains no help in guessing the value of b. Suppose the adversary submits a
ciphertext (c′, σ′, vk′) ̸= (c∗, σ∗, vk∗) to the decryption oracle. Now there are
two cases: (a) vk′ = vk∗ or (b) vk′ ̸= vk∗. When vk′ = vk∗, the decryption
oracle will output ⊥ as the adversary fails to break the underlying strongly
unforgeable one-time signature scheme with respect to vk′. When vk′ ̸= vk∗,
the attacker B against the HDH problem can set the public keys as seen in the
IND-CCA security proof for the KEM by Kiltz [18] such that (1) B can answer
except for the challenge ciphertext all decryption queries from A even without
the knowledge of the secret key and (2) B solves HDH if A wins. This security
is captured by the following theorem, which is proven in Appendix B.

Theorem 2. Assume that TCR is a target collision resistant hash function and
OTS is a strongly unforgeable one-time signature scheme. Under the Hashed
Diffie-Hellman assumption for G and H, the PKE scheme (PKE.KG,PKE.Enc,
PKE.Dec = PKE.Dec′ ◦ PKE.Ver) based on Figure 4 is IND-CCA-secure.

Efficiency. Our PKE scheme in Figure 4 is more efficient than previous
schemes with public consistency checks. In our scheme, public keys consist of 2
group elements, the ciphertext overhead is 2 group elements, a one-time signature



and a one-time verification key, encryption requires 3.5 group exponentiations
(using simultaneous exponentiation) and 1 one-time signature, verification re-
quires 1 group exponentiation, 2 pairings, and 1 one-time signature verification,
and lightweight decryption requires only one exponentiation.

Amongst existing PKE constructions with public consistency checks, only two
seem to offer the same efficiency for lightweight decryption: Kiltz [18] describes
a (direct) PKE construction (in addition to KEM) that is publicly verifiable
with the same lightweight decryption cost of 1 group exponentiation, but at the
cost of requiring public keys with the number of group elements being linear
in the security parameter, as opposed to only 2 group elements in the public
key of our scheme. Hanaoka and Kurosawa [14] describe a publicly verifiable
KEM that, when combined with a DEM, would yield a (somewhat non-trivial,
cf. Section 4) publicly verifiable PKE. Its lightweight decryption would require 1
group exponentiation (plus any costs from the DEM) but its public keys would
contain 3 group elements, compared to 2 group elements in our scheme.

3 Publicly Verifiable Ciphertexts in General KEMs

3.1 Definition: General KEM

A general key encapsulation mechanism (GKEM) is a tuple GKEM = (PG,KG,
Encap,Decap) of four algorithms such that PG and KG have the same syntax
as in case of general encryption (cf. Section 2.1) except that message space is
replaced with the key space KeySp, whereas the syntax of Encap and Decap
matches that of Enc and Dec, respectively, with the only difference that Encap
outputs a ciphertext C and a session key K ∈ KeySp, while Decap outputs either
K or ⊥.

GKEM correctness and adversarial advantage AdvIND-xxx
A,GKEM(k), xxx ∈ {CPA,

CCA} in indistinguishability experiments from Figure 1 are also defined analo-
gously to the case of general encryption.

3.2 General KEMs with Public Verifiable Ciphertexts

Definition 3 (Publicly Verifiable GKEM). A general key encapsulation
mechanism GKEM = (PG,KG,Encap,Decap) is said to be publicly verifiable with
respect to auxiliary algorithms Ver and Decap′ if Decap = Decap′ ◦Ver where Ver
and Decap′ satisfy the following:

Ver(par, ek, C, t): Given public parameters par, the encryption key ek, a cipher-
text C, and a tag t, this algorithm outputs either ⊥ if the ciphertext fails the
validation, or a (transformed) ciphertext C ′. Note that Ver does not take any
secrets as input.

Decap′(par, ek, dk, C ′, t): This deterministic algorithm takes input public param-
eters par, encryption and decryption keys (ek, dk), a ciphertext C ′, and a tag
t, and outputs a key K.



Since all IND-CCA-secure general GKEMs trivially achieve public verifiabil-
ity with respect to Ver(par, ek, C, t) := C and Decap′ := Decap we can reuse
Definition 2 for GKEMs to define their strictly non-trivial public verification.

Theorem 3 (whose proof is identical to that of Theorem 1 and is omitted
here) shows that any publicly verifiable IND-CCA-secure GKEM scheme will
remain at least IND-CPA-secure if the verification algorithm Ver is run by an
honest-but-curious gateway. To account for a non-trivial verification process that
may modify the ciphertext, we again apply post-processing to the output of the
encapsulation algorithm (cf. Section 2.2).

Theorem 3. Let GKEM = (PG,KG,Encap,Decap) be an IND-CCA-secure gen-
eral KEM and publicly verifiable with respect to Ver and Decap′. Let Encap′ :=
Ver ◦ Encap and let GKEM′ := (PG,KG,Encap′,Decap′). For every IND-CPA ad-
versary A against GKEM′, there exists an IND-CCA adversary B against GKEM
such that, for all k ≥ 0, AdvIND-CPA

A,GKEM′(k) ≤ AdvIND-CCA
B,GKEM (k), where B has (asymp-

totically) the same running time as A.

3.3 Constructions of Strictly Non-Trivial Publicly Verifiable KEMs

We now present some examples for KEMs with publicly verifiable ciphertexts.
First, we discuss the publicly verifiable construction of an identity-based KEM
that we obtain immediately from the IND-CCA-secure IB-KEM proposed by Kiltz
and Galindo [19]. Parameters par′ = (G1,GT , p, g, e,H) chosen by parameter
generation algorithm PG(1k), k ∈ Z≥0, are such that G1 is a multiplicative
cyclic group of prime order p : 22k < p, GT is a multiplicative cyclic group of
the same order, g is a random generator of G1, e : G1 × G1 → GT is a non-
degenerate bilinear map, and H : {0, 1}ℓ(k) → G1 is a random hash function such
that ℓ(k) is a polynomial in k. We also use a target collision resistant function
TCR : G1 → Zp. Figure 5 details the scheme.

Note that by defining KEM.Decap = KEM.Decap′ ◦KEM.Ver we immediately
obtain the original Kiltz-Galindo IB-KEM [19]. It is easy to see that its public
verification algorithm KEM.Ver is strictly non-trivial. Further, Kiltz and Galindo
noted that ignoring all operations associated to the identity in their IB-KEM
yields a simplified version of the IND-CCA-secure public-key schemes from [8,17].
Therefore, by removing computations related to the ciphertext component c2 and
the key generation algorithm KG from Kiltz-Galindo’s IB-KEM, we immediately
obtain publicly verifiable constructions of a public-key KEM and a tag-based
KEM with strictly non-trivial public verification.

4 Publicly Verifiable Ciphertexts in Hybrid Encryption

Since its invention, the KEM/DEM approach [10,30], being very simple and flex-
ible, has become popular and part of several encryption standards [16,24,31]. It



KEM.PG(1k) :

1. Generate
par′ = (G1,GT , p, g, e,H)

2. α
$← G1, msk← α

3. u, v
$← G1, z ← e(g, α)

4. pk← (u, v, z)
5. par← (par′, pk)
6. Return (par,msk)

KEM.Encap(par, id) :

1. (par′, pk)← par
2. Parse par′ and pk

3. r
$← Z∗

p, c1 ← gr

4. t← TCR(c1)
5. c2 ← H(id)r

6. c3 ← (utv)r

7. K ← zr ∈ GT

8. C ← (c1, c2, c3) ∈ G3
1

9. Return (C,K)

KEM.KG(par,msk, id) :

1. Parse (par′, pk)← par and par′

2. s
$← Zp, dk[id]← (α · H(id)s, gs)

3. Return dk[id]

KEM.Ver(par, pk, id, C) :

1. (par′, pk)← par
2. Parse par′ and pk
3. (c1, c2, c3)← C, t← TCR(c1)
4. If e(g, c3) ̸= e(c1, u

tv) or
e(g, c2) ̸= e(c1,H(id)),
then return ⊥

5. Return C′ = (c1, c2)

KEM.Decap′(par, id, dk[id], C′) :

1. (par′, pk)← par
2. Parse par′

3. (c1, c2)← C′, (d1, d2)← dk[id]
4. K ← e(c1, d1)/e(c2, d2)
5. Return K

Fig. 5. Kiltz-Galindo IB-KEM with Publicly Verifiable Ciphertexts

has been shown that if both the KEM and the DEM are secure against chosen-
ciphertext attacks, then so is the resulting hybrid encryption scheme [10]. Her-
ranz et al. [15] studied necessary and sufficient security conditions for KEMs
and DEMs in relation with the security of the hybrid construction. They showed
that for the IND-CCA-security of the hybrid scheme, the KEM must be IND-CCA-
secure while the security requirement on the DEM can be relaxed from IND-CCA
to IND-OTCCA that prevents one-time (adaptive) chosen-ciphertext attacks.

Therefore, when dealing with public verifiability of hybrid schemes we must
take into account existence of consistency checks in the decryption of DEM
(in addition to checks for the KEM part). Since DEM consistency checks are
performed using the decapsulated key, hybrid schemes cannot provide strictly
non-trivial public verification from Definition 2. We show, however, that these
schemes can offer a somewhat relaxed property, where public verifiability refers
only to the KEM part, meaning that successful public consistency check of the
KEM part is a necessary but not a sufficient condition for the overall success
of decryption. In the context of gateway-assisted IND-CCA/CPA conversion this
property effectively allows to outsource the consistency check of the KEM part to
the gateway. In this way clients would only need to perform private consistency
checks for the DEM part, which means negligible costs in comparison to the
verification costs for KEMs.



4.1 Definition: Hybrid General Encryption

Let GKEM = (PG,KG,Encap,Decap) be a general KEM scheme (as defined in
Section 3.1) and let DEM = (Enc,Dec) be a one-time symmetric key encryption
scheme [15]. The two schemes are assumed to be compatible, i.e. session keys
output by KEM are appropriate for DEM.

A hybrid general encryption (HGE) scheme is a tuple HGE = (PG,KG,
Enc,Dec) of four algorithms as defined in Figure 6.

HGE.PG(1k) :

1. (par,msk)
$← KEM.PG(1k)

2. Return (par,msk)

HGE.Enc(par, ek,M, t) :

1. (C1,K)← KEM.Encap(par, ek, t)
2. C2 ← DEM.Enc(K,M)
3. Return C = (C1, C2)

HGE.KG(par,msk, id) :

1. (ek, dk)
$← KEM.KG(par,msk, id)

2. Return (ek, dk)

HGE.Dec(par, ek, dk, C, t) :

1. (C1, C2)← C
2. K ← KEM.Decap(par, ek, dk, C1, t)
3. If K = ⊥ then return ⊥
4. M ← DEM.Dec(K,C2)
5. Return M (possibly as ⊥)

Fig. 6. Hybrid General Encryption Scheme HGE

Correctness. A hybrid general encryption scheme HGE = (PG,KG,Enc,Dec)
is correct if, for all (par,msk) ∈ [HGE.PG], all plaintexts M , all identities id ∈
IDSp, all (ek, dk) ∈ [HGE.KG(par,msk, id)], and all tags t ∈ TagSp, we have
HGE.Dec(par, ek, dk,HGE.Enc(par, ek,M, t), t) = M with probability one, where
the probability is taken over the coins of HGE.Enc.

4.2 Hybrid General Encryption with Publicly Verifiable Ciphertexts

When defining public verifiability of HGE = (PG,KG,Enc,Dec) schemes with
respect to Ver and Dec′, we can essentially reuse Definition 1 for general en-
cryption. Note that message M output by the lightweight decryption algorithm
Dec′ could also be an error symbol ⊥. As previously mentioned, in general HGE
cannot satisfy Definition 2 of strictly non-trivial public verification since failure
of the original decryption procedure HGE.Dec may not necessarily imply failure
of the verification algorithm Ver′. For this reason we define the following relaxed
notion:

Definition 4 (Somewhat Non-Trivial Public Verification). Let HGE =
(PG,KG,Enc,Dec) be a hybrid general encryption scheme from Figure 6 that is
publicly verifiable with respect to auxiliary algorithms Ver and Dec′. Let (par,msk)
← PG(1k). Ver is said to be somewhat non-trivial if, for all id ∈ IDSp, all
t ∈ TagSp, and (ek, dk)← KG(par,msk, id),

1. (Ver(par, ek, C, t) = ⊥ ∨ DEM.Dec(K,C2) = ⊥) ⇔ Dec(par, ek, dk, C, t) = ⊥
for all C, where C = (C1, C2) and k = KEM.Decap(par, ek, dk, C1, t), and



2. there exists a ciphertext C for which Dec(par, ek, dk, C, t) = ⊥.

Condition 1 requires that successful public verification is necessary but not suf-
ficient for the decryption algorithm to successfully decrypt. In particular, if
Ver succeeds then the only reason why HGE.Dec fails is because of a failure
in DEM.Dec. Condition 2 remains as in Definition 2.

Theorem 4 (proven in Appendix C) shows that if the underlying general
KEM is publicly verifiable with strictly non-trivial verification then the hybrid
general encryption scheme is publicly verifiable in the somewhat non-trivial way
and that by outsourcing verification of the KEM part the hybrid scheme remains
at least IND-CPA-secure.

Theorem 4. Let GKEM = (PG,KG,Encap,Decap) be an IND-CCA-secure gen-
eral key encapsulation mechanism that is publicly verifiable with respect to GKEM.
Ver and GKEM.Decap′, DEM = (Enc,Dec) be an IND-OTCCA-secure data en-
capsulation mechanism, and HGE = (PG,KG,Enc,Dec) be the resulting hybrid
general encryption scheme.

1. If GKEM.Ver is strictly non-trivial then HGE is publicly verifiable with re-
spect to a somewhat non-trivial HGE.Ver and an algorithm HGE.Dec′.

2. Let HGE′ := (PG,KG,Enc′,Dec′) with HGE′.Enc′ = HGE.Ver ◦ HGE.Enc and
HGE′.Dec′ = HGE.Dec′. For any IND-CPA adversary A against HGE′, there
exists an IND-CPA adversary B1 against GKEM′ and an IND-OTCCA adver-
sary B2 against DEM such that

AdvIND-CPA
A,HGE′ (k) ≤ AdvIND-CCA

B1,GKEM′(k) +AdvIND-OTCCA
B2,DEM (k) ∀k ≥ 0

and B1 and B2 have (asymptotically) the same running time as A.

4.3 Constructions of Hybrid Encryption with Publicly Verifiable
Ciphertexts

Herranz et al. [15] showed that if some IND-CCA-secure KEM is combined with
an IND-OTCCA-secure DEM then the resulting hybrid encryption scheme is also
IND-CCA-secure. As shown by Cramer and Shoup [10], one can easily construct
an IND-OTCCA-secure DEM by adding a one-time MAC to a one-time-secure
DEM such as one-time pad. Moreover, Theorem 4 states that if the underly-
ing KEM is publicly verifiable then the resulting hybrid encryption scheme is
publicly verifiable as well. We can thus immediately obtain a range of publicly
verifiable constructions of hybrid encryption schemes with somewhat non-trivial
verification from these two building blocks; for instance, we can apply publicly
verifiable KEM constructions from Section 3.3.

In the case of tag-based KEM/DEM approach, Abe et al. [3] showed that
IND-CCA-secure hybrid encryption can be obtained by combining an IND-CCA-
secure tag-based KEM with a one-time secure DEM. They also provide con-
structions of IND-CCA-secure tag-based KEMs that they obtain generically from



IND-CCA-secure public-key KEMs and one-time MACs. Our publicly verifiable
public-key-based KEM constructions from Section 3.3 can be used to instantiate
their tag-based KEMs, resulting in further publicly verifiable hybrid encryption
schemes.

5 Conclusion

In this work we formalized the notion of public verifiability for encryption
schemes, KEMs, and hybrid KEM/DEM constructions. By adopting and extend-
ing the generalized syntax from [1] our definitions of publicly verifiable schemes
and corresponding security results hold for public-key based, identity-based, and
tag-based settings. We defined conditions under which public verifiability can be
seen as a non-trivial requirement for IND-CCA security and have proven that
by outsourcing verification those schemes remain at least IND-CPA secure. We
showcased that well-known CHK and NIZK-based transforms offer strictly non-
trivial public verification, proposed a new PKE scheme that makes most use of
this property, and discussed different flavours of efficient strictly non-trivial pub-
licly verifiable KEMs. With regard to hybrid schemes we showed that although
strictly non-trivial verification is not achievable, a relaxed notion of somewhat
non-trivial public verifiability can be obtained, which still offers sufficient per-
formance gains in IND-CCA/CPA filters that are useful for applications where
outsourcing of ciphertext verification to an honest-but-curios gateway without
losing confidentiality is sufficient for practical purposes.
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A Proof of Theorem 1

Proof. Let A be an adversary that breaks the IND-CPA security of GE′ and runs
in time tA. We build an algorithm B running in time tB that, using A as a
sub-routine, breaks the IND-CCA security of GE. Let CGE denote the challenger
in the associated IND-CCA security game for GE.

Algorithm B interacts with CGE and A. With A, B acts as a challenger playing
the IND-CPA security game for GE′. In detail, B does the following: On input
public par, B forwards them on to A. At some point A outputs the challenge
consisting of two messages M0 and M1, a target identity id∗, and a target tag
t∗. B forwards M0 and M1 along with id∗ and t∗ to GE challenger CGE, which
in turn responds with a ciphertext C∗ on M∗

b for a random bit b (unknown to
B). Since C∗ is publicly verifiable, B hands C̄∗ ← Ver(par, ek[id∗], C∗, t∗) as the
challenge ciphertext over to A. Eventually, A outputs a bit b′, which B uses as
it own output.

Queries of A to the oracles OEK and ODK are answered by B as follows:

• OEK(id): B queriesOEK(id) to CGE and responds toA with whatever it receives
from CGE. Note that A is allowed to query OEK on id∗.
• ODK(id): B queries ODK(id) to CGE and responds to A with whatever it re-
ceives from CGE. Note that A is not allowed to query ODK on id∗.

The total running time of B is tB ≤ tA+ tVer with tA being the running time
of A and tVer being the execution time of Ver.

Given the above perfect simulation of oracles, B clearly breaks the IND-CCA
security of GE whenever A breaks the IND-CPA security of GE′. ⊓⊔
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B Proof of Theorem 2

Proof. Let A be any PPT adversary that breaks the IND-CCA security of the
PKE scheme with non-negligible advantage, makes at most q decryption queries
and runs in time tA. Now we build an algorithm B running in time tB that using
A as a sub-routine breaks the HDH assumption with non-negligible advantage.

Before describing the algorithm B, we define the event Forge and find an
upper bound for the probability that it occurs. Let (c∗, σ∗, vk∗) be the challenge
ciphertext given by B to A. Let Forge be the event that A submits to the decryp-
tion oracle a ciphertext (c, σ, vk) ̸= (c∗, σ∗, vk∗) such that (c, σ) ̸= (c∗, σ∗) but
OTS.Vrfy(c, σ, vk∗) = 1. This event also includes the case that such a query
is submitted by A before it receives the challenge ciphertext and therefore
(c, σ, vk) ̸= (c∗, σ∗, vk∗) is not needed in this case. This implies that A can
be used to forge the underlying one-time signature scheme OTS with probability
PrA [Forge]. The scheme OTS being a strongly unforgeable one-time signature
scheme implies that PrA [Forge] must be negligible in the security parameter k.

We now describe how B proceeds. Attacker B’s input is a random instance
of the HDH problem (u = ga, gb,W ). The goal of B is to decide whether W =
H(gab) or W is a random bit string of appropriate length. With A, B acts as a
challenger playing the IND-CCA security game for PKE. In detail, B does the
following:

Key Generation & Challenge. First B runs the key generation algorithm

of OTS to generate (vk∗, sigk∗). Then B selects d
$← Z∗

p, computes part of

the challenge ciphertext for A to be (c∗1, π
∗) ← (gb, (gb)d). Now B computes

t∗ ← TCR(c∗1, vk
∗) and v ← u−t∗ ·gd and sets the public key as (u, v). We say a ci-

phertext (c = (c1, π, c2), σ, vk) is consistent if π = (utv)r for t← TCR(c1, vk) and
r = logg c1. Note that for a consistent ciphertext, the setup of the public keys im-

plies that π = (utv)r = (utu−t∗gd)r = (ur)t−t∗cd1 and H(ur) = H((π/cd1)
(t−t∗)−1

).
Now B runs A on input the public key (u, v).

Decryption Queries. Adversary A may query decryption oracle with a ci-
phertext (c, σ, vk) for which B proceeds as follows:

• If OTS.Vrfy(c, σ, vk) ̸= 1, then B returns ⊥.
• If OTS.Vrfy(c, σ, vk) = 1 and vk = vk∗, then the event Forge happens, so B
halts and outputs a random bit.
• If OTS.Vrfy(c, σ, vk) = 1 and vk ̸= vk∗, then for C = (c1, π, c2), B computes
t ← TCR(c1, vk) and utv and verifies the consistency of the ciphertext by

checking π
?
= (utv)r, i.e. B aborts if DDH(c1, u

tv, π) ̸= 1. Otherwise there
are three cases based on t← TCR(c1, vk):
Case 1: t = t∗ and c1 = c∗1: Since B hides c∗1 information theoretically from
A, the probability that c1 = c∗1 is at least q/p, with q being an upper
bound on the number of decryption queries A. In this case, B outputs a
random bit and aborts.



Case 2: t = t∗ and c1 ̸= c∗1: In this case B finds a collision c1 ̸= c∗1 but
TCR(c1, vk) = TCR(c∗1, vk

∗). So, B outputs the collision and aborts.
Case 3: t ̸= t∗: In this case B decrypts the message successfully as m ←

H((π/cd1)
(t−t∗)−1

)⊕ c2 and returns the message m to A.

Guess. At some point, A outputs two different messages M0 and M1 of the
same length where A wishes to be challenged. Using already computed challenge
ciphertext part (c∗1, π

∗)← (gb, (gb)d) and (vk∗, sigk∗), B computes c∗2 ←W⊕Mδ

for a random bit δ and sets the challenge ciphertext for A to be (c∗, σ∗, vk∗),
where c∗ ← (c∗1, π

∗, c∗2) and σ∗ ← OTS.Sign(sigk∗, c∗). Now A may continue
its queries to the decryption oracle except for the challenge ciphertext and B
answers them as before. Finally A outputs a guess bit δ′. If δ = δ′, then B
outputs γ = 1 which means that B’s guess is W = H(gab). If δ ̸= δ′, then B
outputs γ = 0 which means that B’s guess is that W is a random string.

From the above we see that unless B receives c∗1 from A (Case 1) or finds a
collision in TCR, B simulates A’s view perfectly as in the original PKE security
experiment.

B’s success probability and running time. If A wins, then B also wins.
Therefore we have, ∀k ≥ 0,

AdvHDH
B (k) ≥ AdvIND-CCA

A,PKE (k)−AdvHash-colli
TCR,H (k)− PrA [Forge]− q/p.

B’s total running time is tB ≤ tA +O(tG) where tA is the running time of A
and tG is the time to perform a basic operation in G. ⊓⊔

C Proof of Theorem 4

Proof. Statement 1. The first statement of the theorem is proven as follows: if
GKEM that is used in the HGE construction is publicly verifiable (in the sense of
Definition 3) then there exist two algorithms GKEM.Ver and GKEM.Decap′ such
that GKEM.Decap = GKEM.Decap′ ◦ GKEM.Ver.

We construct now two algorithms HGE.Ver and HGE.Dec′ as follows:

HGE.Ver(par, ek, C, t): Given public parameters par, the encryption key ek, a
ciphertext C and a tag t, this algorithm first parses C into C1 and C2

and runs GKEM.Ver(par, ek, C1, t). If GKEM.Ver(·) outputs ⊥ the algorithm
HGE.Ver also outputs C ′ = ⊥. Otherwise the output of GKEM.Ver(·) is a new
(transformed) ciphertext C ′

1 and in this case the algorithm HGE.Ver outputs
a ciphertext C ′ = (C ′

1, C2).
HGE.Dec′(par, ek, dk, C ′, t): The algorithm parses C ′ as (C ′

1, C2) and obtains
K ← GKEM.Decap′(par, ek, dk, C ′

1, t). If K = ⊥ then it outputs ⊥. Oth-
erwise, it runs DEM.Dec(K,C2) and outputs its result (which could also be
⊥).

From the above, it is easy to see that HGE.Dec = HGE.Dec′ ◦HGE.Ver. That
is, HGE.Dec(par, ek, dk, C, t) has the same input/output behavior as the following
sequence of steps:



1. (C1, C2)← C
2. C ′ ← HGE.Ver(par, ek, C, t)
3. If C ′ = ⊥ then return ⊥
4. M ← HGE.Dec′(par, ek, dk, C ′, t)
5. Return M (possibly as ⊥)

This construction of HGE.Dec implies that HGE is publicly verifiable with respect
to HGE.Ver and HGE.Dec′. Now observe that if either HGE.Ver or HGE.Dec′ fails
then so does HGE.Dec. By construction, DEM.Dec(K,C2) = ⊥ leads to the failure
of HGE.Dec′. Hence, we get

HGE.Ver(par, ek, C, t) = ⊥ ∨ DEM.Dec ( K,C2) = ⊥ ⇒ (1)

HGE.Dec(par, ek, dk, C, t) = ⊥.

As for the opposite implication observe that if HGE.Dec outputs ⊥ then either
HGE.Ver(par, ek, C, t) = ⊥ or HGE.Dec′(par, ek, dk, C ′, t) = ⊥. Note that by con-
struction, HGE.Dec′ fails if GKEM.Decap′(par, ek, dk, C ′

1, t) = ⊥ or DEM.Dec(K,
C2) = ⊥. Since GKEM.Decap = GKEM.Decap′ ◦ GKEM.Ver and GKEM.Ver is
strictly non-trivial we have GKEM.Decap′(par, ek, dk, C ′

1, t) = ⊥ if and only if
C ′ = ⊥. Since C ′ = ⊥ is equivalent to the failure of HGE.Ver we have

HGE.Dec(par, ek, dk, C , t) = ⊥ ⇒ (2)

HGE.Ver(par, ek, C, t) = ⊥ ∨ DEM.Dec(K,C2) = ⊥.

(1) and (2) mean that HGE.Ver is somewhat non-trivial according to Definition 4.

Statement 2. To prove the second statement, we first need to show that the hybrid
general encryption scheme HGE′ := (PG,KG,Enc′,Dec′) is IND-CPA-secure. Note
that HGE′ is a general encryption scheme that is obtained through a hybrid con-
struction of GKEM′ := (PG,KG,Encap′,Decap′) and DEM = (Enc,Dec), where
GKEM′.Encap′ := GKEM.Ver◦GKEM.Encap and GKEM′.Decap′ = GKEM.Decap′,
as defined in Theorem 3. Theorem 3 also says that GKEM′ is IND-CPA-secure.
This implies that HGE′ is obtained through combination of an IND-CPA-secure
KEM and an IND-OTCCA secure DEM. The result of Herranz et al. [15], who
showed that this combination achieves at least IND-CPA security, helps us to
immediately conclude the proof of the second statement. ⊓⊔
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