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Abstract

Modern key exchange protocols are usually based on the Diffie–Hellman (DH) primitive. The beauty
of this primitive, among other things, is its potential reusage of key shares: DH shares can be either used
a single time or in multiple runs. Since DH-based protocols are insecure against quantum adversaries,
alternative solutions have to be found when moving to the post-quantum setting. However, most post-
quantum candidates, including schemes based on lattices and even supersingular isogeny DH, are not
known to be secure under key reuse. In particular, this means that they cannot be necessarily deployed
as an immediate DH substitute in protocols.

In this paper, we introduce the notion of a split key encapsulation mechanism (split KEM) to
translate the desired key-reusability of a DH-based protocol to a KEM-based flow. We provide the
relevant security notions of split KEMs and show how the formalism lends itself to lifting Signal’s X3DH
handshake to the post-quantum KEM setting without additional message flows.

Although the proposed framework conceptually solves the raised issues, instantiating it securely
from post-quantum assumptions proved to be non-trivial. We give passively secure instantiations from
(R)LWE, yet overcoming the above-mentioned insecurities under key reuse in the presence of active
adversaries remains an open problem. Approaching one-sided key reuse, we provide a split KEM in-
stantiation that allows such reuse based on the KEM introduced by Kiltz (PKC 2007), which may serve
as a post-quantum blueprint if the underlying hardness assumption (gap hashed Diffie–Hellman) holds
for the commutative group action of CSIDH (Asiacrypt 2018).

The intention of this paper hence is to raise awareness of the challenges arising when moving to
KEM-based key exchange protocols with key-reusability, and to propose split KEMs as a specific target
for instantiation in future research.
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1 Introduction

The core Diffie–Hellman protocol [21]—Alice sends gx, Bob sends gy, and both compute gxy as shared
secret—is a beautiful and versatile cryptographic primitive, plays a central role in modern key exchange
protocols, and appears in many variants. For example, a key share (x, gx) can be ephemeral (mean-
ing used only once) or static (meaning reused multiple times). Furthermore, the same share can be
used in role-symmetric ways, i.e., as both initiator and responder of key exchange sessions and the same
message flow can give rise to different authenticated key exchange (AKE) protocols (e.g., HMQV [50],
CMQV [75], NAXOS [54]). The security of DH-based constructions can in turn be based on many crypto-
graphic assumptions over the group, ranging from simple passive assumptions like computational (CDH)
or decisional (DDH) Diffie–Hellman, to interactive assumptions like GapDH [63], oracle DH (ODH) [1], or
PRF-ODH [43, 11].

Indeed, modern real-world cryptographic protocols employ the Diffie–Hellman key exchange protocol
in ways that often rely on many aspects of this versatility. Table 1 shows key exchange patterns from
various Internet protocols that employ a “signed ephemeral Diffie–Hellman” approach. In TLS 1.2 [20],
the server sends the initial ephemeral public key, and the client responds, while in TLS 1.3 [69], the
roles are reversed to reduce the number of round trips: the client sends the initial ephemeral public key,
and the server responds. In both cases the security proofs [43, 30] rely on interactive DH assumptions
(variants of PRF-ODH) because of how the session key is used in the protocol prior to the session being
fully authenticated.

In implicitly authenticated key exchange, static key pairs are used to derive shared secrets that can
only be computed by the intended parties; having a peer who successfully computes the shared secret
implicitly authenticates that peer, in contrast to the explicit authentication provided by checking a signa-
ture computed by one’s peer. Implicitly authenticated key exchange protocols have long been of academic
interest (e.g., [50, 17, 77]), and have recently started to be used in real-world protocols, such as the original
handshake design of Google’s QUIC protocol [68, 57] or the Signal protocol [72, 14], as well as OPTLS [52]
which is the conceptual foundation of the TLS 1.3 handshake (cf. Table 2). In these designs, (semi-
)static DH keys enable low-latency, zero round-trip time connections. The Signal protocol even focuses on
asynchronous communication, enabling parties to initiate a connection despite their peer being offline.

Moving to post-quantum solutions. Unfortunately, DH-based protocols are not secure against quan-
tum adversaries, so key exchange protocols need to transition to post-quantum designs. The NIST Post
Quantum Cryptography Standardization process [61] is currently in the second round for identifying
quantum-resistant primitives. Furthermore, experimental deployment of post-quantum algorithms in key
exchange protocols has already taken place, e.g., by Google, Cloudflare, and the Open Quantum Safe
project [55, 56, 53, 73, 18].

While key exchange protocols are a crucial building block for many applications, the NIST standard-
ization process did not explicitly ask for key exchange, but for the conceptually simpler notions of key
encapsulation mechanisms (KEMs) [71, 16]. A KEM allows encapsulation of a symmetric key under a
public key within a ciphertext, such that the symmetric key can be decapsulated only when knowing the
corresponding secret key. Security-wise, the ciphertext hides the encapsulated symmetric key indistin-
guishably from a random string. The proposals to the NIST standardization process mostly follow the
approach to first provide a (weakly secure) public-key encryption scheme and then use well-known trans-
forms such as the Fujisaki–Okamoto transform [36, 37, 41] to achieve a strongly-secure KEM with respect
to active adversaries.

In principle, KEMs can directly be used to build and analyze key exchange protocols, and allow
to capture (implicitly authenticated) Diffie–Hellman flows (e.g., in the static Diffie–Hellman handshake
of TLS 1.2 [51]). The naive approach hence would be to simply replace every DH combination in a
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Protocol Core message flow Session key Security

SSHv2 [78]
(signed eph. DH)

hello

hello

epkA

epkB, lpkB, sig

DH(epkA, epkB) DDH [6]

TLS 1.2 [20]
(signed eph. DH)

hello

epkB, cert[lpkB], sig

epkA
DH(epkA, epkB) snPRF-ODH [43]

TLS 1.3 [69]
(signed eph. DH)

hello, epkA

epkB, cert[lpkB], sig DH(epkA, epkB) snPRF-ODH [30]

Table 1: Signed DH key exchange patterns of selected Internet protocols.
With epkX and lpkX we denote the ephemeral resp. long-term key of a party, hello is the protocol initiator’s message, sig a
signature under the long-term key, and cert[lpkX ] the long-term key and certificate of party X.

key exchange protocol with a KEM. However, whereas DH shares can be freely reused by both parties,
particularly allowing static-static combinations (as used, e.g., in Signal [72]), the KEM concept restricts
reuse to one side, namely the decapsulator. This in turn limits the possible message flows and contributions
of ephemeral randomness that standard KEMs can capture, hindering a direct translation of DH-type
protocols to KEM-based designs, and leading to the question:

Can we capture post-quantum KEM designs in a way that
enables flexible key reuse and support efficient message flows

similar to the widely-used Diffie–Hellman-based designs?

1.1 Our Contributions

In this paper, we work towards a structure for achieving the key-reusability of Diffie–Hellman-based key
exchanges in the KEM setting by introducing the notion of split KEMs in Section 4.1. In split KEMs,
encapsulation of a shared secret takes as input not only the public key of the decapsulator but also a
(potentially static) secret key of the encapsulator. Similarly, decapsulation of a ciphertext takes as input
not only the decapsulator’s secret key, but also the encapsulator public key corresponding to the secret
key used in encapsulation.

In Section 4.2, we illustrate how split KEMs enable the smooth transfer of popular DH-based key
exchanges such as Signal’s X3DH to the (post-quantum) KEM setting. Especially in the case of the
Signal protocol, the complex and asynchronous initial key agreement (X3DH, short for “Extended Triple
Diffie–Hellman”) has been abstracted away as an idealized primitive in works on secure messaging with
and without post-quantum security considerations (cf., e.g., the work by Alwen, Coretti, and Dodis [2]
which is amenable to post-quantum security).

In Section 4.3, we transfer the commonly-used security notion for KEMs of indistinguishability of
encapsulated keys from random to the split KEM setting. For this we introduce the notion of lr-IND-CCA
security that is parametrized by l ∈ {n, s,m} and r ∈ {n,m} which will indicate how often the adversary
is allowed to query the “left” decapsulation oracle or the “right” encapsulation oracle. (Here, n means
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Protocol Core message flow Session key Security

TLS 1.2 [20]
(implicit-auth. static DH
+ explicit-auth. MAC)

hello

cert[lpkB], mac

epkA, mac
DH(epkA, lpkB) mnPRF-ODH [51]

OPTLS [52]
(implicit-auth. static/eph. DH
+ explicit-auth. MAC)

hello, epkA

epkB, cert[lpkB], mac
DH(epkA, epkB)‖
DH(epkA, lpkB)

GapDH, DDH [52]
(ROM)

Signal [72]
(X3DH: triple DH
handshake + opt. eph./eph.)

hello

lpkB, sspkB, epk
†
B

lpkA, epkA

DH(lpkA, sspkB)‖
DH(epkA, lpkB)‖
DH(epkA, sspkB)‖
DH(epkA, epkB)†

mmPRF-ODH,
smPRF-ODH,
smPRF-ODH,
snPRF-ODH† [14]

QUIC [68, 57]
(original handshake)

hello, epkA

sspkB
DH(epkA, lpkB)‖
DH(epkA, sspkB)

GapDH [34]
(ROM)

Table 2: Implicitly authenticated DH key exchange patterns of selected Internet protocols.
With epkX and lpkX we denote the ephemeral resp. long-term key of a party (the latter might be known to a peer in advance),
hello is the protocol initiator’s message, mac a message authentication code under a derived key, and cert[lpkX ] the long-term
key and certificate of party X. Dashed arrows in the Signal key exchange indicate obtaining the “prekey bundle” from the
Signal server, blue values marked with † are optional.

no query is allowed, s means a single query is allowed, and m means (polynomially) many queries are
allowed.) This novel fine-grained security notion allows not only to distinguish between passive and
active attacks, but also captures key reuse on either the decapsulator’s or the encapsulator’s side or on
both sides.

As for realizing the split KEM notion, we show in Section 4.4 that plain (R)LWE-based KEMs
do non-trivially match the split KEM structure and maintain security in this formalization. However,
known key reuse attacks against (R)LWE-based KEMs prohibit such an instantiation from being secure
against active adversaries. We furthermore give an instantiation of an actively-secure split KEM achieving
mn-IND-CCA security based on the KEM introduced by Kiltz [48]. While not being a post-quantum secure
split KEM per se, the design and hardness assumptions may be replicable in the CSIDH setting (cf. the
following discussion in Section 1.2). Unfortunately, we have so far been unable to successfully develop an
instantiation in the strongest mm-IND-CCA setting from a post-quantum assumption. We identify this as
an important challenge for future work.

1.2 Related Work

Related work for our split KEM notion includes approaches towards post-quantum security of concrete
protocols, notions for key reuse and the possibility of key reuse in various post-quantum settings, as well
as foundational extensions to the definitional framework of KEMs.

Post-quantum protocols. Post-quantum secure protocol variants based on KEMs have been proposed
for TLS 1.3 [70] and WireGuard [42]. These protocols, unlike Signal, allow (multiple) round trips and
therefore do not experience the same problem we discuss in this paper. For Signal, Alwen, Coretti,
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and Dodis [2] give a first variant of Signal’s double-ratchet that is amenable to post-quantum secure
KEMs, however exclude the crucial initial key agreement. Duits [33] explores transitioning Signal to
the post-quantum setting; the suggested replacement of DH with Supersingular Isogeny Diffie–Hellman
(SIDH) [44, 19] however is not secure under the required key reuse, as we discuss next.

Key reuse with LWE and SIDH. There are a number of attacks on lattice-based key exchange schemes
when keys are reused [35, 22, 26, 59, 24, 67, 5, 25, 40, 62]. There exist proposals to enable secure key reuse
in (R)LWE-based schemes [39, 23], however, these proposals only seem to at most guard against specific
attacks at a time, while still being vulnerable to other attacks. All LWE-based KEMs in Rounds 2 and 3
of the NIST process rely on the Fujisaki–Okamoto transform to achieve IND-CCA security which provides
safe key reuse for one party, but comes at the cost of requiring the other party to fully disclose the secret
key behind their encapsulation.

Similarly, for key exchange based on SIDH [44] there are attacks when keys are reused [38]; the SIKE
NIST submission uses the FO transformation to provide security under key reuse. Azarderakhsh, Jao,
and Leonardi [3] proposed k-SIDH for static-static key exchange, where each party has k static keys, and
the final shared secret is computed from all k2 combinations. Security of k-SIDH relies on an additional
unproven assumption that the key exchange method be “irreducible”, but the best attacks currently
known are exponential in k [28]. For k-SIDH at the 128-bit security, each party would need to send
k ≈ 100 public keys and compute k2 ≈ 10, 000 SIDH computations, making it extremely expensive. A
more efficient variant of k-SIDH by Jao and Urbanik [74] was found by Basso et al. [4] to have poorer
scaling than the original. There have been several additional attempts which are either inconclusive [7] or
insecure [47, 28, 29].

Static-static key agreement via CSIDH. Castryck et al. [12] introduce a scheme based on supersin-
gular isogenies named CSIDH that supports key reuse without the need for additional transforms. Unlike
the previously mentioned supersingular isogeny-based schemes building on [44], CSIDH is considering the
hardness of finding isogenies between isogenous supersingular elliptic curves over a prime field Fp. While
this yields a commutative group action, enabling truly DH-like non-interactive key agreement, the concrete
parameter selection for CSIDH has been called into doubt [65, 8] and the decisional Diffie–Hellman problem
has been challenged for settings related to CSIDH [13] (although not affecting CSIDH itself). De Kock [49]
and Kawashima et al. [46] recently considered a translation of the gap Diffie–Hellman assumption [63] to
the CSIDH setting as the underlying assumption to construct interactive, tightly post-quantum secure key
exchange protocols. So far, the intractability of this and other interactive hardness assumptions needed
for full-fledged key exchange (cf. Tables 1 and 2) however is unknown for CSIDH.

PRF-ODH. The PRF-ODH assumption is a variant of the oracle-DH assumption [1] which enables to
argue pseudorandomness of PRF outputs when keyed with related, reused DH values. It is a natural
assumption in DH-based key exchanges and was introduced by Jager et al. in their analysis of TLS
1.2 [43]. Since then it has been used in the analyses of many real-world key exchange protocols, including
TLS 1.3 [30, 31] and Signal [14, 15]. Brendel et al. [11] conducted a systematic study, including the
presentation of a unified definition of the various flavors of the PRF-ODH assumption that had been
employed in the previous literature. We adopt their unified approach in our definition of lr-IND-CCA
security for split KEMs.

Post-quantum KEMs and KEM variants. Strongly-secure (IND-CCA) KEMs can be obtained gener-
ically through transforming post-quantum secure public-key encryption [36, 41]. These transforms, how-
ever, do not allow to reuse the encapsulator’s secret randomness. Xue et al. [76] introduce the notion
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of double-key KEMs. Here, encapsulation and decapsulation take two public, resp. secret, keys as input
belonging to the same party, while split KEM encapsulation and decapsulation take one public and one
secret input from each party, enabling static-static key reuse. The notion of merged KEMs [32] aims to
optimize bandwidth for public ratchets in the Signal protocol; our work and the notion of split KEMs
instead is concerned with the initial key agreement with contributions from both parties. In their notion
of multi-recipient KEMs, Katsumata et al. [45] also decompose the encapsulation process, though without
allowing a secret input of the sender to enter encapsulation as in our split KEM notion.

2 Preliminaries

We begin by briefly introducing the notation we require throughout this paper. Since our main concept
builds upon the notion of KEMs, we subsequently review their basic syntax and security notions. We note
that we define security with respect to quantum polynomial time (QPT) algorithms instead of probabilistic
polynomial time (PPT) as this work is motivated by the existence of adversaries with access to local
quantum computing power. We note that all problems that can be solved by PPT algorithms can also be
solved by QPT algorithms, whereas the reverse is not true (e.g., computing discrete logarithms in special
groups or factorization of large composite numbers).

2.1 Notation

For an algorithm A we write y ← A(·), resp. y $←− A(·), for deterministically, resp. probabilistically, running
A on given inputs and assigning the output to y. We say that an algorithm A is efficient if it runs in
QPT in the security parameter denoted by λ. By AO we express that the adversary denoted by A is given
access to oracle O. Finally, we use ⊥ as a special symbol to denote rejection or an error, and we assume
that ⊥/∈ {0, 1}∗.

2.2 Key Encapsulation Mechanisms

Definition 1. A key encapsulation mechanism KEM with associated public key space PK, secret key
space SK, ciphertext space C, and key space K is a tuple of algorithms KEM = (KGen,Encaps,Decaps)
defined as follows.

Key generation KGen: Takes as input the security parameter λ and outputs a public-secret key pair
in PK × SK, i.e., (pk, sk) $←− KGen(1λ).

Encapsulation Encaps: Takes as input a public key pk and outputs a ciphertext c ∈ C and the encap-
sulated key K ∈ K, i.e., (c,K) $←− Encaps(pk).

Decapsulation Decaps: Takes as input a ciphertext c and secret key sk and outputs K ′ ∈ K ∪ {⊥},
where ⊥ indicates an error, i.e., K ′ ← Decaps(sk, c).

We say that a KEM KEM = (KGen,Encaps,Decaps) is ε-correct if

Pr(pk,sk) $←−KGen(1λ),(c,K) $←−Encaps(pk)

[
K ′ 6= K

∣∣∣K ′ ← Decaps(sk, c)
]
≤ ε.

We call KEM (perfectly) correct if ε = 0.
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G indcpaKEM,A(λ):

1 (pk, sk) $←− KGen(1λ)

2 (c?,K?
0 ) $←− Encaps(pk)

3 K?
1

$←− K
4 b $←− {0, 1}
5 b′ $←− A(pk, c?,K?

b )

6 return Jb′ = bK

G indccaKEM,A(λ):

1 (pk, sk) $←− KGen(1λ)

2 (c?,K?
0 ) $←− Encaps(pk)

3 K?
1

$←− K
4 b $←− {0, 1}
5 b′ $←− AODecaps(pk, c?,K?

b )

6 return Jb′ = bK

ODecaps(c):

7 if c = c?

8 return ⊥
9 else

10 return Decaps(sk, c)

Figure 1: IND-CPA and IND-CCA security games for KEM = (KGen,Encaps,Decaps) with key space K.

2.2.1 KEM Security

The security of key encapsulation mechanisms can be formulated in terms of indistinguishability as well as
in terms of one-wayness. We recap indistinguishability (of encapsulated keys), defined under either passive
(chosen-plaintext, IND-CPA) or active (chosen-ciphertext, IND-CCA) attacks. The notion of one-wayness
captures the (non-)recoverability of the encapsulated key from the ciphertext. In this paper we focus on
the notion of indistinguishability but note that all security notions may be transferred to the one-wayness
setting.

Definition 2. Let KEM be a KEM with key space K. We say that KEM is IND-CPA-secure, resp. IND-CCA-
secure, if for every QPT adversary A the advantage function for winning the game G indatkKEM,A (with atk = cpa,
resp. atk = cca) from Figure 1, defined as

AdvindatkKEM,A(λ) :=
∣∣∣Pr

[
G indatkKEM,A(λ) = 1

]
− 1

2

∣∣∣,
is negligible in the security parameter λ.

3 Instantiating Signal’s X3DH Key Exchange with KEMs

In this section, we illustrate the challenges arising when translating DH-based key exchange protocols to the
KEM setting following the example of Signal’s X3DH initial key exchange design [72] for secure messaging.
We will see that simply replacing DH operations with KEM encapsulations results in additional message
flows and altered ephemeral/static share combinations for deriving keying material of the involved parties.

While purely ephemeral DH-based key exchanges generally map well to KEMs, many protocol designs
further include DH-based combinations of static or semi-static keys with (semi-)static or ephemeral keys,
most importantly for implicit authentication (as in Signal [72] or the Noise framework [66]). However,
KEMs allow only for restricted key reuse (namely only on the decapsulator’s side) and are hence limited
in their support of static key share combinations.

3.1 X3DH: The Initial Key Agreement in Signal

X3DH [60] is part of the Signal secure messaging protocol [72] and establishes the initial keys. We limit the
following discussion to this initial key exchange. For further information on the remaining cryptographic
building blocks of the Signal protocol, especially on the ratcheting stages following X3DH, we refer the
interested reader to, e.g., the analyses of Cohn-Gordon et al. [14] and Alwen et al. [2].

In Figure 2 we give an illustration of X3DH, where Alice wishes to establish a shared key with Bob.
The session setup in Signal involves three parties, namely the communicating parties Alice and Bob,
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Alice BobSignal Server

identity A identity B

static identity key (lpkA, lskA) static identity key (lpkB , lskB)

semi-static prekey (sspkA, ssskA) semi-static prekey (sspkB , ssskB)

(opt.) eph. prekeys {(eppkiA, epsk
i
A)}i (opt.) eph. prekeys {(eppkiB , epsk

i
B)}i

lpkB , sspkB , eppkB
† lpkA

(epkA, eskA)
$←− KGen(1λ)

ms← sspk
lskA
B ||lpkeskAB ||sspkeskAB ||eppkeskAB

†

K ← F(ms, ·)
epkA

ms← lpk
ssskB
A ||epklskBA ||epkssskBA ||epkepskBA

†

K ← F(ms, ·)

Figure 2: Signal’s X3DH key exchange. Interaction with the Signal server is dashed, the optional ephemeral
prekey (combination) is depicted in blue marked with †.

plus a central server S. This is due to the fact that Signal aims to provide secure messaging in an
asynchronous setting, i.e., chats can be initiated and encrypted messages can be exchanged even if not all
communication partners are online. For this, all users need to register their long-lived identity key and
further cryptographic key material with the central server S. In more detail, every user U provides the
server S with the public keys of the following key pairs:

� a long-lived static identity key pair (lpkU , lskU ),

� a medium-lived semi-static (signed) prekey pair (sspkU , ssskU ), and

� n ephemeral prekey pairs (eppk1U , epsk
1
U ), . . . , (eppknU , epsk

n
U ).

When Alice wants to initiate a chat with Bob, she simply requests the necessary information and
cryptographic key material of Bob (the so-called “prekey bundle”) from the central server S. From this
she then derives an initial shared secret that secures her first message(s) to Bob. Once Bob comes online
again and receives the first message from Alice (via the server), he requests Alice’s cryptographic key
material from the server S to be able to derive the same initial key to decrypt Alice’s message.

More formally, Alice initiates a session with Bob by first pinging the server S and requesting Bob’s
public key material: the static identity key lpkB, the semi-static prekey sspkB, as well as (optionally,
if available) a single ephemeral (one-time) prekey eppkB. Alice then generates an ephemeral key pair
(epkA, eskA) of her own and derives the master secret ms as

ms← sspklskAB ||lpkeskAB ||sspkeskAB ||eppkeskAB ,

where the last DH value eppkeskAB is only present if Alice has received one of Bob’s ephemeral prekeys
eppkB from the server. More on this below in Remark 1.

Alice then derives the initial key K from the master secret via a pseudorandom function F keyed
with ms and can then use this key to encrypt her first message to Bob. Finally, Alice sends her ephemeral
public key epkA to Bob (alongside identifiers for, e.g., Bob’s semi-static and ephemeral prekeys that she
received from the server). Once Bob comes online he will receive this message and can then request Alice’s
static identity key lpkA from the server. Analogously to Alice he can then compute the master secret ms
and thus the final initial key K that decrypts Alice’s first encrypted message to him.
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Alice BobSignal Server

identity A identity B

static identity key (lpkA, lskA) static identity key (lpkB , lskB)

semi-static prekey (sspkA, ssskA) semi-static prekey (sspkB , ssskB)

(opt.) eph. prekeys {(eppkiA, epsk
i
A)}i (opt.) eph. prekeys {(eppkiB , epsk

i
B)}i

lpkB , sspkB , eppk
†
B lpkA

(c2,K2) $←− Encaps(lpkB)

(c3,K3) $←− Encaps(sspkB)

(c4,K4) $←− Encaps(eppkB)† c2, c3, c
†
4

K2 ← Decaps(ssskB , c2)

K3 ← Decaps(lskB , c3)

K4 ← Decaps(epskB , c4)
†

(c1,K1) $←− Encaps(lpkA)

ms← K1||K2||K3||K†4
K ← F(ms, ·)c1?

K1 ← Decaps(lskA, c1)

ms← K1||K2||K3||K†4
K ← F(ms, ·)

Figure 3: Signal’s X3DH key exchange with KEMs replacing the DH operations. Interaction with the
Signal server is dashed, the optional ephemeral prekey (combination) is depicted in blue marked with †.
The last flow (in red marked with ?), necessary for the key share combination involving Alice’s long-term
key, breaks the asynchronicity of X3DH.

Remark 1 (Exhaustion of ephemeral prekeys). Note that each of the n stored ephemeral prekeys is only
handed out once by the server, i.e., in case Charlie wishes to also initiate a session with Bob, he will receive
an ephemeral prekey of Bob that is different from the one Alice received. However, if many users initiate
a session with Bob while he is offline, it may be the case that the stored ephemeral prekeys on the server
are exhausted. Hence, the initial shared secret is only derived from the static identity key lpkB and the
semi-static prekey sspkB.

3.2 A KEM-based X3DH Variant

Considering preparations for a post-quantum secure messaging design, one may ask if any candidate of
NIST’s post-quantum cryptography process can be used smoothly in the above setting. Unfortunately this
is not the case. As mentioned before, replacing the Diffie–Hellman operations in Signal’s X3DH protocol
with KEMs causes difficulties, as we illustrate in Figure 3 and discuss in the following.

As before, when Alice initiates a session with Bob, she requests and receives Bob’s static identity key
lpkB, his semi-static prekey sspkB, as well as a single ephemeral prekey eppkB (if available) from the
server. Alice then separately encapsulates key material under each of these keys and sends the resulting
ciphertexts to Bob, establishing three shared keys K1, K2, and K3 (if available).

Yet, in order to fully transfer X3DH to the KEM setting, these three keys are not enough: they consti-
tute, in order, the KEM analogues of the DH secrets DH(lpkB, epkA), DH(sspkB, epkA), and DH(eppkB,
epkA), where Alice’s ephemeral contribution via epkA is replaced by (differing) randomness inputs on Al-
ice’s side to the encapsulation algorithm. What is missing to complete the master secret computation—and
thus key derivation—in the same fashion as in X3DH is the analogue of the DH combination of Alice’s
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static identity key and Bob’s semi-static key, i.e., DH(sspkB, lpkA).
KEMs, however, do not provide for a non-ephemeral contribution of the encapsulating party to the

Encaps algorithm. In the KEM-based X3DH variant, Bob can thus at most encapsulate under Alice’s static
identity key lpkA, which introduces an additional message flow (depicted in red in Figure 3). This however
eradicates a key feature of instant messaging: asynchronicity, i.e., the ability to send encrypted messages
even if the receiving party is offline.1

4 Split Key Encapsulation Mechanisms

To tackle the above mentioned issues of KEMs in a DH-based protocol, we introduce a new primitive
called split key encapsulation mechanism, or split KEM, for short. Split KEMs enable a more fine-grained
notion of key encapsulation mechanisms, where the encapsulation procedure is divided up into key gen-
eration and a subsequent shared-key computation step. As it turns out, the passively-secure (IND-CPA)
versions of many proposals for KEMs submitted to the NIST Post-Quantum Cryptography Standardiza-
tion process [61], especially those based on lattices, seem to naturally fit into the split KEM format: their
encapsulation procedure can be split into a key generation and a shared-key computation part.

4.1 Definition of Split KEMs

Intuitively, a split KEM is a KEM in which both parties can contribute to the encapsulation, with either
one-time or (semi-)static keys. The key generation on the encapsulator’s side (that does implicitly take
place in many KEMs) is decoupled from the encapsulation algorithm, thus allowing key reuse similar to
the DH setting. Figure 4 shows the communication flow when using a split KEM to establish a shared
secret.

Notation. Let enc denote the encapsulating party (in the following referred to as the encapsulator) and
similarly, dec denotes the decapsulating party (or decapsulator). Let PKenc and SKenc be the public and
secret key space of the encapsulator, and PKdec and SKdec analogously for the decapsulator (if irrelevant,
or clear from the context, we will in the following omit the explicit mention of these key spaces). Let C be
the ciphertext space and K the key space.

Definition 3. A split KEM sKEM consists of four algorithms KGendec,KGenenc, sEncaps, and sDecaps,
where KGenenc and sEncaps are executed by the encapsulator, and KGendec and sDecaps by the decapsulator.

� split KEM key generation for decapsulator and encapsulator, respectively: (D, d) $←− KGendec(1
λ)

and (E, e) $←− KGenenc(1
λ) are probabilistic algorithms that output a key pair, consisting of a public

key (denoted by capital letters) and a secret key (denoted by lowercase letters) in PKdec×SKdec and
PKenc × SKenc, respectively.

� split KEM encapsulation: (c,K) $←− sEncaps(e,D) is a probabilistic algorithm executed by the
encapsulator enc. It takes as input e ∈ SKenc, the secret key of the encapsulator, and D ∈ PKdec, the
public key of the decapsulator. Algorithm sEncaps then outputs the shared secret K ∈ K along with
its encapsulation c ∈ C. It is common to simply refer to the encapsulation c of K as ciphertext.

� split KEM decapsulation: K/⊥ ← sDecaps(d,E, c) is a deterministic algorithm executed by the
decapsulator dec. On input a ciphertext c, the decapsulator’s secret key d, and encapsulator’s public
key E, it outputs either the decapsulation K of c or ⊥, if the operation fails.

1Note that it is in general not possible for Bob to precompute and store ciphertext(s) on the server alongside his public
keys to avoid the additional message flow since Bob may not know in advance which user wishes to establish a secure chat
with him.
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Alice Bob

(D, d) $←− KGendec(1
λ) (E, e) $←− KGenenc(1λ)

D E

(c,K) $←− sEncaps(e,D)

c

K/⊥ ← sDecaps(d,E, c)

Figure 4: Communication flow of a split KEM sKEM = (KGendec,KGenenc, sEncaps, sDecaps), where Alice
is the decapsulator and Bob the encapsulator.

We say that a split key encapsulation sKEM = (KGendec,KGenenc, sEncaps, sDecaps) is ε-correct if

Pr(D,d) $←−KGendec,(E,e)
$←−KGenenc,(c,K) $←−sEncaps(e,D)

[
K ′ 6= K

∣∣K ′ ← sDecaps(d,E, c)
]
≤ ε.

We call sKEM (perfectly) correct if ε = 0.

Symmetric Split KEMs. In some supersingular-isogeny-based KEMs the specification of the key gen-
eration algorithm depends on the role of the generating party (cf., e.g., the NIST Round 2 candidate
SIKE [19]). In these schemes, Alice and Bob generate public points in different subgroups of the curve
during key generation, i.e., KGendec 6= KGenenc. However, there are also many natural examples (e.g., DH-
or LWE-based KEMs), where the key generation algorithms for the encapsulator and the decapsulator do
not differ. This allows generated key pairs to be used as input for both the encapsulation and decapsulation
algorithms, i.e, across roles. In order to capture these special types of split KEMs, we introduce the notion
of a symmetric split KEM.

Definition 4 (Symmetric Split KEM). We call a split KEM sKEM = (KGendec,KGenenc, sEncaps, sDecaps)
symmetric if KGendec = KGenenc and the same key pair of a party is reused in both roles. In particular,
this means that PKdec = PKenc and SKdec = SKenc. For sake of simplicity, in this case we will often
simply refer to the key generation algorithm as KGen instead of KGendec and KGenenc, respectively.
We say that sKEM = (KGen, sEncaps, sDecaps) is ε-correct if both

Pr(D,d),(E,e) $←−KGen(1λ),(c,K) $←−sEncaps(e,D)

[
K ′ 6= K

∣∣∣K ′ ← sDecaps(d,E, c)
]
≤ ε

and

Pr(D,d),(E,e) $←−KGen(1λ),(c,K) $←−sEncaps(d,E)

[
K ′ 6= K

∣∣∣K ′ ← sDecaps(e,D, c)
]
≤ ε.

Again, as before, a symmetric split KEM is called (perfectly) correct if ε = 0.

We stress that it is not necessary to move to the symmetric split KEM setting if the key generation
algorithms are the same for the encapsulator and decapsulator, but a resulting key pair is only ever reused
for a fixed role. However, the symmetric split KEM setting is predestined for protocols like Signal’s X3DH
with KEMs. There, the long-term identity keys are used in both roles, either as the initiating party (the
encapsulator) or the responder (the decapsulator).
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Alice BobSignal Server

identity A identity B

static identity key (lpkA, lskA) static identity key (lpkB , lskB)

semi-static prekey (sspkA, ssskA) semi-static prekey (sspkB , ssskB)

(opt.) eph. prekeys {(eppkiA, epsk
i
A)}i (opt.) eph. prekeys {(eppkiB , epsk

i
B)}i

lpkB , sspkB , eppk
†
B lpkA

(epkA, eskA)
$←− KGen(1λ)

(c1,K1) $←− sEncaps(lskA, sspkB)

(c2,K2) $←− sEncaps(eskA, lpkB)

(c3,K3) $←− sEncaps(eskA, sspkB)

(c4,K4) $←− sEncaps(eskA, eppkB)†

ms← K1||K2||K3||K†4
K ← F(ms, ·) epkA, c1, c2, c3, c

†
4

K1 ← sDecaps(ssskB , lpkA, c1)

K2 ← sDecaps(lskB , epkA, c2)

K3 ← sDecaps(ssskB , epkA, c3)

K4 ← sDecaps(epskB , epkA, c4)
†

ms← K1||K2||K3||K†4
K ← F(ms, ·)

Figure 5: Split KEM flow for the KEM-based version of Signal’s X3DH handshake. Interaction with the
Signal server is dashed, the optional ephemeral prekey (combination) is depicted in blue marked with †.

4.2 X3DH with Split KEMs

We briefly show that using the split KEM formalism could solve the aforementioned problems when
switching from the DH to the KEM setting. Figure 5 illustrates the flow between Alice and Bob using
only split KEMs. On the one hand, the formalization of split KEMs may now allow both parties to reuse
key pairs and have them both contribute to the encapsulation operation(s). Furthermore, regarding the
issue of having to encapsulate without knowing the corresponding public key, the split KEM formalism
gets rid of the additional message flow from Bob to Alice, thereby effectively regaining the asynchronicity
of the secure messaging application.

4.3 Security of Split KEMs

When translating the security definitions from the KEM setting (cf. Section 2.2) to split KEMs, we need to
address that encapsulation now contains a secret-key input e and the potential reuse of keys. We arrive at
fine-grained security notions that we term lr-IND-CCA (cf. Figure 6), which are parametrized by l ∈ {n, s,m}
and r ∈ {n,m} . Here, l ∈ {n, s,m} indicates whether the adversary is allowed to make no (l = n), a single
(l = s), or polynomially many (l = m) queries to the decapsulation oracle OsDecaps. Analogously, r ∈ {n,m}
indicates the number of queries the adversary is allowed to make to the encapsulation oracle OsEncaps. The
case that r = s is excluded since the adversary cannot make the encapsulator encapsulate only once more
under the secret key e used for challenge generation. The key pair of the encapsulator is used either solely
for the challenge generation or polynomially many times. More formally:

Definition 5. Let sKEM = (KGendec,KGenenc, sEncaps, sDecaps) be a split KEM with key space K. Let
l ∈ {n, s,m} and r ∈ {n,m}. We say sKEM provides lr-indistinguishability under chosen-ciphertext attacks,
or for short, sKEM is lr-IND-CCA-secure, if for every QPT adversary A the advantage Advlr-indccasKEM,A(λ) in

13



G lr-indccasKEM,A(λ):

1 nl, nr ← 0

2 (D, d) $←− KGendec(1
λ)

3 (E, e) $←− KGenenc(1
λ)

4 (c?,K?
0 ) $←− sEncaps(e,D)

5 K?
1

$←− K
6 b $←− {0, 1}
7 b′ $←− AOsDecaps(·,·),OsEncaps(·)(D,E, c?,K?

b )

8 return Jb′ = bK

OsDecaps(E
′, c):

9 if nl ≥ l

10 return ⊥
11 nl = nl + 1

12 if (E′, c) = (E, c?)

13 return ⊥
14 K ← sDecaps(d,E′, c)

15 return K

OsEncaps(D
′):

16 if nr ≥ r

17 return ⊥
18 nr = nr + 1

19 (c,K) $←− sEncaps(e,D′)

20 if (D′, c) = (D, c?)

21 return ⊥
22 else

23 return (c,K)

Gmm-sym-indcca
sKEM,A (λ):

1 (D, d) $←− KGen(1λ)

2 (E, e) $←− KGen(1λ)

3 (c?,K?
0 ) $←− sEncaps(e,D)

4 K?
1

$←− K
5 b $←− {0, 1}
6 b′ $←− A[Osk

sDecaps(·,·),O
sk
sEncaps(·)]sk∈{d,e}(D,E, c?,K?

b )

7 return Jb′ = bK

OsksDecaps(pk, c):

8 if (sk = d ∧ (pk, c) = (E, c?))
∨ (sk = e ∧ (pk, c) = (D, c?))

9 return ⊥
10 else

11 return sDecaps(sk, pk, c)

OsksEncaps(pk):

12 (c,K) $←− sEncaps(sk, pk)

13 if (pk, c) = (D, c?)

14 return ⊥
15 else

16 return (c,K)

Figure 6: Top: lr-IND-CCA security of split KEMs, where l, r ∈ {n, s,m}. Note that we only consider lr ∈
{nn, sn,mn, sm,mm} to be relevant in our setting (see Remark 3). Bottom: Definition of mm-sym-IND-CCA
security of symmetric split KEMs, where the key pairs (D, d) and (E, e) are reused across roles. In
numerical evaluations for l and r we naturally define n = 0, s = 1, and m =∞.

winning the game G lr-indccasKEM,A(λ) as depicted in Figure 6 defined as

Advlr-indccasKEM,A(λ) :=
∣∣∣Pr

[
G lr-indccasKEM,A(λ) = 1

]
− 1

2

∣∣∣
is negligible in the security parameter λ.

At this point, a couple of remarks are in order to motivate the definition:

Remark 2. One may wonder, why, in contrast to the regular KEM setting, the adversary A is given access
to an encapsulating oracle OsEncaps. This oracle must be provided to the adversary since in the split KEM
setting, the encapsulation algorithm sEncaps not only takes as input the public key D of the decapsulating
party, but also its own secret key e. As elaborated in the next remark, in some settings A must however
be able to learn encapsulations sEncaps(e,D′) for public keys D′ of its own choosing. As this operation
cannot be executed by A itself due to the secret-key input e, an encapsulation oracle will be provided in
these cases.

Remark 3. We next discuss the six flavors lr ∈ {nn, sn, sm,mn, nm,mm}. In the following, let (D, d)
and (E, e) be the respective decapsulating and encapsulating key pairs used for generating the challenge
ciphertext c? and real encapsulated key K?

0 in the lr-IND-CCA game.

� lr = nn: The notion of nn-IND-CCA security corresponds to the IND-CPA case in the classical setting,
where the adversary is only able to learn the public keys and challenge ciphertext and key, but remains
passive. Furthermore, A is passive and may thus not learn decapsulations of ciphertexts c′ 6= c?.

� lr = sn: The notion of sn-IND-CCA captures that an active adversary may alter the challenge ciphertext
c? on the transit from the encapsulator to the decapsulator in a setting where no keys are reused.
Thus, A is allowed to learn a single decapsulation sDecaps(d,E′, c) for (E′, c) 6= (E, c?).
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� lr = sm: The notion of sm-IND-CCA is similar to the notion of sn-IND-CCA, but here the encapsulator’s
key pair (E, e) is reused across multiple encapsulations. Therefore, in addition to the single query to
OsDecaps, A may now also learn multiple encapsulations sEncaps(e,D′).

� lr = mn: The notion of mn-IND-CCA security corresponds to a reuse of the key material (D, d) on
the decapsulator’s side in the presence of an active adversary. Hence, the adversary is able to learn
multiple decapsulations sDecaps(d,E′, c) for (E′, c) 6= (E, c?).

� lr = nm: The notion of nm-IND-CCA security corresponds to a reuse of the key material (E, e) on
the encapsulator’s side in the presence of an active adversary. Hence, the adversary is able to learn
multiple encapsulations sEncaps(e,D′) for (D′, c) 6= (D, c?). Having l = n encodes that the adversary
however cannot obtain the decapsulation of any different ciphertext c′ 6= c? under D (e.g., due to c?

being authentically transmitted to the decapsulator).

� lr = mm: Finally, this notion mm-IND-CCA corresponds to reuse of keys (D, d) and (E, e) on both
the decapsulator’s and encapsulator’s side (in fixed roles). This entails that the adversary can learn
multiple related decapsulations and encapsulations.

We note the similarity to the lrPRF-ODH assumption formalization introduced in [11]. This assump-
tion captures security of DH-based key exchanges in the presence of active adversaries in different reuse
scenarios.

4.3.1 Security of Symmetric Split KEMs

In the following, we also provide the indistinguishability-based security notion for symmetric split KEMs.
Since symmetric split KEMs inherently model key reuse across roles, we only consider the notion of
mm-sym-IND-CCA to be relevant in practical settings and therefore do not define lr-sym-IND-CCA in its
full generality.2

Definition 6. Let sKEM = (KGen, sEncaps, sDecaps) be a symmetric split KEM with key space K. We
say sKEM provides symmetric mm-indistinguishability under chosen-ciphertext attacks, in short sKEM is
mm-sym-IND-CCA-secure, if for every QPT adversary A the advantage Advmm-sym-indcca

sKEM,A in winning the

game Gmm-sym-indcca
sKEM,A (λ) as depicted in Figure 6 defined as

Advmm-sym-indcca
sKEM,A (λ) :=

∣∣∣Pr
[
Gmm-sym-indcca
sKEM,A (λ) = 1

]
− 1

2

∣∣∣
is negligible in the security parameter λ.

Remark 4. One may wonder whether it is possible to turn every secure symmetric split KEM into a split
KEM, and vice versa. It is easy to see that every mm-sym-IND-CCA secure symmetric split KEM is also
mm-IND-CCA secure in the sense of non-symmetric split KEMs. The key generation algorithm is simply
executed in fixed decapsulator and encapsulator roles and the reduction is straightforward by directly
embedding the mm-sym-IND-CCA challenge into the mm-IND-CCA game and relaying the oracle queries
and answers to the respective oracles. For the other direction, let sKEM = (KGendec,KGenenc, sEncaps,
sDecaps) be an mm-IND-CCA-secure split KEM. Then sKEM′ = (KGen′, sEncaps′, sDecaps′) as defined
in Figure 7 is a mm-sym-IND-CCA-secure symmetric split KEM. Again, this can be shown by a simple
reduction, where the mm-IND-CCA reduction embeds its challenge (D,E, c?, k?) in the following manner:

2Note that the symmetric split KEM setting implies key reuse, obsoleting lr = nn. We further consider the notions
lr ∈ {sn,mn, sm, nm} to be artificial as these notions encode that only some parties reuse keys across roles while other do not.
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� The mm-sym-IND-CCA adversary A expects as input (pk, pk′, c?,K?), where pk and pk′ are outputs
of KGen′ and thus are of the form pk = (pkdec, pkenc) and pk′ = (pk′dec, pk

′
enc).

� B now sets pkdec ← D and pk′enc ← E. It generates the remaining key components itself via the
respective key generation algorithm.

� Oracle queries concerning d and e of A can simply be relayed to B’s respective oracles. The other
oracles, B can answer itself due to the knowledge of the secret keys.

� At some point, A will output its guess b′ and B can output the same guess.

KGen′(1λ):

1 (D, d) $←− KGendec(1
λ)

2 (E, e) $←− KGenenc(1
λ)

3 pk ← (D,E)

4 sk ← (d, e)

5 return (pk, sk)

sEncaps′(sk = (d, e), pk′ = (D′, E′)):

6 (c,K) $←− sEncaps(e,D′)

7 return (c,K)

sDecaps′(sk′ = (d′, e′), pk = (D,E), c):

8 K ← sDecaps(d′, E, c)

9 return K

Figure 7: Transform of mm-IND-CCA-secure split KEM sKEM = (KGendec,KGenenc, sEncaps, sDecaps) to
mm-sym-IND-CCA-secure symmetric split KEM sKEM′ = (KGen′, sEncaps′, sDecaps′).

4.4 Instantiations of Split KEMs

We now turn to giving instantiations of secure split KEMs. Let us start by showing that plain lattice-based
KEMs secure under the (Ring-)Learning with Errors assumption (R)LWE naturally fit the split KEM flow
and maintain their security against passive adversaries in this setting.

4.4.1 nn-IND-CCA Security from (R)LWE

Figure 8 illustrates a generic (R)LWE-based key exchange viewed as a split KEM. Encapsulation on Bob’s
side is split into the generation of Bob’s key pair as well as the final encapsulation of the shared key via the
computation of an approximate shared secret and so-called reconciliation information, which constitutes
the ciphertext. As mentioned before, these constructions are not secure against active attacks and/or key
reuse in the “standard” KEM setting, and thus they naturally shouldn’t achieve security above nn-IND-CCA
in their split KEM formalization. We reduce the nn-IND-CCA to what is commonly referred to as the DDH-
like problem (DDH`), which we state for LWE in the following. Note that the hardness of decision (R)LWE
implies hardness of the DDH-like problem (cf., e.g., [58, 10]).

Definition 7 (DDH` Problem). Let A, n, q, χ be LWE parameters. Given reconciliation information c, the
decision Diffie–Hellman-like problem (DDH`) for A, q, n, χ is to distinguish (B,B′, c,K) from (B,B′, c,K ′),
where

� S,S′,E,E′,E′′ $←− χ,

� B← AS + E, and B′ ← AS′ + E′,

� V← BS′ + E′′, and c $←− HelpRec(V),

� K ← Rec(V, c) and K ′ $←− K is a random element in the key space.
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Alice Bob

role dec role enc

public LWE parameters A, n, q, χ public LWE parameters A, n, q, χ

KGendec(1
λ) KGenenc(1λ)

S,E $←− χ S′,E′ $←− χ
B← AS+E B′ ← AS′ +E′

(D, d)← (B,S) (E, e)← (B′,S′)
D E

sEncaps(e,D)

E′′ $←− χ
V← BS′ +E′′

c $←− HelpRec(V)

K ← Rec(V, c)c
sDecaps(d,E, c)

V′ ← B′S

K ← Rec(V′, c)

Figure 8: Instantiation of split KEM flow with plain LWE as, e.g., in [58, 27, 64, 9] with LWE parameters
n, q, χ and fixed, public A. The functions HelpRec and Rec aid computation of the shared secret K from
the approximate shared secrets V, V′ and vary among different (R)LWE-based schemes.

For an algorithm A we define the distinguishing advantage to be

AdvDDH`
(A,n,q,χ),A(λ) :=

∣∣Pr[A(B,B′, c,K) = 1]− Pr[A(B,B′, c,K ′) = 1]
∣∣,

and say DDH` is hard if AdvDDH`
(A,n,q,χ),A is negligible in the security parameter λ.

Theorem 1. Let sKEM = (KGendec,KGenenc, sEncaps, sDecaps) be a split KEM with key space K as in
Figure 8 for secure LWE parameters A, n, q, χ. Then for any QPT adversary A sKEM is nn-IND-CCA
secure, assuming the hardness of the DDH` problem for A, n, q, χ.

Proof. By straightforward reduction. We show that if there exists an efficient adversary A against the
nn-IND-CCA security of sKEM, then this immediately implies an efficient solver B for theDDH` problem over
the same parameter set A, n, q, χ. B receives as input a tuple (B,B′, c,K?

b ), where B,B′, c are computed
as B ← AS + E, B′ ← AS′ + E′ and c $←− HelpRec(V), where V ← BS′ + E′′a nd S,S′,E,E′,E′′ $←− χ.
Depending on the internal DDH` challenge bit b $←− {0, 1}, K?

b is either Rec(V, c) (for b = 0) or a random
key from the key space K (for b = 1). B then runs A on input (B,B′, c,K?

b′), i.e., D ← B,E ← B′, c? ← c,
and K?

b . Note that in the nn-IND-CCA case, A has no access to OsEncaps and OsDecaps, i.e., B must not
simulate any oracle queries. At some point, A will then output a guess bit b′, and B will output the
same bit. If A is successful in the nn-IND-CCA game it has successfully distinguished whether K?

b is the
decapsulation of c or a random key, analogous to the DDH` challenge.

4.4.2 mn-IND-CCA security from GapHDH

For a non-trivial mn-IND-CCA secure instantiation of a split KEM we rephrase the IND-CCA secure
KEM by Kiltz [48] based on the intractability of the gap hashed-DH assumption (GapHDH) as a split
KEM. Informally, the GapHDH assumption says that an adversary cannot distinguish the two distribu-
tions (gx, gy,H(gxy)) and (gx, gy, R) for random exponents x, y, and random bit string R from the range
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KGendec(1
λ):

1 x, y $←− Z?p
2 X ← gx

3 Y ← gy

4 D ← (X,Y )

5 d← (x, y)

6 return (D, d)

KGenenc(1
λ):

7 e $←− Z?p
8 E ← ge

9 return (E, e)

sEncaps(e,D = (X,Y )):

10 t← G(ge)

11 c← (XtY )e

12 K ← H(Xe)

13 return (c,K)

sDecaps(d,E, c):

14 t′ ← G(E)

15 if Ext
′+y 6= c

16 return ⊥
17 else

18 K ← H(Ex)

19 return K

Figure 9: Instantiation of mn-IND-CCA-secure split KEM from the KEM by Kiltz [48]. Here, G : G→ Zp
is a target collision resistant function defined over a cyclic group G = 〈g〉 of prime order p. Furthermore,
H : G→ {0, 1}λ is a random hash function such that the gap hashed Diffie–Hellman assumption GapHDH
is intractable in the security parameter λ wrt. (G, g, p,H).

of the hash function R, even when given a DDH oracle which on input (ga, gb, gc) determines whether
gc = gab or not.

Recall that the split KEM notion exploits that some encapsulation algorithms of KEMs perform an
implicit key generation before computing the ciphertext and the encapsulated shared key. Thus, Figure 9
is the same as the original KEM in [48], but with the key generation of the encapsulator made explicit in
KGenenc. Obviously, this KEM is not post-quantum secure. However, if we postulate the hardness of gap
hashed-DH in the CSIDH setting, post-quantum security is achieved.3

Theorem 2. Let (G, g, p,H), where G = 〈g〉 is a cyclic group of prime order p and H : G → {0, 1}λ is a
random hash function, chosen such that GapHDH is intractable in the security parameter λ. Furthermore,
let G : G→ Zp be a target collision resistant function. Then sKEM = (KGendec,KGenenc, sEncaps, sDecaps)
as defined in Figure 9 is an mn-IND-CCA secure split KEM.

Proof Sketch. The proof works analogous to the proof given in [48]. We suppose there exists an efficient
adversary A against the mn-IND-CCA security of sKEM (cf. Figure 9) and show that this immediately
implies an efficient adversary B against GapHDH. The reduction B gets as input a GapHDH challenge of
the form (gx, gy, Z) and shall decide whether Z equals H(gxy) or a random bit string in {0, 1}λ. B samples
w $←− Z?p and computes t? ← G(gy) for the target collision resistant function G specified by sKEM.

B initiates A on input (D ← (gx, Y ), E ← gy, c?, Z), where c? ← gyw and Y ← (gx)−t
?
gw. A may then

query the decapsulation oracle OsDecaps multiple times on public encapsulator keys E′ and ciphertexts c of
its choice. The reduction simulates OsDecaps analogously to the decapsulation oracle in the IND-CCA proof
in [48]. B rejects pairs (E′, c) that are equal to (E, c?). Otherwise it checks consistency of the ciphertexts
corresponding to Line 15 of the decapsulation process by querying its DDH oracle on (gxtY,E′, c), where
t← G(E′).

Case 1: If t = t? but E′ 6= E: B has found a collision in G (contradicting G’s security) and aborts.

Case 2: If t 6= t?, B can compute the decapsulation K as H
(
( c
E′w )(t−t

?)−1)
and return K to A.

At some point A will output a guess b′ whether Z = H(gxy) or random and B will output the same bit.

3Recently, de Kock [49] and Kawashima et al. [46] used a translation of the conceptually related gap Diffie–Hellman
(GapDH [63]) assumption to the CSIDH setting to construct interactive, post-quantum secure key exchange protocols with
tight security.
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5 Conclusion

We have seen that split KEMs could be a way to capture DH-style key exchange flows with post-quantum
security through enabling both parties to contribute to the KEM encapsulation. The starting point for this
discussion and the need for a split-KEM–like notion stemmed from the fact that key exchange protocols
based on DH must eventually be transitioned to post-quantum secure alternatives, which are given in the
form of KEMs. For “simple” protocols, that only combine two ephemeral DH key pairs at a time, this
should not pose too much of an issue. For specialized usages, such as 0-RTT modes based on DH or
intricate patterns with many different DH combinations as in the initial key agreement of Signal, involving
static keys, we have seen that standard KEMs are often inadequate.

We thus introduced the notion of split key encapsulation mechanisms. However, a major challenge
remains, when it comes to showing that known KEMs fulfill the split KEM notion with reuse of keys on
both sides: while, e.g., many passively-secure lattice-based KEMs are a prime example of the structure
of split KEMs (since their encapsulation can be divided up into key generation and key agreement on
the encapsulator’s side), we know that these are not secure when keys are reused. A promising candidate
are constructions that replace the DH operations by CSIDH [12]. However, to achieve full-fledged key
exchange security, interactive hardness assumptions such as the gap (hashed) DH assumption, strong DH
assumption, or PRF-ODH are needed. We see it as an open problem to define these assumptions in the
CSIDH setting and establish their intractability. Only answers to these questions can truly establish
CSIDH as a viable building block for key exchange protocols.

Finally, it remains an open question to develop post-quantum solutions that support static-static key
exchange, or that can accommodate reversed message flows; in other words, it is an open question to
develop strongly-secure post-quantum constructions that have the same flexibility as Diffie–Hellman-based
primitives. We believe the notion of split KEMs to be an adequate starting point to this exploration.
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