
Classical Authenticated
Key Exchange

and
Quantum Cryptography

by

Douglas Stebila

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Doctor of Philosophy
in

Combinatorics & Optimization

Waterloo, Ontario, Canada, 2009

c© Douglas Stebila 2009

I hereby declare that I am the sole author of this thesis. This is a true copy of
the thesis, including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

Cryptography plays an integral role in secure communication and is usually the
strongest link in the chain of security. Yet security problems abound in electronic
communication: spyware, phishing, denial of service, and side-channel attacks are
still major concerns. The main goal in this thesis is to consider how cryptographic
techniques can be extended to offer greater defence against these non-traditional
security threats.

In the first part of this thesis, we consider problems in classical cryptography.
We introduce multi-factor password-authenticated key exchange which allows se-
cure authentication and key agreement based on multiple short secrets, such as a
long-term password and a one-time response; it can provide an enhanced level of
assurance in higher security scenarios because a multi-factor protocol is designed to
remain secure even if all but one of the factors has been compromised due to attacks
such as phishing or spyware. Next, we consider the integration of denial of service
countermeasures with key exchange protocols: by introducing a formal model for
denial of service resilience that complements the extended Canetti-Krawczyk model
for secure key agreement, we cover a wide range of existing denial of service attacks
and prevent them by carefully using client puzzles. Additionally, we look at how
side-channel attacks affect certain types of formulæ used in elliptic curve cryptog-
raphy, and demonstrate that information leaked during field operations such as
addition, subtraction, and multiplication can be exploited by an attacker.

In the second part of this thesis, we examine cryptography in the quantum
setting. We argue that quantum key distribution will have an important role to play
in future information security infrastructures and will operate best when integrated
with the powerful public key infrastructures that are used today. Finally, we present
a new look at quantum money and describe a quantum coin scheme where the coins
are not easily counterfeited, are locally verifiable, and can be transferred to another
party.

iii

Acknowledgements

I am grateful to the many people who have helped me throughout my PhD. First, I
thank my supervisor, Michele Mosca, for his guidance and support over the years.
I am also grateful for the mentorship of my industrial supervisor, Sheueling Chang
of Sun Microsystems Laboratories, and the kind advice of Alfred Menezes.

Much of the work that appears in this thesis is the result of collaboration with
others: Sheueling Chang, Norbert Lütkenhaus, Matthew McKague, Michele Mosca,
Nicholas Thériault, Poornaprajna Udupi, and Berkant Ustaoglu.

I have had many helpful discussions with others during this PhD, including Scott
Aaronson, Niel de Beaudrap, Anne Broadbent, Donny Cheung, Isabelle Déchène,
Joseph Fitzsimons, Ian Goldberg, Nils Gura, Elham Kashefi, Debbie Leung, Bodo
Möller, Kenny Paterson, Barry Sanders, Miklos Santha, and John Watrous, and
received helpful reports from various anonymous referees.

My research and studies have been supported by an NSERC Industrial Postgrad-
uate Scholarship in conjunction with Sun Microsystems Laboratories, an NSERC
Canada Graduate Scholarship, and University of Waterloo Sinclair, William Tutte,
and President’s Postgraduate Scholarships, as well as funding for the Institute for
Quantum Computing from CIFAR, CFI, CSE, MITACS, and ORDCF.

Finally, I would like to acknowledge those whose friendship was especially im-
portant to me during my PhD — Paul Dickinson, Matthew McKague, and Lana
Sheridan — and my parents who have encouraged me throughout my studies.

iv

Table of Contents

List of Figures ix

1 Introduction 1

1.1 Introduction . 1

1.2 Contributions . 2

1.2.1 Classical Authenticated Key Exchange 3

1.2.2 Quantum Cryptography . 5

I Classical Authenticated Key Exchange 7

2 Background 8

2.1 Algebraic and number theoretic background 8

2.1.1 Algebra . 8

2.1.2 Number theory . 10

2.1.3 Elliptic curves . 11

2.2 Cryptographic assumptions . 12

2.2.1 Discrete logarithm problem 13

2.2.2 Diffie-Hellman problems . 15

2.2.3 Random oracle model . 18

2.2.4 Digital signatures . 18

3 Password-Authenticated Key Exchange 20

3.1 Literature review . 21

3.2 Formal model . 22

3.2.1 Model setup . 22

3.2.2 Session key security . 25

v

3.2.3 Authentication . 27

3.2.4 Security against passive adversaries 28

3.3 Protocols . 29

3.3.1 SRP: Secure Remote Password protocol 29

3.3.2 PAK . 33

3.3.3 PAK-Z+ . 39

4 Multi-Factor Password-Authenticated Key Exchange 45

4.1 Introduction . 45

4.2 Literature review . 48

4.3 Security for multi-factor protocols 49

4.3.1 Informal security criteria . 49

4.3.2 Formal model . 51

4.3.3 Using one-time passwords 54

4.4 MFPAK . 55

4.4.1 Design ideas . 55

4.4.2 Protocol specification . 56

4.4.3 Efficiency . 57

4.4.4 Security analysis of MFPAK 59

4.4.5 Example instantiation . 78

5 Denial-of-Service-Resilient Authenticated Key Exchange 79

5.1 Introduction . 79

5.2 Literature review . 82

5.3 Security and denial of service resilience 85

5.3.1 Informal security and denial of service criteria 85

5.3.2 Formal model . 88

5.3.3 Model implications . 94

5.4 DoS-CMQV . 97

5.4.1 Design ideas . 97

5.4.2 Protocol specification . 97

5.4.3 Security analysis of DoS-CMQV 100

5.4.4 Denial of service resilience analysis 101

vi

5.4.5 Instantiation . 103

5.5 Other constructions . 103

5.5.1 Memory-bound puzzling relations 104

5.5.2 Stateless connections and cookies 104

6 Unified Point Addition Formulæ in Elliptic Curve Cryptography 107

6.1 Introduction . 107

6.2 Background . 109

6.3 Unified point addition formulæ for prime fields 112

6.3.1 Unified formula of Brier and Joye 112

6.3.2 Unified formula of Brier, Déchène and Joye 115

6.3.3 Extending Walter’s attack: conditional modular reduction
attack . 116

6.3.4 Timing . 127

6.4 Unified point addition formulæ for binary fields 130

II Quantum Cryptography 132

7 The Case for Quantum Key Distribution 133

7.1 Introduction . 133

7.2 A brief introduction to QKD . 135

7.3 Who needs quantum key distribution? 136

7.4 The security of QKD . 137

7.5 Key usage: encryption . 139

7.6 Authentication . 140

7.6.1 Symmetric key authentication 140

7.6.2 Public key authentication 141

7.7 Limitations . 142

7.8 QKD Networks . 143

7.9 Concluding remaks . 144

vii

8 Quantum Money 145

8.1 Introduction . 145

8.2 Security goals . 147

8.3 Types of quantum money . 148

8.3.1 Quantum coins . 148

8.3.2 Quantum bills . 152

8.4 Black box quantum coins . 153

8.4.1 Verification . 154

8.4.2 Black-box unforgeability . 155

8.5 Quantum coins using blind quantum computation 156

Appendices 157

A Sample Code 158

A.1 Unified point addition formulæ in elliptic curve cryptography (Chap-
ter 6) . 158

A.1.1 Projective unified formula of Brier and Joye (Section 6.3.1) . 158

A.1.2 Affine unified formula of Brier, Déchène, and Joye (Section 6.3.2)162

A.1.3 Projective unified formula of Brier, Déchène, and Joye (Sec-
tion 6.3.2) . 165

A.1.4 Timing (Section 6.3.4) . 168

A.1.5 Binary projective unified formula of Brier, Déchène, and Joye
(Section 6.4) . 171

References 172

Index 191

List of Symbols 193

viii

List of Figures

2.1 Runtimes for solving Discrete Logarithm problem in various groups 15

3.1 SRP-6 protocol user registration stage 30

3.2 SRP-6 protocol login stage . 31

3.3 PAK protocol user registration stage 34

3.4 PAK protocol login stage . 35

3.5 mePAK: More Efficient PAK protocol user registration stage 37

3.6 mePAK: More Efficient PAK protocol login stage 38

3.7 PAK-Z+ protocol user registration stage 39

3.8 PAK-Z+ protocol login stage . 41

3.9 PAK-Z+ protocol user registration stage 43

3.10 mePAK-Z+: More Efficient PAK-Z+ protocol login stage 44

4.1 Comparison of security properties of various schemes 50

4.2 The user registration stage of the MFPAK protocol 57

4.3 The login stage of the MFPAK protocol 58

4.4 Efficiency comparison for combined PAK & PAK-Z+ and MFPAK . 59

5.1 Comparison of BPR00 and eCK security models 94

5.2 DoS-CMQV: A denial-of-service-resilient adaptation of the CMQV
protocol. 99

6.1 Double-and-add point multiplication algorithm 110

6.2 Point addition, double, and multiplication power traces from [Osw05].111

6.3 Montgomery modular reduction algorithm 112

6.4 Field subtraction algorithm . 116

6.5 State diagram for analyzing point doublings 122

ix

6.6 Expected number of operations using conditional modular reduction
attack, using pdist ≈ 0.902. 124

6.7 Affine coordinates unified point addition formula with side-channel
attack countermeasures. 127

6.8 Projective coordinates unified point addition formula with side-channel
attack countermeasures. 128

6.9 Average point operation timings for secp160r2 curve. 129

6.10 Point operation timings from a single point multiplication for secp160r2
curve. 129

7.1 Flow chart of the stages of a quantum key distribution protocol.
Stages with double lines require classical authentication. 136

8.1 Summary of money schemes and their properties 149

8.2 Generic verification circuit for a quantum coin scheme (V, |ψ〉). . . . 150

8.3 Generic verification circuit for a quantum bill scheme (V, {(si, |ψi〉) :
i ∈ Γ}). 152

8.4 Verification circuit for quantum coins |ψ〉 recognized using the oracle
Uψ. 154

x

Chapter 1

Introduction

Contents
1.1 Introduction . 1
1.2 Contributions . 2

1.2.1 Classical Authenticated Key Exchange 3
1.2.2 Quantum Cryptography 5

1.1 Introduction

Cryptography plays an essential role in modern life as it allows for secure commu-
nication over insecure channels, even in the face of powerful adversaries. Cryptog-
raphy has been used for military and government communications for more than
2000 years, but only in the past 20 years has cryptography come to be used in
day-to-day life. The expansion of the Internet from a small-scale academic network
to a global network enabling hundreds of billions of dollars of electronic commerce
[Sho08] was due in no small part to the availability of cryptography.

The successful design of multitudes of secure cryptographic algorithms — public
key agreement, digital signatures, block and stream ciphers, hash functions, message
authentication codes — and secure protocols that employ these primitives is a
remarkable achievement. Of those that have been widely adopted, the majority
have remained fundamentally secure despite years of intensive cryptanalysis and
advancing computer technology.

Yet security problems abound on the Internet. The servers of governments and
major corporations are subjected to denial of service attacks. Spyware, viruses,
and malware are installed on users’ computers. Individuals fall victim to phish-
ing attacks and identity theft. Devices are subject to attacks that exploit subtle
variations in their power usage.

These security problems do not arise as a result of a break of cryptographic
algorithms or protocols. Rather, they arise by working around the cryptography:

1

Chapter 1. Introduction

why exert billions of hours of computer effort to break an advanced encryption
protocol to crack a user’s password when you can simply trick the user into telling
you their password directly?

The first part of this thesis aims to extend cryptographic techniques to offer
greater defence against some of these non-traditional security threats. Using cryp-
tographic protocols, we can defend users’ passwords from phishing attacks that
aim to trick the user into revealing their password to an attacker. We can protect
servers from being flooded by millions of bogus requests that would otherwise lead
to a denial of service attack during key establishment protocols. We can guard
against side-channel attacks that exploit variations in power consumption in ellip-
tic curve cryptography. By extending the scope of cryptography to these settings,
we can hope to offer greater robustness against attacks in a hostile communications
network.

While the discussion above deals with present threats, it is important to be
aware of threats that are on the horizon. One of the most significant discoveries in
theoretical computer science in the last 15 years was the field of quantum computa-
tion which grew out of the notion that all computation is physical: computational
devices that exploit the properties of quantum physics will have a significant ad-
vantage compared to current computers where the computational model is based
on classical physics. Most importantly for cryptography, large scale quantum com-
puters would be able to solve the hard problems that underlie the most widely used
public key cryptography systems — RSA, finite field Diffie-Hellman, and elliptic
curve cryptography — and which are the basis of security for the techniques in the
first part of this thesis.

Thus, the second part of this thesis considers the field of cryptography in a
quantum setting. Though quantum computers may eventually take away many of
the public key techniques that are widely used today, quantum cryptography makes
new tools available for use. The most researched of these new techniques is quantum
key distribution, where two parties can establish a secure key over an authentic,
public channel by using quantum communication. Most interestingly, the key that
is established is entirely independent of any inputs to the protocol, a feature which
cannot be achieved with classical physics. Quantum techniques can also be applied
to other cryptographic tasks, and one such task is digital cash: the no-cloning
theorem which prevents quantum states from being copied naturally leads one to
ask if one could create quantum money which could not be counterfeited because
of the laws of nature.

1.2 Contributions

We now summarize the main contributions of this thesis.

2

Chapter 1. Introduction

1.2.1 Classical Authenticated Key Exchange

1.2.1.1 Password-Authenticated Key Exchange (Chapter 3)

More Efficient PAK (Section 3.3.2.2) and More Efficient PAK-Z+ (Sec-
tion 3.3.3.2) In this section we describe more efficient forms of the PAK and
PAK-Z+ protocols for password-authenticated key exchange. Our improvement for
the non-verifier-based PAK protocol allows the protocol to achieve the same num-
ber of operations as Diffie-Hellman — two exponentiations — on both client and
server. For the verifier-based PAK-Z+ protocol, we achieve a protocol with just
three exponentiations on both client and server.

1.2.1.2 Multi-Factor Password-Authenticated Key Exchange
(Chapter 4)

In this chapter, we provide the first formal security treatment of multi-factor
password-authenticated key exchange. We define a formal model which is an exten-
sion of the Bellare-Pointcheval-Rogaway model [BPR00] for password-authenticated
key exchange. We formalize the security notion that a multi-factor protocol should
remain secure even if all but one of the factors has been compromised by adapting
the definition of freshness of a session.

We present an efficient two-factor protocol, MFPAK, that is secure in this model
under standard cryptographic assumptions in the random oracle model.

Our multi-factor authentication protocol offers enhanced authentication pro-
tection through two complementary factors, a long-term password and a one-time
response, and achieves two-factor security with the same computational efficiency
as the one-factor protocol mePAK-Z+ from Section 3.3.3.2. The protocol remains
secure even if all but one of the authentication factors is fully known to an adversary.
Protocols secure in our model are resistant to man-in-the-middle and impersonation
attacks, providing enhanced authentication in the face of more complex threats like
spyware and phishing.

Our work differs from previous work in password-authenticated key exchange be-
cause it utilizes two independent, complementary factors for authentication. Other
work has considered some aspects of multi-factor authentication, but these have
either used at least one factor that is a long cryptographic secret (as opposed to
our work which allows both factors to be short, human-friendly strings), or have
not provided strong server-to-client authentication resistant to man-in-the-middle
attacks.

The work on models for multi-factor password authenticated key exchange and
the MFPAK protocol in Chapter 4 is joint work with Poornaprajna Udupi and
Sheueling Chang and appeared as the following publication:

• Douglas Stebila, Poornaprajna Udupi, and Sheueling Chang. Multi-factor

3

Chapter 1. Introduction

password-authenticated key exchange. In preparation, 2009. eprint http:
//eprint.iacr.org/2008/214.

1.2.1.3 Denial-of-Service-Resilient Authenticated Key Exchange (Chap-
ter 5)

In this chapter, we propose a formal model for denial of service attacks in the
context of the extended Canetti-Krawczyk (eCK) model for secure and authentic
shared key establishment that takes into account denial of service (DoS) attacks.
Whereas previous work focused mainly on proper DoS countermeasures, we are
interested in the integration of DoS countermeasures with key establishment: just
giving the client a puzzle and checking that it was solved is not enough to guarantee
denial of service resistance for key agreement.

We analyze many of the DoS attacks presented in the literature and argue that
they do not stem from a weak DoS countermeasure but from incorrect integration
into the key agreement protocol. Existing formal methods have already led to the
discovery of some novel DoS attacks, but not all attacks can be identified in this way.
Our model covers a wider range of denial of service resistance goals and provides
a framework which can be used to analyze and compare DoS countermeasures.
Previous formal treatments of denial of service deal with the two-party setting:
an honest server and an adversary. These previous models do not capture goals
related to hijacking of connections, but do allow for a fine analysis of the strength
of a DoS countermeasure. Our approach can be used in conjunction with previous
analyses: our model deals with the integration of DoS countermeasures and key
agreement protocols, and previous work can be used to analyze the strength of the
countermeasures.

The work on denial-of-service-resilient key exchange in Chapter 5 is joint work
with Berkant Ustaoglu.

1.2.1.4 Unified Point Addition Formulæ in Elliptic Curve Cryptography
(Chapter 6)

In this chapter, we give a projective version of the elliptic curve unified point
addition formulæ of Brier, Déchène, and Joye [BDJ04]. We extend Walter’s side-
channel attack [Wal04] to make use of the detection of a conditional addition which
appears in many field subtraction implementations. This conditional modular re-
duction attack substantially decreases the amount of work necessary to recover the
key: when used with projective coordinates and Montgomery field representation
and combined with Walter’s original technique, our attack is feasible on prime field
elliptic curves up to 384 bits. We suggest some countermeasures which may help
achieve constant run-time field operations. We also provide some performance re-
sults for the various unified point addition formulæ and discuss the applicability of
timing attacks.

4

http://eprint.iacr.org/2008/214
http://eprint.iacr.org/2008/214

Chapter 1. Introduction

The work on side-channel attacks on unified point addition formulæ in ellip-
tic curve cryptography in Section 6.3 is joint work with Nicholas Thériault and
appeared as the following publication:

• Douglas Stebila and Nicolas Thériault. Unified point addition formulæ and
side-channel attacks. In Louis Goubin and Mitsuru Matsui, editors, Cryp-
tographic Hardware and Embedded Systems (CHES) 2006, LNCS, volume
4249, pp. 354–368. Springer, 2006. doi:10.1007/11894063_28. eprint
http://eprint.iacr.org/2005/419.

1.2.2 Quantum Cryptography

1.2.2.1 The Case for Quantum Key Distribution (Chapter 7)

In this chapter, we examine the role of quantum key distribution (QKD) in cryp-
tographic infrastructures. QKD promises secure key agreement by using quantum
mechanical systems. We argue that QKD will be an important part of future cryp-
tographic infrastructures. It can provide long-term confidentiality for encrypted
information without reliance on computational assumptions. Although QKD still
requires authentication to prevent man-in-the-middle attacks, it can make use of
either information-theoretically secure symmetric key authentication or computa-
tionally secure public key authentication: even when using public key authentica-
tion, we argue that QKD still offers stronger security than classical key agreement.

The work on the case for quantum key distribution in Chapter 7 is joint work
with Michele Mosca and Norbert Lütkenhaus and appeared as the following publi-
cation:

• Douglas Stebila, Michele Mosca, and Norbert Lütkenhaus. The case for
quantum key distribution. eprint arXiv:0902.2839, http://eprint.iacr.
org/2009/082.

1.2.2.2 Quantum Money (Chapter 8)

In this chapter, we present a new type of quantum money, which we call quantum
coins : coins are transferable, locally verifiable, and unforgeable, and have some
anonymity properties. Each coin generated by the bank is a copy of the same
quantum state; in such a scheme, coins should be indistinguishable from one an-
other. Additionally, a circuit is provided to allow the coins to be verified locally
and then transferred for later use.

We describe how to achieve quantum coins with black box quantum circuits and
with blind quantum computation. The unforgeability of coins in our scheme comes
from complexity theoretic assumptions on the adversary’s running time.

5

http://dx.doi.org/10.1007/11894063_28
http://eprint.iacr.org/2005/419
http://arxiv.org/abs/0902.2839
http://eprint.iacr.org/2009/082
http://eprint.iacr.org/2009/082

Chapter 1. Introduction

Our work on quantum coins contrasts with previous quantum money schemes,
which we call quantum bills : in a quantum bill scheme, the bank generates tokens
that are classical/quantum pairs, which in general are distinct. The classical string
may serve as a serial number or as some input value to be used in the verification
procedure.

The work on quantum money is joint work with Michele Mosca and parts of it
appeared as the following poster:

• Michele Mosca and Douglas Stebila. A framework for quantum money. In
Quantum Information Processing (QIP) 2007.

6

Part I

Classical Authenticated Key
Exchange

7

Chapter 2

Background

Contents
2.1 Algebraic and number theoretic background 8

2.1.1 Algebra . 8
2.1.2 Number theory . 10
2.1.3 Elliptic curves . 11

2.2 Cryptographic assumptions 12
2.2.1 Discrete logarithm problem 13
2.2.2 Diffie-Hellman problems 15
2.2.3 Random oracle model . 18
2.2.4 Digital signatures . 18

In this chapter, we provide some background material that builds up the in-
gredients we will use in cryptographic protocols. In Section 2.1 we describe the
algebraic structures that we use in our protocols: modular arithmetic and ellip-
tic curves. In Section 2.2, we describe the various computational problems that
underly our cryptographic protocols.

2.1 Algebraic and number theoretic background

2.1.1 Algebra

2.1.1.1 Groups

Definition 2.1 A group G is a set along with an operation � which satisfies the
following axioms:

G1. � is associative.

8

Chapter 2. Background

G2. There is an element e ∈ G, called the identity, such that e� a = a = a� e
for all a ∈ G.

G3. Each element in G is invertible: for each a ∈ G, there exists b ∈ G such that
a� b = b� a = e.

A group G is abelian if the operation � is also commutative.
The order of a group G, denoted |G|, is the number of elements in G. The

order may be infinite. If the order is finite, then G is said to be a finite group.

Sometimes we write groups using additive notation, where the operation � is
+; often we use this notation when the group is abelian. Sometimes we write
groups using multiplicative notation, where the operation � is ×; often we use this
notation when the group is not necessarily abelian.

Some examples of groups are Z+, the integers, with addition; and R×, the non-
zero real numbers, with multiplication. Both of these are abelian groups.

Definition 2.2 Let G be a group with operation �. Let H be a subset of G. Then
H is a subgroup of G if H is closed under �, H contains the identity of G, and
H is closed under inversion.

Then H is a cyclic subgroup of G if there exists some element x ∈ G such
that

H = {. . . , x−2, x−1, 1, x, x2, . . . }
where we have used multiplicative notation for the group. We say that H is the
subgroup of G generated by x and write H =〈x〉; x is called a generator of H.

Definition 2.3 The order of an element x ∈ G, denoted ordG(x), is the order of
〈x〉.

Fact 2.4 If G is a finite group, then all elements in G have finite order, and
ordG(x) is the smallest non-negative integer m such that xm = 1 (in multiplicative
notation).

2.1.1.2 Rings

Definition 2.5 A ring R is a set along with two operations + and ×, called ad-
dition and multiplication respectively, which satisfy the following axioms:

R1. Under +, R is an abelian group, with identity denoted by 0. This abelian
group is denoted by R+.

R2. × is associative and has an identity denoted by 1.

R3. Multiplication is distributive over addition: for all a, b, c ∈ R,

(a+ b)× c = (a× c) + (b× c) and a× (b+ c) = (a× b) + (a× c) .

A ring is commutative if its multiplication operation is commutative.
An element u in a ring R is a unit if u has an inverse in R: namely, if there

exists v ∈ R such that uv = vu = 1.

9

Chapter 2. Background

2.1.1.3 Fields

Definition 2.6 A field F is a ring in which every non-zero element is invertible.

A finite field is a field with finitely many elements.

The order of a finite field (i.e., the number of elements in the finite field) is
always a power of a prime: |F | = pr = q for some prime p, which is called the
characteristic of F .

The following are well-known results about finite fields.

Theorem 2.7 (Theorem 13.6.4, [Art91]) Let p be a prime and let q = pr be a
power of p, with r ≥ 1. Then

1. There exists a field of order q.

2. Any two fields of order q are isomorphic.

3. Let F be a field of order q. The set F× of non-zero elements of F , together
with the operation of multiplication, is a cyclic group of order q − 1 and is
called the multiplicative group of F×.

A finite field is also called a Galois field. Since by the previous theorem all
finite fields of the same order are isomorphic, it makes sense to speak of the Galois
field of order n, denoted GF(n), where n is a prime power.

2.1.2 Number theory

Definition 2.8 The greatest common denominator of two integers a and b,
denoted gcd(a, b), is the largest integer g such that g divides a and g divides b.

Two integers a and b are said to be coprime if gcd(a, b) = 1.

Definition 2.9 The Euler phi function, also called the Euler totient function,
denoted by ϕ, gives the number of positive integers less than or equal to n that are
coprime to n:

ϕ(n) = |{a : gcd(a, n) = 1, a ≤ n}| .
If n is a prime number, then ϕ(n) = n− 1. If n = ab, where a, b ∈ Z are coprime,
then ϕ(n) = ϕ(a)ϕ(b).

Definition 2.10 The set of integers modulo a positive integer n is denoted Z/nZ
or equivalently Zn.

Theorem 2.11 Zn is a commutative ring for all positive integers n. Moreover, if
n is a prime p, then Zn = GF(p).

10

Chapter 2. Background

Definition 2.12 The set of integers modulo a positive integer n that are units
(i.e., have inverses) is denoted Z×n . Equivalently, this is the set of integers that are
coprime to n.

Theorem 2.13 Z×n under multiplication is an abelian group of order ϕ(n).

Thus, we can say that Z×n is the multiplicative group of integers modulo
n.

2.1.3 Elliptic curves

Curves over prime fields. In fields F of prime characteristic other than 2 or
3, the Weierstraß form of a non-supersingular elliptic curve E is given by the
equation

y2 = x3 + ax+ b , (2.1)

where a, b ∈ F . [HMV04, §3.1]

The set of points in F × F on the curve, joined with the point at infinity
O, forms an abelian group, denoted E(F), when combined with the operation of
point addition. Let P = (x1, y1) and Q = (x2, y2), P 6= −Q, be two points on the
curve E. These two points can be added to obtain a third point P +Q = (x3, y3),
where x3 = λ2 − x1 − x2, y3 = λ(x1 − x3)− y1, and

λ =

{
y2−y1
x2−x1

, if P 6= Q (addition)
3x2

1+a

2y1
, if P = Q (doubling)

. (2.2)

Note that when P = Q, the above formula describes the point doubling opera-
tion.

Curves over characteristic 2 fields. In fields F of characteristic 2, the Weier-
straß form of a non-supersingular elliptic curve E is given by the equation

y2 + xy = x3 + ax2 + b , (2.3)

where a, b ∈ F . [HMV04, §3.1]

The affine formula for point addition in characteristic 2 is as follows. Let P =
(x1, y1) and Q = (x2, y2), P 6= ±Q, be two points on the curve E. Then P + Q =
(x3, y3), where

x3 = λ2 + λ+ x1 + x2 + a and y3 = λ(x1 + x3) + x3 + y1 , (2.4)

where λ = (y1 + y2)/(x1 + x2). If P 6= −P , then 2P = (x4, y4), where

x4 = λ2 + λ+ a and y4 = x2
1 + λx3 + x3 , (2.5)

where λ = x1 + y1/x1.

11

Chapter 2. Background

Curves over characteristic 3 fields. In fields F of characteristic 3, the Weier-
straß form of an elliptic curve E is given by the equation

y2 = x3 + ax2 + c , (2.6)

where a, c ∈ F \ {0}. [SW03]

The affine formula for point addition in characteristic 3 is as follows. Let P =
(x1, y1) and Q = (x2, y2), P 6= ±Q, be two points on the curve E. Then P + Q =
(x3, y3), where

x3 = λ2 − a− x1 − x2 and y3 = λ(x1 − x3)− y1 , (2.7)

where λ = (y2 − y1)/(x2 − x1). If P 6= −P , then 2P = (x4, y4), where

x4 = λ2 − a+ x1 and y4 = λ(x1 − x4)− y1 , (2.8)

where λ = ax1/y1.

Supersingularity. The trace of an elliptic curve E over the field Fq is t, where
#E(Fq) = q + 1 − t is the number of points on the curve. If p divides t, where
p is the characteristic of Fq, then E is said to be supersingular, otherwise it is
non-supersingular.

Additional formulæ. The point addition formulæ in (2.2)-(2.8) use affine co-
ordinates; other coordinate systems are possible. The formulæ for λ all require
an inversion, which can be computationally expensive in practice. This has moti-
vated the development of formulæ using projective coordinates. In the ordinary
projective case, a point is represented by three coordinates, P = (X, Y, Z), with
x = X/Z and y = Y/Z. Denominators are used for all of the point additions
and point doublings comprising a point multiplication, and only at the end is the
inversion Z−1 computed to return the final result to affine coordinates.

Because λ is defined differently depending on whether or not P = Q, the formula
for point addition differs from the formula for point doubling. This can lead to so-
called side channel attacks, which are discussed in Chapter 6.

2.2 Cryptographic assumptions

The security of the protocols we consider in later sections of Part I of this thesis
are based on various computational assumptions. Rather than having information-
theoretic security, these protocols rely on the hardness of some underlying cryp-
tographic problem for their security. In particular, the arguments for the security
of the protocols relate the difficulty of breaking the security of the protocol, which
is expressed as some task for an adversary to perform, to the difficulty of solving
some underlying computational problem which is believed to be hard.

12

Chapter 2. Background

The notation we use to express the ability of an adversary to solve a particular
task is the advantage notation, defined as follows. Examples of the advantage
notation are used in the remainder of this section.

Notation 2.14 Let problem be some computational problem, and let params be
a set of parameters for that computational problem. Let A be a probabilistic al-
gorithm. The advantage of A in solving problem with parameter set params is
the probability that A can solve a randomly chosen instance of problem when the
parameters are params, and is denoted by Advproblem

params (A).

Typically, we intend for the advantage to be negligibly small. A function f :
Z→ [0, 1] is negligible if, for all k > 0, there exists a value nk > 0 such that, for
all n > nk, f(n) < n−k. In other words, if for sufficiently large n, f(n) is smaller
than the inverse of any polynomial in n.

We overload the advantage notation as follows to allow for the running time
and other powers of the adversary to be more precisely specified.

Notation 2.15 Let problem be some computational problem, and let params be
a set of parameters for that computational problem. Let t, q1, . . . be non-negative
integers. Define

Advproblem
params (t, q1, . . .) = max

A

{
Advproblem

params (A)
}

(2.9)

where the maximum is taken over all probabilistic algorithms A running in time at
most t and performing at most qi operations of type i.

Typically, we will use the advantage notation of Notation 2.15 where we bound
the number qro of queries to a random oracle (see Section 2.2.3) performed by the
adversary, as well as other types of queries as specified by the formal security model.

2.2.1 Discrete logarithm problem

The Discrete Logarithm problem is an important problem that underlies many cryp-
tographic protocols. It was first described by Diffie and Hellman in their seminal
paper introducing public key cryptography [DH76].

Definition 2.16 Let G be a finite cyclic group of order q and let g be a generator
of G. Let x ∈ Zq. The Discrete Logarithm problem is as follows: given (g, gx),
find x = dlogg(g

x). Let A be a probabilistic algorithm. The DL advantage of A
for G is defined to be

AdvDL
G,g(A) = Pr (A(G, g, q, gx) = x) , (2.10)

where the probability is taken over uniformly random choices of x. The Discrete
Logarithm assumption for a group G is that, for all probabilistic adversaries
running in time polynomial in log2(q), AdvDL

G,g(A) is negligible in a security param-
eter.

13

Chapter 2. Background

There are two types of groups that are commonly used for cryptography for
which the above problem is believed to be hard: the multiplicative group of integers
modulo a large prime (Z×p), and additive groups of prime order of points on an
elliptic curve.

The Discrete Logarithm problem can be solved a few different ways. The known
algorithms for classical (non-quantum) computers cannot solve the Discrete Loga-
rithm problem efficiently, while an algorithm is known for quantum computers that
can solve the Discrete Logarithm problem efficiently, assuming a sufficiently large
quantum computer.

The first set of techniques for computing discrete logarithms (such as Baby
Step-Giant Step and Pollard’s rho Method [Pol78]) work generically on the group
generated by the generator g; in other words, they perform only group operations,
and thus can be applied to groups of integers modulo a prime and to elliptic curve
groups. If the cyclic group has order q, then these algorithms can compute the
discrete logarithm of an element in this group using O(

√
q) group operations.

A second technique for computing discrete logarithms of integers modulo a large
prime is known ([Gor93], based on the General Number Field Sieve). This technique
takes advantage of the structure of the field of integers rather than the structure
of the group, and thus is only applicable to the group of integers modulo a large
prime. If arithmetic is being done modulo p, then the expected running time is
Lp(1/3, (64/9)1/3), where

Lx(v, c) = exp
(
(c+ o(1))(lnx)v(ln lnx)1−v) . (2.11)

Figure 2.1 describes the runtime for solving the Discrete Logarithm problem in
various groups based on the above techniques, using the detailed analysis found in
an ECRYPT report [BCC+06] (and based on the tables of [GB08]). In particular,
the ECRYPT analysis uses a small modification, giving a runtime of

exp
(
(64/9)1/3(lnx)1/3(ln lnx)2/3 − 14

)
. (2.12)

We have chosen to present the numbers from this ECRYPT report for convenience;
however, there are several other analyses, a list of which can be found in [GB08].

Roughly speaking, if we want a security level of 280, meaning we expect an
adversary to have to do at least 280 steps of computation before having a reasonable
chance of solving the problem, we need to use integers modulo a prime of at least
1248 bits (and working in a group of order at least 2160), or an elliptic curve of at
least 160 bits.

If a large scale quantum computer is available, then the Discrete Logarithm
problem can be solved efficiently. In particular, there is a quantum algorithm
running in time O(dlog2(q)e2) that can compute discrete logarithms in any finite
abelian group. This discrete logarithm algorithm for integers modulo a prime was
described by Shor [Sho94, Sho97] and was extended to arbitrary finite abelian
groups by others [Kit95, CEMM98] and is described well in [NC00, §5.4.2]. The

14

Chapter 2. Background

Runtime Z×p Elliptic curve
log2(p) Group order Group order

272 1008 144 144
280 1248 160 160
2128 3248 256 256
2256 15424 512 512

Figure 2.1: Runtimes for solving Discrete Logarithm problem in various groups

special case of Shor’s algorithm applied to elliptic curves has been studied in detail
[PZ03, KZ04, CMMP08]. However, quantum computers of sufficiently large scale
for computing discrete logarithms in groups used for cryptographic purposes today
appear infeasible for at least 20 years, and thus these number-theoretic building
blocks are still of interest for some immediate and short-term cryptographic prob-
lems.

2.2.2 Diffie-Hellman problems

The Computational Diffie-Hellman problem is one of the most widely used compu-
tational assumptions in cryptography. It was first described by Diffie and Hellman
in 1976 [DH76].

Definition 2.17 Let G be a finite cyclic group of order q and let g be a generator of
G. Let x, y ∈ Zq. Define DH(gx, gy) = gxy. The Computational Diffie-Hellman
problem is as follows: given (g, gx, gy), find DH(gx, gy). Let A be a probabilistic
algorithm. The CDH advantage of A for G is defined to be

AdvCDH
G,g (A) = Pr (A(G, g, q, gx, gy) = DH(gx, gy)) , (2.13)

where the probability is taken over uniformly random choices of x and y. The Com-
putational Diffie-Hellman assumption for a group G is that, for all probabilis-
tic adversaries running in time polynomial in log2(q), AdvCDH

G,g (A) is negligible in a
security parameter.

Clearly, if there exists an algorithm to solve the Discrete Logarithm problem ef-
ficiently, then this algorithm can be used to solve the Computational Diffie-Hellman
problem. This means that the following relation holds:

Lemma 2.18 Let G be a finite cyclic group of order q and let g be a generator of
G. Let texp be the time required to perform an exponentiation in the group G. Then

AdvDL
G,g(t) ≤ AdvCDH

G,g (t+ texp) . (2.14)

A variant of the Computational Diffie-Hellman problem is the List Computa-
tional Diffie-Hellman problem, which allows the output of the adversary to be a

15

Chapter 2. Background

list of group elements, only one of which need be the Diffie-Hellman value. The
List Computational Diffie-Hellman problem was explicitly stated by [Sho06] but
was used elsewhere earlier (for example, [Mac02]).

Definition 2.19 Let G be a finite cyclic group of order q and let g be a generator
of G. Let x, y ∈ Zq and let ` ∈ {1, 2, . . . }. The List Computational Diffie-
Hellman problem is as follows: given (g, gx, gy), output a set S containing at
most ` elements such that DH(gx, gy) ∈ S. Let A be a probabilistic algorithm
outputting a set of at most ` elements. The List-CDH advantage of A for G is
defined to be

AdvLCDH
G,g (A, `) = Pr (DH(gx, gy) ∈ A(G, g, q, gx, gy)) , (2.15)

where the probability is taken over uniformly random choices of x and y. The
List Computational Diffie-Hellman assumption for a group G is that, for all
probabilistic adversaries running in time polynomial in log2(q) (and thus outputting
a set of length ` bounded by a polynomial in log2(q)), AdvLCDH

G,g (A, `) is negligible in
a security parameter.

Clearly, if there exists an algorithm to solve the Computational Diffie-Hellman
problem efficiently, then this algorithm can be used to solve the List Computational
Diffie-Hellman problem. Moreover, an algorithm that solves List Computational
Diffie-Hellman can be used to probabilistically solve Computational Diffie-Hellman.
This means that the following relations hold:

Lemma 2.20 Let G be a finite cyclic group of order q, let ` ∈ {1, 2, . . . }, and let
g be a generator of G. Then

AdvCDH
G,g (t) = AdvLCDH

G,g (t, 1) ≤ AdvLCDH
G,g (t, `) (2.16)

and
AdvLCDH

G,g (t, `) ≤ ` · AdvLCDH
G,g (t, 1) . (2.17)

Whereas CDH and LCDH require that the adversary find the Diffie-Hellman
value, the Decisional Diffie-Hellman problem only requires that an adversary dis-
tinguish the Diffie-Hellman value from a random string. It was first stated by Diffie
and Hellman [DH76] and a good survey of research related to the problem is given
by Boneh [Bon98].

Definition 2.21 Let G be a finite cyclic group of order q and let g be a generator
of G. Let x, y, z ∈ Zq. The Decisional Diffie-Hellman problem is as follows:
given (g, gx, gy, gz), determine if z = xy (or equivalently, if gz = DH(gx, gy)). Let
A be a probabilistic algorithm. The DDH advantage of A for G is defined to be

AdvDDH
G,g (A) = |Pr (A(G, g, q, gx, gy, gxy) = 1)− Pr (A(G, g, q, gx, gy, gz) = 1)| ,

(2.18)
where the probability is taken over uniformly random choices of x, y, and z. The
Decisional Diffie-Hellman assumption for a group G is that, for all probabilistic
adversaries running in time polynomial in log2(q), AdvDDH

G,g (A) is negligible in a
security parameter.

16

Chapter 2. Background

Clearly, if there exists an algorithm to solve the Computational Diffie-Hellman
problem efficiently, then this algorithm can be used to solve the Decisional Diffie-
Hellman problem. This means that the following relation holds:

Lemma 2.22 Let G be a finite cyclic group of order q and let g be a generator of
G. Then

AdvCDH
G,g (t) ≤ AdvDDH

G,g (t) . (2.19)

One other variant is the Gap Diffie-Hellman problem, which requires that the
adversary solve a CDH problem given access to a DDH oracle. The existence of
groups satisfying this condition was noted by Joux and Nguyen [JN01] and this
problem was first stated by Okamoto and Pointcheval [OP01].

Definition 2.23 Let G be a finite cyclic group of order q and let g be a gener-
ator of G. Let x, y ∈ Zq. The Gap Diffie-Hellman problem is as follows:
given (g, gx, gy), find DH(gx, gy) given an oracle O that solves the Decisional Diffie-
Hellman problem in G. Let A be a probabilistic algorithm. The GDH advantage
of A for G is defined to be

AdvGDH
G,g (A) = Pr (A(G, g, q,O, gx, gy) = DH(gx, gy)) , (2.20)

where the probability is taken over uniformly random choices of x and y. The Gap
Diffie-Hellman assumption for a group G is that, for all probabilistic adversaries
running in time polynomial in log2(q), AdvGDH

G,g (A) is negligible.

Boneh, Lynn, and Shacham [BLS01, §3.2] propose the use of certain supersin-
gular elliptic curves of the form y2 = x3 + 2x ± 1 over the field F3` to instantiate
a Gap Diffie-Hellman group and give parameter size guidance. The DDH oracle is
provided by an algorithm that makes use of the Weil pairing or the Tate pairing
[FMR99].

Clearly, if there exists an algorithm to solve the Computational Diffie-Hellman
problem efficiently, then this algorithm can be used to solve the Gap Diffie-Hellman
problem. This means that the following relation holds:

Lemma 2.24 Let G be a finite cyclic group of order q and let g be a generator of
G. Then

AdvCDH
G,g (t) ≤ AdvGDH

G,g (t) . (2.21)

By combining Lemmas 2.18, 2.20, 2.22, and 2.24, we can see the relationships
between the various computational problems discussed so far, and where being able
to solve one implies the ability to solve another.

solve DL =⇒ solve CDH ⇐⇒ solve List-CDH
⇓ ⇓

solve DDH solve GDH

17

Chapter 2. Background

The best known techniques for solving CDH, List-CDH, DDH, and GDH in
groups for which the respective problems are believed to be hard involve first com-
puting a discrete logarithm, and thus the conjectured difficulty of solving these
problems is often taken to be equivalent to the difficulty of solving the Discrete
Logarithm problem. CDH is in fact equivalent to the Discrete Logarithm problem
for groups with smooth order (every prime factor of the order is polynomial in the
logarithm of the order) [dB90, MW99].

2.2.3 Random oracle model

The random oracle model, described by Bellare and Rogaway [BR04] is a useful tool
in cryptographic arguments in which we assume that a hash function as used in a
protocol behaves as a random function. This is a powerful assumption about which
there is some debate ([KM04, §6], [Gol06]), but remains a widely used and useful
tool in cryptographic research. It was recently shown that there is a connection
between the random oracle model and the ideal cipher model [CPS08a].

Definition 2.25 A random oracle R is a map from {0, 1}∗ to {0, 1}∞ chosen by
selecting each bit of R(x) uniformly and independently at random for each x. A
random hash function H : {0, 1}∗ → {0, 1}k is chosen in the same way.

A random hash function can be constructed from an oracle “on the fly”: when
called with input x, if the oracle has not seen x before, it picks the output y
uniformly at random, returns y, and stores (x, y) in a table; if x is already in the
table, then it returns the corresponding entry y.

Many independent random hash functions H0, H1, H2, . . . can be constructed
from a single random hash function H, for example by setting H`(x) = H(`, x).
There exist efficient, well-known constructions for returning integers instead of bit
strings when necessary (for example, [BK07, §B.5.1]).

2.2.4 Digital signatures

Some protocols also make use of digital signature schemes which are existentially
unforgeable under chosen message attacks [GMR88], [Sti02, §7.2].

A signature scheme S is a tuple of algorithms (Gen, Sign,Verify), where Gen
is a key generation algorithm such that Gen(1κ) returns a private key / public key
pair (v, V) for a security parameter κ, Sign is a signature generation algorithm such
that Signv(m) returns a signature of the message m under the private key v, and
Verify is a verification algorithm such that VerifyV (m, s) returns true if s is a valid
signature of m under public key V and false otherwise.

Definition 2.26 A chosen message attack by a forger F on a signature scheme
S is an attack in which F is able to supply messages m1,m2, . . . of its choice to a
signing oracle and obtain valid signatures s1 = Signv(m1), s2 = Signv(m2),

18

Chapter 2. Background

Definition 2.27 An existential forgery by a forger F on a signature scheme S
is an attack in which F is able to create a valid signature s for at least one message
m, so that VerifyV (m, s) = true and so that m was not previously signed by any
signing oracle for a private key corresponding to V .

Definition 2.28 Let S be a signature scheme with security parameter κ. A forger
F is a probabilistic algorithm that is given a public key V and whose goal is to
construct an existential forgery using a chosen message attack. The eu-cma ad-
vantage of F for S is defined to be

Adveu-cma
S,κ (F) = Pr(F succeeds) . (2.22)

A signature scheme S is existentially unforgeable under chosen message at-
tacks (eu-cma) if, for any probabilistic polynomial time algorithm F , Adveu-cma

S,κ (F)
is negligible.

The RSA-PSS signature scheme [BR96] has been shown to be existentially un-
forgeable under chosen message attacks assuming the RSA problem is hard. Other
popular signature schemes, such as DSA and ECDSA, are not known to be existen-
tially unforgeable under chosen message attacks. However, a variant of ECDSA has
been shown to be secure in the generic group model which suggests some confidence
in security of ECDSA [Bro04].

19

Chapter 3

Password-Authenticated Key
Exchange

Contents
3.1 Literature review . 21
3.2 Formal model . 22

3.2.1 Model setup . 22
3.2.2 Session key security . 25
3.2.3 Authentication . 27
3.2.4 Security against passive adversaries 28

3.3 Protocols . 29
3.3.1 SRP: Secure Remote Password protocol 29
3.3.2 PAK . 33
3.3.3 PAK-Z+ . 39

The basic problem of password-authenticated key exchange1 is as follows. Two
parties wish to authenticate each other and agree upon a secret key, but they only
share a short text string, not a long cryptographic secret. The client cannot simply
tell the server her password as proof of identity because a malicious “phishing”
server could then steal the password and impersonate the client at the real server.
A password-authenticated key exchange protocol allows each party to authenticate
the other’s identity based solely on their knowledge of a short password, without
revealing any useful information about the password to any other party; moreover,
the two parties can also agree on a shared key suitable for other cryptographic
purposes such as bulk encryption.

1Although the term “password-authenticated key agreement” might be more appropriate for
the protocols we consider, the term “password-authenticated key exchange” is more often used in
the literature, and we make use of the latter for the rest of this thesis.

20

Chapter 3. Password-Authenticated Key Exchange

3.1 Literature review

Password-authenticated key exchange protocols have been extensively studied in
the literature. A large list of papers concerning password-based key exchange is
maintained by Jablon [Jab08].

Password-authenticated key exchange was first introduced by Bellovin and Mer-
ritt in 1992 [BM92] in the form of encrypted key exchange (EKE), a protocol in
which the client and server shared the plaintext password and exchanged encrypted
information to allow them to derive a shared session key. A later variant by Bellovin
and Merritt, Augmented EKE (A-EKE) [BM94], removed the requirement that the
server have the plaintext password, instead having a one-way function of the pass-
word. The former is called a symmetric password-based protocol, because both
client and server share the same plaintext password, whereas the latter is called
asymmetric or verifier-based.

A number of formal models for the security of password-authenticated key ex-
change protocols have been introduced, including one by Boyko, Mackenzie, and
Patel [BMP00a] (which extends the simulation model for authenticated key ex-
change by Shoup [Sho99b]), one by Bellare, Pointcheval, and Rogaway [BPR00],
and the three-party setting of Abdalla, Fouque, and Pointcheval [AFP05]. The
Bellare-Pointcheval-Rogaway model has been used extensively and forms the basis
of our security analyses. A description of the model is given in Section 3.2.

Wu [Wu98] introduced an asymmetric (verifier-based) protocol called the Secure
Remote Password (SRP) protocol (called SRP-3) in 1998; after a minor flaw was
found [Mac01] in the initial version, a revised version (SRP-6) was described in 2002
[Wu02]; an elliptic curve version also exists [Wan01]. A description of SRP is given
in Section 3.3.1. However, there is no argument for the security of SRP in any of
the formal models listed above, only a proof that the key exchange portion of SRP-
3 is secure against passive adversaries. Nonetheless, SRP is of particular interest
because it is efficient and more importantly because its message flow allows it to
fit inside the pre-defined message flow of the existing network protocol SSL/TLS.
As such, it has been standardized as an informational RFC [TWMP07].

The SOKE protocol [ABC+06] does have formal security arguments in the
Bellare-Pointcheval-Rogaway model and was designed explicitly to fit into the
SSL/TLS handshake protocol, but it is not a verifier-based protocol; there are
no verifier-based protocols with formal security arguments that fit into the existing
message flow of the SSL/TLS handshake protocol.

Other recent work has focused on protocols with formal security claims and
proofs in the standard model (that is, not assuming random oracles), but our work
in the rest of this thesis assumes the random oracle model.

Two recent protocols of interest and which inspire some of our protocol designs
are PAK [BMP00a, Mac02] and PAK-Z+ [GMR05], which we describe in Sec-
tions 3.3.2 and 3.3.3, respectively. PAK is a symmetric protocol whereas PAK-Z+

21

Chapter 3. Password-Authenticated Key Exchange

is an asymmetric protocol: both have a similar structure but use authentication
secrets of different natures. Both have been shown to be secure in the Bellare-
Pointcheval-Rogaway model. The technique used to show the security of PAK-Z+
is a specialization of the same authors’ later Ω-method [GMR06] for converting a
symmetric password-authenticated key exchange protocol into an asymmetric one.

A one-time password-authenticated key exchange protocol called OPKeyX was
suggested by Abdalla, Chevassut, and Pointcheval [ACP05a]: their scheme uses a
sequence of one-time passwords generated by iterative hashing of a seed.

3.2 Formal model

The formal model we use for analyzing the security of password-authenticated key
exchange is that of Bellare, Pointcheval, and Rogaway [BPR00], as modified by
Gentry, MacKenzie, and Ramzan [GMR05]; we refer to this as the BPR model for
password-authenticated key exchange.

The basic idea of the model is as follows. We envision a number of honest,
interacting parties connected by communication links. The communication links
are controlled by an adversary. The adversary can observe messages sent by the
parties, which models passive eavesdropping. The adversary can also modify, delete,
or reorder messages sent by the parties, and can inject her own messages as well,
which models active interference in the network. In addition to controlling the
communication links, the adversary is also allowed to learn certain information
from parties, which models partial compromise of private information.

To analyze security in this model, we define one or more tasks — games —
that the adversary needs to accomplish in order to have broken the security of the
protocol, provided that the adversary has not compromised particular interacting
parties so much so to make the tasks trivial.

We now describe the BPR model more precisely.

3.2.1 Model setup

Participants. Each interacting party is either a client or a server, is identified
by a unique fixed length string, and the identifier is a member of either the set
Clients or Servers, respectively, with Parties = Clients ∪̇ Servers.

Passwords. Authentication secrets are short strings selected uniformly at ran-
dom from an appropriate set. Passwords are chosen from the set Passwords. Typ-
ically, this set is large, but not so large that a brute-force search is infeasible.
For example, the author’s keyboard has 95 distinct printable characters on it:
if Passwords consists of all strings of length 8 from this set of characters, then
|Passwords| = 958 .

= 252.6. In other words, such passwords only have about 52 bits

22

Chapter 3. Password-Authenticated Key Exchange

of entropy, which is much smaller than what is commonly employed for crypto-
graphically large secrets, usually having at least 80 or 128 bits of entropy.

For the rest of this thesis, we assume passwords are chosen uniformly at random
from the set Passwords. In practice, this assumption is often unmet. When pass-
words are generated by computers (for example, by a password helper program or
by a hardware password token as discussed in Section 4.3.3), it is easier to ensure
passwords are uniformly distributed. Verheul [Ver07] examines the different types
of attacks against computer-generated passwords and considers a variety of entropy
measures for password security.

Human-generated passwords are almost certainly not going to be uniformly
distributed. Many studies have reported on poor password distributions; in one
analysis of cracked Kerberos passwords by Wu [Wu99, §3.1], 74% of passwords con-
tained no digits, 96% of passwords contained no non-alphanumeric symbols, and
86% of passwords could be typed without using the shift key. Wagner and Gold-
berg [WG00, §7] introduce passphrase-based cryptography where keying material
is derived from human-generated passphrases and thus likely to be non-uniform
and apply it to the case of Unix password hashing. Non-uniform passphrases have
been considered only a few times in the password-authenticated key exchange litera-
ture, in the context of universally composable password-authenticated key exchange
[CHK+05] and in a brief discussion by Katz et al. [KOY, §2.2.1].

For each client-server pair (Ĉ, Ŝ) ∈ Clients×Servers, an authentication secret ex-
ists: there is a long-term password pwĈ,Ŝ ∈ Passwords, and a corresponding pwŜ[Ĉ]

which is some transformation of pwĈ,Ŝ; pwŜ[Ĉ] is stored on the server Ŝ. If pwŜ[Ĉ] =
pwĈ,Ŝ (in other words, if the transformation is the identity), then this is called the
symmetric model or non-verifier-based model of password-authenticated key
exchange. Alternatively, it may be that pwŜ[Ĉ] 6= pwĈ,Ŝ, which is called the asym-
metric model or verifier-based model of password-authenticated key exchange.

In the rest of this work, we actually relax the distinction between the symmetric
model and the asymmetric model. If the server’s value pwŜ[Ĉ] is the same as or a
trivial or reversible transformation of the client’s value pwĈ,Ŝ, then we say that we
are in the symmetric model. We are trying to capture the following notion: in an
asymmetric (verifier-based) protocol, the value pwŜ[Ĉ] stored on the server should
not be enough to immediately impersonate a client. There may be protocols where
the value stored on the server is not identical to what is stored on the client, but
is enough to impersonate the client with little extra work, and we wish to include
this in the notion of symmetric (non-verifier-based) protocols.

Execution of the protocol. The protocol is, formally, a probabilistic algorithm
on strings, and specifies how each party responses to messages. During execution,
each party may have multiple instances of the protocol running. Each instance
i of a party Û ∈ Parties is treated as an oracle denoted by ΠÛ

i , modeling some
procedure run by party Û .

23

Chapter 3. Password-Authenticated Key Exchange

In a protocol, there is a sequence of messages, called flows, starting with a flow
from the client instance, responded to by a server instance, and so on. At any time,
parties may abort the protocol, or, after some fixed number of flows, may terminate
and accept, producing some output. For authenticated key exchange protocols,
the output of an accepting protocol instance for a party consists of a session key sk,
a partner identifier pid which identifies the party with which the present party
thinks it has just exchanged a key, and a session identifier sid, which uniquely
identifies the conversation. The session identifier and partner identifier need not be
kept secret, and in fact are typically based on information in messages exchanged
publicly.

Two instances ΠĈ
i and ΠŜ

j are said to be partnered if they both accept, hold
outputs (pid, sid, sk) and (pid′, sid′, sk′) with pid = Ŝ, pid′ = Ĉ, sid = sid′, and
sk = sk′, and no other instance accepts with session identifier equal to sid.

Powers of the adversary. While the protocol specification determines how par-
ties respond to inputs from the environment, the environment is considered to be
controlled by the adversary, which is formally a probabilistic algorithm that issues
queries to parties’ oracle instances and receives responses. There are in general
three classes of queries: (1) queries that model the transmission of messages across
communication links, (2) queries that model the adversary learning certain infor-
mation by compromising a party in some way, and (3) queries that have been added
to allow the formulation of a game for the adversary to win.

For a protocol P , we define the following queries that the adversary can issue
(where clear by the setting, we may omit the subscript P).

The first two queries, Send and Execute, model the transmission of messages
across communication links.

SendP (Û , i,M): Sends message M to user instance ΠÛ
i , which faithfully per-

forms the appropriate portion of protocol P based on its current state and the
message M , updates its state as appropriate, and returns any resulting messages.
If the oracle accepts, then this fact, as well as the session identifier and partner
identifier, are returned to the adversary as well. The message M = “start” can be
used to cause Û to send the initial message in the protocol.

ExecuteP (Ĉ, i, Ŝ, j): Causes client instance ΠĈ
i and server instance ΠŜ

j to faith-
fully execute protocol P and returns the resulting transcript, assuming that the
oracles ΠĈ

i and ΠŜ
j have not been used before. The Execute query models passive

eavesdropping by the adversary. This query may seem redundant as it could be
implemented solely using a sequence of Send queries, but it is convenient to have a
query that explicitly models passive attacks.

The next three queries, RevealSessionKey, RevealPWC, and RevealPWS, model
the adversary’s ability to compromise certain pieces of information held by parties.

RevealSessionKeyP (Û , i): If user instance ΠÛ
i has accepted, then returns session

24

Chapter 3. Password-Authenticated Key Exchange

key sk held by ΠÛ
i . This query is used to model the notion that the compromise of

one session key should not be damaging to other sessions.

RevealPWCP (Ĉ, Ŝ): Returns the password pwĈ,Ŝ of client Ĉ with server Ŝ. This
query is used to model compromise of the client’s password, for example by the
use of spyware installed on the client’s computer. This corresponds to the weak
corruption model of the BPR formal model, in which the adversary may learn, but
not alter, the password information.2

RevealPWSP (Ŝ, Ĉ) : Returns the transformed password pwŜ[Ĉ] of client Ĉ on
server Ŝ. This query is used to model the compromise of the server’s password
database, which, in the verifier-based model, may not have the same effect as the
compromise of the client’s password.3

Additionally, the use of a hash function may be modeled as an oracle query
when working in the random oracle model, but we leave that out of this section as
it is not needed for all authenticated key exchange protocols.

3.2.2 Session key security

Informally, a session key output by a key exchange protocol is considered secure if
it is indistinguishable from a random string chosen from the same distribution as
the possible session keys.

In order to model session key security, the BPR model defines an additional
query that is used to define the task of the adversary, which is to distinguish a
session key from a random string for an uncompromised session. The Test query,
which does not correspond to any real-world operation of the adversary, is used
to define the game that the adversary must win in order for the protocol to be
considered broken.

TestP (Û , i): If user instance ΠÛ
i has accepted, then this query causes the fol-

lowing to happen: choose b ∈R {0, 1}; if b = 1, then return the session key of ΠÛ
i ,

otherwise return a random string chosen from the same distribution as the session
key (e.g., a random string of the same length). This query may only be asked once.

Freshness. Some of the queries the adversary is allowed to call are very power-
ful and reveal important session information, including, for the RevealSessionKey
query, the session key. In order to describe which sessions ought to be hard for the
adversary to win the Test game, we use the notion of freshness. Informally, if the
adversary issues the query Test(Û , i), then that oracle should be considered unfresh

2The RevealPWC query is usually called Corrupt in the BPR model but, since we are only mod-
eling weak corruption, we use the terminology “reveal” instead of “corrupt” to be more suggestive
of the actual effect of this query.

3The RevealPWS query did not exist in the original BPR model and was added by Gentry,
MacKenzie, and Ramzan [GMR05].

25

Chapter 3. Password-Authenticated Key Exchange

if the adversary has previously queried for some passwords related to that oracle
or has revealed the session key for that oracle.

More formally, an instance ΠÛ
i with partner id Û ′ is fresh (with forward-

secrecy)4 if and only if none of the following events occur:

1. the adversary has issued the query RevealSessionKey(Û , i);

2. the adversary has issued the query RevealSessionKey(Û ′, j), where ΠÛ ′
j is the

partner instance of ΠÛ
i ;

3. if Û ∈ Clients, the adversary has issued either the query RevealPWC(Û , Û ′) or
the query RevealPWS(Û ′, Û) before the Test query, and has issued the query
Send(Û , i,M) for some string M ;

4. if Û ∈ Servers, the adversary has issued the query RevealPWC(Û , Û ′) before
the Test query, and has issued the query Send(Û , i,M) for some string M .

Adversary’s goals. The goal of an adversary is to guess the bit b used in the
Test query of a fresh session. This corresponds to the ability of an adversary to
distinguish the session key from among the distribution of possible session keys.

Let A be a probabilistic algorithm. Let Succake
P (A) be the event that the ad-

versary A makes a single Test query to some fresh instance ΠÛ
i that has accepted

and A eventually outputs a bit b′, where b′ = b and b is the randomly selected bit
in the Test query. The ake advantage of A attacking P is defined to be

Advake
P (A) =

∣∣2 Pr
(
Succake

P (A)
)
− 1
∣∣ . (3.1)

The following lemma establishes a basic fact about the ake advantage.

Lemma 3.1 For any protocols P and P ′, any probabilistic algorithm A, and any
ε ≥ 0,

Pr
(
Succake

P (A)
)

= Pr
(
Succake

P ′ (A)
)

+ ε ⇐⇒ Advake
P (A) = Advake

P ′ (A) + 2ε .
(3.2)

Proof. By (3.1), we have that

Pr
(
Succake

P (A)
)

=
1

2
Advake

P (A) +
1

2
. (3.3)

4The original BPR model [BPR00, §3] included two notions of freshness: without and with
forward secrecy. Forward secrecy means that the session key should remain secure even if the
long-term secret (the password) is later disclosed. Most provably secure protocols in the literature
achieve forward secrecy, so we only consider that notion in the rest of this thesis.

26

Chapter 3. Password-Authenticated Key Exchange

Thus,

Pr
(
Succake

P (A)
)

= Pr
(
Succake

P ′ (A)
)

+ ε (3.4)

⇐⇒ 1

2
Advake

P (A) +
1

2
=

1

2
Advake

P ′ (A) +
1

2
+ ε (3.5)

⇐⇒ Advake
P (A) = Advake

P ′ (A) + 2ε . (3.6)

�

We see from Lemma 3.1 that the situation in which the session key is perfectly
secure — that is, when the probability of distinguishing it from a random string is
1/2 — corresponds precisely to the adversary’s ake advantage being 0.

As in Notation 2.15, we overload the Adv notation to allow us to more precisely
describe the running time of the adversary. Let t, qse, qex, and qro be non-negative
integers. Then we define

Advake
P (t, qse, qex, qro) = max

A
{Advake

P (A)} (3.7)

where the maximum is taken over all probabilistic algorithms A running in time at
most t, making at most qse queries of type Send, qex queries of type Execute, and
qro queries to any random oracles.

Security. We say that a protocol P is a secure password-authenticated key
exchange protocol if, for all probabilistic algorithms A running in polynomial
time and making at most qse queries of type Send, there exists a constant δ and a
negligible (in the security parameter λ) ε such that

Advake
P (A) ≤ δqse

|Passwords|
+ ε . (3.8)

Intuitively, this notion of security says that, except with probability ε (which is
usually a function of the probability of solving a hard computational problem under
certain constraints), any polynomially bounded adversary can do little better than
doing an online dictionary attack on the password and can gain no advantage by
doing an offline dictionary attack.

3.2.3 Authentication

There are two directions of authentication that are desired in password-authenticated
key exchange: the client should authenticate the server’s identity, and the server
should authenticate the client’s identity.

For a protocol P , an adversary violates client-to-server authentication if
some server oracle terminates and accepts but has no partner oracle. For a fixed
adversary A, the c2s advantage is the probability of this event and is denoted by
Advc2s

P (A).

27

Chapter 3. Password-Authenticated Key Exchange

Similarly, an adversary violates server-to-client authentication if some client
oracle terminates and accepts but has no partner oracle. The s2c advantage is
the probability of this event and is denoted by Advs2c

P (A).

Finally, an adversary violates mutual authentication if some oracle termi-
nates and accepts but has no partner oracle. Violation of mutual authentication
is equivalent to violation of either client-to-server authentication or server-to-client
authentication (or both). The ma advantage is the probability of this event and
is denoted by Advma

P (A).

As in Section 3.2.2, we overload the Adv notation to allow us to more precisely
describe the running time of the adversary. Let t, qse, qex, and qro be non-negative
integers. Then we define

Advc2s
P (t, qse, qex, qro) = max

A
{Advc2s

P (A)} (3.9)

Advs2c
P (t, qse, qex, qro) = max

A
{Advs2c

P (A)} (3.10)

Advma
P (t, qse, qex, qro) = max

A
{Advma

P (A)} (3.11)

where each maximum is taken over all probabilistic algorithms A running in time
at most t, making at most qse queries of type Send, qex queries of type Execute, and
qro queries to any random oracles.

3.2.4 Security against passive adversaries

The notions of session key security in Section 3.2.2 and authentication in Sec-
tion 3.2.3 use the full power of an active adversary’s queries of Section 3.2.1, and
indeed represent very strong notions of security and authentication.

However, as we shall see in the next section, there exist practical protocols
for which there are no formal security arguments for the strong security notions
described above. Thus, it can be useful to relax the security model in an attempt
to describe at least some of the security properties of these protocols.

One such relaxation is to analyze the security of the session key against passive
eavesdroppers. In such a setting, we allow an adversary to use all of the queries of
Section 3.2.1 except for the Send query. In other words, the adversary may use the
following queries: Execute, RevealSessionKey, RevealPWC, RevealPWS, and Test.

We define a new notion of freshness as follows. An instance ΠÛ
i with partner

id Û ′ is fresh against passive adversaries (with forward secrecy) if and only if
none of the following events occur:

1. the adversary has issued the query RevealSessionKey(Û , i);

2. the adversary has issued the query RevealSessionKey(Û ′, j), where ΠÛ ′
j is the

partner instance of ΠÛ
i ;

28

Chapter 3. Password-Authenticated Key Exchange

3. the adversary has issued a Send query;

4. if Û ∈ Clients, the adversary has issued either the query RevealPWC(Û , Û ′) or
the query RevealPWS(Û ′, Û) before the Test query;

5. if Û ∈ Servers, the adversary has issued either the query RevealPWS(Û , Û ′)
or the query RevealPWC(Û ′, Û) before the Test query.

As before, the adversary’s goal is to guess the bit b used in the Test query of a
fresh-against-passive-adversaries session.

Let A be a probabilistic algorithm. Let Succp-ke
P (A) be the event that the adver-

sary A makes a single Test query to some fresh-against-passive-adversaries instance
ΠÛ
i that has terminated and A eventually outputs a bit b′, where b′ = b and b

is the randomly selected bit in the Test query. The passive-ke advantage of A
attacking P is defined to be

Advp-ke
P (A) = 2 Pr

(
Succp-ke

P (A)
)
− 1 . (3.12)

Lemma 3.1 applies to Advp-ke
P (A) in an analogous way.

There is no corresponding notion of authentication for passive security, as an
adversary trying to break authentication must be active and send at least one
message using a Send query.

3.3 Protocols

In this section we describe a few password-authenticated key exchange protocols
that will be of later use to us in developing multi-factor password authenticated
key exchange protocols.

3.3.1 SRP: Secure Remote Password protocol

The Secure Remote Password protocol (SRP) was introduced byWu in 1998 [Wu98];
this version of the protocol was called SRP-3. The SRP-3 protocol is a verifier-
based protocol meant to offer some resilience in the face of server compromise. It
is a very simple protocol and has a very efficient message flow pattern, allowing it
to be adapted to fit into existing network protocols.

Unfortunately, however, there is no formal security argument that SRP-3 is
a secure password-authenticated key exchange protocol against active adversaries
(in the sense of Section 3.2.2) or provides mutual authentication (in the sense of
Section 3.2.3); Wu only provides an argument that SRP-3 is a secure key exchange
protocol against passive adversaries in the sense of Section 3.2.4 (although Wu’s
analysis does not use the full language of the model we have stated in that section).

29

Chapter 3. Password-Authenticated Key Exchange

Indeed, in 2001 a problem with the authentication in SRP-3 was discovered
by MacKenzie [Mac01], in which an adversary could test two password guesses
per online interaction, whereas the most desirable behaviour would be that only
one password guess could be eliminated per online interaction. This problem was
rectified in SRP-6 [Wu02], and to date no further attacks on SRP-6 have been
described in the literature.

Even though SRP-6 has no formal arguments for security or authentication
in the face of active adversaries, the protocol has seen some adoption. Libraries
exist for using SRP in the Telnet and FTP protocols [Wu08] and an informational
Request For Comments exists for using SRP in the popular SSL/TLS protocol
[TWMP07].

The SRP-6 protocol consists of two stages: a user registration stage and a login
stage. The user registration stage will typically be invoked once for each user upon
account setup, whereas the login stage will be run each time a user attempts to
login. All arithmetic is done modulo a large prime n and makes use of a generator
(or primitive root modulo n) g, both of which may be standardized or parameters
of the scheme.

In the user registration stage, described in Figure 3.1, the client Ĉ picks a
password pwĈ,Ŝ ∈R Passwords and random salt value s ∈R Salts, and uses these
values to construct a long-term private value γ and a corresponding verifier Γ.
Then, using a private, authentic channel, the client provides Ĉ, s, and Γ to the
server Ŝ which stores them as pwŜ[Ĉ].

SRP-6 User Registration
Client Ĉ Server Ŝ

1. input username Ĉ
2. choose password pwĈ,Ŝ ∈R Passwords

3. s ∈R Salts

4. γ = H(s, Ĉ, pwĈ,Ŝ)

5. Γ = gγ

6. Ĉ,s,Γ−−−−−−→
7. store pwŜ[Ĉ] = (Ĉ, s,Γ)

Figure 3.1: SRP-6 protocol user registration stage

In the login stage, described in Figure 3.2, the client Ĉ provides the server Ŝ
with the username Ĉ for which the server returns the corresponding salt value s.
The client then reconstructs the private value γ. Additionally, the client and server
generate ephemeral private values x and y, respectively, and corresponding public
values X and Y which they exchange. The client generates S1 based on the values
γ, x, and Y , while the server generates S2 based on the values Γ, y, and X. When

30

Chapter 3. Password-Authenticated Key Exchange

both parties are honest, the client arrives at the value

S1 = (Y −3gγ)x+uγ = (3Γ+gy−3gγ)x+uγ = (3gγ+gy−3gγ)x+uγ = gxy+uyγ , (3.13)

while the server arrives at the value

S2 = (XΓu)y = (gxguγ)y = gxy+uyγ = S1 . (3.14)

The client and server exchange messages M1 and M2 which allow them to demon-
strate to each other that they know the shared secret value S1 = S2, which they then
convert into a shared session key sk for use in establishing an encrypted channel.

SRP-6 Login
Client Ĉ Server Ŝ

1. input username Ĉ

2. Ĉ−→
3. lookup (Ĉ, s,Γ) = pwŜ[Ĉ]

4. s←−
5. input password pwĈ,Ŝ

6. γ = H(s, Ĉ, pwĈ,Ŝ)

7. x ∈R Zn

8. X = gx

9. X−→
10. y ∈R Zn

11. Y = 3Γ + gy

12. Y←−
13. u = H(X, Y)
14. S2 = (XΓu)y

15. u = H(X, Y)
16. S1 = (Y − 3gγ)x+uγ

17. M1 = H(X, Y, S1)

18. M1−→
19. verify M1

20. M2 = H(X,M1, S2)

21. M2←−
22. verify M2

23. sk = H(S1) sk = H(S2)

Figure 3.2: SRP-6 protocol login stage

Design ideas. A key idea in the design of SRP-6 is that the server in some sense
“commits” to its knowledge of the verifier in the first step, and it appears difficult
to change its choice of verifier or do a dictionary attack after it receives the client’s

31

Chapter 3. Password-Authenticated Key Exchange

M1 value. In contrast with PAK-Z+ (Section 3.3.3), the server commits to its value
before the client does, which allows SRP-6 to fit in the constrained message flow of
TLS in which the server sends its key exchange data before the client.

SRP-6 combines design aspects of two protocols. The shielding of the server’s
ephemeral public key by the verifier is similar to the shielding done in A-EKE
[BM94]. Interestingly, the computation of the shared secret is similar to a one-pass
version [Ust08b, §5] of the MQV authenticated key exchange protocol with the
client’s long-term private key being the hash of the password and the server having
no long-term private key.

Efficiency. SRP-6 is highly efficient in terms of the number of message flows and
in terms of the number of exponentiations performed. Wu [Wu02] provides an op-
timized message order that requires three (without server-to-client authentication)
or four (with server-to-client authentication) message flows.

The client and server each perform three (full-length) exponentiations, only one
more than required for the simple, un-authenticated Diffie-Hellman protocol. Since
the security argument for security against passive adversaries between SRP-6 and
the Computational Diffie-Hellman problem is tight, one could arguably use the
same size cryptographic parameters as in Diffie-Hellman to achieve the same level
of security, as given in Table 2.1.

Salting. While salting is commonly used in conjunction with passwords to in-
crease the amount of work an attacker must do to obtain raw passwords from a
compromised server password database, the salts in SRP-6 do not seem to add
any additional security. The goal of salting is that, in the event that an entire
server password database is compromised, an attacker should have to do a brute
force dictionary attack against each entry in the database. If the passwords were
not salted, then an attacker could simply make a table of hashes of all possible
passwords (which in many cases could fit on a DVD-ROM, for example), and then
compare the database to the pre-computed table. With salts, an attacker must now
create a new table for each salt value, which substantially increases the burden on
the attacker.

In SRP-6, the password pwĈ,Ŝ is salted with a value s chosen by the user
during the user registration stage, and it is the salted verifier Γ = gγ, where
γ = H(s, Ĉ, pwĈ,Ŝ), that is stored on the server. During the login stage, the
salt s is returned to the user who then computes the appropriate private value γ
based on the salt. We argue that salting the verifier is unnecessary if the goal is to
force an attacker to do a brute force dictionary attack against each verifier in the
server’s database. The value γ is computed as a hash of the salt, the username,
and the password. Since each user on the server will have a different username and
the hash depends on the username, the username acts as an effective salt across a
single server: an attacker has to do a new dictionary attack against each different
user’s verifier.

32

Chapter 3. Password-Authenticated Key Exchange

Standardization. A variant of SRP-6 has been published as an informational
Request for Comments [TWMP07] for use in the SSL/TLS protocol [DR06]. The
version in the RFC uses a factor other than 3 (namely, the hash of the prime n and
the generator g) in the masking of the verifier in Steps 11 and 16 in Figure 3.2 and
explicitly specifies that SHA-1 should be used as the hash function, but is otherwise
identical to SRP-6 as presented above. It defines default parameters for 1024-bit
primes up to 8192-bit primes and also allows for user-generated parameters.

3.3.1.1 Security of SRP-6

Wu [Wu98] gives an argument that the session key generated by SRP-3 is secure
against passive adversaries assuming the hardness of the Computational Diffie-
Hellman problem and working in the random oracle model. The same argument
applies to SRP-6. We restate the formal security statement for SRP-6 below in the
Bellare-Pointcheval-Rogaway model.

Theorem 3.2 Let G be a finite cyclic group of prime order p generated by g, where
g is a primitive root modulo n = 2p + 1, where n is prime. Let A be an adversary
that runs in time t. Then

Advp-ke
PAK(A) = AdvCDH

G,g (t+ texp) . (3.15)

Example instantiation. As a consequence of Theorem 3.2, we can pick a desired
security level (as in Table 2.1) and, under the various computational assumptions
from Section 2.2, choose a set of parameters that achieve that security level.

Suppose we wish for adversary running in time 280 to have a passive-ke advan-
tage of at most 2−20 against SRP.

To give an example instantiation, we have to pick appropriate values for the
various parameters in the statement of the theorem. We choose t = 280 and texp =
220.

We need AdvCDH
G,g (280) ≤ 2−20. Assuming that the best technique to solve CDH

is to solve the Discrete Logarithm problem and that the best method of doing so
is as described in Section 2.2.1, we need a group of size q ≥ 22·(20+80) = 2200 and a
prime of size roughly 21950.

3.3.2 PAK

The PAK protocol was introduced by Boyko, MacKenzie, and Patel [BMP00a]. It
is a symmetric, or non-verifier-based, protocol. The original paper [BMP00a] gave
a formal argument that PAK was secure in the simulation model of Shoup [Sho99b]
and was later shown to be secure in the BPR model by MacKenzie [Mac02]. The
formal statement of security is given in Theorem 3.3 below.

33

Chapter 3. Password-Authenticated Key Exchange

The user registration stage of the PAK protocol is given in Figure 3.3.5 The
client Ĉ picks a password pwĈ,Ŝ ∈R Passwords and uses this value to construct
a long-term private value τ−1. Then, using a private, authenticated channel, the
client provides its name Ĉ and τ−1 to the server Ŝ which stores them as pwŜ[Ĉ].

PAK User Registration
Client Ĉ Server Ŝ

1. input username Ĉ
2. choose pwĈ,Ŝ ∈R Passwords

3. τ−1 = (H4(Ĉ, Ŝ, pwĈ,Ŝ))−1

4. Ĉ,τ−1

−→
5. store pwŜ[Ĉ] = τ−1

Figure 3.3: PAK protocol user registration stage

The login stage of the PAK protocol is given in Figure 3.4. In this stage, the
client picks an ephemeral private key x, shields the corresponding ephemeral public
key by the hash τ of the password, and sends this value to the server Ŝ. The
server retrieves the stored value for client Ĉ and uses it to unshield the ephemeral
public key sent by the client. The server also generates its own ephemeral private
key / public key pair, computes a Diffie-Hellman shared secret σ, and sends its
ephemeral public key and a value M2 proving it knows the value τ−1 to the client.
The client computes the Diffie-Hellman shared secret value, checks the server’s proof
of knowledge of τ−1, and then constructs its own proof of knowledge of τ−1. Both
parties output a shared session key sk based on the Diffie-Hellman shared secret.

Design ideas. Besides being symmetric as opposed to asymmetric, PAK differs
from SRP-6 in that the client sends a message based on its authentication before
the server does.

Efficiency. The PAK protocol requires 3 message flows. It requires three ex-
ponentiations on the client side and only two exponentiations on the server side,
meaning that the computational burden on the server is almost exactly the same
as in the simple, unauthenticated Diffie-Hellman protocol. In Section 3.3.2.2, we
show how to eliminate one of the exponentiations from the client side for improved
efficiency with no effect on security.

Parameter sizes for a particular security level can be calculated from PAK’s
formal security argument, Theorem 3.3, and are given in the next section.

5Note that the numbering of the hash functions in the protocol is irregular but has been
chosen to demonstrate the clear connection between PAK and our MFPAK protocol presented in
Section 4.4.

34

Chapter 3. Password-Authenticated Key Exchange

PAK Login
Client Ĉ Server Ŝ

1. input username Ĉ
2. input password pwĈ,Ŝ

3. τ = H4(Ĉ, Ŝ, pwĈ,Ŝ)

4. x ∈R Zq

5. X = gx

6. m = X · τ
7. Ĉ,m−→
8. abort if ¬Acceptable(m)
9. y ∈R Zq

10. Y = gy

11. lookup τ−1 = reŜ[Ĉ]
12. X = m · τ−1

13. σ = Xy

14. sid = (Ĉ, Ŝ,m, Y)
15. M2 = H5(sid, σ, τ−1)

16. Y,M2←−
17. σ = Y x

18. compute τ−1

19. sid = (Ĉ, Ŝ,m, Y)
20. abort if M2 6= H5(sid, σ, τ−1)
21. M1 = H7(sid, σ, τ−1)

22. M1−→
23. abort if M1 6= H7(sid, σ, τ−1)
24. sk = H8(sid, σ, τ−1) sk = H8(sid, σ, τ−1)

Figure 3.4: PAK protocol login stage

3.3.2.1 Security of PAK

MacKenzie [Mac02] gives an argument that PAK is a secure password-authenticated
key exchange model in the Bellare-Pointcheval-Rogaway model assuming the hard-
ness of the Computational Diffie-Hellman problem and working in the random
oracle model. The formal security statement for PAK is as follows, and includes
explicit constants (as opposed to its appearance as Theorem 6.9 in [Mac02]).

Theorem 3.3 (Theorem 6.9, [Mac02]) Let G be a finite cyclic group generated
by g. Assume passwords are uniformly distributed among the set Passwords. Let
A be an adversary that runs in time t and makes at most qse and qex queries of
type Send and Execute, respectively, and at most qro queries to the random oracles.

35

Chapter 3. Password-Authenticated Key Exchange

Then, for t′ = t+ (4q2
ro + qse + 2qex)texp,

Advake
PAK(A) ≤ qse

|Passwords|
+ ε , (3.16)

where
ε = 2qseAdvCDH

G,g

(
t′, q2

ro

)
+ 2

(qse + qex)(qro + qse + qex)

|G|
. (3.17)

Moreover, the same bound applies for Advma
PAK(A).

Example instantiation. As a consequence of Theorem 3.3, we can pick a desired
security level (as in Table 2.1) and, under the various computational assumptions
from Section 2.2, choose a set of parameters that achieve that security level.

Suppose we wish for an adversary running in time 280 to have an ake advantage
of at most 2−20 against PAK.

To give an example instantiation, we have to pick appropriate values for the
various parameters in the statement of the theorem. We choose

|Clients| = 215 |Servers| = 25

qse = 210 qex = 220 qro = 240

t = 280 texp = 220 .

We need qse
|Passwords| ≤ 2−21. To achieve this, we need |Passwords| ≥ 231, which,

on the author’s keyboard with 95 distinct printable characters on it, is achieved by
having passwords of length 5, assuming passwords are uniformly distributed.

We also need ε ≤ 2−21. Of the two terms in expression (3.17), the latter is dom-
inated by the former. Noting that t′ = 2102, we require that 211AdvCDH

G,g (2102, 280) ≤
2−21. Assuming that the best technique to solve CDH is to solve the Discrete Loga-
rithm problem and that the best method of doing so is as described in Section 2.2.1,
we need a group of size q ≥ 22(11+21+102+80) = 2428.

3.3.2.2 mePAK: A more efficient PAK

In this section we describe a revised form of the PAK protocol that is more efficient
on the client side, in terms of number of operations, and demonstrate that this
more efficient protocol has the same security as PAK. The login stage of the PAK
protocol requires two exponentiations and one inversion on the client side, and two
exponentiations on the server side. By precomputing the inversion and storing this
additional value on the server during the user registration stage, we can eliminate
the inversion from the login stage and achieve the same number of operations as
Diffie-Hellman — two exponentiations — on both client and server.

The user registration stage of our more efficient PAK protocol is given in Fig-
ure 3.5. We note that while the protocol states that the server computes τ−1, the

36

Chapter 3. Password-Authenticated Key Exchange

protocol could be altered so that the client computes τ−1 and transmits both τ and
τ−1 with the server; the server would need to verify that the inverse was computed
correctly.

mePAK: More Efficient PAK User Registration
Client Ĉ Server Ŝ

1. input username Ĉ
2. choose pwĈ,Ŝ ∈R Passwords

3. τ = H4(Ĉ, Ŝ, pwĈ,Ŝ)

4. Ĉ,τ−→
5. compute τ−1

6. store pwŜ[Ĉ] = (τ, τ−1)

Figure 3.5: mePAK: More Efficient PAK protocol user registration stage

The login stage of our more efficient PAK protocol is given in Figure 3.6. The
main difference from the PAK protocol (Figure 3.4) is that hash function calls on
lines 15, 19, 20, 22, and 23 use τ instead of τ−1, saving the client the need to
perform an inversion.

The following theorem relates the security of our mePAK protocol to the original
PAK protocol, showing that the two are essentially equivalent:

Theorem 3.4 Let G be a finite cyclic group generated by g. Let A be an adversary
that runs in time t and makes at most qse and qex queries of type Send and Execute,
respectively, and at most qro queries to the random oracles. Let mePAK denote the
More Efficient PAK protocol in Figures 3.5 and 3.6. For t′ = t+ qrotexp,

Advake
mePAK(A) ≤ Advake

PAK(t′, qse, qex, qro) . (3.18)

Moreover, the corresponding bound applies for Advma
mePAK(A).

Proof. The main idea of the proof is as follows. We construct a reduction
which shows that an adversary who can break mePAK can be used to break the
original PAK protocol. Since the only difference between the two protocols is the
use of the non-inverted value τ instead of τ−1 in hash function calls, we construct a
PAK system which is instantiated with hash functions that invert the appropriate
argument. Some random oracle queries thus require exponentiations (inversions), so
we need to allow for an increase of qrotexp in the runtime of the simulator. Assuming
qrotexp < t, the runtime of the simulator will be effectively unchanged.

Let SPAK denote the PAK system that we will attack. We will construct a
modifier M that will transform an adversary A’s attack against mePAK into an
attack against the PAK system SPAK.

37

Chapter 3. Password-Authenticated Key Exchange

mePAK: More Efficient PAK Login
Client Ĉ Server Ŝ

1. input username Ĉ
2. input password pwĈ,Ŝ

3. τ = H4(Ĉ, Ŝ, pwĈ,Ŝ)

4. x ∈R Zq

5. X = gx

6. m = X · τ
7. Ĉ,m−→
8. abort if ¬Acceptable(m)
9. y ∈R Zq

10. Y = gy

11. lookup (τ, τ−1) = reŜ[Ĉ]
12. X = m · τ−1

13. σ = Xy

14. sid = (Ĉ, Ŝ,m, Y)
15. M2 = H5(sid, σ, τ)

16. Y,M2←−
17. σ = Y x

18. sid = (Ĉ, Ŝ,m, Y)
19. abort if M2 6= H5(sid, σ, τ)
20. M1 = H7(sid, σ, τ)

21. M1−→
22. abort if M1 6= H7(sid, σ, τ)
23. sk = H8(sid, σ, τ) sk = H8(sid, σ, τ)

Figure 3.6: mePAK: More Efficient PAK protocol login stage

Instantiation of PAK system. We instantiate the PAK system SPAK with the
following random oracles:

H∗` ((Ĉ, Ŝ,m, Y), σ, τ ′) = H`((Ĉ, Ŝ,m, Y), σ, (τ ′)−1) , (3.19)

for ` = 5, 7, 8. These ‘starred’ functions are independent random oracles if the cor-
responding unstarred functions are, since inverting one input to the random oracle
only effects a permutation on the domain. Thus, SPAK is a true PAK instantiation.

Because each random oracle query now involves an inversion, the modifier re-
quires additional time to answer random oracle queries. In particular,M requires
at most qrotexp additional time.

M’s handling of A’s queries. The modifier M passes every query it receives
from A to SPAK and returns every result it receives without any changes. In par-

38

Chapter 3. Password-Authenticated Key Exchange

ticular, Test queries are passed directly to SPAK unaltered. This means that A’s
guess of b inM corresponds to a guess of b in SPAK.

A’s view of M. From A’s perspective,M behaves exactly as a mePAK system
should. Because of the substitution of the random oracles H∗` , all queries are han-
dled exactly as mePAK would. Moreover, the passwords have the same distribution
in PAK and mePAK.

Because SPAK is exactly a PAK instance and because an attack against mePAK
can be directly translated into an attack against PAK with only a small increase in
computational time due to random oracle queries, the result follows and mePAK is
effectively as secure as PAK. �

3.3.3 PAK-Z+

The PAK-Z+ protocol was introduced by Gentry, MacKenzie, and Ramzan in 2005
[GMR05]. It is an asymmetric, or verifier-based, protocol. The protocol has a for-
mal argument for security in the BPR model, and the formal statement of security
is given in Theorem 3.5 below.

The user registration stage of the PAK-Z+ protocol is given in Figure 3.7.6 The
client Ĉ picks a password pwĈ,Ŝ ∈R Passwords. The client generates a private key /
public key pair for a digital signature algorithm, then shields the private key using
its password. Using a private, authenticated channel, the client provides its name
Ĉ, its shielded private key, and some verification values to the server Ŝ which stores
them as pwŜ[Ĉ].

PAK-Z+ User Registration
Client Ĉ Server Ŝ

1. input username Ĉ
2. choose pwĈ,Ŝ ∈R Passwords

3. (v, V)← Gen(1κ)

4. γ−1 = (H1(Ĉ, Ŝ, pw))−1

5. v′ = H2(Ĉ, Ŝ, pw)⊕ v
6. v′′ = H3(v)

7. Ĉ,γ−1,V,v′,v′′−−−−−−−−−→
8. store pwŜ[Ĉ] = (γ−1, V, v′, v′′)

Figure 3.7: PAK-Z+ protocol user registration stage
6Note that the numbering of the hash functions in the protocol is irregular but has been chosen

to demonstrate the clear connection between PAK-Z+ and our MFPAK protocol presented in
Section 4.4.

39

Chapter 3. Password-Authenticated Key Exchange

The login stage of the PAK-Z+ protocol is given in Figure 3.8. In this stage, the
client picks an ephemeral private key x, shields the corresponding ephemeral public
key by the hash γ of the password, and sends this value to the server Ŝ. The server
retrieves the stored value for client Ĉ and uses it to unshield the ephemeral public
key sent by the client. The server also generates its own ephemeral private key /
public key pair and computes a Diffie-Hellman shared secret σ. It uses σ to shield
the user’s signature private key. The server sends the shielded signature private key,
its ephemeral public key, and a value M2 proving it knows γ−1 to the client. The
client computes the Diffie-Hellman shared secret value, checks the server’s proof of
knowledge of γ−1, and then constructs its own proof of knowledge of the password
based on the digital signature scheme. Both parties output a shared session key sk
based on the Diffie-Hellman shared secret.

Design ideas. Like SRP, PAK-Z+ differs from PAK in that it is an asymmetric
protocol as opposed to symmetric. The construct that allows asymmetric is more
complicated than in SRP, however. A signature scheme is used, the client’s signing
private key is shielded by the password, and the server cannot determine either of
these without doing an offline dictionary attack. The scheme requires, however,
that the client send its ephemeral key exchange value first, making it incapable of
fitting in the SSL/TLS handshake protocol.

Efficiency. The PAK-Z+ protocol requires 3 message flows. It requires three
exponentiations and one signature generation on the client side and only two expo-
nentiations and one signature verification on the server side. If ECDSA is used as
the signature algorithm, for example, each side needs approximately one additional
exponentiation operation (if multiple point multiplication is roughly the same cost
as single point multiplication [HMV04, §3.3.3]), meaning that the computational
burden on the server is 50% higher than in the simple, unauthenticated Diffie-
Hellman protocol. Parameter sizes for a particular security level can be calculated
from Theorem 3.5 and are given in the next section.

3.3.3.1 Security of PAK-Z+

Gentry, MacKenzie, and Ramzan [GMR05] give an argument that PAK-Z+ is
a secure password-authenticated key exchange model in the Bellare-Pointcheval-
Rogaway model assuming the hardness of the Computational Diffie-Hellman prob-
lem and working in the random oracle model. The formal security statement for
PAK-Z+ is as follows, and includes explicit constants (as opposed to its appearance
as Theorem 5.1 in [GMR05]).

Theorem 3.5 (Theorem 5.1, [GMR05]) Let G be a finite cyclic group gener-
ated by g. Let A be an adversary that runs in time t and makes at most qse
and qex queries of type Send and Execute, respectively, and at most qro queries

40

Chapter 3. Password-Authenticated Key Exchange

PAK-Z+ Login
Client Ĉ Server Ŝ

1. input username Ĉ
2. input password pwĈ,Ŝ

3. γ = H1(Ĉ, Ŝ, pw)
4. x ∈R Zq

5. X = gx

6. m = X · γ
7. Ĉ,m−−−−−−→
8. abort if ¬Acceptable(m)
9. y ∈R Zq

10. Y = gy

11. lookup (γ−1, V, v′, v′′) = pwŜ[Ĉ]
12. X = m · γ−1

13. σ = Xy

14. sid = (Ĉ, Ŝ,m, Y)
15. M2 = H5(sid, σ, γ−1)
16. a′ = H6(sid, σ, γ−1)
17. a = a′ ⊕ v′

18. Y,M2,a,v′′←−−−−−−
19. σ = Y x

20. compute γ−1

21. sid = (Ĉ, Ŝ,m, Y)
22. abort if M2 6= H5(sid, σ, γ−1)
23. a′ = H6(sid, σ, γ−1)
24. v′ = a′ ⊕ a
25. v = H2(Ĉ, Ŝ, pw)⊕ v′
26. abort if v′′ 6= H3(v)
27. s = Signv(sid)

28. s−−−−−−→
29. abort if ¬VerifyV (sid, s)
30. sk = H8(sid, σ, γ−1) sk = H8(sid, σ, γ−1)

Figure 3.8: PAK-Z+ protocol login stage

to the random oracles. Assume passwords are uniformly distributed among the set
Passwords. Let bre = 1 if A makes a RevealPWS query and 0 otherwise. Then, for
t′ = t+ (8q2

ro + qse + qex)texp,

Advake
PAK-Z+(A) ≤ qse(1− bre) + qrobre

|Passwords|
+ ε , (3.20)

41

Chapter 3. Password-Authenticated Key Exchange

where

ε = 2qseAdvCDH
G,g

(
t′, q2

ro

)
+2qseSucceu-cma

κ (t′, qse)+
(qse + qex)(qro + qse + qex)

|G|
. (3.21)

Moreover,
Advs2c

PAK-Z+(A) ≤ qse
|Passwords|

+ ε (3.22)

and
Advc2s

PAK-Z+(A) ≤ qse(1− bre) + qrobre
|Passwords|

+ ε . (3.23)

One interesting aspect of the above theorem is that it explicitly models the
asymmetric nature of the security of the password: if the verifier has been compro-
mised (bre = 1), the best attack is an offline dictionary attack, but if the verifier
has not been compromised (bre = 0), the best attack is an online attack.

Example instantiation. As a consequence of Theorem 3.5, we can pick a desired
security level (as in Table 2.1) and, under the various computational assumptions
from Section 2.2, choose a set of parameters that achieve that security level.

Suppose we wish for an adversary running in time 280 to have an ake advantage
of at most 2−20 against PAK-Z+.

To give an example instantiation, we have to pick appropriate values for the
various parameters in the statement of the theorem. We choose the same values as
in Section 3.3.2.1.

Before applying the theorem directly, however, we need to interpret the role
of bre. Recall that bre = 1 if and only if the adversary makes a RevealPWS query.
In the statement of security, the term (1 − bre)qse/|Passwords| indicates how many
online attacks (when the verifier is not compromised) are required, whereas the
term breqro/|Passwords| indicates how many random oracle queries are required in
an offline dictionary attack when the verifier is compromised. Noting that qro also
plays a role in the online attack analysis, allowing qro to be a reasonable size in the
online attack analysis (say, 240) would force the password size to be larger than is
desirable. In what follows, we choose |Passwords| based on qse, and then, given that
set of passwords, comment on the work required if the verifier is compromised.

Hence, we need qse/|Passwords| ≤ 2−21, or |Passwords| ≥ 231, which, on the au-
thor’s keyboard with 95 distinct printable characters on it, is achieved by having
passwords of length 5, assuming passwords are uniformly distributed. An offline dic-
tionary attack against the verifier would require roughly 231 random oracle queries
to succeed with high probability.

We also need ε ≤ 2−21. Expression (3.21) is dominated by the first term. Noting
that t′ = 2103, we require that 211AdvCDH

G,g (2103, 280) ≤ 2−21. Assuming that the best
technique to solve CDH is to solve the Discrete Logarithm problem and that the

42

Chapter 3. Password-Authenticated Key Exchange

best method of doing so is as described in Section 2.2.1, this means we need a group
of size q ≥ 22(11+21+103+80) = 2430.

3.3.3.2 mePAK-Z+: A more efficient PAK-Z+

In this section we describe a revised form of the PAK-Z+ protocol that is more
efficient on the client side, in terms of number of operations, and demonstrate that
this more efficient protocol has the same security as PAK-Z+. The login stage of
the PAK-Z+ protocol requires two exponentiations, one inversion, and one signing
operation on the client side, and three exponentiations on the server side. By
precomputing the inversion and storing this additional value on the server during
the user registration stage, we can eliminate the inversion from the login stage
and achieve a protocol with just one more operation than Diffie-Hellman — three
exponentiations — on both client and server.

The user registration stage of our more efficient PAK-Z+ protocol is given in
Figure 3.9. We note that while the protocol states that the server computes γ−1,
the protocol could be altered so that the client computes γ−1 and transmits both
γ and γ−1 with the server; the server would need to verify that the inverse was
computed correctly.

mePAK-Z+: More Efficient PAK-Z+ User Registration
Client Ĉ Server Ŝ

1. input username Ĉ
2. choose pwĈ,Ŝ ∈R Passwords

3. (v, V)← Gen(1κ)

4. γ = H1(Ĉ, Ŝ, pw)

5. v′ = H2(Ĉ, Ŝ, pw)⊕ v
6. v′′ = H3(v)

7. Ĉ,γ,V,v′,v′′−−−−−−−−−→
8. compute γ−1

9. store pwŜ[Ĉ] = (γ, γ−1, V, v′, v′′)

Figure 3.9: PAK-Z+ protocol user registration stage

The login stage of our more efficient PAK-Z+ protocol is given in Figure 3.10.
The main difference from the PAK-Z+ protocol (Figure 3.8) is that hash function
calls on lines 15, 16, 21, 24, and 29 use γ instead of γ−1, saving the client the need
to perform an inversion.

The following theorem relates the security of our mePAK-Z+ protocol to the
original PAK-Z+ protocol, showing that the two are essentially equivalent:

Theorem 3.6 Let G be a finite cyclic group generated by g. Let A be an adversary
that runs in time t and makes at most qse and qex queries of type Send and Execute,

43

Chapter 3. Password-Authenticated Key Exchange

mePAK-Z+: More Efficient PAK-Z+ Login
Client Ĉ Server Ŝ

1. input username Ĉ
2. input password pwĈ,Ŝ

3. γ = H1(Ĉ, Ŝ, pw)
4. x ∈R Zq

5. X = gx

6. m = X · γ
7. Ĉ,m−−−−−−→
8. abort if ¬Acceptable(m)
9. y ∈R Zq

10. Y = gy

11. lookup (γ, γ−1, V, v′, v′′) = pwŜ[Ĉ]
12. X = m · γ−1

13. σ = Xy

14. sid = (Ĉ, Ŝ,m, Y)
15. M2 = H5(sid, σ, γ)
16. a′ = H6(sid, σ, γ)
17. a = a′ ⊕ v′

18. Y,M2,a,v′′←−−−−−−
19. σ = Y x

20. sid = (Ĉ, Ŝ,m, Y)
21. abort if M2 6= H5(sid, σ, γ)
22. a′ = H6(sid, σ, γ)
23. v′ = a′ ⊕ a
24. v = H2(Ĉ, Ŝ, pw)⊕ v′
25. abort if v′′ 6= H3(v)
26. s = Signv(sid)

27. s−−−−−−→
28. abort if ¬VerifyV (sid, s)
29. sk = H8(sid, σ, γ) sk = H8(sid, σ, γ)

Figure 3.10: mePAK-Z+: More Efficient PAK-Z+ protocol login stage

respectively, and at most qro queries to the random oracles. Let mePAK-Z+ denote
the More Efficient PAK-Z+ protocol in Figures 3.9 and 3.10. For t′ = t+ qrotexp,

Advake
mePAK-Z+(A) ≤ Advake

PAK-Z+(t′, qse, qex, qro) . (3.24)

Moreover, the corresponding bounds apply for Advc2s
mePAK-Z+(A) and Advs2c

mePAK-Z+(A).

The proof of the theorem proceeds in the same way as the proof of Theorem 3.4.

44

Chapter 4

Multi-Factor
Password-Authenticated Key
Exchange

Contents
4.1 Introduction . 45
4.2 Literature review . 48
4.3 Security for multi-factor protocols 49

4.3.1 Informal security criteria 49
4.3.2 Formal model . 51
4.3.3 Using one-time passwords 54

4.4 MFPAK . 55
4.4.1 Design ideas . 55
4.4.2 Protocol specification . 56
4.4.3 Efficiency . 57
4.4.4 Security analysis of MFPAK 59
4.4.5 Example instantiation . 78

4.1 Introduction

Multi-factor password-authenticated key exchange aims to enhance password-au-
thenticated key exchange by using multiple authentication factors. A client and a
server authenticate each other by proving their knowledge of multiple short secrets
without revealing any useful information about the secrets to any other party. Such
a protocol should remain secure even if all but one of the authentication secrets
has been compromised by an adversary. Moreover, the two parties also agree on a
shared session key.

45

Chapter 4. Multi-Factor Password-Authenticated Key Exchange

In this chapter, we describe the problem of multi-factor password-authenticated
key exchange, propose a formal model for analysing the security of such proto-
cols, and present an efficient two-factor protocol that is secure in this model under
standard cryptographic assumptions in the random oracle model.

Practical motivation. Two major security problems on the Internet today are
phishing and spyware. Phishing, or server impersonation, occurs when a malicious
server convinces a user to reveal sensitive personal information, such as a username
and password, to a malicious server instead of the real server; the phisher can then
use the information obtained to impersonate the user. Additionally, many users’
computers are compromised with spyware, which can record users’ keystrokes (and
thus passwords) and transmit this information to a malicious party.

Such attacks are possible not because of the break of any cryptographic protocol
but because of externalities such as social engineering and software bugs.

Several techniques to reduce the risks of these attacks are being used in practice.
Physical devices that generate one-time passwords are being used to secure corpo-
rate virtual private networks (VPNs) and some online banking sessions. Server-side
multi-layer techniques that take into account additional attributes, such as HTTP
cookies, IP address, and browser user agent string, are being deployed as well.
These techniques can offer greater assurance as to the identity of the user but, even
when deployed over today’s web security protocol HTTPS/TLS, remain susceptible
to sophisticated impersonation attacks because they do not protect authentication
secrets. Moreover, they do not provide strong, intuitive server-to-client authenti-
cation.

Password-authenticated key exchange is a strong technique to defend against
impersonation attacks and provide server-to-client authentication, but current pro-
tocols depend solely on a long-term password, which can be risky when used on a
spyware-infested computer.

Multi-factor authentication adds a further degree of assurance to the authentica-
tion procedure. Long-term passwords are easily memorized, infrequently changed,
and used repeatedly. One-time responses are used once: they change frequently
and, though not easily memorized, can be provided by a small electronic token
or a sheet of paper. These factors offer different but complementary resistance to
different types of compromise. Together, they offer more assurance in authenti-
cation because stealing the long-term password alone (for example, by installing
spyware) or losing the one-time password card alone is insufficient to compromise
the authentication procedure.

We believe that it is important to design a multi-factor protocol that can lever-
age multiple client authentication attributes and, equally important, to convey
them securely in a multi-factor cryptographic protocol. Our approach builds upon
previous work on password-authenticated key exchange by combining multiple au-
thentication factors of complementary natures in a multi-factor authenticated key
exchange protocol.

46

Chapter 4. Multi-Factor Password-Authenticated Key Exchange

Contributions. We provide the first formal security treatment of multi-factor
password-authenticated key exchange. We define a formal model which is an exten-
sion of the Bellare-Pointcheval-Rogaway model [BPR00] for password-authenticated
key exchange. We formalize the security notion that a multi-factor protocol should
remain secure even one of the two factors has been compromised by adapting the
definition of freshness of a session.

We present an efficient two-factor protocol, MFPAK, that is secure in this model
under standard cryptographic assumptions in the random oracle model.

Our multi-factor authentication protocol offers enhanced authentication pro-
tection through two complementary factors, a long-term password and a one-time
response, and achieves two-factor security with the same computational efficiency
as the one-factor protocol mePAK-Z+ from Section 3.3.3.2. The protocol remains
secure even if all but one of the authentication factors is fully known to an adversary.
Protocols secure in our model are resistant to man-in-the-middle and impersonation
attacks, providing enhanced authentication in the face of more complex threats like
spyware and phishing.

Our work differs from previous work in password-authenticated key exchange be-
cause it utilizes two independent, complementary factors for authentication. Other
work has considered some aspects of multi-factor authentication, but these have
either used at least one factor that is a long cryptographic secret (as opposed to
our work which allows both factors to be short, human-friendly strings), or have
not provided strong server-to-client authentication resistant to man-in-the-middle
attacks.

Future directions. Our model, in its currently stated form, only addresses two
factors, but it can be easily extended to accommodate additional factors if an
application demands greater authentication security. We believe that an efficient
protocol can be developed for more than two factors by combining additional factors
in the same way as we combined aspects of the mePAK and mePAK-Z+ protocols.
To bring this work closer to real-world scenarios, another future direction is to
reduce the assumption that passwords are uniformly distributed.

Moreover, multi-factor protocols could be designed where some factors are op-
tional and the number of factors used corresponds to differing levels of access de-
pending on the application situation: one factor could be used for read-only access,
two factors for small-value transactions, and three factors for large-value transac-
tions.

An interesting future direction would be to integrate “fuzzy” attributes, such
as biometric information, into a multi-factor authenticated key exchange protocol.
Multi-factor authentication is often colloquially described as being based on ‘some-
thing you know’ (a password), ‘something you have’ (a one-time response value),
and ‘something you are’ (a biometric attribute, such as a fingerprint). Biometric
attributes can be challenging to use in a cryptographic protocol, however, because

47

Chapter 4. Multi-Factor Password-Authenticated Key Exchange

they are not perfectly reproduced every time, and thus some techniques must be
used to accommodate their fuzziness; one such technique is described in [PZ07],
but implementation remains a challenge.

Outline. The rest of this chapter proceeds as follows. Section 4.2 reviews other
approaches to multi-factor authentication in the literature. In Section 4.3, we
describe the security model for multi-factor password-authenticated key exchange.
In Section 4.4, we present our protocol MFPAK and discuss its efficiency. We show
through a formal analysis in Section 4.4.4 that the MFPAK protocol is secure in
our model and give a sample instantiation for a common security level.

4.2 Literature review

In Section 3.1, we review password-authenticated key exchange protocols. Two
protocols that will be of interest to us in this chapter are mePAK (Section 3.3.2.2)
and mePAK-Z+ (Section 3.3.3.2).

Although multi-factor authentication has been known for some time, it has been
sparingly studied in the literature.

A two-factor authentication scheme for smart cards was proposed by Yang et al.
[YWWD06a]. Their scheme relies on a smart card storing and returning a crypto-
graphically large (e.g., 160-bit) private value, relies on a public key infrastructure,
and requires that the user input a password into the smart card for each login. Other
protocols that require the client to store a long cryptographic secret and the server’s
public key include schemes by Park and Park [PP04] and Yoon and Yoo [YY06].
Pointcheval and Zimmer [PZ07] also provide a multi-factor authentication scheme
using a password, a long cryptographic secret, and biometric data; their scheme has
a formal security argument in a variant of the Bellare-Pointcheval-Rogaway model.

There are other two-factor authentication schemes used in practice which do not
provide cryptographic protection for the two factors. In a multi-channel system,
the second factor is delivered over a separate channel (e.g., via an SMS text message
on a mobile phone), which the user then inputs into their web browser along side
their password. In a multi-layer system, software installed on the server evaluates
additional attributes such as an HTTP cookie, IP address, and browser user agent
string to heuristically analyze whether the user is likely to be authentic. Some
multi-layer systems try to offer additional reassurance to the user of the server’s
identity by presenting the user with a customized image or string. While these
multi-channel and multi-layer approaches can offer some increased assurance, they
can be defeated by non-cryptographic means such as sophisticated man-in-the-
middle attacks and spyware, and have been shown to be easily ignored by users
[SDOF07].

48

Chapter 4. Multi-Factor Password-Authenticated Key Exchange

4.3 Security for multi-factor protocols

In a multi-factor password-authenticated key exchange protocol, multiple authen-
tication secrets of complementary natures, such as a long-term password and a
one-time response value, are combined securely to provide mutual authentication
and to establish a shared secret key for a private channel.

The authentication secrets must be combined so that the client can convince
the server that it knows all the authentication secrets and that the server can
convince the client that it knows all the authentication secrets: this provides mutual
authentication. However, the protocol must be carefully designed to not reveal
any information about the authentication secrets to a passive or even an active
adversary.

In addition to providing authentication, the protocol should also establish an
ephemeral shared secret key between client and server that can then be used, for
example, to establish a private channel using bulk encryption.

4.3.1 Informal security criteria

The general security criteria we use for multi-factor password-authenticated key ex-
change is that the protocol should remain secure even if all but one authentication
factor is fully known to an adversary. In this chapter, we present the first exam-
ple of such a protocol using two authentication factors. We identify four security
properties that such a protocol should have:

1. Strong two-factor server-to-client authentication: without knowledge of both
of the authentication factors, a server cannot successfully convince a client of
its identity.

2. Strong two-factor client-to-server authentication: without knowledge of both
of the authentication factors, a client cannot successfully convince a server of
its identity.

3. Authentication secrets protected: no useful information about the authenti-
cation secrets is revealed during the authentication process.

4. Secure session key establishment: at the end of the protocol, a client and
a server end up with a secure shared session key suitable for bulk encryp-
tion only if the mutual authentication is successful; otherwise no session is
established.

Figure 4.1 compares our scheme, MFPAK, with existing password-authenticated
key exchange protocols, with a two-factor scheme that transmits the password and
response value across an SSL channel, and with a multi-layer scheme that uses non-
cryptographic attributes, such as browser version and IP address, for additional
assurance.

49

C
h
a
pter

4.
M

u
lti-F

acto
r

P
a
ssw

o
r
d
-A

u
th

en
ticated

K
ey

E
xch

a
n
g
e

Security property SSL +
multi-channel schemes

SSL + password +
one-time response or

SSL + multi-layer schemes

Existing password
auth. key exchange

protocols
MFPAK

1. Strong two-factor
server auth.

Susceptible to man-in-the-middle attacks.
Server authenticated only by X.509 certificate. Only one factor. Yes.

2. Strong two-factor
client auth.

Susceptible to man-in-the-middle attacks. Only one factor. Yes.

Needs second channel.

3. Auth. secrets pro-
tected

Authentication occurs after session key established.
User authentication secrets sent directly to server. Yes. Yes.

4. Secure session key
establishment Yes. Yes. Yes.

Figure 4.1: Comparison of security properties of various schemes

50

Chapter 4. Multi-Factor Password-Authenticated Key Exchange

This table shows that other two-factor schemes that the financial industry is
deploying today, such as transmitting one-time values over TLS, will not address
the phishing problem. Solving this problem requires a fundamental change in the
underlying cryptographic protocol. Our scheme provides a secure solution to this
problem, in the form of multi-factor password-authenticated key exchange.

Nature of the factors. The common scenario for password-authenticated key
exchange is to have a fixed long-term password for each client-server pair; we call
this the first factor. For multi-factor password-based authentication, we add a
second factor: a changing, short-term password for each client-server pair that
varies with time or other environment factors. Both factors are short strings, which
contrasts with the work of Pointcheval and Zimmer [PZ07] who use a short string,
a long private key, and a biometric. Although using a long cryptographic secret
can provide greater security, this technique requires client certificates which can be
difficult to manage for non-technical users and are not very portable. Our focus is
on users being able to carry their authentication secrets easily from computer to
computer. By using two factors, we can provide robustness against different types
of compromise. For example, to be able to use the second factor, an adversary has
to steal the one-time password generator from the client or compromise the server’s
database of one-time passwords.

4.3.2 Formal model

We define a formal model for the security of multi-factor password-authenticated
key exchange that allows us to show a protocol secure by giving upper bounds
on the probability that an adversary can break server-to-client or client-to-server
authentication, or determine the session key established; the authentication secrets
are protected as well.

This formal model is an extension of the model for password-authenticated key
exchange proposed by Bellare, Pointcheval, and Rogaway [BPR00] and modified by
Gentry, MacKenzie, and Ramzan [GMR05], presented in Section 3.2. We state our
model for two factors, but it could easily be extended for an arbitrary number of
factors. We only note below how our model differs from the previous presentation.

Passwords. Authentication secrets are short strings selected uniformly at ran-
dom from an appropriate set. There are two sets of authentication secrets: long-
term passwords are chosen from the set Passwords, and short-term passwords are
chosen from the set Responses.1

For each client-server pair (Ĉ, Ŝ) ∈ Clients× Servers, two authentication secrets
exist: there is a long-term password pwĈ,Ŝ ∈ Passwords and a short-term password

1We call the set of short-term passwords Responses because it may often be the case that these
values are the response to challenges issued by the server.

51

Chapter 4. Multi-Factor Password-Authenticated Key Exchange

reĈ,Ŝ ∈ Responses, and corresponding pwŜ[Ĉ] and reŜ[Ĉ]. We treat the long-term
password as an asymmetric factor and the short-term password as a symmetric
factor, so reŜ[Ĉ] is a trivial transformation of reĈ,Ŝ.

Powers of the adversary. In addition to the standard queries allowed in Sec-
tion 3.2 (Send, Execute, RevealSessionKey, Test), we allow individual queries for
each authentication secret.

RevealPWCP (Ĉ, Ŝ): Returns the long-term password pwĈ,Ŝ of client Ĉ with
server Ŝ. This query is used to model compromise of the client’s long-term pass-
word, for example by the use of spyware installed on the client’s computer.

RevealPWSP (Ŝ, Ĉ): Returns the transformed long-term password pwŜ[Ĉ] of
client Ĉ on server Ŝ. This query is used to model the compromise of the server’s
password database, which, in the verifier-based model, may not have the same effect
as the compromise of the client’s password.

RevealReP (Ĉ, Ŝ): Returns the short-term password reĈ,Ŝ of client Ĉ with server
Ŝ. This query is used to model compromise of the client’s short-term password, for
example by phishing or the use of spyware installed on the client’s computer.

Freshness. We adapt the notion of freshness to accommodate the idea that a
session should remain fresh even if all but one of the authentication factors has
been fully compromised. An instance ΠÛ

i with partner id Û ′ is fresh in the first
factor (with forward-secrecy) if and only if none of the following events occur:

1. the adversary has issued the query RevealSessionKey(Û , i);

2. the adversary has issued the query RevealSessionKey(Û ′, j), where ΠÛ ′
j is the

partner instance of ΠÛ
i ;

3. if Û ∈ Clients, the adversary has issued either the query RevealPWC(Û , Û ′) or
the query RevealPWS(Û ′, Û) before the Test query, and has issued the query
Send(Û , i,M) for some string M ;

4. if Û ∈ Servers, the adversary has issued the query RevealPWC(Û , Û ′) before
the Test query, and has issued the query Send(Û , i,M) for some string M .

An instance ΠÛ
i with partner id Û ′ is fresh in the second factor (with forward-

secrecy) if and only if none of the following events occur:

1. the adversary has issued the query RevealSessionKey(Û , i);

2. the adversary has issued the query RevealSessionKey(Û ′, j), where ΠÛ ′
j is the

partner instance of ΠÛ
i ;

52

Chapter 4. Multi-Factor Password-Authenticated Key Exchange

3. if Û ∈ Clients, the adversary has issued any query RevealRe before the Test
query, and has issued the query Send(Û , i,M) for some string M ;

4. if Û ∈ Servers, the adversary has issued any query RevealRe before the Test
query, and has issued the query Send(Û , i,M) for some string M .

If a session is fresh in both the first and second factors, then it is also fresh in the
original notion of freshness for password-authenticated key exchange.

Pointcheval and Zimmer, in their paper on multi-factor authenticated key ex-
change [PZ07], provide a similar variation on the BPR model. However, their notion
of freshness differs from ours: they choose to have a single notion of freshness which
describes the security if all but one factor is compromised, and thus the security
of the protocol is given solely in terms of the security of the weakest factor. By
having two notions of freshness — one for each factor — we are able to more pre-
cisely quantify how the security changes depending on which factor is compromised.
This additional precision can provide guidance on how particular factors should be
deployed and physically secured.

Session key security. The goal of an adversary is to guess the bit b used in the
Test query of a fresh in the first (or second) factor session. This corresponds to
the ability of an adversary to distinguish the session key from a random string of
the same length. Let Succake-f1

P (A) (respectively, Succake-f2
P (A)) be the event that

the adversary A makes a single Test query to some fresh in the first (respectively,
second) factor instance ΠÛ

i that has terminated and A eventually outputs a bit
b′, where b′ = b and b is the randomly selected bit in the Test query. The ake-f1
advantage of A attacking P is defined to be Advake-f1

P (A) = 2 Pr
(
Succake-f1

P (A)
)
−1,

and analogously for the ake-f2 advantage.

Since a session that is fresh in both the first and second factors is also fresh in
the original ake notion of password-authenticated key exchange, we have that

Advake
P (A) ≤ min

{
Advake-f1

P (A),Advake-f2
P (A)

}
. (4.1)

Authentication. We can define similar notions for client-to-server, server-to-
client, and mutual authentication for adversaries attempting to break two-factor
authentication.

For a protocol P , an adversary violates client-to-server authentication if
some server oracle terminates and accepts but has no partner oracle; we can refine
this notion based on which factor remains uncompromised. For a fixed adversary
A, we define Advc2s-f1

P (A) (resp., Advc2s-f2
P (A)) to be the probability that a server

instance ΠŜ
j with partner id Ĉ terminates without having a partner oracle before a

RevealPWCP (Ĉ, Ŝ) (resp., RevealReP (Ĉ, Ŝ)) query.

53

Chapter 4. Multi-Factor Password-Authenticated Key Exchange

Similarly, an adversary violates server-to-client authentication if some client
oracle terminates and accepts but has no partner oracle; again, we can refine this no-
tion based on which factor remains uncompromised. We define Advs2c-f1

P (A) (resp.,
Advs2c-f2

P (A)) to be the probability that a client instance ΠĈ
i with partner id Ŝ

terminates without having a partner oracle before either a RevealPWCP (Ĉ, Ŝ) or
RevealPWSP (Ŝ, Ĉ) (resp., RevealReP (Ĉ, Ŝ)) query.

Finally, an adversary violates mutual authentication if some oracle termi-
nates and accepts but has no partner oracle. Violation of mutual authentication
is equivalent to violation of either client-to-server authentication or server-to-client
authentication (or both). We define Advma-fi

P (A) to be the probability that any
instance terminates without having a partner oracle, for each notion i above.

Security. We say that a protocol P is a secure multi-factor password au-
thenticated key agreement protocol if there exists a constant δ and a negligible
ε such that, for all probabilistic algorithms A running in polynomial time and mak-
ing at most qse queries of type Send,

Advake-f1
P (A) ≤ δqse

|Passwords|
+ ε and Advake-f2

P (A) ≤ δqse
|Responses|

+ ε , (4.2)

and corresponding bounds apply for Advma-f1
P (A) and Advma-f2

P (A). Intuitively, this
notion of security says that, except with probability ε (which is usually a function of
the probability of solving a hard computational problem under certain constraints),
any polynomially bounded adversary can do little better than doing an online dic-
tionary attack on any unknown factors and can gain no advantage by doing an
offline dictionary attack.

4.3.3 Using one-time passwords

While the security of long-term passwords is straightforward, the model for compro-
mise of the short-term password can vary. Our model and proofs allow the second
factor to be reused as much as the first factor, but in practice it is desirable to use
short-term or one-time passwords for resistance against spyware.

True one-time passwords require the client and server to pre-share a large num-
ber of random passwords. However, they offer enhanced security and a multi-factor
protocol using true one-time passwords would be secure even if previous one-time
passwords were compromised: our notion of fresh in the second factor would not
need to preclude all RevealRe queries prior to the Test query, only that no RevealRe
query happens for the one-time password corresponding to the Test session. All
multi-factor password authenticated key exchange protocols secure using arbitrary
passwords with our given definition of fresh in the second factor are also secure
using one-time passwords with this revised definition of fresh in the second factor.

An alternative approach, such as in Abdalla et al. [ACP05a], is to use pseu-
dorandomly generated one-time passwords. The server stores fn(seed) (where fn

54

Chapter 4. Multi-Factor Password-Authenticated Key Exchange

denotes the n-fold application of f) for a one-way function f , and then the client
provides the next verifier fn−1(seed) upon successfully logging in with the current
value. In this case, the compromise of the server cannot be used to impersonate
the client at the next login, but compromise of the client’s seed value (for example,
by spyware) leaves the client open to future impersonation. Here, we now have two
types of values that could be revealed: individual values f i(seed), or the value seed
itself, modeled by appropriate queries. A multi-factor password-authenticated key
exchange protocol should remain secure if only some of the individual values are
revealed, and the notion of fresh in the second factor could be suitably altered to
suit this case as well.

A one-time password can also be a time-sensitive password that can be gener-
ated by a small device such as the RSA SecureID [RSA]. For example, there may
be a seed value for each client-server pair, and then, at time t (suitably rounded),
the correct value is f(seed, t) for some pseudorandom function f . While the above
technique of Abdalla et al. requires passwords to be generated in a very specific
way, this setting is more compatible with many of the various deployed one-time
password generators. Challenge-response protocols, where for example the client
may have a personalized piece of paper with a variety of responses on it to partic-
ular challenges, can be modelled in a similar way by having a function f(seed, ch)
that describes the response for a challenge ch and a client-server pair-specific seed.
Again, there are two types of values that could be compromised (individual values
or the seed) and could be modeled by additional queries.

In Section 3.2.1, we discussed the assumption that passwords are uniformly
distributed, and this assumption is likely to be better satisfied when one-time pass-
words are generated using hardware devices as discussed above.

4.4 MFPAK

MFPAK is the first password-authenticated key exchange protocol to be based on
multiple authentication factors. It uses two factors: the first is a long-term user-
memorized password, and the second is a short-term password, meant to represent
a dynamic one-time response value, although it can be used as a static value as
well.

4.4.1 Design ideas

We designed MFPAK by considering two existing one-factor protocols as our build-
ing blocks: the asymmetric password protocol mePAK-Z+ (Section 3.3.3.2) for the
long-term password, and the symmetric password protocol mePAK (Section 3.3.2.2)
for the one-time response values. These two protocols have characteristics that we
use in the design of our two-factor protocol and have formal security arguments.
Both factors are tightly integrated into the authentication and key exchange pro-
cesses. The underlying session key agreement comes from a hashed Diffie-Hellman

55

Chapter 4. Multi-Factor Password-Authenticated Key Exchange

construct. Authentication in the first factor is done using a digital signature scheme,
while in the second factor it is done using hash functions.

Shielded ephemeral key. One of the main efficiency and security gains in the
MFPAK protocol comes in the first flow from the client to the server. In this flow,
the client shields its ephemeral public key by multiplying it by the first factor and
the second factor. The client is made to commit to those values, thereby preventing
a malicious client from making an offline dictionary attack later on. Moreover, the
server must use the same values to unshield the client’s ephemeral public key or
Diffie-Hellman key agreement will fail, thereby committing the server to its choice
of values. By doing this double shielding operation, the client and server achieve
mutual authentication, the client saves expensive operations compared to running
two protocols separately, and the authentication secrets are protected.

Digital signature for asymmetric first factor. The asymmetric nature of the
first factor comes from using a digital signature scheme. At registration time, the
user generates a private key / public key pair for a digital signature scheme, then
shields the private key with her password and stores the shielded value on the server.
During the login stage of the protocol, the server returns the shielded private key,
which the client can unwrap only if she knows the correct password. The client
uses the private key to perform a signing operation which the server verifies using
the public key. This allows for asymmetry in the first factor: the compromise of
the server’s database is not enough to impersonate the client to the server without
a dictionary attack.

Hash function for symmetric second factor. The hash of the second factor
is stored on the server as a symmetric factor. The server proves its knowledge of
the second factor by hashing it with the session key; the client does the same.

4.4.2 Protocol specification

The user registration stage of MFPAK is given in Figure 4.2 below. This stage
should be completed over a private, authentic channel. We assume the second
factor value re is fixed for each client-server pair, but the scenario could allow for
a challenge/response or pseudorandomly generated response value, as discussed in
Section 4.3.3.

The login stage of MFPAK is given in Figure 4.3. This stage can be completed
over a public, untrusted channel. A client Ĉ initiates the login stage with a server
Ŝ. The client knows the password pwĈ,Ŝ and response reĈ,Ŝ that was previously
established in the registration stage, and the server Ŝ has its databases pwŜ[Ĉ]

and reŜ[Ĉ], for all Ĉ ∈ Clients, of corresponding values. If the response values are
meant to be responses to challenges issued by the server, an initial message from

56

Chapter 4. Multi-Factor Password-Authenticated Key Exchange

MFPAK User Registration
Client Ĉ Server Ŝ

1. input username Ĉ
2. choose pwĈ,Ŝ ∈R Passwords

3. choose reĈ,Ŝ ∈R Responses

4. (v, V)← Gen(1κ)
5. γ = H1(Ĉ, Ŝ, pwĈ,Ŝ)
6. v′ = H2(Ĉ, Ŝ, pwĈ,Ŝ)⊕ v
7. v′′ = H3(v)
8. τ = H4(Ĉ, Ŝ, reĈ,Ŝ)

9. Ĉ,γ,V,v′,v′′,τ−−−−−−−−−→
10. compute γ−1

11. compute τ−1

12. store pwŜ [Ĉ] = (γ, γ−1, V, v′, v′′)
13. store reŜ [Ĉ] = (τ, τ−1)

Figure 4.2: The user registration stage of the MFPAK protocol

the server to the client conveying the challenge can be added to the beginning of
the login stage of the protocol.

It will be helpful to be able to refer to the action of a party upon receipt of a mes-
sage. We use the notation ClientActioniP and ServerActioniP to refer to the
portion of the protocol P performed by the client or server, respectively, after the
ith flow. Thus, MFPAK as described in Figure 4.3 specifies ClientAction0MFPAK,
ServerAction1MFPAK, ClientAction2MFPAK, and ServerAction3MFPAK.

4.4.3 Efficiency

In many e-commerce and online banking situations, the performance-limiting factor
is the number of connections a server can handle, and this is in turn limited by the
number of expensive operations required by the cryptographic protocol. MFPAK
can increase security without substantial additional computational burden on the
server.

One approach to achieving multi-factor password-authenticated key exchange
would be to independently run one protocol for each factor, accept authentication
only if all the independent protocols accept, and then compute a single session key
dependent on all the independent session keys. This approach can place a heavy
computational burden on the client and the server which we can avoid by using a
single protocol such as MFPAK.

Figure 4.4 compares the number of expensive operations (group exponentia-
tions, group inversions, and signature generation / verification) performed by a
combination of PAK and PAK-Z+ and the MFPAK protocol. On the server side,

57

Chapter 4. Multi-Factor Password-Authenticated Key Exchange

MFPAK Login
Client Ĉ Server Ŝ

1. input username Ĉ
2. input password pwĈ,Ŝ
3. input response reĈ,Ŝ
4. γ = H1(Ĉ, Ŝ, pwĈ,Ŝ)
5. τ = H4(Ĉ, Ŝ, reĈ,Ŝ)
6. x ∈R Zq
7. X = gx

8. m = X · γ · τ

9. Ĉ,m−−−−−−→
10. abort if ¬Acceptable(m)
11. y ∈R Zq
12. Y = gy

13. lookup (γ, γ−1, V, v′, v′′) = pwŜ [Ĉ]
14. lookup (τ, τ−1) = reŜ [Ĉ]
15. X = m · γ−1 · τ−1

16. σ = Xy

17. sid = (Ĉ, Ŝ,m, Y)
18. k = H5(sid, σ, γ, τ)
19. a′ = H6(sid, σ, γ, τ)
20. a = a′ ⊕ v′

21. Y,k,a,v′′←−−−−−−
22. σ = Y x

23. sid = (Ĉ, Ŝ,m, Y)
24. abort if k 6= H5(sid, σ, γ, τ)
25. k′ = H7(sid, σ, γ, τ)
26. a′ = H6(sid, σ, γ, τ)
27. v′ = a′ ⊕ a
28. v = H2(Ĉ, Ŝ, pwĈ,Ŝ)⊕ v′

29. abort if v′′ 6= H3(v)
30. s = Signv(sid)

31. k′,s−−−−−−→
32. abort if k′ 6= H7(sid, σ, γ, τ)
33. abort if ¬VerifyV (sid, s)
34. sk = H8(sid, σ, γ, τ) sk = H8(sid, σ, γ, τ)

Figure 4.3: The login stage of the MFPAK protocol

MFPAK has the same number of expensive operations as PAK-Z+, and two fewer
operations on the client side due to the removal of group inversion operations as
in mePAK and mePAK-Z+. This makes MFPAK much more efficient, in terms of
number of expensive operations, than if one were to make a multi-factor scheme
simply by running PAK and PAK-Z+ in parallel independently. Although we have

58

Chapter 4. Multi-Factor Password-Authenticated Key Exchange

to use slightly larger key sizes (for example, 458 bits for MFPAK compared to 430
bits for PAK-Z+) because of the lack of tightness of the security argument (see
Section 4.4.5), the reduced number of operations more than compensates.

Operation PAK & PAK-Z+ MFPAK
Client Server Client Server

exponentiations 4 4 2 2
inversions 2 (0∗) 0 0 0
signature generation 1 0 1 0
signature verification 0 1 0 1

Figure 4.4: Comparison of expensive operations for combined PAK & PAK-Z+ and
MFPAK. Entries with ∗ indicate the cost when mePAK and mePAK-Z+ are used

instead of PAK and PAK-Z+.

In designing MFPAK for improved efficiency, we only focused on reducing the
number of exponentiations and inversions, as the other operations are relatively
much less time consuming. It may be possible to also eliminate at least one hash
function evaluation on each side, namely those involving H7 (lines 25 and 32): the
test on the server side on line 32 involving H7 intuitively ought to be satisfied only
if the signature verification on line 33 is also satisfied. However, cases 3 and 4 of our
formal security analysis in Section 4.4.4 require the use of k′ to relate the security
in those cases to PAK; an alternative proof may be able to eliminate those tests.

4.4.4 Security analysis of MFPAK

In this section, we show that MFPAK is a secure multi-factor password-authentica-
ted key exchange protocol. The main idea of the argument is to show that, if one
factor remains uncompromised, then the difficulty of breaking MFPAK is related
to the difficulty of breaking the corresponding one of either mePAK or mePAK-Z+,
which in turn are related to solving the Computational Diffie-Hellman problem.

For each of the two factors (password and response), we describe a procedure
(specified by a modifier M) to transform an attack by an adversary A against
MFPAK with the specified factor uncompromised into an attack A∗ against the
corresponding one of the two underlying protocols (mePAK-Z+ and mePAK, re-
spectively). The transformations are such that, if the oracle instance in MFPAK
against which the Test query is directed is fresh in the first (resp., second) factor,
then the corresponding oracle instance is also fresh in the corresponding attack on
mePAK-Z+ (resp., mePAK). This is possible because of the design of the MF-
PAK protocol: it essentially runs both mePAK and mePAK-Z+ together while still
capturing the security of each independently. This design characteristic allows the
relatively straightforward (although lengthy) security argument.

Our formal argument proceeds by considering four cases, two corresponding to
the password being uncompromised and two corresponding to the response being

59

Chapter 4. Multi-Factor Password-Authenticated Key Exchange

uncompromised. The cases are:

1. First factor uncompromised, Û∗ ∈ Clients: no RevealPWCMFPAK(Û∗, Û ′∗) or
RevealPWSMFPAK(Û ′∗, Û∗) query (Section 4.4.4.1).

2. First factor uncompromised, Û∗ ∈ Servers: no RevealPWCMFPAK(Û ′∗, Û∗)
query (Section 4.4.4.2).

3. Second factor uncompromised, Û∗ ∈ Clients: no RevealReMFPAK query (Sec-
tion 4.4.4.3).

4. Second factor uncompromised, Û∗ ∈ Servers: no RevealReMFPAK query (Sec-
tion 4.4.4.4).

These four cases are combined probabilistically to give the overall result in Sec-
tion 4.4.4.5.

Throughout, we assume that passwords are uniformly distributed among the
set Passwords and responses are uniformly distributed among the set Responses.

4.4.4.1 Case 1: Attacking a client instance, first factor uncompromised

This case addresses impersonation of the server when the session being attacked is
a client instance and the first factor remains uncompromised.

Let SmePAK-Z+ denote the mePAK-Z+ system that we will attack. The modifier
M first uniformly at randomly guesses Û∗ ∈R Clients and Û ′∗ ∈R Servers as its guess
of who the adversary A will end up attacking. If the attacker ends up attacking
the pair of users the modifier has guessed, then we will show how to transform the
attack into an attack A∗ on mePAK-Z+.

Let GuessCS be the event that the modifier M correctly guesses Û∗ and Û ′∗.
Then

Pr(GuessCS) = Pr((Û∗ correct) ∧ (Û ′∗ correct)) ≥ 1

|Clients| · |Servers|
. (4.3)

For this case, we assume that neither the query RevealPWCMFPAK(Û∗, Û ′∗) nor
the query RevealPWSMFPAK(Û ′∗, Û∗) is issued against M: this case models server
impersonation in the first factor, which is why no RevealPWSMFPAK(Û ′∗, Û∗) query
is allowed. Furthermore, no RevealPWCMFPAK(Û∗, Û ′∗) is allowed because an ad-
versary can easily recover the verifier pwÛ ′∗ [Û

∗] from the password pwÛ∗,Û ′∗ and one
interaction with Û ′∗.

The modifierM does the following to convert an MFPAK adversary A into a
mePAK-Z+ adversary A∗.

60

Chapter 4. Multi-Factor Password-Authenticated Key Exchange

Password and response preparation. For each (Ĉ, Ŝ) ∈ Clients× Servers,M
sets reĈ,Ŝ ∈R Responses and constructs the corresponding reŜ[Ĉ]. In particular,M
sets τ ∗ = H4(Û∗, Û ′∗, reÛ∗,Û ′∗) and computes (τ ∗)−1. For each (Ĉ, Ŝ) ∈ (Clients ×
Servers) \ {(Û∗, Û ′∗)}, M sets pwĈ,Ŝ = RevealPWCmePAK-Z+(Ĉ, Ŝ) and pwŜ[Ĉ] =

RevealPWSmePAK-Z+(Ŝ, Ĉ). Of all the password and response values, only pwÛ∗,Û ′∗

and pwÛ ′∗ [Û
∗] remain unknown toM at this point.

Instantiation of mePAK-Z+ system. We instantiate the mePAK-Z+ system
SmePAK-Z+ with the following random oracles: H∗` = H`, for ` = 1, 2, 3, and

H∗` ((Ĉ, Ŝ,m, Y), σ, γ) = H`((Ĉ, Ŝ,m · τ ∗, Y), σ, γ, τ ∗) , (4.4)

for ` = 5, 6, 8.2 These ‘starred’ functions are independent random oracles if the
corresponding unstarred functions are. The above construction is possible since τ ∗
is fixed and known toM because of the guesses made at the beginning of this case.

Further, SmePAK-Z+ is instantiated with the following signature scheme:

Sign∗v((Ĉ, Ŝ,m, Y)) = Signv((Ĉ, Ŝ,m · τ ∗, Y))

Verify∗V ((Ĉ, Ŝ,m, Y), s) = VerifyV ((Ĉ, Ŝ,m · τ ∗, Y), s) .

Since the transformation that sends (Ĉ, Ŝ,m, Y) 7→ (Ĉ, Ŝ,m·τ ∗, Y) is just a permu-
tation, it follows that (Gen, Sign∗,Verify∗) is an eu-cma signature scheme whenever
(Gen, Sign,Verify) is.

M’s handling of A’s queries. The modifierM performs the following modifi-
cations to the queries of A. The main goal is forM to simulate all queries except
for ones that are related to the Û∗ and Û ′∗ guessed at the beginning of the case:
these queries are passed to the underlying mePAK-Z+ system SmePAK-Z+.

1. RevealPWCMFPAK(Ĉ, Ŝ):

(a) If (Ĉ, Ŝ) 6= (Û∗, Û ′∗): Return pwĈ,Ŝ.

(b) If (Ĉ, Ŝ) = (Û∗, Û ′∗): Abort; if this query occurs, thenM’s guess of Û∗
and Û ′∗ at the beginning of this case was incorrect.

2. RevealPWSMFPAK(Ŝ, Ĉ):

(a) If (Ĉ, Ŝ) 6= (Û∗, Û ′∗): Return pwŜ[Ĉ].

(b) If (Ĉ, Ŝ) = (Û∗, Û ′∗): Abort; if this query occurs, thenM’s guess of Û∗
and Û ′∗ at the beginning of this case was incorrect.

2Note that we do not need to instantiate H∗
4 and H∗

7 because these oracles are not used by
mePAK-Z+.

61

Chapter 4. Multi-Factor Password-Authenticated Key Exchange

3. RevealReMFPAK(Ĉ, Ŝ): Return reĈ,Ŝ.

4. TestMFPAK(Û , i):

(a) If Û = Û∗: Send a TestmePAK-Z+(Û , i) query to mePAK-Z+ system
SmePAK-Z+ and return the result to A.

(b) If Û 6= Û∗: Abort; if this query occurs, then M’s guess of Û∗ at the
beginning of this case was incorrect.

5. RevealSessionKeyMFPAK(Û , i):

(a) If Û = Û∗ or Û = U ′∗: Send a RevealSessionKeymePAK-Z+(Û , i) query to
mePAK-Z+ system SmePAK-Z+ and return the result to A.

(b) Otherwise: Return sk for instance ΠÛ
i .

6. ExecuteMFPAK(Ĉ, i, Ŝ, j):

(a) If (Ĉ, Ŝ) 6= (Û∗, Û ′∗): M performs ExecuteMFPAK(Ĉ, i, Ŝ, j) with all the
values it has and returns the transcript.

(b) If (Ĉ, Ŝ) = (Û∗, Û ′∗): M will use the mePAK-Z+ system SmePAK-Z+ to
obtain a transcript for this query.

i. Send an ExecutemePAK-Z+(Ĉ, i, Ŝ, j) query to SmePAK-Z+ and receive
(Ĉ,m, Y, k, a, v′′, s).

ii. Set m̂ = m · τ ∗.
iii. Set k̂′ ∈R range(H7).
iv. Return (Ĉ, m̂, Y, k, a, v′′, s, k̂′) to A.

7. SendMFPAK(Û , i,M):

(a) If M is not a valid protocol message in a meaningful sequence, then
abort as would be done in MFPAK.

(b) IfM = (“start”, Ŝ) and (Û , Ŝ) 6= (Û∗, Û ′∗): Perform ClientAction0MFPAK

and return (Û ,m).

(c) If M = (“start”, Ŝ) and (Û , Ŝ) = (Û∗, Û ′∗):

i. Send a SendmePAK-Z+(Û , i,M) query to SmePAK-Z+ and receive (Û ,m).
ii. Set m̂ = m · τ ∗.
iii. Return (Û , m̂).

(d) If M = (Ĉ,m) and (Ĉ, Û) 6= (Û∗, Û ′∗): Perform ServerAction1MFPAK

and return (Y, k, a, v′′).

(e) If M = (Ĉ,m) and (Ĉ, Û) = (Û∗, Û ′∗):

i. Set m̂ = m · (τ ∗)−1.

62

Chapter 4. Multi-Factor Password-Authenticated Key Exchange

ii. Send a SendmePAK-Z+(Û , i, (Ĉ, m̂)) query to SmePAK-Z+ and receive
(Y, k, a, v′′).

iii. Return (Y, k, a, v′′).
(f) If M = (Y, k, a, v′′) and (Û , Û ′) 6= (Û∗, Û ′∗), where Û ′ is the partner of

Û : Perform ClientAction2MFPAK and return (k′, s).
(g) If M = (Y, k, a, v′′) and (Û , Û ′) = (Û∗, Û ′∗), where Û ′ is the partner of

Û :
i. Send a SendmePAK-Z+(Û , i, (Y, k, a, v′′)) query to SmePAK-Z+ and re-

ceive (s).
ii. Set k̂′ ∈R range(H7) and store.
iii. Return (k̂′, s).

(h) If M = (k′, s) and (Û ′, Û) 6= (Û∗, Û ′∗), where Û ′ is the partner of Û :
Perform ServerAction3MFPAK.

(i) If M = (k′, s) and (Û ′, Û) = (Û∗, Û ′∗), where Û ′ is the partner of Û :
i. Abort if k′ is not the same as the k̂′ generated in Case 6 above.
ii. Send a SendmePAK-Z+(Û , i, (s)) query to SmePAK-Z+.

Differences from an MFPAK system. We must now analyze the differences
between a true MFPAK system and the view presented to the MFPAK adversary
A by the modifierM.

First we note that the distributions of generated passwords and responses ex-
actly match the MFPAK specifications. Furthermore, all the generated passwords
exactly match the mePAK-Z+ specifications.

Next, we note that M’s handling of A’s queries precisely matches what an
MFPAK system would do except in a small number of cases. The messages received
from and forwarded from the use of the mePAK-Z+ system SmePAK-Z+ can by
inspection be seen to match what an MFPAK system would do because SmePAK-Z+

is using the specially constructed random oracles H∗` . The differences betweenM
and what a true MFPAK system would do are as follows:

• RevealPWC(Ĉ, Ŝ) when (Ĉ, Ŝ) = (Û∗, Û ′∗), RevealPWS(Ŝ, Ĉ) when (Ĉ, Ŝ) =
(Û∗, Û ′∗), and Test(Û , i) when Û 6= Û∗:
The modifierM aborts here, while a true MFPAK system should not. IfM
correctly guessed Û∗ and Û ′∗ at the beginning of this case, then none of these
queries would occur, for if one did then the session in which a Test query is
directed to ΠÛ∗

i would not be fresh.

• Execute(Ĉ, i, Ŝ, j) when (Ĉ, Ŝ) = (Û∗, Û ′∗), Send(Û , i,M) whenM = (Y, k, a, v′′)
and (Û , Û ′) = (Û∗, Û ′∗), where Û ′ is the partner of Û , and Send(Û , i,M) when
M = (k′, s) and (Û , Û ′) = (Û ′∗, Û∗), where Û ′ is the partner of Û :
The modifierM generated a random value k̂′ for this session instead of gen-
erating k′ = H7(sid, σ, γ, τ). Since H7 is a random oracle, this substitution is

63

Chapter 4. Multi-Factor Password-Authenticated Key Exchange

distinguishable by the adversary A if and only if A queries H7 on the argu-
ments sid, σ, γ, τ . But if that occurs, then A must know γ. These are the same
inputs to the H∗8 oracle used to compute the session key in the mePAK-Z+
simulation SmePAK-Z+, so the same adversary could distinguish the output of
TestmePAK-Z+(Û∗, i) received from SmePAK-Z+. The latter event corresponds
to the event Succake

mePAK-Z+, and so the substitution is distinguishable with
probability at most Pr(Succake

mePAK-Z+(A)).

Let Dist1|GuessCS be the event that the simulation M is distinguishable from
a real MFPAK system from A’s perspective given that the modifier correctly
guessed Û∗ and Û ′∗ at the beginning of this case. Then Pr(Dist1|GuessCS) ≤
3 Pr(Succake

mePAK-Z+(A)) by the argument above.

Result for case 1. Let Û∗ ∈ Clients, Û ′∗ ∈ Servers and let E1 be the event
that neither RevealPWCMFPAK(Û∗, Û ′∗) nor RevealPWSMFPAK(Û ′∗, Û∗) occurs. The
session involving Û∗, Û ′∗ in SmePAK-Z+ is fresh if and only if the corresponding
session inM is fresh in the first factor Thus, if event E1 occurs and event GuessCS
occurs, then, whenever A wins againstM, A∗ wins against SmePAK-Z+, except with
probability at most Pr(Dist1|GuessCS). Therefore,

Pr(Succake-f1
M (t, qse, qex, qro)|E1,GuessCS) ≤ Pr(Succake

mePAK-Z+(t′, qse, qex, q
′
ro)) , (4.5)

where q′ro ≤ qro + z + 1 + 6qex + 4qse, t′ ≤ t+ texp + qex(3texp + tsig) + qse(2texp + tsig),
and z = min{qse + qex, |Clients| · |Servers|}. Moreover,∣∣Pr(Succake-f1

MFPAK(t, qse, qex, qro)|E1,GuessCS)

−Pr(Succake-f1
M (t, qse, qex, qro)|E1,GuessCS)

∣∣
≤ Pr(Dist1|GuessCS) . (4.6)

Combining these two expressions yields the following result:

Lemma 4.1 Let Û∗ ∈ Clients, Û ′∗ ∈ Servers, and suppose that neither the query
RevealPWCMFPAK(Û∗, Û ′∗) nor the query RevealPWSMFPAK(Û ′∗, Û∗) occurs (which
is event E1). Then

Pr(Succake-f1
MFPAK(t, qse, qex, qro)|E1,GuessCS) ≤ 4 Pr(Succake

mePAK-Z+(t′, qse, qex, q
′
ro)) ,

(4.7)
where q′ro ≤ qro + z + 1 + 6qex + 4qse, t′ ≤ t+ texp + qex(3texp + tsig) + qse(2texp + tsig),
and z = min{qse +qex, |Clients| · |Servers|}, and a similar bound exists for Advs2c-f1

MFPAK.

4.4.4.2 Case 2: Attacking a server instance, first factor uncompromised

This case addresses impersonation of the client when the session being attacked is
a server instance and the first factor remains uncompromised.

64

Chapter 4. Multi-Factor Password-Authenticated Key Exchange

Let SmePAK-Z+ denote the mePAK-Z+ system that we will attack. The modifier
M first uniformly at randomly guesses Û∗ ∈R Servers and Û ′∗ ∈R Clients as its
guess of who the adversary A will end up attacking. Let GuessSC be the event
that the modifier M correctly guesses Û∗ and Û ′∗. We note that Pr(GuessSC) =
Pr(GuessCS).

For this case, we assume that no RevealPWCMFPAK(Û ′∗, Û∗) query is issued
againstM: this case models client impersonation in the first factor, which is why
this query is not allowed.

The modifierM does the following to convert an MFPAK adversary A into an
attack A∗ on mePAK-Z+.

Password and response preparation. For each (Ĉ, Ŝ) ∈ Clients× Servers,M
sets reĈ,Ŝ ∈R Responses and constructs the corresponding reŜ[Ĉ]. In particular,M
sets τ ∗ = H4(Û ′∗, Û∗, reÛ∗,Û ′∗) and computes (τ ∗)−1. For each (Ĉ, Ŝ) ∈ (Clients ×
Servers) \ {(Û ′∗, Û∗)}, M sets pwĈ,Ŝ = RevealPWCmePAK-Z+(Ĉ, Ŝ) and pwŜ[Ĉ] =

RevealPWSmePAK-Z+(Ŝ, Ĉ). Finally,M sets pwÛ∗ [Û
′∗] = RevealPWSmePAK-Z+(Û∗, Û ′∗)

(but only if M receives a RevealPWSMFPAK(Û∗, Û ′∗) query). Of all the password
and response values, only pwÛ ′∗,Û∗ remains unknown toM.

Instantiation of mePAK-Z+ system. We instantiate the mePAK-Z+ system
SmePAK-Z+ with the following random oracles: H∗` = H`, for ` = 1, 2, 3, and

H∗` ((Ĉ, Ŝ,m, Y), σ, γ) = H`((Ĉ, Ŝ,m · τ ∗, Y), σ, γ, τ ∗) , (4.8)

for ` = 5, 6, 8. These ‘starred’ functions are independent random oracles if the
corresponding unstarred functions are. The above construction is possible since τ ∗
is fixed and known toM because of the guesses made at the beginning of this case.

Further, SmePAK-Z+ is instantiated with the following signature scheme:

Sign∗v((Ĉ, Ŝ,m, Y)) := Signv((Ĉ, Ŝ,m · (τ ∗)−1, Y))

Verify∗V ((Ĉ, Ŝ,m, Y), s) := VerifyV ((Ĉ, Ŝ,m · (τ ∗)−1, Y), s) .

As before, we note that (Gen, Sign∗,Verify∗) is an eu-cma signature scheme.

M’s handling of A’s queries. The modifierM performs the following modifi-
cations to the queries of A.

1. RevealPWCMFPAK(Ĉ, Ŝ):

(a) If (Ĉ, Ŝ) 6= (Û ′∗, Û∗): Return pwĈ,Ŝ.

(b) If (Ĉ, Ŝ) = (Û ′∗, Û∗): Abort; if this query occurs, thenM’s guess of Û∗
and Û ′∗ at the beginning of this case was incorrect.

65

Chapter 4. Multi-Factor Password-Authenticated Key Exchange

2. RevealPWSMFPAK(Ŝ, Ĉ):

(a) If (Ĉ, Ŝ) 6= (Û ′∗, Û∗): Return pwŜ[Ĉ].

(b) If (Ĉ, Ŝ) = (Û ′∗, Û∗):

i. Send a RevealPWSmePAK-Z+(Û∗, Û ′∗) query to SmePAK-Z+ and receive
pwÛ∗ [Û

′∗].
ii. Return pwÛ∗ [Û

′∗].

3. RevealReMFPAK(Ĉ, Ŝ): Return reĈ,Ŝ.

4. TestMFPAK(Û , i):

(a) If Û = Û∗: Send a TestmePAK-Z+(Û , i) query to SmePAK-Z+ and return the
result to A.

(b) If Û 6= Û∗: Abort; if this query occurs, then M’s guess of Û∗ at the
beginning of this case was incorrect.

5. RevealSessionKeyMFPAK(Û , i):

(a) If Û = Û∗ or Û = U ′∗: Send a RevealSessionKeymePAK-Z+(Û , i) query to
mePAK-Z+ system SmePAK-Z+ and return the result to A.

(b) Otherwise: Return sk for instance ΠÛ
i .

6. ExecuteMFPAK(Ĉ, i, Ŝ, j):

(a) If (Ĉ, Ŝ) 6= (Û ′∗, Û∗): M performs ExecuteMFPAK(Ĉ, i, Ŝ, j) with all the
values it has and returns the transcript.

(b) If (Ĉ, Ŝ) = (Û ′∗, Û∗): M will use the mePAK-Z+ system SmePAK-Z+ to
obtain a transcript for this query.

i. Send an ExecutemePAK-Z+(Ĉ, i, Ŝ, j)) query to SmePAK-Z+ and receive
(Ĉ,m, Y, k, a, v′′, s).

ii. Set m̂ = m · τ ∗.
iii. Set k̂′ ∈R range(H7).
iv. Return (Ĉ, m̂, Y, k, a, v′′, k̂′, s).

7. SendMFPAK(Û , i,M):

(a) If M is not a valid protocol message in a meaningful sequence, then
abort as would be done in MFPAK.

(b) IfM = (“start”, Ŝ): Perform ClientAction0MFPAK and return (Û ,m).

(c) If M = (Ĉ,m) and (Ĉ, Û) 6= (Û ′∗, Û∗): Perform ServerAction1MFPAK

and return (Y, k, a, v′′).

(d) If M = (Ĉ,m) and (Ĉ, Û) = (Û ′∗, Û∗):

66

Chapter 4. Multi-Factor Password-Authenticated Key Exchange

i. Set m̂ = m · (γ∗)−1.
ii. Send a SendmePAK-Z+(Û , i, (Ĉ, m̂)) query to SmePAK-Z+ and receive

(Y, k, a, v′′).
iii. Return (Y, k, a, v′′).

(e) If M = (Y, k, a, v′′) and (Û , Û ′) 6= (Û ′∗, Û∗), where Û ′ is the partner of
Û : Perform ClientAction2MFPAK and return (k′, s).

(f) If M = (Y, k, a, v′′) and (Û , Û ′) = (Û ′∗, Û∗), where Û ′ is the partner of
Û :

i. Send a SendmePAK-Z+(Û , i, (Y, k, a, v′′)) query to SmePAK-Z+ and re-
ceive (s).

ii. Set k̂′ ∈R range(H7) and store.
iii. Return (k̂′, s).

(g) If M = (k′, s) and (Û ′, Û) 6= (Û ′∗, Û∗), where Û ′ is the partner of Û :
Perform ServerAction3MFPAK.

(h) If M = (k′, s) and (Û ′, Û) = (Û ′∗, Û∗), where Û ′ is the partner of Û :

i. Abort if k′ is not the same as the k̂′ generated in Case 5 above.
ii. Send a SendmePAK-Z+(Û , i, (s)) query to SmePAK-Z+.

Differences from MFPAK system. We must now analyze the differences be-
tween a true MFPAK system and the view presented to the MFPAK adversary A
by the modifierM.

First we note that the distributions of generated passwords and responses ex-
actly match the MFPAK specifications. Furthermore, all the generated passwords
exactly match the mePAK-Z+ specifications.

Next, we note that M’s handling of A’s queries precisely matches what an
MFPAK system would do except in a small number of cases. The messages received
from and forwarded from the use of the mePAK-Z+ system SmePAK-Z+ can by
inspection be seen to match what the MFPAK system would do because SmePAK-Z+

is using the specially constructed random oracles H∗. The differences betweenM
and what a true MFPAK system would are as follows:

• RevealPWC(Ĉ, Ŝ) when (Ĉ, Ŝ) = (Û ′∗, Û∗) and Test(Û , i) when Û 6= Û∗:
The modifierM aborts here, while a true MFPAK system should not. IfM
correctly guessed Û∗ and Û ′∗ at the beginning of this case, then this query
would never occur, for if it did then the session in which a Test query is
directed to ΠÛ∗

i would not be fresh.

• Execute(Ĉ, i, Ŝ, j) when (Ĉ, Ŝ) = (Û ′∗, Û∗), Send(Û , i,M) whenM = (Y, k, a, v′′)
and (Û , Û ′) = (Û ′∗, Û∗) where Û ′ is the partner of Û , and Send(Û , i,M) when
M = (k′, s) and (Û ′, Û) = (Û ′∗, Û∗) where Û ′ is the partner of Û :

67

Chapter 4. Multi-Factor Password-Authenticated Key Exchange

The modifierM generated a random value k̂′ for this session instead of gen-
erating k′ = H7(sid, σ, γ, τ). Since H7 is a random oracle, this substitution is
distinguishable by the adversary A if and only if A queries H7 on the argu-
ments sid, σ, γ, τ . But if that occurs, then A must know γ. These are the same
inputs to the H∗8 oracle used to compute the session key in the mePAK-Z+
simulation SmePAK-Z+, so the same adversary could distinguish the output of
Test(Û∗, i) received from SmePAK-Z+. The latter event corresponds to the event
Succake

mePAK-Z+, and so the substitution is distinguishable with probability at
most Pr(Succake

mePAK-Z+(A)).

Let Dist2|GuessSC be the event that the simulation M is distinguishable from
a real MFPAK system from A’s perspective given that the modifier correctly
guessed Û∗ and Û ′∗ at the beginning of this case. Then Pr(Dist2|GuessSC) ≤
3 Pr(Succake

mePAK-Z+(A)) by the argument above.

Result for case 2. Let Û∗ ∈ Servers, Û ′∗ ∈ Clients and let E2 be the event that
query RevealPWCMFPAK(Û ′∗, Û∗) does not occur. The session involving Û ′∗, Û∗ in
SmePAK-Z+ is fresh if and only if the corresponding session in M is fresh in the
first factor. Thus, if event E2 occurs and event GuessSC occurs, then, whenever
A wins against M, A∗ wins against SmePAK-Z+, except with probability at most
Pr(Dist2|GuessSC), since. Therefore,

Pr(Succake-f1
M (t, qse, qex, qro)|E2,GuessSC) ≤ Pr(Succake

mePAK-Z+(t′, qse, qex, q
′
ro)) , (4.9)

where q′ro ≤ qro + 1 + z + 6qex + 5qse, t′ ≤ t+ texp + qex(3texp + tsig) + qse(3texp + tsig),
and z = min{qse + qex, |Clients| · |Servers|}. Moreover,∣∣Pr(Succake-f1

MFPAK(t, qse, qex, qro)|E2,GuessSC)

−Pr(Succake-f1
M (t, qse, qex, qro)|E2,GuessSC)

∣∣
≤ Pr(Dist2|GuessSC) . (4.10)

Combining these two expressions yields the following result:

Lemma 4.2 Let Û∗ ∈ Servers, Û ′∗ ∈ Clients, and suppose that the query
RevealPWCMFPAK(Û ′∗, Û∗) does not occur (which is event E2). Then

Pr(Succake-f1
MFPAK(t, qse, qex, qro)|E2,GuessSC) ≤ 4 Pr(Succake

mePAK-Z+(t′, qse, qex, q
′
ro)) ,
(4.11)

where q′ro ≤ qro + 1 + z + 6qex + 5qse, t′ ≤ t+ texp + qex(3texp + tsig) + qse(3texp + tsig),
and z = min{qse +qex, |Clients| · |Servers|}, and a similar bound exists for Advc2s-f1

MFPAK.

4.4.4.3 Case 3: Attacking a client instance, second factor uncompro-
mised

This case addresses impersonation of the server when the session being attacked is
a client instance and the second factor remains uncompromised.

68

Chapter 4. Multi-Factor Password-Authenticated Key Exchange

Let SmePAK denote the mePAK system that we will attack. The modifier M
first uniformly at randomly guesses Û∗ ∈R Clients and Û ′∗ ∈R Servers as its guess of
who the adversary A will end up attacking. The event that the modifier correctly
guesses these values is GuessCS and Pr(GuessCS) is given in (4.3).

For this case, we assume that no RevealReMFPAK(Û∗, Û ′∗) query is issued against
M: this case models server impersonation in the second factor, which is why this
query is not allowed.

The modifierM does the following to convert an MFPAK adversary A into a
mePAK adversary A∗.

Password and response preparation. For each (Ĉ, Ŝ) ∈ Clients× Servers,M
sets pwĈ,Ŝ ∈R Passwords and (v, V)

R← Gen(1κ), and constructs the corresponding
pwŜ[Ĉ]. In particular,M sets γ∗ = H1(Û∗, Û ′∗, pwÛ∗,Û ′∗) and computes (γ∗)−1. For
each (Ĉ, Ŝ) ∈ (Clients×Servers)\{(Û∗, Û ′∗)},M sets reĈ,Ŝ ∈R Responses. Of all the
password and response values, only reÛ∗,Û ′∗ remains unknown toM at this point.

Instantiation of mePAK system. We instantiate the mePAK system SmePAK

with the following random oracles: H∗4 = H4,

H∗5 ((Ĉ, Ŝ,m, Y), σ, τ) = H5((Ĉ, Ŝ,m·γ∗, Y), σ, γ∗, τ)||H6((Ĉ, Ŝ,m·γ∗, Y), σ, γ∗, τ) ,
(4.12)

and
H∗` ((Ĉ, Ŝ,m, Y), σ, τ) = H`((Ĉ, Ŝ,m · γ∗, Y), σ, γ∗, τ) (4.13)

for ` = 7, 8. These ‘starred’ functions are independent random oracles if the com-
ponent unstarred functions are. The above construction is possible since γ∗ is fixed
and known toM because of the guesses made at the beginning of this case.

M’s handling of A’s queries. The modifierM performs the following modifi-
cations to the queries of A.

1. RevealPWCMFPAK(Ĉ, Ŝ): Return pwĈ,Ŝ.

2. RevealPWSMFPAK(Ŝ, Ĉ): Return pwŜ[Ĉ].

3. RevealReMFPAK(Ĉ, Ŝ):

(a) If (Ĉ, Ŝ) 6= (Û∗, Û ′∗): Return reĈ,Ŝ.

(b) If (Ĉ, Ŝ) = (Û∗, Û ′∗): Abort; if this query occurs, thenM’s guess of Û∗
and Û ′∗ at the beginning of this case was incorrect.

4. TestMFPAK(Û , i):

69

Chapter 4. Multi-Factor Password-Authenticated Key Exchange

(a) If Û = Û∗: Send a TestmePAK(Û , i) query to SmePAK and return the result
to A.

(b) If Û 6= Û∗: Abort; if this query occurs, then M’s guess of Û∗ at the
beginning of this case was incorrect.

5. RevealSessionKeyMFPAK(Û , i):

(a) If Û = Û∗ or Û = U ′∗: Send a RevealSessionKeymePAK(Û , i) query to
SmePAK and return the result to A.

(b) Otherwise: Return sk for instance ΠÛ
i .

6. ExecuteMFPAK(Ĉ, i, Ŝ, j):

(a) If (Ĉ, Ŝ) 6= (Û∗, Û ′∗): M performs ExecuteMFPAK(Ĉ, i, Ŝ, j) with all the
values it has and returns the transcript.

(b) If (Ĉ, Ŝ) = (Û∗, Û ′∗): M will use the mePAK system SmePAK to help
construct a full transcript by performing the following sequence of oper-
ations:

i. Send an ExecutemePAK(Ĉ, i, Ŝ, j) query to SmePAK and receive
(Ĉ,m, Y, k, k′).

ii. Set

m̂ = m · γ∗

k̂ = substring1(k)

â′ = substring2(k)

â = â′ ⊕ v′

ŝ = Signv((Ĉ, Ŝ, m̂, Y)) .

iii. Return (Ĉ, m̂, Y, k̂, â, v′′, k′, s) to A.

7. SendMFPAK(Û , i,M):

(a) If M is not a valid protocol message in a meaningful sequence, then
abort as would be done in MFPAK.

(b) If M = (“start” , Ŝ) and (Û , Ŝ) 6= (Û∗, Û ′∗):
Perform ClientAction0MFPAK and return (Û ,m).

(c) If M = (“start” , Ŝ) and (Û , Ŝ) = (Û∗, Û ′∗):

i. Send a SendmePAK(Û , i, (“start”, Ŝ)) query to SmePAK and receive
(Û ,m).

ii. Set m̂ = m · γ∗ and store.
iii. Return (Û , m̂).

70

Chapter 4. Multi-Factor Password-Authenticated Key Exchange

(d) If M = (Ĉ,m) and (Ĉ, Û) 6= (Û∗, Û ′∗): Perform ServerAction1MFPAK

and return (Y, k, a, v′′).
(e) If M = (Ĉ,m) and (Ĉ, Û) = (Û∗, Û ′∗):

i. Set m̂ = m · (γ∗)−1 and store.
ii. Send a SendmePAK(Û , i, (Ĉ, m̂)) query to SmePAK and receive (Y, k).
iii. Set

k̂ = substring1(k)

â′ = substring2(k)

â = â′ ⊕ v′ .

iv. Return (Y, k̂, â, v′′).
(f) If M = (Y, k, a, v′′) and (Û , Û ′) 6= (Û∗, Û ′∗), where Û ′ is the partner of

Û : Perform ClientAction2MFPAK and return (k′, s).
(g) If M = (Y, k, a, v′′) and (Û , Û ′) = (Û∗, Û ′∗), where Û ′ is the partner of

Û :
i. Set â′ = a⊕ v′ and k̂ = k || â′.
ii. Send a SendmePAK(Û , i, (Y, k̂)) query to SmePAK and receive (k′) or

abort.
iii. Set ŝ = Signv((Û

∗, Û ′∗, m̂, Y)) where m̂ is the value generated in
step 2.

iv. Return (k′, ŝ).
(h) If M = (k′, s) and (Û ′, Û) 6= (Û∗, Û ′∗), where Û ′ is the partner of Û :

Perform ServerAction3MFPAK.
(i) If M = (k′, s) and (Û ′, Û) = (Û∗, Û ′∗), where Û ′ is the partner of Û :

i. Abort if ¬VerifyV ((Û∗, Û ′∗, m̂, Y), s) where m̂ is the value generated
in step 4.

ii. Send a SendmePAK(Û , i, (k′)) query to SmePAK.

Differences from MFPAK system. We must now analyze the differences be-
tween a true MFPAK system and the view presented to the MFPAK adversary A
by the modifierM.

First we note that the distributions of generated passwords and responses ex-
actly match the MFPAK specifications. Furthermore, all the generated responses
exactly match the mePAK specifications.

Next, we note that M’s handling of A’s queries precisely matches what an
MFPAK system would do except in a small number of cases. The messages received
from and forwarded from the use of the mePAK system SmePAK can by inspection
be seen to match what the MFPAK system would do because SmePAK is using the
specially constructed random oracles H∗. The differences betweenM and what a
true MFPAK system would do are as follows:

71

Chapter 4. Multi-Factor Password-Authenticated Key Exchange

• RevealRe(Ĉ, Ŝ) when (Ĉ, Ŝ) = (Û∗, Û ′∗):
The modifierM aborts here, while a true MFPAK system should not. IfM
correctly guessed Û∗ and Û ′∗ at the beginning of this case, then this query
would never occur, for if it did then the session in which a Test query is
directed to ΠÛ∗

i would not be fresh.

• Test(Û , i) when Û 6= Û∗:
The modifier M aborts here, while a true MFPAK system should not. If
M correctly guessed Û∗ at the beginning of this case, then this query would
never occur, for if it did then the session in which a Test query is directed to
ΠÛ∗
i would not be fresh.

In particular, we note that, when the event GuessCS occurs, the handling of A’s
Execute and Send queries exactly matches the behaviour and distributions of a true
MFPAK system.

Result for case 3. Let Û∗ ∈ Clients, Û ′∗ ∈ Servers and let E3 be the event that
no RevealReMFPAK query occurs. If event E3 occurs, the session involving Û∗, Û ′∗ in
SmePAK is fresh if and only if the corresponding session inM is fresh in the second
factor. Thus, if event E3 occurs and event GuessCS occurs, then, whenever A wins
againstM, A∗ wins against SmePAK. Therefore,

Pr(Succake-f2
M (t, qse, qex, qro)|E3,GuessCS) ≤ Pr(Succake

mePAK(t′, qse, qex, q
′
ro)) , (4.14)

where q′ro ≤ 2qro + 1 + 4z + 6qex + 5qse, t′ ≤ t + z · tGen + texp + qex(3texp + tsig) +
qse(3texp + tsig), and z = min{qse + qex, |Clients| · |Servers|}. Moreover,

Pr(Succake-f2
MFPAK(t, qse, qex, qro)|E3,GuessCS)

= Pr(Succake-f2
M (t, qse, qex, qro)|E3,GuessCS) . (4.15)

Combining these two expressions yields the following result:

Lemma 4.3 Let Û∗ ∈ Clients, Û ′∗ ∈ Servers, and suppose that no RevealReMFPAK

query occurs (which is event E3). Let A be an adversary that runs in time t and
makes at most qse and qex queries of type Send and Execute, respectively, and at
most qro random oracle queries. Then

Pr(Succake-f2
MFPAK(A)|E3,GuessCS) ≤ Pr(Succake

mePAK(t′, qse, qex, q
′
ro)) , (4.16)

where q′ro ≤ 2qro + 1 + 4z + 6qex + 5qse, t′ ≤ t + z · tGen + texp + qex(3texp + tsig) +
qse(3texp +tsig), and z = min{qse +qex, |Clients| · |Servers|}, and a similar bound exists
for Advs2c-f2

MFPAK.

72

Chapter 4. Multi-Factor Password-Authenticated Key Exchange

4.4.4.4 Case 4: Attacking a server instance, second factor uncompro-
mised

This case addresses impersonation of the client when the session being attacked is
a server instance and the second factor remains uncompromised.

The modifierM first uniformly at randomly guesses Û∗ ∈R Servers and Û ′∗ ∈R
Clients as its guess of who the adversary A will end up attacking. The event that the
modifier correctly guesses these values is GuessSC which has the same probability
as GuessCS.

For this case, we assume that no RevealReMFPAK(Û ′∗, Û∗) query is issued against
M: this case models client impersonation in the second factor, which is why this
query is not allowed.

The modifierM does the following to convert an MFPAK adversary A into a
mePAK adversary A∗.

Password and response preparation. For each (Ĉ, Ŝ) ∈ Clients× Servers,M
sets pwĈ,Ŝ ∈R Passwords and (v, V)

R← Gen(1κ), and constructs the corresponding
pwŜ[Ĉ]. In particular,M sets γ∗ = H1(Û ′∗, Û∗, pwÛ ′∗,Û∗) and computes (γ∗)−1. For
each (Ĉ, Ŝ) ∈ (Clients×Servers)\{(Û ′∗, Û∗)},M sets reĈ,Ŝ ∈R Responses. Of all the
password and response values, only reÛ ′∗,Û∗ remains unknown toM at this point.

Instantiation of mePAK system. M instantiates the mePAK system SmePAK

with the following random oracles: H∗4 = H4,

H∗5 ((Ĉ, Ŝ,m, Y), σ, τ) = H5((Ĉ, Ŝ,m·γ∗, Y), σ, γ∗, τ)||H6((Ĉ, Ŝ,m·γ∗, Y), σ, γ∗, τ) ,
(4.17)

and
H∗` ((Ĉ, Ŝ,m, Y), σ, τ) = H`((Ĉ, Ŝ,m · γ∗, Y), σ, γ∗, τ) , (4.18)

for ` = 7, 8. These ‘starred’ functions are independent random oracles if the
component unstarred functions are. The above construction is possible since γ∗
is fixed and known to M because of the guesses made at the beginning of this
case. By using a concatenation of random oracles, the mePAK system computes
the values we need inM’s handling of Execute queries.

M’s handling of A’s queries. The modifierM performs the following modifi-
cations to the queries of A.

1. RevealPWCMFPAK(Ĉ, Ŝ): Return pwĈ,Ŝ.

2. RevealPWSMFPAK(Ŝ, Ĉ): Return pwŜ[Ĉ].

3. RevealReMFPAK(Ĉ, Ŝ):

73

Chapter 4. Multi-Factor Password-Authenticated Key Exchange

(a) If (Ĉ, Ŝ) 6= (Û ′∗, Û∗): Return reĈ,Ŝ.

(b) If (Ĉ, Ŝ) = (Û ′∗, Û∗): Abort; if this query occurs, thenM’s guess of Û∗
and Û ′∗ at the beginning of this case was incorrect.

4. TestMFPAK(Û , i):

(a) If Û = Û∗: Send a TestmePAK(Û , i) query to SmePAK and return the result
to A.

(b) If Û 6= Û∗: Abort; if this query occurs, then M’s guess of Û∗ at the
beginning of this case was incorrect.

5. RevealSessionKeyMFPAK(Û , i):

(a) If Û = Û∗ or Û = U ′∗: Send a RevealSessionKeymePAK(Û , i) query to
SmePAK and return the result to A.

(b) Otherwise: Return sk for instance ΠÛ
i .

6. ExecuteMFPAK(Ĉ, i, Ŝ, j):

(a) If (Ĉ, Ŝ) 6= (Û ′∗, Û∗): M performs ExecuteMFPAK(Ĉ, i, Ŝ, j) with all the
values it has and returns the transcript.

(b) If (Ĉ, Ŝ) = (Û ′∗, Û∗): M will use SmePAK to help construct a full tran-
script by performing the following sequence of operations:

i. Send an ExecutemePAK(Ĉ, i, Ŝ, j) query to SmePAK and receive
(Ĉ,m, Y, k, k′).

ii. Set

m̂ = m · γ∗

k̂ = substring1(k)

â′ = substring2(k)

â = â′ ⊕ v′

ŝ = Signv((Ĉ, Ŝ, m̂, Y)) .

iii. Return (Ĉ, m̂, Y, k̂, â, v′′, k′, s) to A.

7. SendMFPAK(Û , i,M)

(a) If M is not a valid protocol message in a meaningful sequence, then
abort as would be done in MFPAK.

(b) If M = (“start” , Ŝ) and (Û , Ŝ) 6= (Û ′∗, Û∗):
Perform ClientAction0MFPAK and return (Û ,m).

(c) If M = (“start” , Ŝ) and (Û , Ŝ) = (Û ′∗, Û∗):

74

Chapter 4. Multi-Factor Password-Authenticated Key Exchange

i. Send a SendmePAK(Û , i, (“start”, Ŝ)) query to SmePAK and receive
(Û ,m).

ii. Set m̂ = m · γ∗ and store.
iii. Return (Û , m̂).

(d) If M = (Ĉ,m) and (Ĉ, Û) 6= (Û ′∗, Û∗): Perform ServerAction1MFPAK

and return (Y, k, a, v′′).

(e) If M = (Ĉ,m) and (Ĉ, Û) = (Û ′∗, Û∗):

i. Set m̂ = m · (γ∗)−1 and store.
ii. Send a SendmePAK(Û , i, (Ĉ, m̂)) query to SmePAK and receive (Y, k).
iii. Set

k̂ = substring1(k)

â′ = substring2(k)

â = â′ ⊕ v′ .

iv. Return (Y, k̂, â, v′′).

(f) If M = (Y, k, a, v′′) and (Û , Û ′) 6= (Û ′∗, Û∗), where Û ′ is the partner of
Û : Perform ClientAction2MFPAK and return (k′, s).

(g) If M = (Y, k, a, v′′) and (Û , Û ′) = (Û ′∗, Û∗), where Û ′ is the partner of
Û :

i. Set â′ = a⊕ v′ and k̂ = k || â′.
ii. Send a SendmePAK(Û , i, (Y, k̂)) query to SmePAK and receive (k′) or

abort.
iii. Set ŝ = Signv((Û

′∗, Û∗, m̂, Y)) where m̂ is the value generated in
step 2.

iv. Return (k̂′, ŝ).

(h) If M = (k′, s) and (Û , Û ′) 6= (Û∗, Û ′∗), where Û ′ is the partner of Û :
Perform ServerAction3MFPAK.

(i) If M = (k′, s) and (Û , Û ′) = (Û∗, Û ′∗), where Û ′ is the partner of Û :

i. Abort if ¬VerifyV ((Û ′∗, Û∗, m̂, Y), s) where m̂ is the value generated
in step 4.

ii. Send a SendmePAK(Û , i, (k′)) query to SmePAK.

Differences from MFPAK system. We must now analyze the differences be-
tween a true MFPAK system and the view presented to the MFPAK adversary A
by the modifierM.

First we note that the distributions of generated passwords and responses ex-
actly match the MFPAK specifications. Furthermore, all the generated passwords
exactly match the mePAK specifications.

75

Chapter 4. Multi-Factor Password-Authenticated Key Exchange

Next, we note that M’s handling of A’s queries precisely matches what an
MFPAK system would do except in a small number of cases. The messages received
from and forwarded from the use of the mePAK system SmePAK can by inspection
be seen to match what the MFPAK system would do because SmePAK is using the
specially constructed random oracles H∗. The differences betweenM and what a
true MFPAK system would do are as follows:

• RevealRe(Ĉ, Ŝ) when (Ĉ, Ŝ) = (Û ′∗, Û∗):
The modifierM aborts here, while a true MFPAK system should not. IfM
correctly guessed Û∗ and Û ′∗ at the beginning of this case, then this query
would never occur, for if it did then the session in which a Test query is
directed to ΠÛ∗

i would not be fresh.

• Test(Û , i) when Û 6= Û∗:
The modifierM aborts here, while a true MFPAK system should not. IfM
correctly guessed Û∗ at the beginning of this case, then these queries would
never occur, for if they did then the session in which a Test query is directed
to ΠÛ∗

i would not be fresh.

In particular, we note that, when the event GuessSC occurs, the handling of A’s
Execute and Send queries exactly matches the behaviour and distributions of a true
MFPAK system.

Result for case 4. Let Û∗ ∈ Servers, Û ′∗ ∈ Clients and let E3 be (as before) the
event that no RevealReMFPAK query occurs. If event E3 occurs, then the session
involving Û ′∗, Û∗ in SmePAK is fresh if and only if the corresponding session in M
is fresh in the second factor. Thus, if event E3 occurs and event GuessSC occurs,
then, whenever A wins againstM, A∗ wins against SmePAK. Therefore,

Pr(Succake-f2
M (t, qse, qex, qro)|E3,GuessSC) ≤ Pr(Succake

mePAK(t′, qse, qex, q
′
ro)) , (4.19)

where q′ro ≤ 2qro + 1 + 4z + 6qex + 5qse, t′ ≤ t + z · tGen + texp + qex(3texp + tsig) +
qse(3texp + tsig), and z = min{qse + qex, |Clients| · |Servers|}. Moreover,

Pr(Succake-f2
MFPAK(t, qse, qex, qro)|E3,GuessSC)

= Pr(Succake-f2
M (t, qse, qex, qro)|E3,GuessSC) . (4.20)

Combining these two expressions yields the following result:

Lemma 4.4 Let Û∗ ∈ Servers, Û ′∗ ∈ Clients, and suppose that no RevealReMFPAK

query occurs (which is event E3). Let A be an adversary that runs in time t and
makes at most qse and qex queries of type Send and Execute, respectively, and at
most qro random oracle queries. Then

Pr(Succake-f2
MFPAK(A)|E3,GuessSC) ≤ Pr(Succake

mePAK(t′, qse, qex, q
′
ro)) ,

76

Chapter 4. Multi-Factor Password-Authenticated Key Exchange

where q′ro ≤ 2qro + 1 + 4z + 6qex + 5qse, t′ ≤ t + z · tGen + texp + qex(3texp + tsig) +
qse(3texp +tsig), and z = min{qse +qex, |Clients| · |Servers|}, and a similar bound exists
for Advc2s-f2

MFPAK.

4.4.4.5 Overall result

By combining the cases 1 and 2, we can obtain a result for sessions that are fresh in
the first factor, and by combining cases 3 and 4 we can obtain a result for sessions
that are fresh in the second factor. For the ake-f1 advantage, we have

Pr(Succake-f1
MFPAK(t, qse, qex, qro))

≤ Pr(Succake-f1
MFPAK(t, qse, qex, qro)|E1,GuessCS)/Pr(GuessCS)

+ Pr(Succake-f1
MFPAK(t, qse, qex, qro)|E2,GuessSC)/Pr(GuessSC) (4.21)

≤ |Clients| · |Servers| · 8 Pr(SuccmePAK-Z+(t′, qse, qex, q
′
ro)) , (4.22)

where t′ ≤ t+ texp + qex(3texp + tsig) + qse(3texp + tsig), q′ro ≤ qro + 1 + z + 6qex + 5qse,
and z = max{qse + qex, |Clients| · |Servers|}.

For the ake-f2 advantage, we have

Pr(Succake-f2
MFPAK(t, qse, qex, qro))

≤ Pr(Succake-f2
MFPAK(t, qse, qex, qro)|E3,GuessCS)/Pr(GuessCS)

+ Pr(Succake-f2
MFPAK(t, qse, qex, qro)|E3,GuessSC)/Pr(GuessSC) (4.23)

≤ |Clients| · |Servers| · 2 Pr(SuccmePAK(t′′, qse, qex, q
′′
ro)) , (4.24)

where q′′ro ≤ 2qro + 1 + 4z + 6qex + 5qse, t′′ ≤ t + z · tGen + texp + qex(3texp + tsig) +
qse(3texp + tsig), and z = max{qse + qex, |Clients| · |Servers|}.

Similar bounds apply for Advma-f1
MFPAK and Advma-f2

MFPAK.

Substituting the security statements for mePAK (Theorem 3.4) and mePAK-Z+
(Theorem 3.6) and simplifying the expressions, we obtain the following theorem
showing that MFPAK is a secure multi-factor password-authenticated key exchange
protocol assuming the hardness of the Computational Diffie-Hellman problem and
working in the random oracle model:

Theorem 4.5 MFPAK is a secure multi-factor password authenticated key ex-
change protocol.

More precisely, let G be a finite cyclic group generated by g for which the Com-
putational Diffie-Hellman problem is hard, and let S be an eu-cma secure signature
scheme with security parameter κ. Let A be an adversary that runs in time t and
makes at most qse and qex queries of type Send and Execute, respectively, and at
most qro queries to the random oracle. Let bre = 1 if A makes a RevealPWS query
to a server, and 0 otherwise. Assume passwords are uniformly distributed among
the set Passwords and responses are uniformly distributed among the set Responses.

77

Chapter 4. Multi-Factor Password-Authenticated Key Exchange

Then
Advake-f1

MFPAK(A) ≤ 16δ((1− bre)qse + breqro)

|Passwords|
+ ε (4.25)

and
Advake-f2

MFPAK(A) ≤ 4δqse
|Responses|

+ ε , (4.26)

where ε = 8qseAdvCDH
G,g (t′, q′2ro) + 6qseSucceu-cma

S,κ (t′, qse) + 5(qse+qex)(qro+qse+qex)
|G| and δ =

|Clients| · |Servers|, for t′ = t+ (z+ 8(q′2ro + qse + qex))texp, q′ro = 2qro + 4z+ 6qex + 5qse,
and z = max{qse + qex, |Clients| · |Servers|}. Moreover, similar bounds exist for
Advma-f1

MFPAK(A) and Advma-f2
MFPAK(A).

4.4.5 Example instantiation

As a consequence of Theorem 4.5, we can pick a desired security level (as in Ta-
ble 2.1) and, under the various computational assumptions from Section 2.2, choose
a set of parameters that achieve that security level.

Suppose we wish for an adversary running in time 280 to have ake-f1 and ake-f2
advantages of at most 2−20 against MFPAK.

To give an example instantiation, we have to pick appropriate values for the
various parameters in the statement of the theorem. We choose the same values as
in Section 3.3.2.1.

With this choice of parameters, we find that z .
= 220, q′ro

.
= 243, t′ .= 2109, and

ε
.
= 213 · AdvCDH

G,g (2109, 286) + 213 · Succeu-cma
S,κ (2109, 210) + 263

|G| .

We need |Passwords| = |Responses| = 255, which, on the author’s keyboard with
95 distinct printable characters on it, is achieved by having passwords and responses
as strings of length 8, assuming passwords and responses are uniformly distributed.
If bre = 1, that is, if a RevealPWS query occurs, then |Passwords| = 255 implies an
adversary must do 230 random oracle queries to have a good chance of finding the
password given the output of RevealPWS.

We also need ε ≤ 2−21. In other words, we need 213 · AdvCDH
G,g (2109, 286) ≤ 2−21,

213 · Succeu-cma
S,κ (2109, 210) ≤ 2−21, and |G| ≥ 284. This means we need a group of size

q ≥ 2458; in other words, we need a 458-bit elliptic curve group. Using the signature
scheme ECDSA over the same size group would suffice; finally, we can instantiate
the hash function with SHA-512.

MFPAK can achieve the same security level (for example, 280) as PAK or PAK-
Z+ at only slightly larger key sizes (458 bits versus 430 bits), albeit with longer
passwords (8 characters instead of 5 characters). It is possible that a different
formal security argument could give a tighter reduction in Theorem 1 and allow for
smaller password sizes; regardless, the analysis still provides strong security with
realizable parameter sizes.

78

Chapter 5

Denial-of-Service-Resilient
Authenticated Key Exchange

Contents
5.1 Introduction . 79
5.2 Literature review . 82
5.3 Security and denial of service resilience 85

5.3.1 Informal security and denial of service criteria 85
5.3.2 Formal model . 88
5.3.3 Model implications . 94

5.4 DoS-CMQV . 97
5.4.1 Design ideas . 97
5.4.2 Protocol specification . 97
5.4.3 Security analysis of DoS-CMQV 100
5.4.4 Denial of service resilience analysis 101
5.4.5 Instantiation . 103

5.5 Other constructions . 103
5.5.1 Memory-bound puzzling relations 104
5.5.2 Stateless connections and cookies 104

5.1 Introduction

Cryptographic protocols such as key exchange usually require expensive computa-
tions such as finite field exponentiations or elliptic curve scalar-point multiplica-
tions. In an adversarial environment such as the Internet, an attacker could effect
a denial of service attack against a server by forcing the server to perform many
instances of a cryptographic protocol. However, by forcing clients to perform ex-
pensive operations themselves before the server is willing to expend resources, we

79

Chapter 5. Denial-of-Service-Resilient Authenticated Key Exchange

can offer some resilience to these attacks. Careful attention must be paid, however,
to how these denial of service countermeasures are used in order to ensure that they
actually protect the server and do not open up new avenues of attack.

In this chapter, we describe a technique for formally modeling the denial of
service resilience of authenticated key exchange protocols, provide a mechanism
for achieving denial-of-service-resilient protocols, and analyze existing techniques.
Note that in this chapter, we deal with authenticated key exchange, rather than
password-authenticated key exchange as in Chapters 3 and 4. In authenticated
key exchange the client and server each have long-term private key / public
key pairs which they use for authentication, instead of short shared secrets as in
password-authenticated key exchange.

Practical motivation. Secure, reliable, and fast communication is essential for
commercial success on today’s Internet. Key exchange provides a technique for es-
tablishing a secure connection to a web server, but it is computationally demanding
and as a result may slow down service time. If a web page is slow to load, a client
may switch to an alternative business, leading to a loss of customers for the initial
service provider.

However, maintaining a sufficiently powerful server can be an expensive venture.
The servers that host the web page have limited resources, which include the amount
of traffic the server can handle, the time required to establish a connection, and
the number of active connections that can run concurrently. This in effect bounds
the number of connections a company’s server can honour during a given period in
time.

Malicious parties have recognized that exhausting an honest server’s limited
resources can be used to disrupt others’ services for their own gain. The term denial
of service was coined to describe attacks that aim to disrupt, destroy, or render
services unavailable. A typical denial of service attack exhausts the resources of
the server under attack. The server is rendered unavailable for honest clients, who
then proceed to request similar services from competitors. To prevent malicious
requests, a server needs to filter out bogus connection requests and honour those
from legitimate clients.

Security is an important aspect of online services. Many connections between a
client and a server need to be secured against third parties; financial transactions
are the most common case. Key exchange is used to produce a shared secret that
is used to encrypt subsequent communication. Key exchange involves computa-
tionally expensive public key algorithms, and hence may dominate server-side run
time, thereby limiting the number of serviced clients. This makes key exchange an
enticing target for denial of service attacks, since a malicious party can easily issue
a request for key exchange. Hence, it is advantageous to try to reject as many bogus
connections as possible during key exchange. In this chapter we are concerned with
providing a means for deterring malicious parties from initiating denial of service
attacks based on key exchange.

80

Chapter 5. Denial-of-Service-Resilient Authenticated Key Exchange

Practitioners and standardization bodies have recognized the importance of de-
nial of service resilience, but researchers have been slow to respond with a formal
treatment of the subject. In some sense, addressing denial of service resembles the
initial approach to key exchange: rather than constructing an overall model, a list
of ad hoc goals is selected and then it is shown that a protocol meets those goals. As
a result, it is difficult to compare and analyze two different protocols with respect
to denial of service resilience. Furthermore, if the lists of goals are different then it
is often unclear how two protocols can be compared.

Contributions. In this chapter we propose a formal model based on the extended
Canetti-Krawczyk (eCK) model for secure and authentic shared key establishment
that takes into account denial of service (DoS) attacks. Whereas previous work
is mainly focused on proper DoS countermeasures, we are also interested in the
integration of DoS countermeasures with key establishment: just giving the client a
puzzle and checking that it was solved is not enough to guarantee denial of service
resilience for key agreement.

We analyze many of the DoS attacks presented in the literature and argue that
they do not stem from a weak DoS countermeasure but from incorrect integration
into the key agreement protocol. Existing formal methods have already led to
the discovery of some novel DoS attacks, but not all attacks can be identified. Our
model covers a wider range of DoS goals and provides a DoS framework which can be
used to analyze and compare DoS countermeasures. Previous formal treatments of
denial of service deal with the two party setting: an honest server and an adversary.
These models do not capture goals related to hijacking of connections, but do allow
for a fine analysis of the strength of a DoS countermeasure. Our model can be
used in conjunction with previous analyses: we deal with the integration of DoS
countermeasures and key agreement protocols, and previous work can be used to
analyze the strength of the countermeasures.

Future directions. This new framework for analyzing denial of service resilience
can be applied in conjunction with other goals for key agreement protocols. For
example, the JFKi and JFKr protocols [ABB+04] aim to offer additional privacy
features: JFKi protects the initiator’s identity and JFKr protects the responder’s
identity. Future work in this field could involve designing denial-of-service-resilient
protocols in our framework with similar privacy measures.

This model can also be applied to give denial of service resilience to other types
of key agreement protocols, for example password-authenticated key agreement
protocols. Adapting this technique for use in IPsec or TLS would provide denial of
service resilience in important Internet protocols. Our framework is appropriate for
challenge-response type puzzles for denial of service resilient (two-pass protocols).
Protocols in which the client generates the challenge herself (one-pass protocols)
may be of interest in asynchronous or limited connectivity environments: an open

81

Chapter 5. Denial-of-Service-Resilient Authenticated Key Exchange

problem is to modify our framework to describe denial of service resilience for 1-pass
protocols.

Outline. The remainder of this chapter is organized as follows. In Section 5.2 we
review previous developments of key exchange and denial of service resilience in key
exchange protocols. We describe the goals of key exchange and denial of service
resilience both informally and in a formal model in Section 5.3. We present our
DoS-CMQV protocol in Section 5.4 and show that it is a secure denial-of-service-
resilient key exchange protocol and describe how it can be instantiated. We discuss
other constructions for denial of service resilience and relate our model to the JFKi
and HIP protocols in Section 5.5.

5.2 Literature review

Key exchange. Key exchange is an important cryptographic primitive typically
used for building secret channels between two parties. Designing and analysing
key exchange protocols is a non-trivial task. Early approaches to defining security
listed various goals and protocols were shown to satisfy each goal, but soon this
gave way to a more rigorous, systematic approach.

Bellare and Rogaway [BR93a, BR95] and Blake-Wilson, Johnson, and Menezes
[BWJM97] presented the first formal models for authenticated key exchange that
allowed complexity-theoretic security arguments, for the symmetric and asymmetric
key exchange settings, respectively. The advantage of this model-based approach is
that multiple security goals can be considered at once, and model-based approaches
have been widely adopted in the contemporary literature. Even if a security prop-
erty was not considered when the model was designed, it is still possible to check if
the model covers the new property. The formal models for password-authenticated
key exchange in Section 3.2 and for multi-factor password-authenticated key ex-
change in Section 4.3.2 are examples of the model-based approach.

The initial security models and definitions for authenticated key exchange were
extended to incorporate wider security goals. The work of Canetti and Krawczyk
[CK01a], known as the Canetti-Krawczyk model, or CK01 model, is one of the
most influential extensions to the original model. Their work was later augmented
by Krawzcyk [Kra05a] and LaMacchia, Lauter and Mityagin [LLM07] to capture
a wider range of desirable security properties, such as protection against malicious
insiders and key compromise impersonation [JV96]; this is referred to as the ex-
tended Canetti-Krawczyk model, or eCK model. We discuss our denial of
service extension to the eCK model in Section 5.3.2.

These security models have not yet been considered in light of denial of service
resilience. In the CK01/eCK model, for example, the adversary controls all com-
munication links. In this setting it is not immediately clear how denial of service
can be considered alongside key establishment: the adversary may simply choose

82

Chapter 5. Denial-of-Service-Resilient Authenticated Key Exchange

not to deliver any of the messages addressed to a target party. Nonetheless, we be-
lieve that in this setting we can still incorporate meaningful goals related to denial
of service. Moreover, in practice it is not always the case that the adversary can
destroy a link at will.

A number of protocols have been developed with formal arguments for security
in the extended Canetti-Krawczyk models, including NAXOS [LLM07] and CMQV
[Ust08b], which has a security argument using the Gap Diffie-Hellman assumption,
and, quite recently, NAXOS+ [LP08], which has a security argument using the
Computational Diffie-Hellman assumption. Our work in developing a denial-of-
service-resilient key exchange protocol will build upon the CMQV protocol.

Denial of service. There are two main types of denial of service attacks (see
[BM03, §1.6.6] for example): resource depletion attacks and connection de-
pletion attacks. Resource depletion attacks capture the case where a malicious
party attempts to drain the computational or memory resources of a server. By
contrast, connection depletion attacks aim to exhaust the number of allowed con-
nections to the server. A protocol can aim to defend against either or both of these
types of attacks.

Distributed denial of service (DDoS) attacks, in which many distributed client
computers attack a single server, are of significant concern on the Internet today.
Distributed attacks are very difficult to defend against. One known technique,
which we use in this paper, is to allow a server to adjust its denial of service
countermeasure based on the load it experiences, but this is in essence a side-effect
of the approach. Puzzle auctions [WR03] are one such implementation of tunable
puzzles. Our model does not aim to address distributed denial of service attacks.

Aura and Nikander [AN97] introduced the notion of stateless connections, in
which stateful connections are transformed into stateless ones by attaching the state
information to the message and using a message authentication code for integrity
checking. This enables some protection against denial of service attacks by saving
the server from having to store session information until later in the exchange when
more assurance is possible.

Meadows [Mea99] offered the first formal framework for denial-of-service-resilient
protocols, based on the causal sequencing language of fail-stop protocols of Gong
and Syverson [GS95]. To avoid connection depletion, Meadows suggests that each
message be authenticated with increasingly complex levels of authentication; cook-
ies could be used for the early authentication scheme. Meadows then applies this
framework to the Station-to-Station protocol [DvOW92] to identify potential DoS
attacks but does not provide a denial-of-service-resilient protocol. An application
of Meadow’s cost-based framework to JFK revealed a potential DoS attack, and a
solution to this problem was proposed using client puzzles [SGNB06].

Cookies. One of the first techniques used to defend protocols against denial of
service attacks was cookies. First introduced in the Photuris protocol (published

83

Chapter 5. Denial-of-Service-Resilient Authenticated Key Exchange

in 1999 as [KS99] but drafts appeared earlier), cookies are small authentication
tokens returned by a server upon initial connection by the client. In order for
the client to be allowed to continue with the connection, the client must echo the
cookie back to the server. The server does not store the cookie, instead using the
stateless connection technique to check the authenticity of the cookie which the
client includes in subsequent messages.

Krawczyk’s SIGMA protocol [Kra03a] has been adapted to have denial of service
resilience in the form of cookies in its implementation in the Internet Key Exchange
protocol version 2 (IKEv2) [Kau05], a proposal for the successor of the Internet Key
Exchange protocol (IKE) [HC98] used in IPsec [Atk95]. Cookies are also used in the
Just Fast Keying protocol (JFK) proposed by Aiello et al. [ABB+04]. JFK allows
the server to reuse its ephemeral private-public key pair across multiple sessions
to reduce the server’s computational overload, at the expense of increasing the
potential damage should an ephemeral private key be leaked.

Cookies are a valuable first-order denial of service countermeasure and have
been used extensively as described above. However, they are a weak form of denial
of service resilience because they do not require an attacker to do anything other
than faithfully relay a previously received cookie.

Protocols using cookies can also be susceptible to other types of attacks as
shown by Mao and Paterson [MP02, §2.2], who describe a denial of service attack
against IKEv2. In their attack, a malicious party who controls a popular serverM
can redirect legitimate traffic from M towards another target server M′, thereby
effecting a denial of service attack againstM′. The attack only costsM bandwidth,
not computation or memory, and is resilient to standard DoS countermeasures like
cookies. This attack is possible because there is no strong binding between the
DoS countermeasure and the name of the server that the client wishes to connect
to: we codify this notion in our security criterion DoS-2 in Section 5.3.1. Despite
key agreement and denial of service being orthogonal issues, combining them is no
trivial task, as demonstrated by this attack.

Puzzles. Dwork and Naor [DN92] introduced the notion of client puzzles to
defend against denial of service attacks. A server under a denial of service attack can
require clients to find the solution to a puzzle before the server allocates resources:
the puzzle should be hard to solve but the solution should be easy to verify. Back
[Bac97] and Juels and Brainard [JB99] suggested using a hash function so that
a client must perform a large number of operations to find the solution; this is a
computationally bounded puzzle. We build on their approach by specifying how
puzzles should be integrated with key exchange. Waters et al. [WJHF04] describe
how puzzles can be distributed across multiple servers for coordinated access.

Abadi et al. [ABMW03] suggested another class of puzzles called memory-
bounded puzzles, in which computing the solution to the puzzle requires a large
number of memory accesses; memory-bound puzzles have closer running times
across varied hardware because memory access times vary less than processor speed

84

Chapter 5. Denial-of-Service-Resilient Authenticated Key Exchange

between, for example, low-power embedded devices and data centre servers. Other
memory-bound puzzles have subsequently been proposed by Dwork et al. [DGN03]
and Doshi et al. [DMR06].

Puzzles can be used as a suitable protection against connection depletion at-
tacks. We demonstrate this by carefully integrating puzzles with a secure key
exchange protocol. Furthermore, puzzles can be used to ensure that the client
requesting the connection performs a sufficient amount of computational effort rel-
ative to the server’s work. In this way the server obtains assurance that either the
client is honest or the adversary’s computational power is too strong to prevent de-
nial of service attacks. Indeed, for an honest client, performing one time-consuming
computation is not inconvenient, but when the work required is multiplied a thou-
sandfold, an adversary would need to access powerful, distributed resources to
mount such an attack. We must be careful, however, to not place too high a
burden on the client; otherwise, just by using the protocol they may experience
slowdowns comparable to what might be effected by an actual denial of service
attack. What clients may consider unacceptable is based on the application and
usage of the software, not the cryptography, and hence is not formally modeled.

Aura, Nikander, and Leiwo [ANL00] give a framework for using hash function
preimages as a denial of service in authentication protocols, and lay out the basic
principle that “the client should always commit its resources to the authentication
protocol first and the server should be able to verify the client commitment be-
fore allocating its own resources”. We apply this principle to our development of
the model for denial-of-service-resilient key agreement. However, the technique of
[ANL00] is not sufficient to defend against the attack of Mao and Paterson [MP02];
our approach does.

5.3 Security and denial of service resilience

In this section, we present a model for the security of authenticated key exchange
and describe how denial of service can be integrated with this model.

While the goals of denial of service resilience and secure key agreement are, as
others such as Krawczyk [Kra03a, §2.3] have noted, orthogonal issues, it is useful
to be able to discuss them in a common framework. We also must be careful to
integrate the two issues sufficiently well to avoid the types of attacks proposed by
Mao and Paterson [MP02].

5.3.1 Informal security and denial of service criteria

Session key security and authentication. The security model presented herein
is based on the extended Canetti-Krawczyk model, which has some similarities to
the Bellare-Pointcheval-Rogaway model for password-authenticated key exchange
presented in Section 3.2, but with one essential difference: in the eCK model,

85

Chapter 5. Denial-of-Service-Resilient Authenticated Key Exchange

participants use long term private key / public key pairs rather than passwords.
Consequently, we can consider security when the adversary is allowed to learn one of
either the long-term private key or the ephemeral private key, whereas we could not
allow the adversary to learn the ephemeral private key in password-authenticated
key exchange.

The criteria for session key security are conceptually the same as in Section 4.3.1:
a session key is secure if, for a sufficiently uncompromised (“fresh”) session, an
adversary is unable to distinguish the session key from a random string except with
negligible probability. The model is formally described in Section 5.3.2 and the
definitions of security are given in Section 5.3.2.1.

In this setting, we consider the case where parties have long-term private key /
public key pairs which are used in the key exchange. As a result, security of the
session key leads to implicit mutual authentication: if session key establishment is
successful, then only parties named in the session know the key. Explicit mutual
authentication can be achieved by adding key confirmation (cf. [MvOV01, §12.1]).

Denial of service resilience. We are concerned about the situation in which
a malicious party on the network can cause a server to perform many expensive
operations (and key agreement is one such expensive operation) for no good reason,
eventually consuming all of the server’s available resources.

But since the server is willing to place itself on the network for the use of
all users, how can the server know if it is doing work for a good reason or not?
Distinguishing legitimate requests from malicious requests is an essential element
of denial of service resilience.

While one can never be certain about the good intentions of another party on
the network, a common approach is for a server to be more likely to believe that a
client is making a legitimate request if the client is willing to commit some expensive
resources — computation, memory, etc. — to the connection request in order to
show its good faith. However, if a client does do something expensive to prove its
good faith, then a good protocol should protect the client from being exploited by
a malicious party aiming to steal the client’s work.

These ideas lead us to the following five informal criteria for a denial-of-service-
resilient protocol:

DoS-1. An uncompromised honest server does not perform any expensive operations
with a client unless it is convinced the client is trying to make a legitimate
connection.

DoS-2. Moreover, a server B̂ does not perform any expensive operations unless it is
convinced that the client wants to talk to B̂ and not another server M̂ .

DoS-3. A client Â who commits significant resources to prove its legitimate intentions
cannot have her work stolen: the work that Â does to convince B̂ that it wants
to communicate legitimately with B̂ cannot convince anyone of anything else.

86

Chapter 5. Denial-of-Service-Resilient Authenticated Key Exchange

DoS-4. A malicious party must use a very large amount of resources if it wishes to
prepare sufficiently many connection requests and flood a server with many
valid connection requests.

DoS-5. A server can adjust the amount of work a client has to do in times of higher
or lower load.

In Section 5.3.2.3, we give a formal definition of denial of service resilience and
describe in Section 5.3.3 how our model achieves each of the goals DoS-1 through
DoS-4 above; goal DoS-5 is a property of the specific countermeasure in the protocol
and not of the formal model.

In the first two goals above, we aim to protect the server from performing
unnecessary expensive operations. While what qualifies as an expensive operation
can vary depending on the setting, we identify three main classes of expensive
operations for the purposes of denial of service and some examples in each class,
most of which are resource depletion attacks:

• Memory denial of service: forcing the server to perform slow, expensive mem-
ory accesses or commit to using a large block of memory. Expensive operations
include storing long-term data (on disk), loading long-term data (from disk),
and use of large amounts of short-term or long-term memory space.

• Computational denial of service: forcing the server to perform operations
that require significant computational time. Expensive operations include
exponentiation (e.g., modulo a large prime or in an elliptic curve group)
and a large number of simpler operations (e.g., hash function calls, MAC
evaluations, etc.) that in total rival the cost of an exponentiation.

• Transmission denial of service: forcing the server to expend its resources
available for connections. Expensive operations include committing one of a
limited number of connection ports (also called connection depletion attacks),
transmitting large amounts of data, and receiving large amounts of data.

In various environments, there can be different notions of “expensive”. For
example, in mobile environments, transmitting and receiving take a lot of time
and power, so a large number of message flows may lead to transmission denial of
service.

To achieve denial of service resilience, we require that a client solve a puzzle.
Our key idea is that we also tightly bind the puzzles with the identities of the
parties involved to avoid attacks in which work can be stolen or redirected. This
is another example of the wise principles for protocol design laid out by Abadi and
Needham:

If the identity of a principal is essential to the meaning of a message,
it is prudent to mention the principal’s name explicitly in the message.
[AN96, p. 8]

87

Chapter 5. Denial-of-Service-Resilient Authenticated Key Exchange

5.3.2 Formal model

We present a model that extends the eCK model for authenticated key exchange.
On one hand we extend the power of the adversary relative to extended Canetti-
Krawczyk model by allowing the adversary to obtain session-specific information
related to the test session. On the other hand the adversary is no longer able to
select session identifiers on behalf of the parties. In other words parties agree on
a common session identifier string. In the original model description, Canetti and
Krawczyk argue that the string may in fact be selected by communicating parties in
advance. A more common approach is that the session should be identified via con-
catenations of exchanged messages similar to the Bellare-Rogaway model [BR93a].

Participants. Key exchange protocols take place among parties Â, B̂, . . . ∈ Parties.
Each party is a probabilistic polynomial-time Turing machine.

Keys. Each participant has a static key pair that was certified by a certification
authority; the CA should also verify possession of the private key. We assume that
the certification authority verified that each static public key belongs to a suitable
cryptographically strong group G. Each party can also possess static information
that is not certified which may be either private or public.

Execution of the protocol. The protocol is a probabilistic algorithm on strings
which specifies how each party responds to messages. Each party may have mul-
tiple instances of the protocol running during execution. Parties are activated via
incoming messages. Upon activation, parties process messages and either submit
outgoing responses or indicate if the processing of the incoming message resulted
in failure or success.

An execution of the protocol is called a session.

Within a party the execution of the subroutines between the session request and
either accepting or rejecting the request to initiate a session is called pre-session.
Note that it is possible that a single request to initiate a session may result in
many sessions executed within a party: the model does not prevent a protocol from
accepting multiple responses to the same request.

Pre-session. A party may receive an incoming request to initiate a session via a
message of the form (i) (Â, B̂) or (ii) (Â, B̂, “hello”).

In the former case, (i), Â is called client or initiator. Party Â creates a separate
session request that contains the identity B̂ and the initiation request “hello”. The
outgoing message designated for B̂ is (B̂, Â, “hello”).

In the latter case, (ii), Â is called server or responder. Party Â selects a fresh
(unique within Â) challenge ch and sends outgoing message (B̂, Â, “hello” , ch).

88

Chapter 5. Denial-of-Service-Resilient Authenticated Key Exchange

Our motivation for introducing pre-sessions is that the denial of service counter-
measure will be modeled in the pre-session and the expensive resources committed
to be a server will be modeled in the session. A session can only be reached after a
successful pre-session: expensive resources will only be committed once the denial
of service countermeasure is accepted.

Session creation. A party Â can be activated to create a session with a message
of the following form (i) (Â, B̂, “hello” , ch) or (ii) (Â, B̂, ch, re).

If the activation is of type (i), then Â, who is the initiator, prepares a suitable
re that passes all conditions required by the protocol and creates a session that
is labeled active. The string re is unique within Â and the outgoing message is
(B̂, Â, ch, re).

If the activation is of type (ii), then Â, who is the responder in this case,
verifies that the message (Â, B̂, ch, re) satisfies the protocol requirements; if so, a
new active session is created; otherwise the message is ignored. If a new session
is created by the responder Â, then the outgoing message is (Ψ,m), where m is a
message prepared by Â in accordance with the protocol and Ψ is a string used to
identify sessions within Â and B̂.

The string Ψ is called a session string identifier and is derived from (ch, re).
The uniqueness conditions imposed on ch and re allow for the derivation of a string
unique within both Â and B̂.

Upon creating a session, Â also creates a separate session state that contains
session-specific information. Session-specific information can be either private or
public. The private information is required to compute a secret shared session
key. The public information is (Â, B̂,Ψ, role, otherinfo), where B̂ is the purported
session peer, role is either “initiator” or “responder”, and otherinfo is any other
public information required by the protocol. The session is globally identified by
the session identifier sid = [Â, B̂,Ψ], where Ψ identifies the session within Â and
is derived from (ch, re).

Two sessions sid1 = [Â, B̂,Ψ] and sid2 = [Ĉ, D̂,Ψ′] are said to be matching if
Ψ = Ψ′, Â = D̂ and Ĉ = B̂. In other words matching sessions have the same
session identifier string and the same communicating parties.

The protocol may require parties to perform certain validation steps during
the protocol execution. If any validation step fails, the party erases all session
specific private information and aborts the session with output (Â, B̂,Ψ,⊥), where
⊥ indicates the session is aborted. At any stage a session is in exactly one of the
following states: active, completed or aborted.

Off-line requests. In some cases it may be desirable to allow the client to select
the string ch. In that case the pre-session stage is combined with session creation.
In particular, parties are activated to create sessions with messages of the form

89

Chapter 5. Denial-of-Service-Resilient Authenticated Key Exchange

(Â, B̂) when Â is the client and (Â, B̂, ch, re) when Â is the server. When Â is the
server, Â may have to, in addition to the validation steps, send some additional
information to allow B̂ to complete its derivation of the session string identifier Ψ.

Session update. A party Â can be activated to update a session via a message
of the form (Ψ; m). Messages are delivered via the Send query described below.
Upon receipt of this message Â verifies that Ψ identifies a session within Â. If no
such session exists the activation is ignored and appropriate error message output.
Otherwise Â updates the session state corresponding to sid as required by the
protocol. If the protocol requires a response by Â, then Â prepares the required
response m′; and submits an outgoing message (Ψ; m′) designated for the peer
identified in the session state’s public part. If the protocol specifies that no further
messages will be received, then the session completes by producing local output
(Â, B̂,Ψ, K), where K is private information.

Powers of the adversary. The adversary A is modeled as a probabilistic Turing
machine and controls all communications. Parties submit outgoing messages to A,
who makes decisions about their delivery. The adversary communicates with the
parties via queries and receives responses. As in Section 3.2, there are three classes
of queries: (1) queries that model the transmission of messages across communi-
cation links, (2) queries that model the adversary learning certain information by
compromising a party in some way, and (3) queries that have been added to allow
the formulation of a game for the adversary to win.

The first query, Send, models the transmission of messages across communica-
tion links.

Send(M): Sends message M . Here, the message M also includes information
identifying the intended recipient and session, in contrast to the Send query of
Section 3.2. The recipient performs the appropriate portion of the protocol based
on its current state and the message M , updates its state as appropriate, and
returns any resulting messages.

The next five queries model the adversary’s ability to compromise certain pieces
of information held by the parties.

RevealStaticKey(Â): Returns Â’s static private key.

RevealEphemeralKey(sid): Returns the ephemeral private key of the owner in
session sid. We assume that A issues this query only to sessions that hold an
ephemeral private key.

RevealSessionKey(sid): If sid has completed, then returns the session key in sid.
We assume that A issues this query only to sessions that have completed.

EstablishParty(M̂,M): This query allows A to register an identifier M̂ and a
static public key M on behalf of a party. The adversary totally controls that party,
thus permitting the modeling of attacks by malicious insiders. Parties that were

90

Chapter 5. Denial-of-Service-Resilient Authenticated Key Exchange

established by A using EstablishParty are called adversary-controlled. If a party is
not adversary-controlled it is said to be honest.

DoSExpose(Â): For an honest party Â, returns the non-certified private infor-
mation that belongs to Â, excluding the session-related ephemeral private keys.
Parties against which this query was issued are called DoS-exposed, otherwise
they are called DoS-unexposed.

Additionally, the use of a hash function may be modeled as an oracle query
when working in the random oracle model.

The role of the new DoSExpose query in our model is to allow us to identify the
parties which ought to still be resilient to denial of service attacks, namely those
parties which are DoS-unexposed. For example, adversary-controlled parties are
not relevant to the DoS portion of the protocol. Moreover, a separate DoSExpose
query allows us to separate denial of service resilience from key-exchange security:
compromise of key-exchange secrets can be an orthogonal issue to compromise of
denial of service.

5.3.2.1 Session key security

To capture the indistinguishability requirement for security of the session key, A is
allowed to make a special query Test(sid) to a fresh session sid. In response, A is
given with equal probability either the session key held by sid or a random key. A
meets its goal if it guesses correctly whether the key is random or not. Note that
A can continue interacting with the parties after issuing the Test query, but must
ensure that the test session remains fresh throughout A’s experiment.

Test(sid): If session sid has completed, then causes the following to happen:
choose b ∈R {0, 1}; if b = 1, then return the session key held by sid, otherwise
return a random string chosen from the same distribution as the session key. This
query may only be asked once.

Freshness. Let sid be the identifier of a completed session, owned by an honest
party Â with peer B̂, who is also honest. Let sid∗ be the identifier of the matching
session of sid, if it exists. Then sid is fresh if none of the following conditions hold:

1. A issued RevealSessionKey(sid) or RevealSessionKey(sid∗) (if sid∗ exists).

2. sid∗ exists and A issued one of the following: either
(a) both RevealStaticKey(Â) and RevealEphemeralKey(sid), or
(b) both RevealStaticKey(B̂) and RevealEphemeralKey(sid∗).

3. sid∗ does not exist and A issued one of the following: either
(a) both RevealStaticKey(Â) and RevealEphemeralKey(sid), or
(b) RevealStaticKey(B̂).

91

Chapter 5. Denial-of-Service-Resilient Authenticated Key Exchange

Adversary’s goals. The goal of an adversary is to guess the bit b used in the
Test query of a fresh session. As in Section 3.2.2, we let Succake(A) be the event
that the adversary A makes a single Test query to some fresh session and eventually
outputs a bit b′, where b′ = b and b is the randomly selected bit in the Test query.
Similarly, we define Advake(A) = 2 Pr

(
Succake(A)

)
− 1.

Definition 5.1 (Secure key exchange protocol) A key exchange protocol P is
secure if the following conditions hold:

1. If two honest parties complete matching sessions then, except with negligible
probability, they both compute the same session key.

2. No polynomially bounded adversary A can distinguish the session key of a
fresh session from a randomly chosen session key with probability greater than
1
2
plus a negligible fraction (in some security parameter): Advake

P (A) ≤ 1
2

+ ε.

5.3.2.2 Authentication

A secure key exchange protocol as in Definition 5.1 also provides implicit mutual
authentication. Condition 2 of the definition implies that, when two honest parties
have completed matching fresh sessions, no adversary can distinguish the session
key from a random string: in other words, no one except the two parties know
anything about the session key. As a result, only they can obtain meaningful
information from encryption or other operations based on the session key, and
when they communicate successfully this will implicitly authenticate each party to
the other.

Alternatively, the two parties can have explicit mutual authentication by adding
a short key confirmation protocol following the main protocol. One standard tech-
nique is to exchange hashes of the session identifier and session key under new
independent hash functions; in the random oracle model, this provides no informa-
tion about session key. We do this in our denial-of-service-resilient key exchange
protocol DoS-CMQV (Figure 5.2, lines 23 and 29) in the messages involving M1

and M2.

5.3.2.3 Denial of service resilience

The main idea of our denial of service resilience definition is that, in the execution
of the protocol, there is a test that the server performs on some of the messages
received to determine if the client has done sufficient work to merit the server
performing expensive operations. The work the client has to do is modeled by a
“puzzling relation” and is used to define the denial-of-service-resilience of a protocol.

Definition 5.2 (Puzzling relation) Let Challenges and Responses be sets. A re-
lation R ⊆ Parties× Parties× Challenges× Responses is a puzzling relation if

92

Chapter 5. Denial-of-Service-Resilient Authenticated Key Exchange

1. deciding if (Â, B̂, ch, re) ∈ R is “easy”, and

2. given Â, B̂, ch, and an oracle U that, on input (Â′, B̂′, ch′), returns re′ such
that (Â′, B̂′, ch′, re′) ∈ R, it is “hard” to produce re such that (Â, B̂, ch, re) ∈ R
and re was not a response generated by the oracle U upon input (Â, B̂, ch).

The notion of “expensive operation”, “easy”, and “hard” will depend on the ap-
plication context; some examples of expensive operations are given in Section 5.3.1.
Although we have left these notions vague, they can be formalized, for example as a
proof of work [JJ99]. We omit this formalization as the focus of our work is on the
integration of denial of service resilience techniques into key exchange protocols,
not the construction of suitable puzzles.

Definition 5.3 (Acceptable pre-session) A pre-session [Â, B̂, ch] is an accept-
able pre-session for B̂ if B̂ generated ch.

Definition 5.4 (Denial-of-service-resilient protocol) Let R be a puzzling re-
lation. A protocol P is denial-of-service-resilient if the following hold for every
DoS-unexposed server B̂:

1. B̂ only performs expensive operations (a) in a session, or (b) for some (low
frequency) periodic update of its non-certified information ρ, and

2. B̂ only establishes a session [B̂, Â, ch, re] if the pre-session [Â, B̂, ch] was an
acceptable pre-session for B̂ and (Â, B̂, ch, re) ∈ R.

Note that we have explicitly avoided merging Definitions 5.3 and 5.4 (as Defini-
tion 5.3 could be part of Condition 2 of Definition 5.4) because we acknowledge that
there might be protocols that require a different notion of acceptable pre-session.
In particular, it appears to suffice that B̂ has an assurance that ch was generated
independently at random before re. A one-pass denial of service resilient protocol
might take this form when both ch and re are generated by the initiator, and is the
subject of future work.

5.3.2.4 Comparing security models

Since we have presented two major security models, the BPR00 model for password-
authenticated key exchange in Section 3.2, and the eCK model for authenticated
key exchange in this section, it is instructive to compare the two models, which we
do in Figure 5.1.

One notable difference between the two models is the RevealEphemeralKey query
in the eCK model. This query does not appear in the BPR00 model for password-
authenticated key exchange because of the need to protect password-authenticated
key exchange queries against dictionary attacks. Intuitively, if we allowed the

93

Chapter 5. Denial-of-Service-Resilient Authenticated Key Exchange

Characteristic BPR00 eCK
Authentication secret short password private key / public key pair
Transmission queries Send Send

Execute
Compromise queries RevealSessionKey RevealSessionKey

RevealPWC RevealStaticKey
RevealPWS

RevealEphemeralKey
EstablishParty

Our additional RevealRe (Section 4.3.2)
compromise queries DoSExpose (Section 5.3.2)
Game queries Test Test
Authentication Explicit Implicit

Figure 5.1: Comparison of BPR00 and eCK security models

ephemeral key to be revealed, then in some sense the only value left unknown
to the adversary in a particular session would be the low-entropy password. The
ephemeral key shields this low-entropy value, preventing dictionary attacks. In
the eCK model, the long-term private key is cryptographically strong and thus
sufficiently large to render brute force attack computationally infeasible.

5.3.3 Model implications

In this section we explain how our formal model of denial of service resilience in
Definition 5.4 satisfies the informal goals stated in Section 5.3.1. We omit goal
DoS-5 because it is a property of a particular countermeasure in a protocol, not of
the model itself.

DoS-1. An uncompromised honest server does not perform any expensive opera-
tions with a client unless it is convinced the client is trying to make a legitimate
connection.

Argument. By condition 1 of Definition 5.4, a server does not perform any
expensive operation with a client until it has established a session, and by condition
2 it will not establish a session until it received a response to its challenge that
satisfies the puzzling relation. In order to satisfy the puzzling relation, the client
must do a significant amount of work because of condition 2 of Definition 5.2; by
doing this work, the client convinces the server that it is trying to make a legitimate
connection. Moreover, since sessions are unique within a party, replay attacks of
legitimate connection requests are prevented. �

94

Chapter 5. Denial-of-Service-Resilient Authenticated Key Exchange

DoS-2. Moreover, a server B̂ does not perform any expensive operations unless
it is convinced that the client wants to talk to B̂ and not another server M̂ .

Argument. Condition 2 of Definition 5.2 allows us to meet this criterion:
even if an adversary obtains any tuple (Â, M̂ , ch, re) ∈ R, the tuple (Â, B̂, ch, re)
is unlikely (except with negligible probability) to be in R and moreover it remains
hard to produce a response re′ such that (Â, B̂, ch, re′) ∈ R. Note that, since it is
hard to create such a tuple given oracle access to R, then it is still hard to construct
any tuple in R without oracle access. �

Our approach avoids the attack of Mao and Paterson [MP02] against IKEv2 in
which an attacker can redirect traffic from his server towards other servers and can
cause the receiving server to deplete its connection resources at low expense to the
attacker. That attack is possible because there is no cryptographic binding between
the denial of service countermeasure and the identities of the parties involved. By
including the names of the client and server in the puzzling relation, a server B̂ can
be assured that whoever solved the puzzle intended to communicate with B̂.

In order to achieve DoS-2, it appears we do not strictly need to include the
client’s identity Â in the puzzling relation, which could help us achieve greater client
anonymity. However, an alternative approach would then be needed to prevent this
party’s work from being stolen as in DoS-3.

DoS-3. A client Â who commits significant resources to prove its legitimate in-
tentions cannot have her work stolen: the work that Â does to convince B̂ that it
wants to communicate legitimately with B̂ cannot convince anyone of anything else.

Argument. Suppose B̂ is a DoS-unexposed server and suppose an honest client
Â starts a pre-session [Â, B̂, ch], and then finds a value re such that (Â, B̂, ch, re) ∈
R. The client wishes that the response value should not be useful to anyone else
trying to establish a session; in other words, no one should be able to steal Â’s work
and use it in another pre-session.

Suppose [Â′, B̂′, ch′] is another pre-session, [Â′, B̂′, ch′] 6= [Â, B̂, ch]. Given these
values, it is hard to produce re′ such that (Â′, B̂′, ch′, re′) ∈ R, even with help from
another pre-session such as [Â, B̂, ch], because R is a puzzling relation. The help
given from the other pre-session can be modeled as one response of the oracle U in
Definition 5.2 for another pre-session, and this is of no help in a puzzling relation.

Thus, an honest client’s work in solving a puzzle cannot be of use to anyone else
responding to a different challenge, or with a different server, or with a different
user name. �

We note that, if the adversary M̂ simply relays Â’s entire response and then
participates in Â’s place, the server will proceed with key exchange but this ses-
sion will ultimately fail, since it is a secure authenticated key exchange protocol
according to Definition 5.1, and thus M̂ cannot complete a session masquerading
as Â.

95

Chapter 5. Denial-of-Service-Resilient Authenticated Key Exchange

DoS-4. A malicious party must use a very significant amount of resources if it
wishes to prepare sufficiently many connection requests and “flood” a server with
many valid connection requests.

As noted in DoS-1, a server will only perform expensive operations if it has been
convinced by a client that the client is trying to make a legitimate connection, and
this corresponds to the client having solved an instance of the puzzling relation,
which is “hard” for the client and requires a significant amount of resources. An
attacker who wishes to exhaust a server’s connection resources must have substan-
tially greater resources available to mount the attack.

Suppose that for an attacker to start a session requires t steps of computation
(e.g., t may be the number of cycles it takes to solve a computationally bound
puzzling relation), and a server has enough computational resources to support n
connections per second. Then, roughly speaking, an attacker’s computers must be
able to perform tn steps of computation per second to sustainably render the server
unavailable through a denial of service attack. Mounting this form of attack may
then require the adversary to use a distributed denial of service attack, which is
both more difficult to mount and more difficult to defend against. Our approach,
while not completely defending against such powerful distributed attacks, at least
allows the amount of denial of service resilience to be tuned in the event of heavy
traffic.

Consider in particular the case of replay attacks, in which an attacker replays
many messages to a server. Suppose in particular that an attacker replays a response
value re for a pre-session [Â, B̂, ch]. This set of values leads to the server session
[B̂, Â, ch, re], which already exists in the server. Since sessions must be unique in
the Canetti-Krawczyk model, the server will not start a new session and hence
commit no new resources as a result of this replay. This requires the server to store
a table of session identifiers, but this does not result in a denial of service attack
in theory since it is committing memory resources for the entries in the table only
once the puzzling relation has been passed. To limit the size of the table, the
server could roll over the non-certified information ρ periodically. When receiving
a previous challenge and response, an entirely acceptable action would be for the
server to respond to the replay with the same response it gave previously. Now,
if the attacker were to compute a different response value re′ for the pre-session
[Â, B̂, ch], then the server would commit new resources to the new session, but this
is acceptable since the attacker solved the puzzling relation, just as a legitimate
client must.

Since in the Canetti-Krawczyk model we allow the adversary to control the
delivery of messages, an adversary may choose not to deliver the final message from
the client to the server and leave the server with an incomplete session (similar to
the half-open connections of TCP SYN flood attacks [Edd07]). This however is not
a denial of service attack on key agreement: the puzzling relation in the pre-session
was passed before the server committed its resources in the session. In general, this
type of attack cannot be easily incorporated into a Canetti-Krawczyk-type model

96

Chapter 5. Denial-of-Service-Resilient Authenticated Key Exchange

where the adversary has the power to initiate sessions.

5.4 DoS-CMQV

In this section, we describe DoS-CMQV, our denial-of-service-resilient key exchange
protocol.

Our DoS-CMQV protocol, given in Figure 5.2, is an adaptation of the CMQV
[Ust08b] secure authenticated key exchange protocol. We use the problem of finding
preimages for a random hash function as the expensive puzzle at the heart of the
puzzling relation that a client needs to solve.

5.4.1 Design ideas

We designed DoS-CMQV by taking the CMQV protocol [Ust08b] and modifying the
pre-session to include a denial of service countermeasure based on hash functions.

Denial of service countermeasure. A client wishing to prove its legitimate
intention must solve a computational puzzle that involves finding a preimage in a
hash function. Differing from previous approaches, we include the client identity,
server identity, and client ephemeral public key in the hash function input. This ties
the puzzle solution to a particular session so it cannot be used for other purposes.

Session key security. For key agreement, we use the CMQV protocol without
significant modification. It combines the static and ephemeral keys of each party at
various stages through the protocol to achieve strong security and authentication.
By hashing these values together in the early stages of the protocol, the protocol
attains resilience against ephemeral private key leakage without using non-standard
assumptions such as the Knowledge of Exponent Assumption [BP04] used in the
argument for HMQV [Kra05b]. By combining these in the computation of the
session key, implicit authentication is achieved since only a party who knows both
the static and ephemeral private keys can construct the correct session key. The
security argument rests on the Gap Diffie-Hellman assumption and the random
oracle model.

5.4.2 Protocol specification

The DoS-CMQV protocol is given in Figure 5.2 below.

97

Chapter 5. Denial-of-Service-Resilient Authenticated Key Exchange

Notation. DoS-CMQV operates over a finite cyclic group G for which the Gap
Diffie-Hellman (GDH) assumption holds. Let λ be a security parameter. The
notation L[i] denotes the ith component in the tuple L: for example, if ch = (i, j),
then ch[1] = i and ch[2] = j. H0 and H1 are random hash functions [BR04] that
return bit strings; all other hash functions are random hash functions that return
integers between 1 and q− 1, where q is the order of the group generated by g. We
use the notation x[1...w] to denote the first w bits of x.

Note that according to our definition the protocol starts by establishing the
session. The steps before the establishment of a session are the pre-session.

For our protocol as described in Figure 5.2, the effects of the information com-
promise queries of the adversary are as follows:

• RevealStaticKey(Â): returns client Â’s long-term private key a; this is Â’s
certified private information.

• RevealStaticKey(B̂): returns server B̂’s long-term private key b; this is B̂’s
certified private information.

• RevealEphemeralKey([Â, B̂, ch, ∗]): returns client Â’s ephemeral private key x̃.

• RevealEphemeralKey([B̂, Â, ch, re]): returns server B̂’s ephemeral private key
ỹ.

• RevealSessionKey(sid): returns the session key K.

• DoSExpose(B̂): reveals server B̂’s DoS private value ρ; this is B̂’s non-certified
private information.

The session identifier held by the client Â is [Â, B̂, ch, re], and the session iden-
tifier held by the server B̂ is [B̂, Â, ch, re].

Tuning the puzzling relation. The puzzles used in our DoS-CMQV protocol
can be tuned by the server based on the load it experiences. The client must find
a preimage for the hash function H1; for concreteness, we have specified that this
should have 20 bits of output, but the length could be a parameter w set by the
server depending on its current load. The server would need to include w in the
computation of j on line 2, return w as part of ch on line 3, and include w in the
check on line 9.

Efficiency. In terms of the number of group exponentiations performed, DoS-
CMQV attains the same efficiency as CMQV, described in Section 3.3 of [Ust08b]:
3 exponentiations in the elliptic curve case, which can be reduced to 2.25 exponenti-
ations by improvements such as Shamir’s trick for simultaneous multiple (batched)
exponentiation [MvOV01, Algorithm 14.88].

98

Chapter 5. Denial-of-Service-Resilient Authenticated Key Exchange

DoS-CMQV
Client Â Server B̂

0. g, a,A = ga, B g, b, B = gb, A, ρ ∈R {0, 1}λ

1. “hello”,Â,B̂−−−−−−→ i ∈R {0, 1}λ
2. j = H0(ρ, Â, B̂, i)
3. x̃ ∈R {0, 1}λ

ch←−−−−−− ch = (i, j)
4. x = H2(x̃, a)
5. X = gx

6. find ` s.t.
H1(Â, B̂, ch, X, `)[1...20] = 0 . . . 0

7. re = (X, `)
8. establish session [Â, B̂, ch, re]

9. Ψ = (ch, re)
Â,ch,re−−−−−−→ verify ch[2] = H0(ρ, Â, B̂, ch[1])

10. verify H1(Â, B̂, ch, re)[1...20] = 0 . . . 0
11. establish unique session [B̂, Â, ch, re]
12. store Â,Ψ = (ch, re)
13. X = re[1]
14. verify X ∈ G
15. ỹ ∈R {0, 1}λ
16. y = H2(ỹ, b)
17. store Y = gy

18. d = H3(X, Â, B̂)
19. e = H3(Y, Â, B̂)
20. σ = (XAd)y+eb

21. store M1 = H4(“server finished”,
Â, B̂, ch, re, Y, σ)

22. store M2 = H4(“client finished”,
Â, B̂, ch, re, Y, σ)

23. verify Y ∈ G Ψ,Y,M1←−−−−−− store K = H5(Â, B̂, ch, re, Y, σ)
24. d = H3(X, Â, B̂)
25. e = H3(Y, Â, B̂)
26. σ = (Y Be)x+da

27. verify M1

28. M2 = H5(“client finished”,
Â, B̂, ch, re, Y, σ)

29. K = H5(Â, B̂, ch, re, Y, σ)
Ψ,M2−−−−−−→ verify M2

Figure 5.2: DoS-CMQV: A denial-of-service-resilient adaptation of the CMQV protocol.

As for the efficiency of the denial of service countermeasure we have added, it
follows from our denial of service resilience analysis in Section 5.4.4 that the server is
not significantly burdened by this addition. The burden on the client is substantial,
but this is by design: the reasoning behind the denial of service countermeasure is
that the client must commit significant computational resources if the connection
request is to be perceived as legitimate.

99

Chapter 5. Denial-of-Service-Resilient Authenticated Key Exchange

5.4.3 Security analysis of DoS-CMQV

In this section, we show that DoS-CMQV is a secure authenticated key exchange
protocol. The argument follows from the argument presented for CMQV in [Ust08b].
We relate the difficulty of distinguishing the session key of a fresh session to the
difficulty of solving the Computational Diffie-Hellman problem in a group where
the Gap Diffie-Hellman assumption holds.

Theorem 5.5 If H0, . . . , H5 are random oracles, and G is a group where the Gap
Diffie-Hellman assumption holds, then the DoS-CMQV protocol is a secure key
exchange protocol.

Argument. We will argue that the security of DoS-CMQV follows from the
security of CMQV. Verifying condition 1 of Definition 5.1 is straightforward. It
remains to verify condition 2.

We note that in our model of Section 5.3.2, parties possess additional (uncerti-
fied) private information ρ, which the adversary can obtain via DoSExpose query.
We construct a polynomially bounded algorithm S that transforms an attack on
DoS-CMQV into a solution to a Gap Diffie-Hellman instance. It does this by es-
tablishing and simulating parties as in the CMQV analysis in Section 4 of [Ust08b].
The only difference is that when parties are established the solver selects randomly
the value ρ for each party. The DoSExpose queries are answered faithfully and they
do not affect the freshness of the session. Since this new query is not relevant to
the security analysis, S can transform the DoS-CMQV adversary to a GDH solver
with similar success and running time as a CMQV adversary. Since CMQV is a
secure key agreement protocol in the extended Canetti-Krawczyk model, so too is
DoS-CMQV a secure key agreement protocol under Definition 5.1. �

Security of CMQV. We now give a brief overview of the security argument for
CMQV, based on the presentation in [SU08]. For the detailed argument, we refer
the reader to [Ust08b, §4].

Argument. Let λ be the security parameter and suppose there exists a poly-
nomially bounded (in λ) CMQV adversary A, that operates in an environment
with n(λ) honest parties and activates each party to create at most s(λ) sessions,
for polynomials p(λ), s(λ). Suppose further that the adversary makes hi queries to
oracle Hi for i = 1, . . . , 5.

Let sidt = (Â, B̂, ch, re) be the session identifier of the Test session selected by
the adversary, where the peers of sidt are the honest parties Â and B̂. Without loss
of generality, let sidt’s owner, Â, also be the initiator. Denote the ephemeral public
keys of sidt with X and Y . Let H denote the event that the adversary queries H5

with (Â, B̂, ch, re, Y, σ), where σ = DH(XAd, Y Be) and let H be the complement
of H.

100

Chapter 5. Denial-of-Service-Resilient Authenticated Key Exchange

We construct a polynomially bounded algorithm S that uses A to solve a GDH
instance.

Since the key derivation function includes the session identifier and the ex-
changed ephemeral public keys (since re contains the client’s ephemeral public key
X), the adversary cannot obtain any information about the Test session key from
the session keys of non-matching sessions. Then

Pr(Succake(A)) = Pr(Succake(A) ∧H) + Pr(Succake(A) ∧H) (5.1)

≤ Pr(Succake(A) ∧H) +
1

2
(5.2)

since H5 is a random oracle and no advantage can be gained if H5 is not queried
(which corresponds to the event H).

It remains, then, to show that the probability of a forging attack — namely,
Pr(Succake(A)∧H) — is negligible in λ. The analysis proceeds by considering two
main complementary cases:

• Event E1 [Ust08b, §4.1]: There is an honest party B̂ such that A queries
H2(∗, b) before issuing a RevealStaticKey(B̂) query. In this case, a simula-
tion S that is perfect (except with negligible probability) can be efficiently
constructed with probability at least 1/p(λ) where p is a polynomial in λ.

• Event E2 [Ust08b, §4.2]: For every honest party B̂ for which A queries
H2(∗, b), A queried RevealStaticKey(B̂) before the first H2(∗, b) query.

– Event E2 ∧ M1: The test session has a matching session owned by an
honest party.

– Event E2 ∧ M2: No party owns a matching session to the test session.

Similarly to Event E1, each of (E2 ∧ M1) and (E2 ∧ M2) can be efficiently
solved with polynomially bounded probability.

Since these cases are complementary, combining them shows that a simulation S
can be constructed efficiently that transforms an attack on the security of CMQV
into a solver for the Gap Diffie-Hellman problem. Under the Gap Diffie-Hellman
assumption, this is impossible, so the CMQV protocol is secure. �

5.4.4 Denial of service resilience analysis

In this section, we show that DoS-CMQV is denial-of-service-resilient according to
Definition 5.4. Since this definition (and the subsequent definition of a puzzling
relation) includes the intentionally vague terms “expensive operation”, “easy”, and
“hard”, we need to define what these terms mean for a concrete instantiation of the
definition.

101

Chapter 5. Denial-of-Service-Resilient Authenticated Key Exchange

For our purposes, an expensive operation is one of the following operations:
storing a per-connection or per-session value in memory (other than a long-term
value), performing a group exponentiation, or making a large number of calls (say,
more than 210) to a hash oracle.

We first argue that the hash function construction we use is a puzzling relation,
then that DoS-CMQV is a denial-of-service-resilient protocol using that puzzling
relation.

Lemma 5.6 Let R be defined such that (Â, B̂, ch, re) ∈ R if and only if

H1(Â, B̂, ch, re)[1...20] = 0 . . . 0 ,

where H1 is a random hash function. Then R is a puzzling relation, where “hard”
means requiring approximately 220 hash function queries on average, and “easy” is
something that is not an “expensive operation”.

Argument. Deciding membership in R is easy for a particular tuple because
it involves only a single call to H1.

Given Â, B̂, ch, we need to produce re such that H1(Â, B̂, ch, re)[1...20] = 0 . . . 0.
To find such an re requires finding a preimage for the random hash function. The
oracle U helps us find other preimages of H1, but we cannot ask U for preimages
involving (Â, B̂, ch). Our task, then is to find a preimage of the correct format
involving Â, B̂, and ch. Since H1 is a random hash function outputting 20 bits,
this is a hard task that requires approximately 220 queries on average. �

This hash puzzle is similar to the partial inversion proof of work (PIPOW)
problem of Jakobsson and Juels [JJ99, §3.1], and the exact tradeoff between work
and probability of success can be calculated. By their Claim 1, we know that
any prover Â with memory bounded by m who performs on average at most w
steps of computation, and is given (Â, B̂, ch), can find a response re such that
(Â, B̂, ch, re) ∈ R with probability at most p+ o(m/220) where p = 1/(220 − w).

We now show that our protocol is resilient to denial of service attacks by the
following claim:

Theorem 5.7 The DoS-CMQV protocol is a denial-of-service-resilient protocol,
where “easy”, “hard”, and “expensive operation” are defined as above.

Argument. Let R be the puzzling relation from Lemma 5.6.

Let [Â, B̂, ch] be a pre-session. According to the protocol, B̂ does not perform
any expensive operation until line 13, which is not reached unless the server’s checks
on lines 9 and 10 are passed and a new session is established on line 11.

If the check on line 10 is passed, namely if H1(Â, B̂, ch, re[1], re[2])[1...20] = 0 . . . 0,
then (Â, B̂, ch, re) ∈ R.

102

Chapter 5. Denial-of-Service-Resilient Authenticated Key Exchange

If the check on line 9 is passed, namely if ch[2] = H0(ρ, Â, B̂, ch[1]), then, except
with negligible probability, ch[2] was generated only be someone who knew both ρ
and ch[1]. Since B̂ is a DoS-unexposed party, no DoSExpose(B̂) query could have
been issued and since ρ is only ever used as an input to a random oracle, only B̂
knows ρ. Thus, [Â, B̂, ch] is an acceptable pre-session.

Hence, B̂ establishes a session only if the corresponding pre-session is acceptable
and the tuple is in the puzzling relation R. Note that since sessions must be unique
within a party, the server only performs these expensive operations once per session.

Thus, DoS-CMQV is a denial-of-service-resilient protocol in the sense of Defi-
nition 5.4. �

5.4.5 Instantiation

Since it builds on the CMQV protocol, DoS-CMQV can be instantiated over any
group for which the Gap Diffie-Hellman problem is hard. As we note in Sec-
tion 2.2.2, one such group is the set of points under addition on certain elliptic
curves of the form y2 = x3 + 2x ± 1 over fields F3` . The security analysis in The-
orem 5.5 does not include explicit constants: it refers back to the security analysis
of [Ust08b], which is only a polynomial space/time analysis. In particular, a key
constant resulting from the use of the Forking Lemma [PS96, PS00] remains uncal-
culated. However, a CK01-secure protocol is given with a full analysis in [Ust08a,
§2.3.2].

In practice, H1 as used in the puzzling relation could be implemented by using
a standard cryptographic hash function, such as SHA-1, and truncating the output
to the first w bits. The puzzle used in our DoS-CMQV protocol could be tuned by
the server based on the load it experiences. In times of light load, the server could
require that clients truncate only to the first 5 or 10 bits of output, but in heavier
load could require that clients truncate to 20 or 25 bits of output to make the cost
of mounting a denial of service attack higher. For w = 20, it takes just under 3
seconds to perform 220 SHA-1 evaluations on one core of our 2 GHz Intel Core 2
Duo processor using OpenSSL 0.9.7`. This may be an acceptable computational
burden for the client in many scenarios.

5.5 Other constructions

In this section, we describe other constructions for achieving denial of service re-
silience in key exchange protocols. In Section 5.5.1, we discuss implementing the
puzzling relation with other types of puzzles. In Section 5.5.2, we also compare our
construction with the denial of service techniques used in other protocols: the JFKi
protocol (for which we show that our model can accommodate the technique used
in that protocol, albeit with sufficiently weak definitions of “expensive operation”
and “hard”) and the Host Identity Protocol.

103

Chapter 5. Denial-of-Service-Resilient Authenticated Key Exchange

5.5.1 Memory-bound puzzling relations

While the protocol given in Section 5.4 uses a puzzling relation based on finding
preimages in a hash function, other types of puzzling relations are possible, demon-
strating the flexibility of our framework. Abadi et al. [ABMW03], for example,
describe puzzles in which memory access time provides an expected lower bound
on the time it takes to solve the puzzle, removing disparities in processor speed
between large computers and small devices.

Care must be taken in choosing parameters for memory-bound puzzles. The
cost incurred by a server in setting up one of these memory-bound puzzles, while
much less expensive than the cost incurred by a client solving the puzzle, can still
be significant. For example, in the memory-bound puzzles of Abadi et al., it took
a 2.4 GHz Pentium 4 server approximately 2−7 seconds to create a puzzle that
takes a client approximately 22 seconds to solve. By comparison, the cost of doing
one 1024-bit modular exponentiation on a computer of similar speed is only 2−9

seconds: setting up or verifying a memory bound puzzle can in fact be an expensive
operation and thus care is required when using memory-bound puzzles for denial
of service resilience.

Additionally, our construction includes the client’s identity, server’s identity,
and client’s ephemeral public key in the puzzle challenge. Since the challenges for
memory-bound puzzles must be constructed in a special way, care must be taken
in including these values in constructing the challenge of a memory-bound puzzle.

5.5.2 Stateless connections and cookies

One of the problems when comparing different denial of service countermeasures
comes from the fact that they typically aim to guard against a specific attack at
the expense of other properties. Stateless connections aim to reduce the amount
of data the server has to store. However, servers are required to dedicate more
computational resources, for example, by encrypting and decrypting session-specific
secret data, and use more bandwidth to send augmented messages. In the case of
stateless connections, the “puzzling relation” that the adversary has to solve is to
present the server with a message that the server will accept as valid. As a result,
the “proof of work” consists of the fact that the adversary stored information that
was created by the server.

Cookies can be seen as a weaker form of stateless connections: the proof of work
is the ability to replay a cookie, thus proving to the server that the client stored
session-related information.

In general, denial of service countermeasures in which a server accepts only
certain messages and as a result has some assurance that the message sender per-
formed a minimum amount of work fit into the framework of “puzzling relation” and
“proof of work”. Note that in [AN97] the authors admit that the relation between
a protocol and session keys may be broken. This fact is recognized in our model by

104

Chapter 5. Denial-of-Service-Resilient Authenticated Key Exchange

the fact that a single pre-session can theoretically lead to many different sessions if
the same challenge is solved multiple times.

5.5.2.1 JFKi

In the JFKi protocol [ABB+04, §2.3], the denial of service resilience goal for the
server is to avoid expensive operations unless the client echoes back the cookie.

There are two main ideas used: reuse of ephemeral public keys and use of a
keyed hash function. The purpose of reusing ephemeral public keys is to distribute
the cost of an expensive operation across multiple sessions. This allows the authors
to argue the client must perform his share of the work first, in terms of bearing the
cost of establishing a round communication trip. The keyed hash function is used
by the server to verify that the client indeed executed the round. Note that the
server does not need to dedicate any resources to verify the challenge was created
by the server. This can be viewed as the pre-session stage of the protocol since the
goal of the first round trip is to filter out bogus connections.

JFKi can be described in our model of denial of service resilience, but with weak
definitions of “hard” in the puzzling relation. In the first stage of JFKi, the client Î
picks a nonce value NI and sends N ′I = H(NI) to the server. The server R̂ responds
with its own nonce value NR, its ephemeral public key gr, and a keyed hash (as in a
stateless connection) HhkR

(gr, NR, N
′
I , Î) of these values under a private key hkR.

In order to satisfy the implied puzzling relation in JFKi, the client must echo back
to the server all these values as well as the preimage NI , and all appropriate hash
relations must be satisfied. Additionally, the client sends its ephemeral public key
gi. If the puzzling relation test passes, then the server establishes a new session
and computes DH(gi, gr).

The problem with JFKi’s puzzling relation is that there is no binding between
the client’s ephemeral public key and the solution to the puzzling relation. A dishon-
est client can use the same solution to the puzzling relation with different ephemeral
public keys (and it can generate these ephemeral public keys very cheaply, for ex-
ample, by generating gi, g · gi = gi+1, g · gi+1 = gi+2, . . .) to cause the server to
perform many exponentiations with little cost to the client. It is not very hard to
produce many responses to the puzzling relation in Condition 2 of Definition 5.2.

This means that JFKi does not satisfy informal goal DoS-4, namely that the
protocol should be resilient to flooding attacks. It is easy for a malicious client
to prepare many valid connection requests and cause the server to establish many
sessions. DoS-CMQV avoids this problem: producing a solution to the puzzling
relation involves finding the preimage in the hash function and the values cannot
be repeated if the server is to establish a new session.

One approach to fixing the denial of service resilience of JFKi is given by Smith
et al. [SGNB06]. They note that JFKi is not denial-of-service-resilient when an-
alyzed under Meadows’ framework [Mea99]. They use a hash function preimage

105

Chapter 5. Denial-of-Service-Resilient Authenticated Key Exchange

puzzle as well to bind the puzzle solution to the key exchange session at hand.
Their construction still preserves a fundamental design characteristic of JFKi: de-
nial of service resilience is balanced against ephemeral key freshness. The responder
must reuse its ephemeral private key in order to achieve denial of service resilience,
thus preventing full freshness in the Canetti-Krawczyk model.

5.5.2.2 Host Identity Protocol

The Host Identity Protocol (HIP) [MNJH04, §4.1.1] is designed to offer protection
against denial of service attacks. HIP uses a similar puzzling relation to that of
Section 5.4: the client must find a preimage in SHA-1 such that the k lowest-
order bits of the output are zero. HIP includes the identities of the initiator and
responder in the hash function computation as we have done. Our model provides
a justification of the design of HIP for denial of service resilience and the value of
including the client and server identities in the hash function computation.

106

Chapter 6

Unified Point Addition Formulæ in
Elliptic Curve Cryptography

Contents
6.1 Introduction . 107
6.2 Background . 109
6.3 Unified point addition formulæ for prime fields 112

6.3.1 Unified formula of Brier and Joye 112
6.3.2 Unified formula of Brier, Déchène and Joye 115
6.3.3 Extending Walter’s attack: conditional modular reduc-

tion attack . 116
6.3.4 Timing . 127

6.4 Unified point addition formulæ for binary fields 130

6.1 Introduction

Elliptic curve cryptography (ECC) is one of the main forms of public key cryptog-
raphy in use today. Compared with other public key cryptosystems such as RSA,
ECC offers higher security per key bit given the known classical attacks, which can
lead to more efficient implementations and smaller key sizes that are suitable for
constrained devices such as smart cards and sensors.

The main operation in ECC is scalar-point multiplication. In order to make point
multiplication efficient, implementations often use formulæ, such as point addition
using projective coordinates, that decrease the number of expensive operations.
A common method for implementing point multiplication is the double-and-add
algorithm which makes use of repeated point doubling operations and point addition
operations which depend on the key bits.

107

Chapter 6. Unified Point Addition Formulæ in Elliptic Curve Cryptography

Implementations of ECC, however, are often at risk from side-channel attacks
which make use of information observed during the execution of the algorithm,
and these problems can be magnified when in constrained environments like smart
cards. A side channel can reveal information about secret values as a result of
the physical implementation of the procedure. For example, observing the power
usage of a device while performing a cryptographic operation can reveal information
about the sequence of low-level calculations performed, and this may then reveal
information about the cryptographic key. Security against side-channel attacks
needs to be addressed at three levels: the hardware level, the software level, and
the algorithmic level.

In elliptic curve cryptography, unified point addition formulæ [BJ02, BDJ04] aim
to reduce the amount of information leaked over side channels by using the same
sequence of field operations for both point addition and point doubling. However,
even these are not a complete solution: Walter [Wal04] gave a theoretical side-
channel attack on an implementation of one unified point addition formula that,
instead of exploiting any irregularity in the sequence of field operations performed,
exploits an irregularity in the implementation of the field operations themselves in
the context of the unified point addition formula.

Contributions. In this chapter, we give a projective version of the unified point
addition formulæ of Brier, Déchène, and Joye. We extend Walter’s attack to make
use of a conditional addition which appears in many field subtraction implementa-
tions. This conditional modular reduction attack substantially decreases the amount
of work necessary to recover the key: when used with projective coordinates and
Montgomery field representation and combined with Walter’s original technique,
our attack is feasible on prime field elliptic curves up to 384 bits. We suggest
some countermeasures which may help achieve constant run-time field operations.
We also provide some performance results for the various unified point addition
formulæ and discuss the applicability of timing attacks.

Future directions. In Section 6.3.3.3, we describe countermeasures that could
help avoid our conditional modular reduction attack. It would be interesting to see
if an experimental side-channel analysis of an implementation making use of these
countermeasures does indeed unify the field operations or if further side-channel
effects, such as cache timing, remain.

Our approach for analyzing the search space resulting from our side-channel
attack is to concentrate on keys with a minimal number of unidentified additions,
which may not correspond to keys for which the remaining keyspace is minimized.
In general, binary keys where the zeros only appear in small groups in the key
are much easier to break than keys with large groups of consecutive zeros. We
note that, if we identify a point addition, then we have also identified its adjacent
point doublings. For example, the 521-bit key 10101 · · · 0101 with 16 unidentified
additions has a much smaller remaining keyspace than the 521-bit key consisting

108

Chapter 6. Unified Point Addition Formulæ in Elliptic Curve Cryptography

of 261 ones followed by 260 zeros for which only 8 of the additions have not been
identified, even though the number of additions remaining to be located is twice
that of the second key. A more thorough cost analysis based on this observation
could be pursued but would require a study of the distribution of strings of zeros in
the binary representation of a given key, which is beyond the scope of the analysis
in Sections 6.3.3.1 and 6.3.3.2.

Outline. The rest of this chapter is organized as follows. Section 6.2 provides
a short review of the relevant issues in elliptic curve cryptography, including side-
channel attacks and projective point addition formulæ. In Section 6.3, we discuss
unified point addition formulæ over prime fields. In particular, we present the
unified formula of Brier and Joye (Section 6.3.1), the unified formula of Brier,
Déchène, and Joye (Section 6.3.2), our conditional modular reduction side-channel
attack (Section 6.3.3), and report some timings (Section 6.3.4). Finally, we briefly
discuss the (in)applicability of these techniques to binary fields in Section 6.4.

6.2 Background

Basic elliptic curve cryptography and affine coordinates. We recall from
Section 2.1.3 that, for an elliptic curve E over a field F of prime characteristic
q other than 2 or 3, the set of points E(F) on the curve, joined with the point
at infinity, forms an abelian group under the operation of point addition. Let
P = (x1, y1) and Q = (x2, y2), P 6= −Q, be two points on the curve E. These two
points can be added to obtain a third point P+Q = (x3, y3), where x3 = λ2−x1−x2,
y3 = λ(x1 − x3)− y1, and

λ =

{
y2−y1
x2−x1

, if P 6= Q (addition)
3x2

1+a

2y1
, if P = Q (doubling)

. (6.1)

These points are represented using affine coordinates.

The most important operation in elliptic curve cryptography is point multipli-
cation. For example, in the MFPAK protocol (Section 4.4.2) and the DoS-CMQV
protocol (Section 5.4.2), the group operation, when the group is implemented using
an elliptic curve, would be point multiplication. A standard algorithm for point
multiplication is the double-and-add algorithm, given in Figure 6.1. The algo-
rithm iterates over each key bit and performs a point doubling each time; if the key
bit is 1, it also does a point addition.

Projective coordinates. The formula given in equation (6.1) uses affine coordi-
nates. However, this formula for λ requires an inversion, and inversion operations,
especially in prime fields, can be very expensive in practice: various software im-
plementations of elliptic curve cryptography in prime fields report inversions taking
around 60-80 times longer than field multiplications [BHHM01, HMV04].

109

Chapter 6. Unified Point Addition Formulæ in Elliptic Curve Cryptography

Input: Point P , integer k =
∑n−1

i=0 ki2
i, kn−1 = 1.

Output: Point Q = kP .

1. Q← P
2. for i = n− 2 down to 0 do
2.1. Q← 2Q
2.2. if ki = 1 then Q← P +Q
3. end for

Figure 6.1: Double-and-add point multiplication algorithm

This has motivated the development of formulæ using projective coordinates
to reduce the number of field inversions required. In the ordinary projective case,
a point is represented by three coordinates, P = (X, Y, Z), with x = X/Z and
y = Y/Z. The denominator, Z, is updated through all of the point additions and
point doublings in a point multiplication, and only at the end is the inversion Z−1

computed to return the final result to affine coordinates. Other variations can be
used for improved efficiency, such as Jacobian coordinates (which have x = X/Z2

and y = Y/Z3) and Chudnovsky coordinates [CC86].

Side-channel attacks. Side-channel attacks were first proposed in the litera-
ture by Kocher [Koc96], although were used in espionage at least as early as 1956
[Wri87]. These types of attacks use information observed during the execution of
the algorithm to help to determine the secret key. There are two main classes
of side-channel attacks: simple side-channel attacks, which analyze data observed
during a single execution of a cryptographic protocol, and differential side-channel
attacks, which compare the traces of multiple executions of a protocol. The types of
attacks we consider in this chapter relate to simple side channels. Side-channel at-
tacks have been demonstrated experimentally using timing [Koc96], power analysis
[KJJ99], and electromagnetic emissions [AARR02].

Because λ in equation (6.1) is defined differently for the cases when P 6= Q and
when P = Q, the formula for point addition is different from the formula for point
doubling. This difference motivates the study of side-channel attacks in elliptic
curve cryptography.

If a side-channel analysis allows us to distinguish a point addition from a point
doubling, then we can determine secret key bits.

In the context of elliptic curve cryptography, techniques for counteracting simple
side-channel attacks include: performing dummy operations, such as forcing a point
addition at each iteration [Cor99]; using alternative point multiplication algorithms,
such as Montgomery point multiplication [Mon87, LD99]; using alternative curve
parameterizations, such as the Jacobi or Hessian forms; and unifying the algorithms
for point addition and point doubling so that they use the same sequence of field

110

Chapter 6. Unified Point Addition Formulæ in Elliptic Curve Cryptography

operations and hence are indistinguishable [BJ02, BDJ04]. It is this last technique
that we address in this chapter. Care must be taken when using these techniques,
however. If one countermeasure is used (for example, unified point addition formula
from [BJ02]) but other aspects remain unprotected, attacks remain possible as
was demonstrated by the attack of Walter [Wal04] on the unified point addition
formula of Brier and Joye [BJ02] which takes advantage of a conditional operation
in Montgomery modular reduction.

Point multiplication is the central operation when using elliptic curves for cryp-
tography. Because the occurrences of point additions in the double-and-add algo-
rithm (Figure 6.1) correspond precisely to the locations of 1 bits in the key, any
difference in the implementation of the point doubling algorithm compared to the
point addition algorithm could be exploited in a side-channel attack.

For example, the diagrams in Figure 6.2 (from [Osw05]) show power traces over
time of point addition, point doubling, and point multiplication. The power trace
for point doubling (second diagram) has a distinctive pattern at the end of the trace
compared with point addition (first diagram). When a sequence of these operations
is viewed together (third diagram), this distinctive pattern can be used to pick out
where the point doublings occur, and thus where the point additions occur, leading
to a full recovery of the key bits.

Figure 6.2: Point addition, double, and multiplication power traces from [Osw05].

111

Chapter 6. Unified Point Addition Formulæ in Elliptic Curve Cryptography

Montgomery modular reduction. Montgomery’s modular reduction technique
[Mon85] replaces the modular reduction step after each field multiplication with a
less expensive step, leaving a result that is not completely reduced. This partial re-
sult can be used again in further operations, with the expensive modular reduction
step being left for the end. Though Montgomery’s technique is not efficient for a
single modular multiplication, it is effective when amortized over a long sequence
of operations, such as a point multiplication.

Montgomery modular reduction is implemented as follows (cf. [HMV04]). Let q
be an odd prime, and let R > q with gcd(R, q) = 1; it is often convenient to choose
R = 2Wt, where W is the word size of the computer architecture. For an input
z < Rq, Montgomery reduction gives zR−1 mod q. An algorithm for Montgomery
modular reduction is given in Figure 6.3.

Input: Integers q, R, z, q′ with q′ = −q−1 mod R, R > q, 0 ≤ z < Rq.
Output: Integer c such that c = zR−1 mod q, 0 ≤ c < q.

1. c← (z + (zq′ mod R)q)R−1

2. if c ≥ q then c← c− q /* conditional subtraction */

Figure 6.3: Montgomery modular reduction algorithm

6.3 Unified point addition formulæ for prime fields

One approach to reducing the risk of side-channel attacks is to use a unified point
addition formula in which the formulæ for point addition and point doubling are
the same. Since there is no difference between the addition and doubling operations,
a point multiplication trace should no longer act as a side channel.

The first unified point addition formulæ for elliptic curves in Weierstraß form
was given by Brier and Joye [BJ02] in 2002. Walter [Wal04] proposed a side-
channel attack that did not exploit the sequence of underlying field operations in
the unified point addition formula directly but instead exploited an irregularity in
the implementation of the underlying field operations in the context of the unified
point addition formula. A subsequent paper of Brier, Déchène, and Joye [BDJ04]
offered an infinite family of unified point addition formulæ in affine form.

6.3.1 Unified formula of Brier and Joye

Affine coordinates. The point addition formula for λ of equation (6.1) (when
P 6= Q) is unsuitable for point doubling because x1 = x2 in the case of doubling,
and hence the denominator is x2 − x1 = 0. However, starting with this λ in the

112

Chapter 6. Unified Point Addition Formulæ in Elliptic Curve Cryptography

point addition formula, Brier and Joye [BJ02] obtain a different λ that can be used
for both point addition and point doubling:

λ =
(x1 + x2)2 − x1x2 + a

y1 + y2

, if y1 + y2 6= 0 . (6.2)

This alternative formula for λ works when x1 = x2, which is the case for doubling,
but is not defined in the rare case when y1 + y2 = 0; the subsequent work of Brier,
Déchène, and Joye removed this constraint (see Section 6.3.2).

The formula requires 2 field multiplications, 1 field squaring, and 1 field inver-
sion.

Projective coordinates. In the same paper, Brier and Joye also derive a formula
for unified point addition using projective coordinates, starting from the unified
value of λ. By setting xi = Xi/Zi and yi = Yi/Zi, they obtain:

X3 = 2FW , Y3 = R(G− 2W)− L2 , Z3 = 2F 3 , (6.3)

where U1 = X1Z2, U2 = X2Z1, S1 = Y1Z2, S2 = Y2Z1, Z = Z1Z2, T = U1 + U2,M =
S1 + S2, F = ZM,L = MF,G = TL,R = T 2 − U1U2 + aZ2, and W = R2 −G.

This projective formula requires 13 field multiplications and 5 field squarings.

In Appendix A.1.1.1, we provide C code (using the NSS toolkit [Moz08]) that
implements the projective coordinates formula in equation (6.3).

6.3.1.1 Walter’s attack

In 2004, Walter [Wal04] described a side-channel attack on the unified formula of
Brier and Joye under the additional assumption that the occurrence of a conditional
subtraction in a Montgomery modular reduction operation can be detected. Such
an attack should be viewed as successful if a non-negligible fraction of the keys
can be computed significantly faster than attacking the whole keyspace. Walter’s
attack is successful since a high proportion of keys can be found using relatively
few computations.

The attack. Walter’s attack exploits the ability to detect a conditional subtrac-
tion in Montgomery modular reductions during double-and-add point multiplica-
tion with the unified point addition formula of Brier and Joye using projective
coordinates.

For point doubling using projective coordinates, we have thatX1 = X2, Y1 = Y2,
and Z1 = Z2. In equation (6.3), the formulæ for U1 = X1Z2 and U2 = X2Z1 are
identical, as are the computations of S1 = Y1Z2 and S2 = Y2Z1.

Consider the implementation of these various multiplication operations. During
a point doubling, a conditional subtraction occurs in the Montgomery reduction for

113

Chapter 6. Unified Point Addition Formulæ in Elliptic Curve Cryptography

U1 = X1Z2 if and only if a conditional subtraction occurs in the (same) Montgomery
reduction for U2 = X2Z1. Thus, if a conditional subtraction is observed in the
computation of either U1 or U2 but not the other, then a point doubling could not
have occurred and the operation must be a point addition. By the same argument,
the observation of a conditional subtraction in the computations of one of S1 and
S2 but not the other can also distinguish a point addition.

Probabilistic analysis. Suppose that every pair of inputs to Montgomery mul-
tiplication is equally likely and independent. The probability that a conditional
subtraction occurs in the computation of one of U1 or U2 but not the other (and
similarly for S1 and S2) is

pdiff = 2psub(1− psub) ≈ 3

8
(6.4)

where psub is the probability of a conditional subtraction occurring. Assuming
random inputs to Montgomery modular multiplication, in practice psub ≈ 1/4.

The probability that conditional subtractions give observable differences in the
computations of U1 and U2 and S1 and S2 during point addition (and thus distin-
guish a point addition from a point doubling) is

pdist = 1− (1− pdiff)2 ≈ 39

64
≈ 0.61 . (6.5)

During double-and-add point multiplication, the position of a point addition
determines the point doublings on either side of it. The goal then will be to use
detected point additions to determine as many operations as possible by noting
adjacent point doublings, although a pair of subsequent point additions will both
determine the intermediate point doubling. Let n be the size in bits of the prime
field. For a given pdist, the expected total number of determined operations is:

3

2
(n− 1)pdist − (n− 2)

(
1

2
pdist

)2

. (6.6)

Once these positions have been determined, a search of the keys compatible with
the remaining undetermined positions is undertaken until the correct key is found.

Walter’s analysis provides additional methods of decreasing the key space that
needs to be searched, including substring restrictions on the possible sequence of
point additions and point doublings; furthermore, for the point addition operations
which were not distinguished, some combinations of conditional subtractions are
more likely than others, and this can also reduce the key space.

The probabilistic analysis resulting from combining equations (6.5) and (6.6)
does not correspond to the best estimate in practice. Walter found in his experi-
ments that, with a set of 512 sample traces, it was most efficient to just pick the
sample that has the greatest number of distinguished point additions, and that this

114

Chapter 6. Unified Point Addition Formulæ in Elliptic Curve Cryptography

sample would in fact have more distinguished point additions than the analysis
above suggested. This greedy approach, combined with additional substring re-
strictions, could give effective keyspaces for a 192-bit prime curve of size just 217.6,
which can be easily searched. Our analysis in Section 6.3.3 gives a probabilistic
argument that generalizes the experimental sampling that Walter used.

6.3.2 Unified formula of Brier, Déchène and Joye

The unified point addition formula in the previous section is defined for y1 +y2 6= 0.
Since the field is of odd prime characteristic q, this always holds in the case of
point doubling (since y1 = y2 and, for all y, 2y 6≡ 0 mod q), but it does not
hold for all possible point additions. Izu and Tagaki [IT03] showed collisions for
which y1 + y2 6= 0 on many standardized elliptic curves. They also showed how
these special cases could be used to reveal the key in some cryptosystems, with an
example for the plain ElGamal encryption scheme.

As a result, Brier, Déchène, and Joye [BDJ04] developed an infinite family of
unified point addition formulæ which are defined for all points.

Affine coordinates. We choose to work with the most efficient formula of the
family in the rest of this section and thus fix a single formula for λ. Although Brier,
Déchène, and Joye give an infinite family of unified point addition formulæ, which
would allow a different λ value to be randomly chosen at each point addition, we
assume that the most efficient formula, given in equation (6.7), is used each time.

The formula for λ is as follows:

λ =
(x1 + x2)2 − x1x2 + a+ (−1)δ(y1 − y2)

y1 + y2 + (−1)δ(x1 − x2)
, (6.7)

where δ is chosen such that δ = 0 when y1 + y2 + x1 − x2 6= 0 and δ = 1 otherwise
(or a randomized choice of δ when both choices give nonzero values).

The formula requires 2 field multiplications, 2 field squarings, and 1 field inver-
sion.

In Appendix A.1.2.1, we provide C code (using the NSS toolkit [Moz08]) that
implements the affine coordinates formula in equation (6.7).

Projective coordinates. Projective coordinates can be used to avoid the high
cost of field inversion by trading expensive field inversions for cheaper field multipli-
cations. In so doing, field inversion need only be done once per point multiplication
(at the end) rather than during point addition or point doubling in the double-and-
add algorithm.

We now give a projective form of the unified point addition formula correspond-
ing to the projective form given with λ as defined in equation (6.7).

115

Chapter 6. Unified Point Addition Formulæ in Elliptic Curve Cryptography

We begin by noting that, since P + Q = Q + P , the value for y3 in point
addition is symmetric and hence 2y3 = λ(x1 +x2−2x3)− (y1 +y2). Let xi = Xi/Zi,
yi = Yi/Zi. By completing the square in the numerator of λ, we obtain:

X3 = 2FW , Y3 = R(G− 2W)− LFM , Z3 = 2F 3 , (6.8)

where U1 = X1Z2, U2 = X2Z1, S1 = Y1Z2, S2 = Y2Z1, Z = Z1Z2, T = U1 + U2,M =
S1 + S2, V = (−1)δ(U1 − U2), N = (−1)δ(S1 − S2), E = M + V, F = ZE,L =
FE,G = LT,R = T 2 − U1U2 + Z(aZ + N), and W = R2 − G. Note that δ = 0
when S1 + S2 + U1 − U2 6= 0 and δ = 1 otherwise; we can also make a randomized
choice of δ when both choices give nonzero values.

This formula requires 16 field multiplications and 3 field squarings.1

In Appendix A.1.3.1, we provide Maple code that checks that the projective
formula of equation (6.8) corresponds to the affine formula of equation (6.7).

In Appendix A.1.3.2, we provide C code (using the NSS toolkit [Moz08]) that
implements the projective coordinates formula in equation (6.8).

6.3.3 Extending Walter’s attack: conditional modular re-
duction attack

Walter’s attack in Section 6.3.1.1 worked under the assumption that the conditional
subtraction at the end of Montgomery reduction could be detected. We observe that
there is a conditional subtraction (or addition) at the end of most implementations
of field addition and subtraction. For example, in the field subtraction algorithm
given in Figure 6.4, the conditional addition is step 2. This is a common practice
in many implementations. For example, the OpenSSL [Ope08] library provides a
function BN_mod_sub_quick which performs exactly the operations in Figure 6.4,
and similarly for field addition. When reduction is done using the division, as in
OpenSSL’s BN_mod_sub function, and the value to be reduced is strictly between
−q and q, the operations performed can be mapped to those in Figure 6.4 and
include a conditional addition.

Input: Integers c, d, q such that 0 ≤ c, d ≤ q − 1.
Output: Integer e such that e = c− d mod q and 0 ≤ e ≤ q − 1.

1. e← c− d
2. if e < 0 then e← e+ q

Figure 6.4: Field subtraction algorithm

Thus, under the same assumption as in Walter’s attack that a conditional sub-
traction (or addition) can be observed, we design an attack that makes use of

1The multiplication by (−1)δ in the computation of V and N can be implemented with con-
ditional branching (if statement). However, the use of conditional branching must be done with
care to avoid a new vector for a side-channel attack.

116

Chapter 6. Unified Point Addition Formulæ in Elliptic Curve Cryptography

detecting such an operation at the end of a field addition (or subtraction).

The key observation that enables the side-channel attack is that there are some
modular subtractions in the unified point addition formulæ where, in the case of
a point doubling, the terms in the subtraction are equal and hence the result of
the subtraction is zero: when c = d, we compute c − d mod q as c − d = 0, and
the conditional addition in field subtraction is never performed. However, if in the
operation c− d mod q we observe the occurrence of a conditional addition, then it
must be that d > c, and in particular that c 6= d, so the operation must be a point
addition and not a point doubling.

We now consider how this observation can be used specifically against the affine
and projective unified point addition formulæ of Section 6.3.2.

6.3.3.1 Effect on affine formula of Section 6.3.2

The attack. The affine unified point addition formulæ of Brier, Déchène, and
Joye in equation (6.7) requires the computation of y1−y2 mod q and x1−x2 mod q.
Assuming these values are distributed uniformly at random, then the probability
that a conditional addition occurs in the computation of y1− y2 mod q is 1/2, and
similarly for x1−x2 mod q. In this case, the probability that a point addition can
be identified is

pdist = 1− (1− 1/2)2 = 3/4 . (6.9)

Probabilistic analysis. First, we note that, since a unified point addition and
unified point doubling should have the same runtime, a side-channel attack on
point multiplication will allow the number of point operations to be determined.
Assuming the key length is known, we can then determine from the number of
operations how many point additions occurred since the number of point doublings
is fixed by the key length.

To simplify our analysis, we assume that the attack need only be successful for
keys of the most common length. The attack can work for other key lengths, but
requires a more careful analysis to bound the computational runtime of the attack.

Suppose the characteristic q of the prime field is between 3 ·2r−1 and 3 ·2r. Then
among keys chosen uniformly at random between 0 and q − 1, the most common
key length is r and this occurs for 1/3 of the keys between 0 and q − 1. The closer
q is to 2r+1, the closer the fraction of keys having length r is to 1/2.

If there are k point additions of which ` are not determined by the observation
of a conditional addition, then the space we need to search is the set of sequences
with r−k zeroes and k ones combined with the constraints from the identified point
additions in the double-and-add sequence. Furthermore, we can restrict some sub-
strings based on the constraint that we cannot have two subsequent point additions,
as each point addition must be preceded by a point doubling.

117

Chapter 6. Unified Point Addition Formulæ in Elliptic Curve Cryptography

The number of possible keys is upper-bounded by
(
r−k+`
`

)
, which in turn is

upper-bounded by
(
r
`

)
; this estimate is quite pessimistic but has the advantage of

being independent of k, which we shall use in the analysis below.

Assume that all keys of length r are possible, which is true if q ≥ 2r+1 − 1.
Then the probability that point multiplication using a key of length r uses exactly
k point additions is

(
r
k

)
/2r. For a key with k point additions, the probability that

exactly ` of them are not identified is(
k

`

)
pk−`dist (1− pdist)

` . (6.10)

Since a key of length r corresponds to at most r point additions, the probability
that exactly ` additions are not identified in a key of length r is

p` =
r∑
k=`

(prob. key of length r uses exactly k point additions)

· (prob. ` of these k point additions are not identified) (6.11)

=
r∑
k=`

(
r

k

)
1

2r
·
(
k

`

)
pk−`dist (1− pdist)

` (6.12)

=
r∑
k=`

(1− pdist)
`

2r

(
r

`

)(
r − `
k − `

)
pk−`dist (6.13)

=

(
r

`

)
(1− pdist)

`

2r

r−∑̀
i=0

(
r − `
i

)
pidist (6.14)

=

(
r

`

)
1

2r
(1− pdist)

` (1 + pdist)
r−` . (6.15)

118

Chapter 6. Unified Point Addition Formulæ in Elliptic Curve Cryptography

The average number of unidentified point additions is hence
r∑

k=0

k · pk =
r∑

k=0

k ·
(
r

k

)
1

2r
(1− pdist)

k(1 + pdist)
r−k (6.16)

=
1

2r

r∑
k=0

k · r!
(r − k)!k!

(1− pdist)
k(1 + pdist)

r−k (6.17)

=
1

2r

r∑
k=1

k · r!
(r − k)!k!

(1− pdist)
k(1 + pdist)

r−k (6.18)

=
1

2r

r∑
k=1

r!

(r − k)!(k − 1)!
(1− pdist)

k(1 + pdist)
r−k (6.19)

=
1

2r

r−1∑
k=0

r · (r − 1)!

(r − 1− k)!k!
(1− pdist)

k+1(1 + pdist)
r−1−k (6.20)

=
(1− pdist)r

2r

r−1∑
k=0

(
r − 1

k

)
(1− pdist)

k(1 + pdist)
r−1−k (6.21)

=
(1− pdist)r

2r
((1− pdist) + (1 + pdist))

r−1 (6.22)

=
(1− pdist)r

2r
2r−1 (6.23)

= (1− pdist)r/2 . (6.24)

Although the average number of unidentified point additions is (1− pdist)r/2 =
r/8 when pdist = 3/4 as in equation (6.9), some keys will have fewer additions
remaining to be identified.

For example, consider the case of an elliptic curve over a 192-bit prime field.
Here, we have r = 191 and, for pdist = 3/4 as in equation (6.9), there are on average
23.9 point additions remaining to be identified, so the search space is still quite
large. (This analysis assumes that the point additions in a point multiplication are
independent which is not strictly true as x1 and y1, the x and y coordinates of the
generator, are the same for all the point additions in a single point multiplication.)

A further refinement. We can apply a further refinement of the attack for
special cases as suggested by Walter [Wal04, §7]. Suppose the generator P is
selected uniformly at random. For 1/m of the cases, the x-coordinate of the base
point P will take on a value between 0 and 1

m
q and will have an average value of

1
2m
q. We will observe that we can observe even more conditional point additions in

this case.

We adopt the notation that, in the double-and-add point multiplication algo-
rithm, the fixed generator P is the first argument of the unified point addition
formula. We assume that over a point multiplication, the values x2 that arise

119

Chapter 6. Unified Point Addition Formulæ in Elliptic Curve Cryptography

in each point addition in equation (6.7) will behave as if they are uniformly dis-
tributed. Thus, a (1 − 1

2m
)-fraction of these values will be greater than x1, so a

(1− 1
2m

)-fraction of the point addition operations will have a conditional addition
occurring. We do not make any restriction on the size of the y-coordinate of P and
assume it remains uniformly distributed independent of the x-coordinate.

With this additional restriction on the x-coordinate of P , the probability that
a point addition can be distinguished is the probability that a conditional addition
occurs in either the computation of x1 − x2 or y1 − y2:

pdist = 1−
(

1−
(

1− 1

2m

))(
1− 1

2

)
= 1− 1

4m
. (6.25)

With this value of pdist and with 1/m = 1/8, the expected number of additions
remaining to be identified decreases to r/64. For the example of a 192-bit curve
with r = 191, this is a mere 2.99 unidentified point additions and occurs for 1/8 of
the base points.

With this restriction on P , a significant proportion of keys of length r will be left
with 3 or fewer unidentified additions. By contrast, without using this restriction
on P and only making use of the distribution in equation (6.15), we would find that
1 in approximately 24.6 of all keys would leave 3 or fewer unidentified additions.

In this restricted case, the number of possible keys is now upper-bounded
(loosely) by

(
191
3

)
≈ 220.1, for which an exhaustive search is quite feasible.

6.3.3.2 Effect on projective formula of Section 6.3.2

The attack. There are two operations in the projective formula of equation (6.8)
where the ability to detect a conditional addition in a field subtraction can lead to a
side-channel attack. Additionally, we can make use of Walter’s original observation
on Montgomery modular multiplication to enhance the attack further.

We will first describe where the detection of a conditional addition in field
subtraction can be exploited. Suppose without loss of generality δ = 0. Consider
the operations V = U1 − U2 mod q and N = S1 − S2 mod q. During a point
doubling, U1 = U2 and S1 = S2, so there will be no conditional addition in either of
these calculations. However, in the case of a point addition a conditional addition
may occur.

Additionally, if the field multiplication is implemented using Montgomery mod-
ular multiplication, Walter’s original attack that uses conditional subtractions in
Montgomery reductions can still be applied to this projective formula. A point
addition can be distinguished from a point doubling if a conditional subtraction
occurs in the computation of one of U1 = X1Z2 or U2 = X2Z1 but not the other,
and in one of S1 = Y1Z2 or S2 = Y2Z1 but not the other.

By combining these two sources of information, we can increase the number of
determined point additions. We now have four different conditional events which

120

Chapter 6. Unified Point Addition Formulæ in Elliptic Curve Cryptography

distinguish a point addition from a point doubling:

1. conditional subtraction in the computation of one of U1 = X1Z2 or U2 = X2Z1

but not the other,

2. conditional subtraction in the computation of one of S1 = Y1Z2 or S2 = Y2Z1

but not the other,

3. conditional addition in the computation of V = U1 − U2 mod q, and

4. conditional addition in the computation of N = S1 − S2 mod q.

Probabilistic analysis. As before, we will assume that over the course of a point
multiplication U1 and U2 will behave as if they are independent and uniformly
distributed over 0, . . . , q−1, and similarly for S1 and S2. Moreover, we will assume
that the inputs to the multiplications U1 = X1Z2, U2 = X2Z1, S1 = Y1Z2, and
S2 = Y2Z1 behave as if they are independent and uniformly distributed.

In each point addition, we have that U2 < U1 with probability padd = 1
2
in which

case a conditional addition is needed in the computation of V = U1 − U2 mod q,
and similarly for N = S1 − S2 mod q. If a side-channel trace reveals a conditional
addition occurring in at least one of these computations, then the operation must
be a point addition. The probability of distinguishing a point addition using these
two events is 1 − (1 − 1/2)2 = 3/4. Unfortunately, we cannot assume that one of
the arguments is small and take advantage of the further refinement we used in
the affine case because the values in the subtractions V = U1 − U2 mod q, and
N = S1 − S2 mod q depend on both of the points of the point addition.

With the assumption that these four events occur independently, the probability
of detecting a point addition given that the operation was a point addition is

pdist = 1− (1− padd)2(1− pdiff)2 . (6.26)

In practice, this assumption is justified as the coordinate values observed during
a point multiplication do seem to behave as if they are sufficiently uniformly dis-
tributed and, with respect to the four conditional events above, are sufficiently
uncorrelated.

Without making any assumption on the distribution of the base point, and
using padd = 1/2 (as above) and pdiff ≈ 3/8 (as in equation (6.4)), we obtain
from equation (6.26) that pdist ≈ 231/256 ≈ 0.902. Based on the distribution of
unidentified point additions in equation (6.15), the average number of unidentified
point additions in a key of length r will be approximately 25r/512 ≈ 0.049r.

A further refinement. If we look for base points with conveniently sized coordi-
nates along the lines of the further refinement of the previous section, the increase
in the probability of success will be relatively small. For a projective point with

121

Chapter 6. Unified Point Addition Formulæ in Elliptic Curve Cryptography

coordinates approximately
(

1
16
q, 1

16
q, 15

16
q
)
, we will be able to improve pdiff to ap-

proximately 0.93, and then the expected number of unidentified point additions
decreases to approximately 0.035r. However, this decrease from 0.049r to 0.035r
comes at the cost of restricting ourselves to 1 out of every 512 points that satisfies
the constraints above.

Overall, it is much more practical to consider all base points and make use of the
variance in the distribution of equation (6.15). For a 192-bit prime field, 15.4% of
all point multiplications have will 6 or fewer unidentified point additions, whereas
this refinement to 1 in 512 base points will have 6.7 unidentified point additions on
average.

Unidentified substrings. Using the conditional modular reduction attack, we
identify operations that are believed to be point additions, and then deduce that
certain other operations, namely the adjacent operations, must be point doublings.
To further refine the estimate of the number of unidentified point doublings, we in-
troduce an approach that could also be used to detail the lengths of the unidentified
substrings.

Our approach is asymptotic: we consider the frequencies that occur for a key
of infinite length with the same proportion of zero bits and identified additions as
our finite key, which then give us an estimate on the number of identified (and
unidentified) doublings in our finite key.

The approach classifies doubling operations in three different ways, and uses a
state diagram to describe how each operation can arise as we read through the bits
of the key.

The state diagram, illustrated in Figure 6.5 has six states. There are three
states corresponding to doublings that arise from moving from one bit of the key to
the next: D∗ (unidentified point doublings), D1 (identified point doublings which
precede an identified point addition), and D2 (identified point doublings which
follow but do not precede an identified point addition); There are three states that
correspond to bit operations, that is, operations which depend on the value of the
key bit: A (identified point addition, for the bit 1), A∗ (unidentified point addition,
for the bit 1), and V (absence of point addition, for the bit 0).

D∗ D2 A D1

A∗

V

-
���

�
�
����

�
�

��	

@
@
@
@@R@

@
@

@@I �
�
�

��	

@
@
@

@@I
PPPPPPPPPPPPPPq

��
��

��
��

��
��

��1

Figure 6.5: State diagram for analyzing point doublings

122

Chapter 6. Unified Point Addition Formulæ in Elliptic Curve Cryptography

To estimate the number of identified and unidentified point doublings, we must
find which proportion of the point doublings are in states D1 and D2. When in state
D1, the subsequent state must always be A, so the number of occurrences of D1

must be the same as the number of occurrences of A, the number of identified point
additions. State D2 only arises following state A, and the probability of moving to
D2 when leaving A is the probability that the next bit does not correspond to an
identified addition.

Recall that the finite key has length r. If the r-bit key has m identified point
additions, then an estimate for the number of identified point doublings is(

1 +
r −m
r

)
m . (6.27)

In the expression above, the 1 (times m) indicates that a D1 event arises for every
A event, and r−m

r
is the probability of moving to D2 when leaving A). Thus, the

number of unidentified operations is upper-bounded by(
r +

(
1 + r−m

r

)
m+ k

k

)
. (6.28)

Attack analysis. Figure 6.6 describes the effect of these attacks at various field
sizes with a number of different attack scenarios for a number of common field sizes.

In the first chunk of the table, we give for each field size r + 1 the average
number of additions remaining to be identified based on the probabilistic analysis
of equation (6.26) that yields 0.049r unidentified point additions.

In the second chunk of the table, we give an analysis based on what can be
expected from the best of 512 sample traces. Here, we show the number k of
unidentified point additions for which pk from the distribution in equation (6.15)
is greater than 1/512, an upper-bound on this keyspace given by

(
r
k

)
, and a refined

estimate on the keyspace using substring restrictions given by equation (6.28).

In the third chunk of the table, we look at what would be required if we wished
to obtain a trace that had at most 3 unidentified point additions. Here, we show the
number of traces that would be required to find a trace with at most 3 unidentified
point additions (this is given by the expression 1/(p0 +p1 +p2 +p3) with pk defined
by equation (6.15)), and the upper-bound on this keyspace given by

(
r
3

)
.

In the fourth chunk of the table, we compare our results with the earlier attack
of Walter [Wal04], showing the average number of unidentified point additions from
that attack, the bound on the keyspace based on the average number of unidentified
point operations, and a bound on the keyspace with an enhanced set of substring
restrictions from Walter’s experiments.

For our attacks, we make no restrictions on the size of the coordinates of the
points, so pdist ≈ 0.902. We assume that half the keys have size r (that is, q ≈ 2r+1)
and that an attack on a key of size different from r is always considered unsuccessful.

123

C
h
a
pter

6.
U

n
ified

P
o
in

t
A

d
d
itio

n
F
o
r
m
u
læ

in
E
lliptic

C
u
rv

e
C

ry
pto

g
r
a
ph

y

Field size in bits (r + 1) 160 192 224 256 384 521

Average missing additions per point mult. 7.76 9.33 10.89 12.45 18.70 25.43

Sampling best trace from 512 samples
k required for prob. of success > 1/512 2 2 3 4 8 13
Upper bound on keyspace for this k 213.6 214.1 220.8 227.4 253.2 284.5

Estimated keyspace (equation (6.28)): 29.87 210.4 215.2 220.0 238.8 261.5

To obtain at most 3 unidentified additions
Expected number of keys required 22 67 217 746 217.1 225.2

Bound on keyspace 219.3 220.1 220.8 221.4 223.1 224.4

Walter’s attack [Wal04]
Average missing operations (τ) 36.2 45.9 55.7 96.3 141.6
Average missing additions (α) 19.2 23.0 26.6 41.5 57.9
Bound on keyspace (no restrictions) (

(
τ
α

)
) 233.2 242.8 252.4 291.4 2134.3

Bound using substring restrictions 217.6 224.0 230.4 256.0 284.2

Figure 6.6: Expected number of operations using conditional modular reduction attack, using pdist ≈ 0.902.

124

Chapter 6. Unified Point Addition Formulæ in Elliptic Curve Cryptography

Our attacks compare favourably with Walter’s, leading to improved keyspace
bounds for all field sizes. In fact, our technique makes attacks on field sizes of up
to 384 bits feasible as we note below, whereas Walter’s attack is feasible only up to
field sizes of 256 bits.

Based on the estimated keyspace for the best sample from among 512 samples,
we note that even up to 384-bit curves our attack remains feasible given the cost
of checking a key (a 384-bit elliptic curve point multiplication requires about 224.3

operations on OpenSSL 0.9.8i [Ope08]) and the required search space (238.8).

Based on waiting to obtain at most 3 unidentified additions, the attack also
remains feasible up to 384-bit curves with a total expected attack time of 217.1 ·
223.1 · 224.3 = 264.5.

One interesting observation is that, for the 521-bit case, the expected number
of traces required to obtain 3 unidentified additions approximately balances the
bound on the keyspace: this gives, in some sense, an overall minimized complexity
of attack.

It may be possible to use the substring restriction approach reported by Walter
[Wal04, §8, 9] to decrease the keyspace needed to be searched. But this approach is
likely to have only a limited impact in our cases, since the operations remaining to
be identified consist of a large number of point doublings and a few point additions:
sequences of zeros in the binary expansion will give rise to unavoidable unidentified
point doublings, no matter how successful we are at identifying point additions.

6.3.3.3 Countermeasures

Our conditional modular reduction attack makes use of information leaked on the
size of intermediate values based on the observation of the occurrence of a con-
ditional addition in field subtraction. The obvious countermeasure is to ensure
that field subtractions have a constant runtime so that no conditional addition can
be observed. The standard technique of inserting dummy operations can create
additional risks when differential side-channel attacks are considered.

Alternatively, we could implement all subtractions of the form c − d mod q
as (2q + c − d) − mq, where m ∈ {1, 2} is chosen based on the value of 2q +
c − d, so that the time required for a field subtraction is constant. Similarly,
for field addition, one could implement c + d mod q as (q + c + d) − mq with
m ∈ {1, 2}. Finally Montgomery reduction can be adjusted similarly by replacing
the conditional subtraction c← c− q on line 2 of Figure 6.3 with c← (c+ q)−mq
with m ∈ {1, 2}. Algorithms implemented with these countermeasures still have
a branch in their implementation based on the appropriate value of m, but the
branches have the same number of operations and thus may have less of a detectable
difference in practice.

We could rewrite the unified point addition formula explicitly considering field
reductions (both Montgomery reductions and addition/subtraction of a multiple

125

Chapter 6. Unified Point Addition Formulæ in Elliptic Curve Cryptography

of q) as operations that are independent from the field multiplication, inversion,
addition, and subtraction operations. We would have to accept that some of the
intermediate values in the computation would not be always be fully reduced and
thus could be greater than q or less than 0. In the case of field addition or subtrac-
tion, this is not very problematic as a single field addition could not get us too far
outside of the desired range of 0 to q − 1: the sum of two elements in this range is
at most 2q − 2, requiring only a single bit more to record. When the field size is
very close to a multiple of the word size, however, it may have a negative impact
on efficiency if we need to use another whole word in the representation.

We note as well that correctly selecting δ in equation (6.8) requires the compar-
ison of two field elements, so at least these two elements must be fully reduced (or
we could do a field subtraction with reduction on them). To improve the situation,
we compute δ such that

1

2
(x1 + x2 + y1 + y2) 6= x2−δ (6.29)

instead of y1 + y2 + (−1)δ(x1 − x2) 6= 0 as in equation (6.8): these expressions are
equivalent but this new form is more unified.

This leads us to the following set of recommendations for implementing the
projective unified point addition formula of equation (6.8). For simplicity, we will
assume the field is in Montgomery representation.

• Products and squares are not reduced unless stated.

• Sums are not reduced unless stated.

• Subtractions never contain a conditional addition: a fixed multiple of q is
always added to the first operand before doing the subtraction.

• If an integer is to be fully reduced, then it is guaranteed to be at least as large
as q: reduceq(x) = x−mq, m ∈ {1, 2, . . . , j} for some predetermined j.

• For the affine formula, inversion accepts any integer between 1 and 6q − 1,
coprime to q, and returns an integer between 1 and q − 1.

• For the affine formula, Montgomery reduction accepts inputs between 0 and
6q2 with R > 6q.

• For the projective formula, Montgomery reduction accepts inputs between 0
and 16q2 with R > 16q.

• Montgomery reductions are allowed to return an output between 0 and 2q−1.

• The multiples of q used in the formulæ are precomputed.

• For the projective formula, we let the X-, Y - and Z-coordinates be in the
range [0, 2q − 1].

126

Chapter 6. Unified Point Addition Formulæ in Elliptic Curve Cryptography

These countermeasures are not intended to be secure against differential side-
channel attacks, for which standard countermeasures, such as blinding, should still
be applied.

Applying these recommendations to the affine formula yields the algorithm in
Figure 6.7. For the projective formula, we obtain the algorithm in Figure 6.8.

Note that by construction (x1 +x2)2 ≥ x1x2, so the pre-reduction results in step
8 of the affine formula and step 14 of the projective formula are positive.

Input: Points P = (x1, y1) and Q = (x2, y2).
Output: Point (x3, y3) = P +Q.

1. E ← x1 + y1 + y2 + x2

2. if E is odd, then F ← E + 3q, else F ← E + 2q
3. G← reduceq(F/2)
4. if G 6= x2, then δ ← 0, else δ ← 1
5. H ← F − 2x2−δ
6. I ← H−1 mod q
7. J ← x1 + x2

8. K ← MontRed(J2 − x1 · x2)
9. L← reduceq(2q +K + a+ y1+δ − y2−δ)
10. λ = MontRed(L · I)
11. M ← MontRed(λ2)
12. x3 ← reduceq(3q +M − x1 − x2)
13. N ← MontRed(λ · (q + x1 − x3))
14. y3 ← 2q +N − y1

Figure 6.7: Affine coordinates unified point addition formula with side-channel attack
countermeasures.

6.3.4 Timing

In this section we report on timings that demonstrate the speed improvement that
results from using projective coordinates instead of affine coordinates and show that
using the unified point addition formula results in addition and doubling having
much closer run times overall.

The timings reported in this section were performed on a 900MHz UltraSPARC
III. The software used the multi-precision integer and elliptic curve libraries from
the Netscape Security Services (NSS) library version 3.9 [Moz08] with no optimized
assembly code. To obtain high-resolution timings, we used the Solaris hrtime C
library, which has a resolution of 100 ns. All timings reported are for the 160-bit
prime field curve secp160r2 [Cer00].

In Appendix A.1.4, we provide C code that we used to time various point mul-
tiplication formulæ.

127

Chapter 6. Unified Point Addition Formulæ in Elliptic Curve Cryptography

Input: Points P = (X1, Y1, Z1) and Q = (X2, Y2, Z2).
Output: Point (X3, Y3, Z3) = P +Q.

1. Û1 ← X1 · Z2, Û2 ← X2 · Z1, Ŝ1 ← Y1 · Z2, Ŝ2 ← Y2 · Z1

2. T̂ = Û1 + Û2

3. M ← MontRed(Ŝ1 + Ŝ2 + T̂)
4. if M is odd, then V ←M + 3q, else V ←M + 2q
5. C ← reduceq(V/2)

6. B ← reduceq(p+ MontRed(Û2))
7. if C 6= B, then δ ← 0, else δ ← 1

8. E ← V −MontRed(2Û2−δ)

9. Z ← MontRed(Z1 · Z2), T ← MontRed(T̂)

10. F ← MontRed(Z · E), U1 ← MontRed(Û1), U2 ← MontRed(Û2)
11. L← MontRed(F · E)
12. G← MontRed(L · T)

13. K ← 2q + MontRed(a · Z + Ŝ1+δ)−MontRed(Ŝ2−δ)
14. R← MontRed(Z ·K + T 2 − U1 · U2)
15. H ← MontRed(R2)
16. W ← reduceq(3q +H −G)
17. X3 ← MontRed((2F) ·W)
18. J ← MontRed(F 2)
19. Z3 ← MontRed((2F) · J)
20. N ← MontRed(F ·M)
21. Y3 ← 2q −MontRed(R · (2q + 2W −G) + L ·N)

Figure 6.8: Projective coordinates unified point addition formula with side-channel
attack countermeasures.

First we looked at the difference in time between a modular subtraction with
a conditional addition and without. The average time of a 160-bit prime field
modular subtraction a− b mod q when a > b was about 320 ns on our test system.
By contrast, when a < b, and hence when a conditional addition is required, the
average time was about 550 ns. This is a non-negligible difference which could
potentially be detected in a side-channel analysis. Besides timing information, of
course, other side-channels such as power analysis could leak information as well
about this operation.

Next, we timed the point addition, doubling, and multiplication operations for
various sets of point formulæ; these are reported in Figure 6.9. For the affine
and unified formulæ, point multiplication uses the double-and-add technique. The
timings in the table are the average of 105 operations.

Because the affine and projective formula of Brier, Déchène, and Joye in Fig-
ure 6.9 show some timing difference on average between the addition and doubling
operations, we further analyzed these operations.

128

Chapter 6. Unified Point Addition Formulæ in Elliptic Curve Cryptography

Formula Addition Doubling Multiplication

BDJ affine 126.5µs 126.2µs 29.03ms
Affine 115.7µs 118.4µs 27.89ms
BDJ projective 58.9µs 58.5µs 13.99ms
BJ projective 49.8µs 49.5µs 11.76ms
Jacobian projective 7.95ms
Modified Jacobian wNAF, w = 5 6.22ms

Figure 6.9: Average point operation timings for secp160r2 curve.

Figure 6.10 shows average timings and standard deviations for point additions
and point doublings over the course of a single point multiplication. The results
were obtained by recording the time of each addition or doubling in a single point
multiplication using the double-and-add algorithm.

Formula Operation Average Standard Deviation

unified addition 126.528µs 4.094µs ≈ 3.2%
BDJ affine unified doubling 126.155µs 3.700µs ≈ 2.9%

difference 0.373µs ≈ 0.3%
unified addition 58.992µs 0.474µs ≈ 0.8%

BDJ projective unified doubling 59.307µs 0.448µs ≈ 0.75%
difference 0.315µs ≈ 0.53%

Figure 6.10: Point operation timings from a single point multiplication for secp160r2
curve.

The top half of Figure 6.10 reports timings for point addition and doubling using
the affine formula of equation (6.7). Unified point doubling takes slightly less time
than unified point addition on average, but difference between the two operations
(0.3%) is one-tenth the size of the standard deviation of either operation, suggesting
that the timings of the two operations cannot be reliably distinguished.

The bottom half of Figure 6.10 reports timings for point addition and doubling
using the projective formula of equation (6.8). Here, unified point doubling takes
slightly more time (0.53%) than unified point addition, but the difference is still
less than the standard deviation of either of these operations (around 0.8%).

For both the affine and projective cases of these formulæ in Figure 6.10, the av-
erage difference in timing between a point addition and point doubling is small com-
pared to the standard deviation. However, when combined with other side-channel
information, this may still be useful to an attacker. Using the countermeasures we
described in Section 6.3.3.3 may further eliminate these differences.

129

Chapter 6. Unified Point Addition Formulæ in Elliptic Curve Cryptography

6.4 Unified point addition formulæ for binary fields

In this section we note the relevance of the work in this chapter to elliptic curves
over binary fields. While unified projective formulæ can be derived from the unified
affine formulæ, there is no speed improvement since binary field inversion is not as
computationally expensive, comparatively, for binary fields as it is for prime fields.
Additionally, because binary field subtraction does not have a conditional addition,
our conditional modular reduction attack does not apply in the binary case.

Unified formula of Brier and Joye. The unified form of λ for point addition
and doubling for curves over binary fields is:

λ =
(x1 + x2)2 + x1x2 + a(x1 + x2) + y1

y1 + y2 + x2

, if y1 + y2 + x2 6= 0 . (6.30)

Point addition or doubling using the affine form requires 1 inversion, 4 multipli-
cations, and 2 squarings; using a projective form requires 20 multiplications and
3 squarings. In practice, a binary field inversion has the same computational cost
as about 10 field multiplications [HHM00], so the affine form is faster than the
projective form.

Unified affine formulæ of Brier, Déchène, and Joye. Let

λm =

{
(x1+x2)2+x1x2+y2+a(x1+x2)+(y1+y2)m

y1+y2+x2+(x1+x2)m
, if y1 + y2 + x2 + (x1 + x2)m 6= 0

(x1+x2)2+x1x2+y1+a(x1+x2)+(y1+y2)m̃
y1+y2+x2+(x1+x2)m̃

, if y1 + y2 + x1 + (x1 + x2)m̃ 6= 0
,

(6.31)
for any polynomial m = m(x1, y1;x2, y2), with m̃(x1, y2;x2, y2) = m(x2, y2;x1, y1).
These formulæ are defined for all points except those which satisfy

y1 + y2 + x2 + (x1 + x2)m = 0 = y1 + y2 + x1 + (x1 + x2)m̃ . (6.32)

For efficiency purposes, we can choose m = m0 = 0. In this case, we get the
following unified formula for λ:

λ = λ0 =

{
(x1+x2)2+x1x2+a(x1+x2)+y2

x1+y1+y2
, if x1 + y1 + y2 6= 0

(x1+x2)2+x1x2+a(x1+x2)+y1
x2+y1+y2

, if x2 + y1 + y2 6= 0
. (6.33)

Unified point addition using λ = λ0 requires 4 field multiplications, 2 field squarings,
and 1 field inversion.

Unified projective formulæ of Brier, Déchène, and Joye. We now obtain
a projective form of the unified point addition formula given by λ as defined in
equation (6.33). Letting xi = Xi/Zi, yi = Yi/Zi and completing the square in the

130

Chapter 6. Unified Point Addition Formulæ in Elliptic Curve Cryptography

numerator of λ, we obtain:

X3 = FW , Y3 = R(LU +W) +X3 +HES , Z3 = FH , (6.34)

where U1 = X1Z2, U2 = X2Z1, S1 = Y1Z2, S2 = Y2Z1, Z = Z1Z2, T = U1 + U2,M =
S1 + S2, E = M + U1+δ, F = ZE,L = FE,G = LT,H = F 2, R = T 2 + U1U2 +
Z(aT +S2−δ), K = FR+G+aH, andW = R2 +K. Note that δ = 0 whenM 6= U1

and δ = 1 otherwise. These terms were derived using y3 = λ(x1 + x3) + x3 + y1

but by symmetry of point addition could have equally been derived using y3 =
λ(x2 + x3) + x3 + y2.

This projective formula requires 19 field multiplications and 3 field squarings. In
practice, a binary field inversion has the same computational cost as about 10 field
multiplications [HHM00] so the affine form of the unified point addition formulæ is
faster than the projective form.

In Appendix A.1.5.1, we provide Maple code that checks that the projective
formula of equation (6.34) corresponds to the affine formula of equation (6.33).

Conditional modular reduction attack. For the projective formula for uni-
fied point addition for curves over binary fields as given in equation (6.34), Walter’s
attack does not apply nor does our extension in Section 6.3.3.2. Walter’s original
attack does not apply because field multiplication in binary fields is not imple-
mented using Montgomery multiplication. Our extension does not apply because
no modular reduction operations are necessary in field addition.

131

Part II

Quantum Cryptography

132

Chapter 7

The Case for Quantum Key
Distribution

Contents
7.1 Introduction . 133
7.2 A brief introduction to QKD 135
7.3 Who needs quantum key distribution? 136
7.4 The security of QKD . 137
7.5 Key usage: encryption 139
7.6 Authentication . 140

7.6.1 Symmetric key authentication 140
7.6.2 Public key authentication 141

7.7 Limitations . 142
7.8 QKD Networks . 143
7.9 Concluding remaks . 144

7.1 Introduction

Since its discovery, the field of quantum cryptography — and in particular, quantum
key distribution (QKD) — has garnered widespread technical and popular interest.
The promise of “unconditional security” has brought public interest, but the often
unbridled optimism expressed for this field has also spawned criticism and analysis
[Sch03, PPS04, Sch07, Sch08].

QKD is a new tool in the cryptographer’s toolbox: it allows for secure key
agreement where the output key is entirely independent from any input value, a
task that is impossible using classical1 cryptography. QKD does not eliminate the

1All computation must be viewed as taking place in a physical system described by particular
laws of nature. By classical cryptography, we mean cryptography taking place in a computational
system described by classical (Newtonian) Turing machines with classical communication.

133

Chapter 7. The Case for Quantum Key Distribution

need for other cryptographic primitives, such as authentication, but it can be used
to build systems with new security properties.

Through the rest of this chapter, we restrict our discussion on quantum cryp-
tography to quantum key distribution (QKD). Many other quantum cryptographic
primitives exist — quantum private channels, quantum public key encryption, quan-
tum coin tossing, blind quantum computation, quantum money — but almost all
require a medium- to large- scale quantum computer for implementation. QKD, on
the other hand, has already been implemented by many different groups, has seen
attempts at commercialization, and thus its potential role in upcoming security
infrastructures merits serious examination.

There are three phases (which are sometimes intertwined) to establishing secure
communications:

1. Key agreement: Two parties to agree upon a secure, shared private key.

2. Authentication: Allows a party to be certain that a message comes from
a particular party. In order for key agreement to avoid man-in-the-middle
attacks, authentication of some form must be used.

3. Key usage: Once a secure key is established, it can be used for encryption
(using a one-time pad or some other cipher), further authentication, or other
cryptographic purposes.

QKD is just one part of this overall information security infrastructure: two parties
can agree upon a private key, the security of which depends on no computational
assumptions, and which is entirely independent of any input to the protocol.

If we live in a world where we can reasonably expect public key authentication
to be secure in the short- to medium-term, then the combination of public key
cryptography for authentication and QKD for key agreement can lead to very strong
long-term security with all the convenience and benefits we have come to expect
from distributed authentication in a public key infrastructure.

If we live in a world where public key authentication can no longer be employed
safely, we must revert to shared secret key authentication or trusted third party
authentication before we can use QKD. Here QKD still offers a benefit over an
entirely classical solution because the key agreed upon by QKD is independent
of the authentication keys, eliminating the ability of trusted third parties to later
compromise information protected by QKD.

If we live in a world where there exist public key cryptography schemes that
are believed to be secure indefinitely, then there is a reduced case for QKD, but
it is still of interest for a variety of reasons. For example, if side-channel attacks
become increasingly easier to mount against classical public key cryptography, then
self-testable, entanglement-based QKD systems may be appealing. Other forms of
quantum cryptography may also be of interest, especially for the secure communi-
cation of quantum information if quantum computing becomes widespread.

134

Chapter 7. The Case for Quantum Key Distribution

Experimental research on quantum key distribution continues to improve the
usability, security, rate, and distance of QKD systems. As public key cryptography
systems are retooled with new algorithms and standards over the coming years,
there is an opportunity to incorporate QKD as a new tool offering fundamentally
new security features.

Related work. This work is motivated as a response to other opinions about
the role of QKD, especially the thoughtful note “Why quantum cryptography?”
[PPS04]. A response by the SECOQC project [ABB+07] addresses related concerns
as well, with special attention paid to the networks of QKD links. Our response
emphasizes the role of authentication in QKD.

Outline. In the rest of this chapter, we argue that QKD has a valuable role to
play in future security infrastructures. In Section 7.2, we give an overview of how
QKD works, and give an example where its high security is needed in Section 7.3.
We describe the conditions for the security of QKD in Section 7.4. We then discuss
the other parts of the communication infrastructure: encryption in Section 7.5 and
authentication in Section 7.6. In Section 7.7, we discuss some limitations to QKD
as it stands and how they may be overcome, with special consideration to networks
of QKD devices in Section 7.8. We offer a concluding statement in Section 7.9.

7.2 A brief introduction to QKD

In this section we provide a very brief overview of quantum key distribution.
More detailed explanations are available from a variety of sources [NC00, ABB+07,
SBPC+08].

In QKD, two parties, Alice and Bob, obtain some quantum states and measure
them. They communicate (all communication from this point onwards is classical)
to determine which of their measurement results could lead to secret key bits; some
are discarded in a process called sifting because the measurement settings were in-
compatible. They perform error correction and then estimate a security parameter
which describes how much information an eavesdropper might have about their key
data. If this amount is above a certain threshold, then they abort as they cannot
guarantee any secrecy whatsoever. If it is below the threshold, then they can apply
privacy amplification to squeeze out any remaining information the eavesdropper
might have, and arrive at a shared secret key. Some of this classical communication
must be authenticated to avoid man-in-the-middle attacks. Some portions of the
protocol can fail with negligible probability.

A flow chart describing the stages of quantum key distribution is given in Fig-
ure 7.1.

Once a secret key has been established by QKD, it can be used for a variety of
purposes. The most common approach is to use it as the secret key in a one-time

135

Chapter 7. The Case for Quantum Key Distribution

No NoYes

Quantum state
transmission and

measurement

Key sifting /
reconciliation

Error
correction

Security
parameter
estimation

Privacy
amplification

Secret key
distillable?

Secret key

Key confirmation
Yes

Abort

Authentication key

Figure 7.1: Flow chart of the stages of a quantum key distribution protocol. Stages
with double lines require classical authentication.

pad to achieve unconditionally secure encryption. The key can also be used for
classical authentication in subsequent rounds of QKD.

We can expect that as QKD research continues, QKD devices will become more
robust, easier to configure, less expensive, and smaller, perhaps sufficiently minia-
turized to fit on a single circuit board.

7.3 Who needs quantum key distribution?

It is widely understood that “security is a chain; it’s as strong as the weakest
link” [Sch03], and cryptography, even public key cryptography, is indeed one of the
strongest links in the chain. We cannot trust that a particular computationally
secure cryptographic scheme and parameter size will remain secure indefinitely,
and many expert recommendations are unwilling to provide guidance for much
more than 30 years in the future. While much of the information being encrypted
today does not need 30 years of security, some does.

Moreover, it is important to plan well in advance for changes in security tech-
nology. Suppose, for example, that a particular application using RSA or elliptic
curve cryptography (ECC) needs information to be secure for x years, and it takes
y years to retool the infrastructure to a new cryptosystem. If large-scale quantum
computers capable of breaking RSA or ECC are built within z years, with z < x+y,
then we are already too late: we need to start planning to use new cryptosystems
long before old ones are broken.

136

Chapter 7. The Case for Quantum Key Distribution

Government, military, and intelligence agencies need long-term security. For
example, the UK government did not declassify the 1945 report on its efforts in
breaking the Tunny cipher during World War II until 2000 [GMT45], and the US
government’s current classification regime keeps documents classified for up to 25
years [Bus03, §1.5(b)].

Businesses trying to protect long-term strategic trade secrets may also wish for
long-term confidentiality. Situations with long-term deployments but well-specified
communication requirements could also benefit from QKD: it is inconvenient and
expensive to have to upgrade the 1.5 million automated teller machines (ATMs)
worldwide whenever the latest cryptographic protocol is broken or deemed obsolete,
but QKD could provide standards less likely to change due to cryptanalysis.

One particular industry likely to require long-term, future-proof security is
health care. Health care systems are slowly but irreversibly becoming more elec-
tronic, and health care records need privacy for 100 years or more. Securing the
storage of these records in data centers is essential, of course, and quantum key dis-
tribution does not aim to solve this difficult problem. Equally important, however,
is the secure communication of health care records, which can be protected by the
information-theoretic security offered by quantum key distribution.

Quantum key distribution is also not the only way to establish information
theoretically secure keys. The physical transfer of long, randomly generated keys
is also an information theoretically secure key distribution scheme. With hard
drive prices approaching US $0.10 per gigabyte, one should not underestimate “the
bandwidth of a truck filled with hard drives” (although increases in fuel prices may
counteract the cost efficiency of such a communication system). This approach is
not appropriate for all scenarios. In some cases, it may be impossible to rekey
a system in this manner (for example, satellites and space probes). It requires
assurances that the physical keys were transported securely. It also requires secure
storage of large amounts of key until use. QKD requires only a small amount of
key, the authentication key, to be securely stored until use, and then can generate
fresh encryption keys on demand that need only be stored for the short time period
between key generation and message encryption/decryption.

7.4 The security of QKD

Quantum key distribution is often described by its proponents as “unconditionally
secure” to emphasize its difference with computationally secure classical crypto-
graphic protocols. While there are still conditions that need to be satisfied for
quantum key distribution to be secure, the phrase “unconditionally secure” is jus-
tified because, not only are the conditions reduced, they are in some sense minimal
necessary conditions. Any secure key agreement protocol must make a few minimal
assumptions, for security cannot come from nothing: we must be able to identify
and authenticate the communicating parties, we must be able to have some private

137

Chapter 7. The Case for Quantum Key Distribution

location to perform local operations, and all parties must operate within the laws
of physics.

The following statement describes the security of quantum key distribution,
and there are many formal mathematical arguments for the security of QKD (for
example, [May97, LC99, GLLP04]).

Theorem 7.1 (Security statement for quantum key distribution) If

A1) quantum mechanics is correct, and
A2) authentication is secure, and
A3) our devices are reasonably secure,

then with high probability the key established by quantum key distribution is a ran-
dom secret key independent (up to a negligible difference) of input values.

Assumption 1: Quantum mechanics is correct. This assumption requires
that any eavesdropper be bounded by the laws of quantum mechanics, although
within this realm there are no further restrictions beyond the eavesdropper’s inabil-
ity to access the devices. In particular, we allow the eavesdropper to have arbitrarily
large quantum computing technology, far more powerful than the current state of
the art. Quantum mechanics has been tested experimentally for nearly a century,
to very high precision. But even if quantum mechanics is superseded by a new
physical theory, it is not necessarily true that quantum key distribution would be
insecure: for example, secure key distribution can be achieved in a manner similar
to QKD solely based on the assumption that no faster-than-light communication is
possible [BHK05].

Assumption 2: Authentication is secure. This assumption is one of the main
concerns of those evaluating quantum key distribution. In order to be protected
against man-in-the-middle attacks, much of the classical communication in QKD
must be authenticated. Authentication can be achieved with unconditional security
using short shared keys, or with computational security using public key cryptog-
raphy. We discuss the issue of authentication in greater detail in Section 7.6.

Assumption 3: Our devices are secure. Constructing a QKD implementation
that is verifiably secure is a substantial engineering challenge that researchers are
still working on. Although the first prototype QKD system leaked key information
over a side channel (it made different noises depending on the photon polarization,
and thus the “prototype was unconditionally secure against any eavesdropper who
happened to be deaf” [Bra06]), experimental cryptanalysis leads to better theo-
retical and practical security. More sophisticated side-channel attacks continue to
be proposed against particular implementations of existing systems (for example,
[ZFQ+08]), but so too are better theoretical methods being proposed, such as the

138

Chapter 7. The Case for Quantum Key Distribution

decoy state method [Hwa03]. Device-independent security proofs [MY98, ABG+07]
aim to minimize the security assumptions on physical devices. It seems reasonable
to expect that further theoretical and engineering advances will eventually bring us
devices which have strong arguments and few assumptions for their security.

7.5 Key usage: encryption

The most commonly discussed usage for the key generated by quantum key dis-
tribution is encryption. There are two ways [PPS04] this key can be used for
encryption.

In an unconditionally secure system, the private key from QKD is used as the
key in a one-time pad. Since the key is information theoretically secure, so too
is the encryption of the message: no computer, quantum or classical, will ever
be able to decipher the encrypted message. There are challenges to this system,
however. First, the one-time pad keys must be carefully stored and managed, as
the double-use of one-time keys can seriously compromise security. Second, as we
discuss in Section 7.7, physical QKD systems cannot yet achieve sufficiently high
key generation rates to be able to encrypt large messages with one-time pads in
real time.

To deal with this second challenge of low QKD key rates, hybrid systems have
been proposed, where the key from QKD is expanded with a classical stream cipher
or block cipher such as the Advanced Encryption Standard (AES) to encrypt long
messages. In this setting, the security of the encrypted messages is no longer
information theoretic: it depends on the computational assumption that the cipher
used is hard to break. While this is not ideal, it may not be too risky either.
Historically, cryptographers have been very good at designing block ciphers with
few weaknesses: for example, the Data Encryption Standard (DES), designed in
the 1970s, is no longer considered secure due to its short key length, but DES has
stood up well to over 30 years of cryptanalytic attacks. Under a known plaintext
attack, the security of DES is reduced from 256 to about 241, but, when rekeying
is sufficiently frequent, the effect of known plaintext attacks is limited [ABB+07,
§3.2]. Moreover, quantum computers do not seem to have too much impact on
ciphers: while Grover’s search algorithm implies that the key length needs to be
doubled, the exponentially faster attacks promised by Shor’s algorithm and others
do not apply to most ciphers. However, when using QKD to generate short keys,
care must be taken due to finite length effects (c.f. [CS08]).

Even when used in hybrid systems, QKD offers a substantial advantage over
classical key agreement: the key from QKD is independent of any inputs to the
key agreement protocol. Thus, QKD reduces the number of points of attack: once
a key has been established, the only way to attack such a system is to cryptana-
lyze the encryption. By contrast, a system using classical key agreement could be
attacked by trying to take the inputs to the classical key agreement protocol and

139

Chapter 7. The Case for Quantum Key Distribution

determining the generated private key (for example, by solving the Diffie-Hellman
problem). QKD also provides an advantage compared to systems that are rekeyed
using symmetric keying techniques, such as key transport using symmetric encryp-
tion or session key derivation from a master key: since QKD keys are independent
between blocks, QKD has forward secrecy and the compromise of previous keys
does not affect the confidentiality of future blocks, whereas the compromise of a
master key in symmetric rekeying can be catastrophic.

Hybrid QKD systems offer enhanced security compared to ciphers used without
QKD: the QKD subsystem provides fresh, independent keying material frequently,
which can rekey the classical block or stream cipher; with frequent rekeying, we
reduce the risk of attacks against the underlying cipher that make use of many
plaintexts or ciphertexts encrypted under the same key and achieve greater forward
secrecy in the face of key compromise.

7.6 Authentication

Quantum key distribution does not remove the need for authentication: indeed, au-
thentication is essential to the security of QKD, for otherwise it is easy to perform
a man-in-the-middle attack. There are two main ways to achieve authentication:
public key authentication and symmetric key authentication. Symmetric key au-
thentication can provide unconditionally secure authentication, but at the cost of
needing to have pre-established pairs of symmetric keys. Public key authentica-
tion, on the other hand, is simpler to deploy, and provides extremely convenient
distributed trust when combined with certificate authorities (CAs) in a public key
infrastructure (PKI). Public key authentication cannot itself be achieved with in-
formation theoretic security. We argue, however, that the security situation is more
subtle than this: the use of public key authentication can still lead to systems that
have very strong long-term security.

A third method for authentication is to use trusted third parties which actively
mediate authentication between two unauthenticated parties, but there has been
little interest in adopting these in practice. Certificate authorities, which are used
in public key authentication, are similar to trusted third party authentication but
do not actively mediate the authentication: they distribute signed public keys in
advance but then do not participate in the actual key authentication protocol.
The difference in trust between trusted third parties and certificate authorities for
authentication in QKD is smaller than in the purely classical case since the key
from QKD is independent of the inputs.

7.6.1 Symmetric key authentication

Parties who already share a short private key can use an unconditionally secure
message authentication code to authenticate their messages. The first such ap-
proach was described by Wegman and Carter [WC81] and has been refined for use

140

Chapter 7. The Case for Quantum Key Distribution

in QKD (for example, [HLM03, PNM+05]). It is for this reason that quantum key
distribution is sometimes called quantum key expansion: it can take a short shared
key and expand it to an information-theoretically secure long shared key.

Interestingly, the universal composability of quantum key distribution implies
that we can use some of the key generated by QKD to authenticate the messages in
the next round of QKD with a negligible decrease in security. Thus we can continue
QKD (more or less) indefinitely having started only with a relatively short (on the
order of a few kilobytes) authentication key.

7.6.2 Public key authentication

While symmetric key authentication promises unconditionally secure authentica-
tion, it is difficult to deploy because each pair of communicating parties must share
a private key. Public key infrastructures allow for distributed trust and have been
essential to the success of electronic commerce. While many advocates of quantum
cryptography dismiss the role of computationally secure public key authentication
in QKD, we argue that public key authentication will be vital in a quantum key
distribution infrastructure and can still provide meaningful security statements.

Public key authentication schemes, being computationally secure, tend to be
broken, and invariably sooner than we expect. In 1977, Rivest speculated [Gar77]
that it could take 40 quadrillion years to solve the RSA-129 problem (factoring a
129-decimial-digital RSA modulus), but it was broken only 17 years later [AGLL96].
While the popular press still occasionally uses expressions such as “more than a
quadrillion years” [Lys08] to describe the security of number-theoretic schemes,
technical recommendations [NIS07, BCC+08] are more nuanced and tend not to
speculate too far beyond 2030. Notably, these recommendations tend to “assume [...]
(large) quantum computers do not become a reality in the near future” [BCC+08,
p. 25].

Large scale quantum computers are widely believed to be some time off, but
there appears to be no reason at present to doubt their eventual efficacy. Quan-
tum computers, however, are not the only threat against public key authentication.
Computers do become faster and new algorithms do help speed cryptanalysis. How-
ever, we are not so pessimistic to think that all public key authentication is doomed
forever. In fact, we believe that public key authentication will continue to play a
vital role in communication security indefinitely, even in the presence of quantum
computing.

Although today’s popular public key schemes — RSA, finite field discrete log-
arithm, and elliptic curve — would be broken by a large scale quantum computer,
other “post-quantum” schemes do not immediately fall to quantum algorithms, and
other schemes are sure to be developed (cf. [BBD09]). It seems to us, then, that
public key schemes in the future are likely to go through a lifecycle in which a new
primitive is proposed, it appears secure against current attack techniques, reason-
able parameter sizes are proposed, adopted, and then computing technology and

141

Chapter 7. The Case for Quantum Key Distribution

cryptanalysis advances chip away at the security until a newer scheme provides
better tradeoffs. It is not too hard to imagine a 20-year window in which a public
key scheme, along with a particular set of parameter sizes, is considered viable.

It is in this scenario, where a particular public key authentication scheme is
only deemed to be secure for a 20-year period, that quantum key distribution can
thrive. A public key authentication infrastructure provides the large scale usability
that we have come to expect from PKIs, and when combined with quantum key
distribution can offer strong security promises. In quantum key distribution, the
authentication — in the form of public key authentication — only needs to be secure
up to and including the initial connection. Once the QKD protocol has output
some secret key, a portion of this secret can subsequently be used for symmetric
key authentication. In fact, even if the original authentication keys are revealed
after the first QKD exchange, the key from QKD remains information theoretically
secure. In other words, we have the following statement:

If authentication is unbroken during the first round of QKD, even if
it is only computationally secure, subsequent rounds of QKD will be
information-theoretically secure.

By contrast, classical public key exchange schemes do not have this feature.
Although one can employ a protocol in which a new key is transmitted encrypted
under the old key, an eavesdropper who logs all communications and subsequently
breaks the first key can read all future communications. With QKD, new session
keys are completely independent of all prior keys and messages.

7.7 Limitations

Two undeniable limitations of present quantum key distribution schemes are dis-
tance and key rate. Because of the fragile nature of the quantum mechanical state
that is transmitted during quantum key distribution, the longer the distance that
the photons have to travel, the more photons that are lost to decoherence and noise
and hence the lower the rate of secret key formation. Distance and key rate are a
tradeoff, but progress is being made on improving the overall tradeoff.

Distance. The longest QKD experiments to date have acheived secure key gener-
ation over a 184.6km fiber optic link [HRP+06] and over a free-space link spanning
a distance of 144km at a rate of 12.8 bits/second[SMWF+07] . This free-space
distance is considered sufficient to communicate between any two points on the
surface of the Earth via orbiting satellites, the feasibility of which is the subject of
a proposed experiment [PAFdM+08].

Quantum repeaters [BDCZ98] would also overcome the distance limitation, al-
lowing shared quantum states to be established between distant parties. While

142

Chapter 7. The Case for Quantum Key Distribution

these systems are not yet operational, they are easier to implement than full-scale
quantum computers; theoretical and experimental work progresses on their devel-
opment.

Key rate. While long distance experiments achieve very low key rates on the
order of a few bits per second, shorter distance experiments have demonstrated
very high key rates. NIST has achieved key rates of over 4 MB per second over
1km of fibre [Nat06] and 500 kb per second at 10km [XMM+07]. These key rates are
an impressive accomplishment but still come short of the rates achieved in classical
communication over long distances.

When a QKD key is used for encryption, current key rates may not be sufficient
for a one-time pad and hybrid schemes need to be used, in which the QKD key is
used as the private key in a symmetric encryption algorithm such as the block cipher
AES. However, as we have argued in Section 7.5, even hybrid QKD systems offer
enhanced security compared to classical key agreement since the keys generated
by QKD are independent of any inputs to the key agreement procedure and since
many symmetric encryption algorithms are resistant to known attacks by quantum
computers. Key rate can always be negatively impacted by an adversary disturbing
the quantum channel, but such an adversary can not impact the security of the key
agreement.

7.8 QKD Networks

As QKD technology progresses, the structure of deployed QKD systems will progress
in four stages to reduce distance limitations and increase commercial applicability:

1. Point-to-point links: Two QKD devices are directly connected over a relatively
short distance.

2. Networks with optical switches: Multiple QKD devices are arranged in a net-
work with optical switches to allow different pairs of interaction. Optical
switches, however, do not increase communication distance. The switches
need not be trusted. One example of such a network is the DARPA quantum
network [ECP+05].

3. Networks with trusted relays: Multiple QKD devices are arranged in a net-
work. Intermediate nodes in the network can act as classical relays which relay
information between distant nodes. The relay nodes need to be trusted, al-
though trust can be reduced by having the sender use a secret sharing scheme
[BS08]. This type of QKD network would be suitable for scenarios where the
operator of the network is also the user of the network, for example, a bank
creating a network among its many branches, each of which is individually
trusted. One example of such a network is the SECOQC quantum network
[ABB+07].

143

Chapter 7. The Case for Quantum Key Distribution

4. Fully quantum repeater network: Multiple QKD devices are arranged in a
network with quantum repeaters [BDCZ98]. Although individual links are
still distance-limited, the quantum repeater nodes allow entanglement to be
linked across longer distances, so QKD can be performed between distant
parties. The quantum repeaters need not be trusted, and this type of QKD
network corresponds to the service provider scenario.

7.9 Concluding remaks

Quantum key distribution makes use of the eavesdropper-detection power offered
by quantum mechanics to establish a shared key that is verifiably secure and inde-
pendent of any other data, provided the communicating parties share an authentic
channel. The security of the system depends on no computational assumptions
and thus has the potential to offer security against present or future attackers with
unbounded classical or quantum computational power.

There are many scenarios, such as government, military, and health care, in
which information needs to remain secure for 25, 50, or even 100 years. Using
QKD reduces the assumptions about the cryptographic system and produces a
shared secret key that, by the properties of quantum mechanics, is independent of
any other data, including the input.

It is important to consider how QKD fits into the larger cryptographic infras-
tructure. When used with public key authentication, QKD provides strong security
with the convenience of distributed authentication using public key infrastructures;
the public key authentication scheme need only be secure up until QKD occurs, but
the key from QKD will remain secure indefinitely. If public key authentication is
not possible, shared secret authentication can still be used to give enhanced security
compared to classical key expansion.

The present limitations of QKD — distance and key rate — will be further mit-
igated as experimental research in QKD continues, and quantum repeaters promise
fully quantum long distance networks.

We believe that, as the technology continues to improve, QKD will be an in-
creasingly valuable tool in the cryptographer’s toolbox for building secure commu-
nication systems.

144

Chapter 8

Quantum Money

Contents
8.1 Introduction . 145
8.2 Security goals . 147
8.3 Types of quantum money 148

8.3.1 Quantum coins . 148
8.3.2 Quantum bills . 152

8.4 Black box quantum coins 153
8.4.1 Verification . 154
8.4.2 Black-box unforgeability 155

8.5 Quantum coins using blind quantum computation . . . 156

8.1 Introduction

The uncertainty principle and no-cloning theorem of quantum mechanics made
quantum money one of the original interests of quantum information theory. The
ability to create digital money which cannot be counterfeited because of the laws of
physics is a compelling idea. Classical digital cash has been researched extensively,
with ongoing improvements to its security tradeoffs, but remains fundamentally
subject to the constraint that classical bits can be easily copied. With quantum
money, we hope to use the inability to perfectly clone quantum states to prevent
counterfeiting. Besides being non-counterfeitable, an effective digital cash scheme
should also be efficiently verifiable, anonymous, transferable, and robust.

In this chapter, we describe a new form of quantum money called quantum coins,
where all coins of the same denomination are represented by identical quantum
states. We state formally what it means for them to be unforgeable and describe
how to implement quantum coin schemes using black box operations and using
blind quantum computing. We also describe quantum bills which capture a wide
range of notions of quantum money.

145

Chapter 8. Quantum Money

Related work. Digital cash has been well-explored in classical cryptographic
contexts, with the first schemes being proposed by Chaum [Cha85, Cha88] and
Chaum, Fiat, and Naor [CFN88]. For classical digital cash schemes, one of the
main problems to solve is the multiple-spending problem: since classical digital
cash can easily be duplicated, there must be a way to prevent the same tokens from
being redeemed more than once. An online scheme, in which each token is verified
with the bank at the time it is meant to be spent, solves this problem immediately,
but online verification requires an online communications channel between merchant
and bank. The other general solution for preventing multiple spending is to embed
some identity information in the money tokens such that, if the token is spent only
once, the transaction remains anonymous, but if the token is spent multiple times,
then the bank can combine these multiple transactions to recover the identity of
the multiple spender. Moreover, classical digital cash is not transferable unless we
allow the size of the token to grow linearly in the number of transfers [CP92].

Quantum money was one of the earliest applications of quantum information
theory, and was introduced in the early papers of Wiesner [Wie83] and Bennett,
Brassard, Breidbard, and Wiesner [BBBW82]. In both schemes, a bank constructs
distinct quantum tokens and corresponding classical serial numbers. The tokens
are the encoding of a random string in randomly chosen basis states of two non-
orthogonal bases; the no-cloning theorem prevents perfect cloning of individual
tokens. However, the tokens can only be verified by the bank: verification requires
knowledge of the bases chosen for each token and the classical string that should be
obtained upon measurement in the appropriate bases. This means that an online
quantum channel is required between merchants and the bank. The tokens are
non-transferable and are not anonymous.

Tokunaga, Okamoto, and Imoto [TOI03] give a scheme for non-transferable
anonymous quantum cash with online verification. In their scheme, a user obtains
a distinct token from the bank; tokens are generated using private parameters and
random values stored by the bank. The user then alters the token with an appro-
priate randomly chosen unitary transformation to obtain anonymity. At payment
time, the user presents the token to the merchant who transmits it (over a quantum
channel) to the bank for verification. The scheme is secure against an attacker who
can examine a single token, but has not been proven secure against an attacker
who can obtain and examine all the quantum tokens.

Our work on quantum coins makes use of work by Aaronson [Aar05] that in-
troduced a complexity-theoretic no-cloning theorem that allows us to argue for
the unforgeability of quantum coins. We presented the basics of our quantum
coin scheme at the Canadian Quantum Information Students’ Conference in 2006
[MS06] and the Quantum Information Processing (QIP) conference in 2007 [MS07].
Subsequently Aarsonson expanded his work based on discussions with us to also
include a presentation of quantum money [Aar09] similar to ours; we have noted in
footnotes throughout this chapter where that he presents similar concepts.

146

Chapter 8. Quantum Money

Contributions. In this chapter, we present a new type of quantum money, which
we call quantum coins: coins are transferable, locally verifiable, and unforgeable,
and have some anonymity properties. Each coin generated by the bank should be a
copy of the same quantum state, and hence coins should be indistinguishable from
one another. Additionally, a circuit is provided to allow the coins to be verified
locally and then transferred for later use.

We describe how to achieve quantum coins with black box quantum circuits and
with blind quantum computation. The unforgeability of coins in our scheme comes
from complexity theoretic assumptions on the adversary’s running time.

Our work contrasts with previous quantum money schemes, which we call quan-
tum bills: in a quantum bill scheme, the bank generates tokens that are classi-
cal/quantum pairs, which in general are distinct. The classical string may serve as
a serial number or as some input value to be used in the verification procedure.

Future directions. Our quantum coin construction of Section 8.4 requires the
use of a black-box oracle in the verification circuit, but it is not yet known how
these can be implemented. An open question is to find a way to obfuscate the verifi-
cation circuit so that it is effectively a black box, and in general to find a model for
obfuscation of quantum circuits, possibly using computational assumptions. We
provide an alternative mechanism for verifying quantum coins using blind quan-
tum computation, at the expense of requiring quantum communication (or shared
entanglement with classical communication). Reducing the communication and
computational requirements of blind quantum computing is a problem that merits
further study. Although our coins are inherently anonymous if the bank issues coins
correctly, we do not yet have a mechanism to allow users of the system to verify
that the coins are indeed issued correctly, so this remains an open question.

In Section 8.3.2, we briefly discuss a model for quantum bills. An open question
related to quantum bills is to find an offline-verifiable quantum bill scheme; this
may require using computational hardness assumptions.

Outline. The remainder of the chapter is organized as follows. In Section 8.2,
we describe the goals for a quantum money scheme and analyze existing quantum
money schemes, as well as our own, in relation to these goals. Section 8.3 intro-
duces the two main types of quantum money, quantum coins and quantum bills,
and describes their precise security properties. In Section 8.4, we describe how
to implement quantum coins in the black box model and give bounds on unforge-
ability. In Section 8.5, we describe how to implement quantum coins using blind
quantum computation.

8.2 Security goals

We now describe, informally, the properties that a good money scheme should have.

147

Chapter 8. Quantum Money

G1. Anonymous : it should be difficult for any party to trace the use of a token to
determine who spent it or where they spent it.

G2. Unforgeable: given zero or more tokens and the verification circuit, it should
be difficult for a forger to produce another token that passes the verification
procedure with non-negligible probability.

G3. Efficiently locally verifiable: there should be an efficient algorithm that can
determine with high accuracy whether a token is valid or not, without com-
municating with the bank.

G4. Transferable: a valid token should be unchanged by the verification procedure,
and thus can be transferred and reused in a subsequent verification procedure.

We will formally define unforgeability for quantum coin schemes in Section
8.3.1.2.

Figure 8.1 shows which of the above goals are satisfied by various existing money
schemes. The “type” column indicates whether the tokens for a given denomination
are all identical (“coin”) or different (“bill”). For classical digital cash schemes, we
note that while unforgeability is impossible, it is possible to detect double spend-
ing of a token and trace it back to the offending party; such schemes, however,
offer anonymity and offline double-spending detection only with computational as-
sumptions. Our quantum coin schemes offer “partial” anonymity as we describe in
Section 8.3.1.3. Additionally, the size of transferable digital cash must grow linearly
in the number of transfers [CP92].

8.3 Types of quantum money

8.3.1 Quantum coins

In one type of quantum money, quantum coins, a bank issues many tokens for a
particular denomination, and all these tokens are (supposed to be) copies of the
same quantum state. The state for a 5-cent coin, for example, might be the pure
state |ψ5〉 and the bank produces many copies |ψ5〉⊗1000000, issuing one copy to
each person who withdraws 5 cents from the bank. We use the term quantum coin
because physical coins in the real world have the same property: there should be
no discernible difference between different coins of the same denomination. The
specification of a quantum coin scheme consists of the specification of the money
state and the verification circuit.

148

C
h
a
pter

8.
Q

u
a
n
tu

m
M

o
n
ey

Efficiently
locally

verifiable
Scheme Type Anonymous Unforgeable Transferable

Physical coins coin yes physically yes yes
Physical bills bill no physically yes yes
Classical digital cash bill yes double-spending yes grows in

detection size
[Wie83] q. bill no yes no no
[BBBW82] q. bill no yes no no
[TOI03] q. bill yes yes no no
Quantum coins: black box q. coin partially yes yes yes
Quantum coins: blind comp. q. coin partially yes no yes

Figure 8.1: Summary of money schemes and their properties

149

Chapter 8. Quantum Money

Definition 8.1 A quantum coin scheme is a pair (V, |ψ〉), where |ψ〉 is an n-
qubit pure state in a 2n-dimensional Hilbert space H2n, and V is a quantum circuit
with a quantum n-qubit input register (denoted ρ), plus optional ancilla quantum
registers, a classical output bit, and a quantum output register of n qubits.

The basic scenario of how a quantum coin scheme would operate is as follows. A
bank generates a large number of quantum coins and stores them. A user withdraws
coins from the bank via a private quantum channel and stores the coins. When
the user wishes to spend the coins, it transfers the coins to the merchant using a
quantum channel. The merchant uses a quantum circuit to verify the coins; this
procedure may or may not involve classical or quantum communication with the
bank. Finally, the merchant stores the coins until redeeming them with the bank
or issuing them as change to subsequent users.

8.3.1.1 Verification

In the most general setting, the verification circuit V operates on three registers:
a 1-qubit data readout register, an n-qubit input register, and an arbitrary m-
qubit ancilla. After applying V , the first register is measured, and the output
is the decision on whether to accept the token as valid or not. If the input is a
valid quantum coin |ψ〉, then, after the application of V and the measurement, the
classical output should be 0 and the partial trace over the first and third registers
should leave the second register in the same state |ψ〉. The circuit diagram is given
in Figure 8.2.

|0〉

V
NM

ρ / /

|0〉⊗m /

Figure 8.2: Generic verification circuit for a quantum coin scheme (V, |ψ〉).

We cannot simply provide this circuit in an unprotected form to the public:
it may be possible to decompose the circuit into component gates and find a way
to forge money. In Section 8.4 we describe two techniques for implementing this
circuit in a safe way: (1) black box verification, in which we assume the circuit is
a black box and security rests on complexity-theoretic assumptions, and (2) blind
quantum computation, which allows one party to implement an operation with-
out gaining any information about the operation being performed, and security is
information-theoretic. It could be possible to construct a scheme based on compu-
tational assumptions.

150

Chapter 8. Quantum Money

8.3.1.2 Unforgeability

We assume that a forger has the verification circuit V and many (or all) tokens
issued, say k of them. The goal of a forger is to produce a state that passes more
than k verification tests with good probability. Since the verification circuit projects
the state into the subspace spanned by |ψ〉, this is equivalent to creating a state
that has good overlap with the state |ψ〉⊗k+1.

Definition 8.2 A quantum coin scheme (V, |ψ〉), where |ψ〉 is an n-qubit state, is
unforgeable if, given the verification circuit V and k copies of the state |ψ〉, for
any k ≥ 0, k ∈ poly(n), it is not possible for a quantum adversary running in time
poly(n) to produce a state ρ such that 〈ψ|⊗k+1 ρ |ψ〉⊗k+1 is non-negligible (in n).1

In order to prevent a counterfeiter from performing quantum state tomography
[AJK04] and precisely determining the state |ψ〉, the bank should avoid issuing
more than a polynomial number (in n) of coins.

Information theoretically, no offline quantum coin scheme can be perfectly un-
forgeable (that is, with 〈ψ|⊗k+1 ρ |ψ〉⊗k+1 = 0 and no running time restriction in
Definition 8.2). If a forger has a verification circuit and unbounded quantum com-
putational resources, the forger can repeatedly generate test states until one such
state passes; after verification, this state is projected into a valid money state and
can subsequently be used as a money token. Thus, we must introduce computa-
tional assumptions on a forger and attempt to lower bound the amount of work
required to forge.

Without any further specification of the quantum coin scheme and the verifica-
tion circuit, we cannot say anything more about the unforgeability of such schemes.
In Section 8.4.2, we show that a black box quantum coin scheme is unforgeable.

8.3.1.3 Anonymity

In our ideal formulation, all quantum coins (for a particular denomination) are
minted as the same quantum state |ψ〉. However, the bank could create quantum
coins from different quantum states, all of which can be verified by a particular ver-
ification circuit. Although we have no procedure for users to test the anonymity of
the system, it would be possible for a regulator to regularly review the procedures of
the bank and ensure that it is issuing identical tokens as the coins. If indeed all the
coins issued are identical, then it is impossible for the use of a coin to be tracked. If
quantum circuits can be obfuscated, then the verification circuit could be provided
in an obfuscated form as a fixed public classical string which merchants then im-
plement; since the circuit is fixed for all merchants, this would give anonymity to
merchants as well. If an interactive protocol is required for verification (as in our

1In the language of Aaronson [Aar09], this is a single key public key quantum money scheme
with completeness error 0 and soundness error negligible in n.

151

Chapter 8. Quantum Money

use of blind quantum computing in Section 8.5), then anonymous classical [BT07]
and quantum [BBF+07] communication can be used to improve the anonymity of
merchants.

8.3.2 Quantum bills

Whereas all quantum coins of the same denomination are identical states, with
quantum bills we allow tokens of the same denomination to be different quantum
states and additionally allow some classical information associated with each quan-
tum state. So a bank might issue a set of states {(si, |ψi〉) : i ∈ Γ} as the valid
$20 bills. This corresponds to physical bills which have a distinct serial number on
each bill.

Definition 8.3 A quantum bill scheme is a pair (V, {(si, |ψi〉) : i ∈ Γ}), where
Γ is a finite set, and for each i ∈ Γ, si is a label in a set S, |ψi〉 is an n-qubit pure
state in a 2n-dimensional Hilbert space H2n. Moreover, V is a quantum circuit with
a quantum input register (denoted |s〉), a quantum n-qubit input register (denoted
ρ), plus optional ancilla quantum registers, a classical output bit, and a quantum
output register of n qubits.2

8.3.2.1 Verification

A generic verification circuit for a quantum bill scheme is given in Figure 8.3.

|0〉

V

NM

|s〉 /

ρ / /

|0〉⊗m /

Figure 8.3: Generic verification circuit for a quantum bill scheme (V, {(si, |ψi〉) : i ∈
Γ}).

The use of the classical label si may vary according to the scheme. For example,
in the schemes of Wiesner [Wie83] and Bennett et al. [BBBW82], si is a serial
number that allows the issuer to retrieve the verification details, while in the scheme
of Tokunga et al. [TOI03], si is effectively unused; in their scheme it is used
to represent the denomination of the bill (e.g., $5), but in our formulation the
denomination is fixed for a particular scheme so the label is effectively the empty
string for all i ∈ Γ. Schemes where si is non-trivial and unchanged by verification
inherently limit the anonymity of the scheme, just as the serial number on physical
bills places some limits on anonymity.

2In the language of Aaronson [Aar09], this is a public key quantum money scheme.

152

Chapter 8. Quantum Money

While all previous quantum money schemes discussed in Section 8.1 are classified
as quantum bill schemes based on the above definition, none of them satisfy all of
the security properties described in Section 8.2. In particular, no previous quantum
money scheme is offline verifiable: all previous schemes require that the issuer verify
a token via quantum communication, a requirement which we aim to remove for
quantum coins. In the rest of this chapter, we are only concerned with quantum
coin schemes, not quantum bill schemes.

8.4 Black box quantum coins

Our first implementation for quantum coins works in the black box circuit model.
We assume the verification circuit provided to the public is a black box: “anything
one can compute from it one could also compute from the input-output behavior
of the program” [BGI+01a, p. 2]. With this assumption, we present a scheme in
which coins are unforgeable. The scheme allows coins to be transferred an arbitrary
number of times. The use of a black box circuit means that coins can be verified
locally without any communication, classical or quantum, with the bank.

We note that it is not known at present whether a quantum circuit can be im-
plemented as a true black box. There are pessimistic results about the ability to
obfuscate classical circuits [BGI+01b], although loopholes do exist: for example,
point functions can be obfuscated [Wee05]. However, no results are known about
quantum circuits. Another classical technique for black box computation is physi-
cally tamper-proof hardware, but again the parallel in quantum computation is not
clear.

In our black box construction, a coin is a randomly chosen secret state, and the
verification circuit recognizes precisely that state using an oracle like the iterate in
amplitude amplification [BBHT98].

Let |ψ〉 a pure state chosen randomly (according to the Haar measure) from
among the pure states in H2n . The verification oracle is Uψ = I − 2 |ψ〉 〈ψ|. Since
this is a black-box oracle scheme, the unforgeability proof of Section 8.4.2 applies
and the scheme is unforgeable in the black-box oracle model.

In practice, however, choosing a pure state |ψ〉 randomly according to the Haar
measure with the additional constraints that we must be able to compute I −
2 |ψ〉 〈ψ| and that we must be able to produce many copies of |ψ〉 is problematic
and it is not known how to do so in polynomial time. Recent work has focused
on developing approximate quantum t-designs [AE07] where, roughly speaking, t
copies of a state can be efficiently constructed such that tensor product state is
sufficiently close to t copies of a state selected uniformly at random according to
the Haar measure. Aaronson [Aar09, Theorem 8] gives a technique for constructing
t ∈ poly(n) copies of a pseudorandom state that are nearly indistinguishable (that
is, negligibly different) from t copies of a truly random state by any measurement,
even allowing the measurement procedure to make poly(n) calls to an oracle Uψ

153

Chapter 8. Quantum Money

recognizing the state. Aaronson’s technique allows us to use pseudorandom states
instead of truly random states with a negligible loss in security.

We note that, for quantum coins, it is not sufficient to choose a random binary
string encoded randomly in a pair of non-orthogonal bases, such as the so-called
“BB84” bases. An adversary with a small number of quantum coins, say O(log n),
can measure each qubit of the O(log n) tokens in both bases, and will with good
probability find the correct basis choices and thus the random binary string, allow-
ing her to then create arbitrarily many forged coins.

8.4.1 Verification

Let Uψ be an oracle that recognizes the state |ψ〉 by flipping the sign of the phase
of the state |ψ〉. That is, Uψ |ψ〉 = − |ψ〉 and Uψ |φ〉 = |φ〉 for all |φ〉 orthogonal to
|ψ〉; in other words, Uψ = I − 2 |ψ〉 〈ψ|.

We can construct a verification circuit V from the oracle Uψ as follows. On the
data readout register, input the state |0〉, then perform a Hadamard transformation
on the ancilla. Use the ancilla as the control bit of a controlled-Uψ applied to the
input state ρ. Then perform a Hadamard transformation again on the ancilla and
measure it in the computational basis. The circuit diagram is given in Figure 8.4.

V

|0〉 H • H NM

ρ / Uψ /

︷ ︸︸ ︷

Figure 8.4: Verification circuit for quantum coins |ψ〉 recognized using the oracle Uψ.

When a measurement in the computational basis is performed on the ancilla
register, the result will be |1〉 when the input state ρ is |ψ〉 and |0〉 when the input
state is |φ〉 for 〈φ|ψ〉 = 0. Moreover, the state on the second register remains
unchanged when its input is |ψ〉.

The fact that a valid token is unchanged by the verification process allows
transferability of quantum coins. When a customer spends a quantum coin at a
store, the merchant, after verifying and accepting the coin, can retain the coin until
the merchant needs to make change. At that time, the merchant can give the coin
to another user who, after optionally verifying the coin, can use that coin in another
transaction. (In fact, the verification process not only enables transferability but
also enhances the robustness of the quantum coins. Although over time a quantum
state may decohere, at verification time the token may still be sufficiently close to
the expected state |ψ〉 to pass the verification process with high probability. If it
does pass, then the measurement process will project the coin back into the original
state |ψ〉.)

154

Chapter 8. Quantum Money

Security. The verification procedure described in the previous section yields a
correct quantummoney scheme: valid money tokens are recognized. We now discuss
the security of such a scheme. For unforgeability, we want that invalid tokens are
recognized as being invalid and that it is difficult to forge new money.

8.4.2 Black-box unforgeability

To analyze the forgeability of the quantum coin scheme given in Figure 8.4, we
suppose that the circuit for the unitary Uψ is a black box, meaning that no infor-
mation can be obtained from observing its inner workings; equivalently, we assume
that Uψ is given as an oracle. Having made this assumption, we proceed to obtain
a lower bound on the number of queries to the oracle that must be made in order
to produce a state that has a particular overlap p with |ψ〉⊗k+1, when the adversary
is only given k coins. We show this result in the next section.

Definition 8.4 A quantum coin scheme (V, |ψ〉), where |ψ〉 is an n-qubit state,
is black-box unforgeable if, given an oracle Uψ recognizing the state |ψ〉 and
k copies of the state |ψ〉, for any k ≥ 0, k ∈ poly(n), it is not possible for a
quantum adversary using poly(n) queries to Uψ to produce a state ρ such that
〈ψ|⊗k+1 ρ |ψ〉⊗k+1 is non-negligible.3

We note that our definition of unforgeability has the adversary producing a (k+
1)-register state, each register of which should overlap well with |ψ〉. An alternative
formulation could be that the adversary needs to produce a multi-register state
such that some k + 1 of its registers, but not necessarily all of its registers, overlap
well with |ψ〉. These definitions are equivalent. The adversary has access to a
verification oracle and, for each of the many registers it constructs, could simply
apply the verification oracle to each register and then trace out any registers that
do not pass verification. This requires additional calls to the verification oracle,
but still only poly(n) calls to the oracle (since a polynomial-time adversary can
only construct poly(n) registers), and hence remains within the constraints of the
security argument above.

We note as well that it is not necessary to extend this definition to k+ ` copies
of |ψ〉: any adversary who can construct k + ` copies of |ψ〉 with non-negligible
probability can in particular construct k+ 1 copies of |ψ〉 with non-negligible prob-
ability. In other words, there are no “long shots” that pay off in expected value:
the definition precludes being able to generate a very large number of coins with a
very small probability but with non-negligible expected number of coins.

We now aim to show that a generic quantum coin scheme implemented with
black-box oracles as in Figure 8.4 is black-box unforgeable. However, we cannot use
the basic no-cloning theorem [WZ82, Die82] or the result on approximate cloning

3In the language of Aaronson [Aar09], this is a single key private key quantum money scheme
with completeness error 0 and soundness error negligible in n.

155

Chapter 8. Quantum Money

[BM07] because not only does a forger have copies of the state |ψ〉, the forger also
has an oracle Uψ that will indicate whether the attempted cloning was successful.
Similarly, we cannot directly apply the Ω(

√
N) lower bound on quantum search

[BBBV97] because the forger has not only an oracle Uψ recognizing the desired
state but also some copies of the state itself. Rather, we need a hybrid of these two
results.

Aaronson [Aar05] gives the following complexity-theoretic version of the no-
cloning theorem that combines the lower bound for quantum search with the no-
cloning theorem.

Theorem 8.5 (Theorem 5, [Aar05]) Let |ψ〉 be an n-qubit pure state. Suppose
we are given the initial state |ψ〉⊗k for some k ≥ 1 as well as an oracle Uψ such
that Uψ |ψ〉 = − |ψ〉 and Uψ |φ〉 = |φ〉 whenever 〈φ|ψ〉 = 0. Then to prepare a state
ρ such that

〈ψ|k+1 ρ |ψ〉k+1 ≥ p (8.1)
we need

Ω

(√
2np

k log k
− k
)

(8.2)

queries to Uψ.

This allows us to show that a quantum coin scheme is unforgeable in the black-
box oracle model.

Theorem 8.6 Let (V, |ψ〉) be a quantum coin scheme, where V is as in Figure 8.4
with Uψ given as a black-box oracle, and |ψ〉 is an n-qubit pure state. If not more
than poly(n) coins are issued, then (V, |ψ〉) is black-box unforgeable.

Proof. Suppose otherwise. Then there exists an adversary who, upon receiv-
ing k copies of |ψ〉 and using q = poly(n) queries to Uψ, can produce a state ρ such
that 〈ψ|⊗k+1 ρ |ψ〉⊗k+1 = p ∈ 1/poly(n). By Theorem 8.5, we need

q = Ω

(√
2np

k log k
− k
)

= Ω

(√
2n/poly(n)

poly(n) log poly(n)
− poly(n)

)
= Ω

(√
2n

poly(n)

)
(8.3)

queries to Uψ. But since the adversary is allowed only a polynomial number q of
queries to Uψ, we have that q ∈ poly(n) and hence poly(n) = Ω

(√
2n

poly(n)

)
, which is

a contradiction. Thus the quantum coin scheme must be black-box unforgeable. �

8.5 Quantum coins using blind quantum computa-
tion

Blind quantum computation allows one party, Alice, to have another party, Bob,
perform computations on her behalf without Bob learning any information about
the input state, output state, or the operation performed.

156

Chapter 8. Quantum Money

Blind quantum computation was first introduced by Childs [Chi05] under the
name “secure assisted quantum communication”. In Childs’ approach, an Alice who
has limited quantum computational abilities (quantum communication, quantum
storage, and controlled-X and controlled-Z gates) can have Bob securely perform
arbitrary quantum computation, with quantum input and quantum output. In
order to implement the protocol, Alice and Bob must perform large amounts of
quantum communication, though this could be replaced by quantum teleportation
(shared entanglement with Bell measurements and classical communication).

Other work on blind quantum computation exists but is not fully suitable for use
in the context of quantum money. Aharonov, Ben-Or, and Eban [ABOE08] present,
via the language of computational complexity, a mechanism for blind quantum cir-
cuit evaluation. Since they are interested in complexity theory, their work is stated
only for classical input and classical output, although it may be possible to modify
their work for quantum input and quantum output as would be required for quan-
tum coins. Broadbent, Fitzsimons, and Kashefi [BFK08] present a protocol for blind
quantum computation with quantum input and output using measurement-based
quantum computation that needs only two rounds of quantum communication: one
at the beginning and one at the end. However the security argument protects only
against individual, not coherent attacks (though no attack is known). We have a
procedure to eliminate the last round of quantum communication, but again this
only has security shown in the case of individual, not coherent, attacks.

Thus at present, barring an implementation of black box quantum circuits, we
must either use teleportation or Childs’ blind quantum computation to implement
quantum coin verification.

Childs’ blind quantum computation scheme could be used as follows. The mer-
chant, playing the role of Bob, implements the verification circuit blindly for the
bank, playing the role of Alice. The merchant receives the coin as the input to the
circuit, and interacts quantumly with the bank who helps it implement the circuit.
In the end, the output state along with the accept/reject information is with the
merchant.

Because Childs’ protocol requires large amounts of quantum communication
between the bank and the merchant, this is little better than having the merchant
teleport the coin to the bank who processes the coin and teleports it back.

The approach taken by Broadbent, Fitzsimons, and Kashefi, and our extension
to it, is more promising from a resource perspective: the only quantum communica-
tion is the distribution of qubits for the formation of a measurement-based circuit
at the beginning of the protocol; all later communication can be classical. This
eliminates the need for an online quantum communications channel. It also means
the bank need not store quantum states; while in such a setting the bank would have
the ability to store quantum states (since coins themselves are quantum states), the
bank having to store a large number of qubits for each verification circuit could be
quite expensive, whereas in this setting it would only need to store classical data.
This scheme does not yet have arguments for security against coherent attacks.

157

Appendix A

Sample Code

Contents
A.1 Unified point addition formulæ in elliptic curve cryp-

tography (Chapter 6) . 158
A.1.1 Projective unified formula of Brier and Joye (Section 6.3.1)158
A.1.2 Affine unified formula of Brier, Déchène, and Joye (Sec-

tion 6.3.2) . 162
A.1.3 Projective unified formula of Brier, Déchène, and Joye

(Section 6.3.2) . 165
A.1.4 Timing (Section 6.3.4) . 168
A.1.5 Binary projective unified formula of Brier, Déchène, and

Joye (Section 6.4) . 171

A.1 Unified point addition formulæ in elliptic curve
cryptography (Chapter 6)

A.1.1 Projective unified formula of Brier and Joye (Section
6.3.1)

A.1.1.1 ecp_unif_bj02.c

The following block of C code implements the projective version of the unified point
addition formula of Brier and Joye as in equation (6.3).

This code uses the big integer library and elliptic curve library that is part of
the Netscape Security Services (NSS) toolkit [Moz08] found in the mpi and ecl
subdirectories in of mozilla/security/nss/lib/freebl in that software package.

1 #inc lude " ecp . h"
#inc lude "mplog i c . h"
#inc lude <s t d l i b . h>

158

Appendix A. Sample Code

#i f d e f ECL_DEBUG
#inc lude <a s s e r t . h>

6 #end i f

/∗ Conve r t s a po i n t P(px , py) from a f f i n e c o o r d i n a t e s to p r o j e c t i v e
c o o r d i n a t e s R(rx , ry , r z) . Assumes i npu t i s a l r e a d y f i e l d −encoded
u s i n g f i e l d_enc , and r e t u r n s output tha t i s s t i l l f i e l d −encoded . ∗/

mp_err ec_GFp_pt_aff2proj (const mp_int ∗px , const mp_int ∗py , mp_int ∗
rx , mp_int ∗ ry , mp_int ∗ rz , const ECGroup ∗ group) {
mp_err r e s = MP_OKAY;

11

i f (ec_GFp_pt_is_inf_aff (px , py) == MP_YES) {
MP_CHECKOK(ec_GFp_pt_set_inf_proj (rx , ry , r z)) ;

} e l s e {
MP_CHECKOK(mp_copy(px , r x)) ;

16 MP_CHECKOK(mp_copy(py , r y)) ;
MP_CHECKOK(mp_set_int (rz , 1)) ;
i f (group−>meth−>f i e l d_en c) {

MP_CHECKOK(group−>meth−>f i e l d_en c (rz , rz , group−>meth)) ;
}

21 }
CLEANUP:

return r e s ;
}

26 /∗ Conve r t s a po i n t P(px , py , pz) from p r o j e c t i v e c o o r d i n a t e s to
a f f i n e c o o r d i n a t e s R(rx , r y) . P and R can sha r e x and y
c o o r d i n a t e s . Assumes i npu t i s a l r e a d y f i e l d −encoded u s i n g f i e l d_enc
, and r e t u r n s output tha t i s s t i l l f i e l d −encoded . ∗/

mp_err ec_GFp_pt_proj2aff (const mp_int ∗px , const mp_int ∗py , const
mp_int ∗pz , mp_int ∗ rx , mp_int ∗ ry , const ECGroup ∗ group) {
mp_err r e s = MP_OKAY;
mp_int z1 ;

31 MP_DIGITS(&z1) = 0 ;
MP_CHECKOK(mp_init(&z1)) ;

/∗ i f p o i n t at i n f i n i t y , then s e t p o i n t at i n f i n i t y and e x i t ∗/
i f (ec_GFp_pt_is_inf_proj (px , py , pz) == MP_YES) {

36 MP_CHECKOK(ec_GFp_pt_set_inf_aff (rx , r y)) ;
goto CLEANUP;

}

/∗ t r an s f o rm (px , py , pz) i n t o (px / pz , py / pz) ∗/
41 i f (mp_cmp_d(pz , 1) == 0) {

MP_CHECKOK(mp_copy(px , r x)) ;
MP_CHECKOK(mp_copy(py , r y)) ;

} e l s e {
MP_CHECKOK(group−>meth−>f i e l d_d i v (NULL , pz , &z1 , group−>meth)) ;

46 MP_CHECKOK(group−>meth−>f i e l d_mu l (px , &z1 , rx , group−>meth)) ;
MP_CHECKOK(group−>meth−>f i e l d_mu l (py , &z1 , ry , group−>meth)) ;

}

CLEANUP:
51 mp_clear(&z1) ;

return r e s ;
}

mp_err ec_GFp_pt_add_unif_bj02_proj (const mp_int ∗px , const mp_int ∗py
, const mp_int ∗pz , const mp_int ∗qx , const mp_int ∗qy , const

159

Appendix A. Sample Code

mp_int ∗qz , mp_int ∗ rx , mp_int ∗ ry , mp_int ∗ rz , const ECGroup ∗
group) {

56 mp_err r e s = MP_OKAY;
mp_int u1 , u2 , t , s1 , s2 , m, z , f , l , g , r , w ;
char s [1 0 0 0] ;

MP_DIGITS(&u1) = 0 ; MP_DIGITS(&u2) = 0 ; MP_DIGITS(&t) = 0 ;
61 MP_DIGITS(&s1) = 0 ; MP_DIGITS(&s2) = 0 ; MP_DIGITS(&m) = 0 ;

MP_DIGITS(&z) = 0 ; MP_DIGITS(& f) = 0 ; MP_DIGITS(& l) = 0 ;
MP_DIGITS(&g) = 0 ; MP_DIGITS(& r) = 0 ; MP_DIGITS(&w) = 0 ;
MP_CHECKOK(mp_init(&u1)) ; MP_CHECKOK(mp_init(&u2)) ;
MP_CHECKOK(mp_init(&t)) ; MP_CHECKOK(mp_init(&s1)) ;

66 MP_CHECKOK(mp_init(&s2)) ; MP_CHECKOK(mp_init(&m)) ;
MP_CHECKOK(mp_init(&z)) ; MP_CHECKOK(mp_init(& f)) ;
MP_CHECKOK(mp_init(& l)) ; MP_CHECKOK(mp_init(&g)) ;
MP_CHECKOK(mp_init(& r)) ; MP_CHECKOK(mp_init(&w)) ;

71 /∗ I f e i t h e r P or Q i s the po i n t at i n f i n i t y , then r e t u r n the o th e r
p o i n t ∗/

i f (ec_GFp_pt_is_inf_proj (px , py , pz) == MP_YES) {
MP_CHECKOK(mp_copy(qx , r x)) ;
MP_CHECKOK(mp_copy(qy , r y)) ;
MP_CHECKOK(mp_copy(qz , r z)) ;

76 goto CLEANUP;
}
i f (ec_GFp_pt_is_inf_proj (qx , qy , qz) == MP_YES) {

MP_CHECKOK(mp_copy(px , r x)) ;
MP_CHECKOK(mp_copy(py , r y)) ;

81 MP_CHECKOK(mp_copy(pz , r z)) ;
goto CLEANUP;

}

/∗ u1 = x1 ∗ z2 , u2 = x2 ∗ z1 , t = u1 + u2 ∗/
86 MP_CHECKOK(group−>meth−>f i e l d_mu l (px , qz , &u1 , group−>meth)) ;

MP_CHECKOK(group−>meth−>f i e l d_mu l (qx , pz , &u2 , group−>meth)) ;
MP_CHECKOK(group−>meth−>f i e l d_add (&u1 , &u2 , &t , group−>meth)) ;
/∗ s1 = y1 ∗ z2 , s2 = y2 ∗ z1 , m = s1 + s2 ∗/
MP_CHECKOK(group−>meth−>f i e l d_mu l (py , qz , &s1 , group−>meth)) ;

91 MP_CHECKOK(group−>meth−>f i e l d_mu l (qy , pz , &s2 , group−>meth)) ;
MP_CHECKOK(group−>meth−>f i e l d_add (&s1 , &s2 , &m, group−>meth)) ;
/∗ z = z1 ∗ z2 , f = z ∗ m, l = m ∗ f , g = t ∗ l ∗/
MP_CHECKOK(group−>meth−>f i e l d_mu l (pz , qz , &z , group−>meth)) ;
MP_CHECKOK(group−>meth−>f i e l d_mu l (&z , &m, &f , group−>meth)) ;

96 MP_CHECKOK(group−>meth−>f i e l d_mu l (&m, &f , &l , group−>meth)) ;
MP_CHECKOK(group−>meth−>f i e l d_mu l (&t , &l , &g , group−>meth)) ;
/∗ r = t^2 − u1 ∗ u2 + a ∗ z^2 ∗/
MP_CHECKOK(group−>meth−>f i e l d_ s q r (&t , &r , group−>meth)) ;
MP_CHECKOK(group−>meth−>f i e l d_mu l (&u1 , &u2 , &w, group−>meth)) ;

101 MP_CHECKOK(group−>meth−>f i e l d_sub (&r , &w, &r , group−>meth)) ;
MP_CHECKOK(group−>meth−>f i e l d_ s q r (&z , &w, group−>meth)) ;
MP_CHECKOK(group−>meth−>f i e l d_mu l (&group−>curvea , &w, &w, group−>

meth)) ;
MP_CHECKOK(group−>meth−>f i e l d_add (&r , &w, &r , group−>meth)) ;
/∗ w = r^2 − g ∗/

106 MP_CHECKOK(group−>meth−>f i e l d_ s q r (&r , &w, group−>meth)) ;
MP_CHECKOK(group−>meth−>f i e l d_sub (&w, &g , &w, group−>meth)) ;
/∗ x3 = 2 ∗ f ∗ w ∗/
MP_CHECKOK(group−>meth−>f i e l d_mu l (&f , &w, rx , group−>meth)) ;
MP_CHECKOK(group−>meth−>f i e l d_add (rx , rx , rx , group−>meth)) ;

111 /∗ y3 = r ∗ (g − 2 ∗ w) − l ^2 ∗/

160

Appendix A. Sample Code

MP_CHECKOK(group−>meth−>f i e l d_sub (&g , &w, ry , group−>meth)) ;
MP_CHECKOK(group−>meth−>f i e l d_sub (ry , &w, ry , group−>meth)) ;
MP_CHECKOK(group−>meth−>f i e l d_mu l (&r , ry , ry , group−>meth)) ;
MP_CHECKOK(group−>meth−>f i e l d_ s q r (& l , rz , group−>meth)) ;

116 MP_CHECKOK(group−>meth−>f i e l d_sub (ry , rz , ry , group−>meth)) ;
/∗ z3 = 2 ∗ f ^3 ∗/
MP_CHECKOK(group−>meth−>f i e l d_ s q r (&f , rz , group−>meth)) ;
MP_CHECKOK(group−>meth−>f i e l d_mu l (&f , rz , rz , group−>meth)) ;
MP_CHECKOK(group−>meth−>f i e l d_add (rz , rz , rz , group−>meth)) ;

121

CLEANUP:
mp_clear(&u1) ; mp_clear(&u2) ; mp_clear(&t) ;
mp_clear(&s1) ; mp_clear(&s2) ; mp_clear(&m) ;
mp_clear(&z) ; mp_clear(& f) ; mp_clear(& l) ;

126 mp_clear(&g) ; mp_clear(& r) ; mp_clear(&w) ;
return r e s ;

}

mp_err ec_GFp_pt_mul_unif_bj02_proj (const mp_int ∗n , const mp_int ∗px ,
const mp_int ∗py , mp_int ∗ rx , mp_int ∗ ry , const ECGroup ∗ group) {

131 mp_err r e s = MP_OKAY;
mp_int k , qx , qy , qz , sx , sy , s z ;
i n t i , l ;

MP_DIGITS(&k) = 0 ;
136 MP_DIGITS(&qx) = 0 ; MP_DIGITS(&qy) = 0 ; MP_DIGITS(&qz) = 0 ;

MP_DIGITS(&sx) = 0 ; MP_DIGITS(&sy) = 0 ; MP_DIGITS(&sz) = 0 ;
MP_CHECKOK(mp_init(&k)) ; MP_CHECKOK(mp_init(&qx)) ;
MP_CHECKOK(mp_init(&qy)) ; MP_CHECKOK(mp_init(&qz)) ;
MP_CHECKOK(mp_init(&sx)) ; MP_CHECKOK(mp_init(&sy)) ;

141 MP_CHECKOK(mp_init(& sz)) ;

/∗ i f n = 0 then r = i n f ∗/
i f (mp_cmp_z(n) == 0) {

mp_zero (r x) ;
146 mp_zero (r y) ;

r e s = MP_OKAY;
goto CLEANUP;

}
/∗ Q = P, k = n ∗/

151 MP_CHECKOK(ec_GFp_pt_aff2proj (px , py , &qx , &qy , &qz , group)) ;
MP_CHECKOK(mp_copy(n , &k)) ;
/∗ i f n < 0 then Q = −Q, k = −k ∗/
i f (mp_cmp_z(n) < 0) {

MP_CHECKOK(group−>meth−>f i e l d_neg (py , &qy , group−>meth)) ;
156 MP_CHECKOK(ec_GFp_pt_aff2proj (px , &qy , &qx , &qy , &qz , group)) ;

MP_CHECKOK(mp_neg(&k , &k)) ;
}
l = mp l_ s i g n i f i c a n t_b i t s (&k) − 1 ;
MP_CHECKOK(mp_copy(&qx , &sx)) ;

161 MP_CHECKOK(mp_copy(&qy , &sy)) ;
MP_CHECKOK(mp_copy(&qz , &sz)) ;
f o r (i = l − 1 ; i >= 0 ; i−−) {

/∗ S = 2S ∗/
MP_CHECKOK(ec_GFp_pt_add_unif_bj02_proj(&sx , &sy , &sz , &sx , &sy ,

&sz , &sx , &sy , &sz , group)) ;
166 /∗ i f k_i = 1 , then S = S + Q ∗/

i f (mpl_get_bit(&k , i) != 0) {
MP_CHECKOK(ec_GFp_pt_add_unif_bj02_proj(&sx , &sy , &sz , &qx , &

qy , &qz , &sx , &sy , &sz , group)) ;

161

Appendix A. Sample Code

}
}

171 /∗ output S ∗/
MP_CHECKOK(ec_GFp_pt_proj2aff(&sx , &sy , &sz , rx , ry , group)) ;

CLEANUP:
mp_clear(&k) ;

176 mp_clear(&qx) ; mp_clear(&qy) ; mp_clear(&qz) ;
mp_clear(&sx) ; mp_clear(&sy) ; mp_clear(& sz) ;
return r e s ;

}

A.1.2 Affine unified formula of Brier, Déchène, and Joye
(Section 6.3.2)

A.1.2.1 ecp_unif_bdj04_aff.c

The following block of C code implements the affine version of the unified point
addition formula of Brier, Déchène, and Joye as in equation (6.7). This code uses
the big integer library and elliptic curve library that is part of the Netscape Security
Services (NSS) toolkit [Moz08].

1 #inc lude " ecp . h"
#inc lude "mplog i c . h"
#inc lude <s t d l i b . h>
#inc lude " h r t ime . h"

6 mp_err ec_GFp_pt_add_unif_bdj04 (const mp_int ∗px , const mp_int ∗py ,
const mp_int ∗qx , const mp_int ∗qy , mp_int ∗ rx , mp_int ∗ ry , const
ECGroup ∗ group) {
mp_err r e s = MP_OKAY;
mp_int t1 , t2 , t3 , t4 ;

MP_DIGITS(&t1) = 0 ; MP_DIGITS(&t2) = 0 ;
11 MP_DIGITS(&t3) = 0 ; MP_DIGITS(&t4) = 0 ;

MP_CHECKOK(mp_init(&t1)) ; MP_CHECKOK(mp_init(&t2)) ;
MP_CHECKOK(mp_init(&t3)) ; MP_CHECKOK(mp_init(&t4)) ;

/∗ i f P = i n f , then R = Q ∗/
16 i f (ec_GFp_pt_is_inf_aff (px , py) == 0) {

MP_CHECKOK(mp_copy(qx , r x)) ;
MP_CHECKOK(mp_copy(qy , r y)) ;
r e s = MP_OKAY;
goto CLEANUP;

21 }
/∗ i f Q = i n f , then R = P ∗/
i f (ec_GFp_pt_is_inf_aff (qx , qy) == 0) {

MP_CHECKOK(mp_copy(px , r x)) ;
MP_CHECKOK(mp_copy(py , r y)) ;

26 r e s = MP_OKAY;
goto CLEANUP;

}
/∗ i f P = −Q, then R = i n f ∗/
MP_CHECKOK(group−>meth−>f i e l d_neg (qy , &t1 , group−>meth)) ;

31 i f ((mp_cmp(px , qx) == 0) && (mp_cmp(py , &t1) == 0)) {
mp_zero (r x) ;

162

Appendix A. Sample Code

mp_zero (r y) ;
r e s = MP_OKAY;
goto CLEANUP;

36 }

MP_CHECKOK(group−>meth−>f i e l d_add (px , qx , &t1 , group−>meth)) ;
MP_CHECKOK(group−>meth−>f i e l d_ s q r (&t1 , &t2 , group−>meth)) ;
MP_CHECKOK(group−>meth−>f i e l d_mu l (px , qx , &t3 , group−>meth)) ;

41 MP_CHECKOK(group−>meth−>f i e l d_sub (&t2 , &t3 , &t2 , group−>meth)) ;
MP_CHECKOK(group−>meth−>f i e l d_add (&t2 , &group−>curvea , &t2 , group−>

meth)) ;

MP_CHECKOK(group−>meth−>f i e l d_add (py , qy , &t4 , group−>meth)) ;

46 MP_CHECKOK(group−>meth−>f i e l d_sub (qx , px , &t3 , group−>meth)) ;

i f (mp_cmp(&t3 , &t3) == 0) {
MP_CHECKOK(group−>meth−>f i e l d_add (&t2 , qy , &t2 , group−>meth)) ;
MP_CHECKOK(group−>meth−>f i e l d_sub (&t2 , py , &t2 , group−>meth)) ;

51 MP_CHECKOK(group−>meth−>f i e l d_add (&t4 , qx , &t4 , group−>meth)) ;
MP_CHECKOK(group−>meth−>f i e l d_sub (&t4 , px , &t4 , group−>meth)) ;

} e l s e {
MP_CHECKOK(group−>meth−>f i e l d_add (&t2 , py , &t2 , group−>meth)) ;
MP_CHECKOK(group−>meth−>f i e l d_sub (&t2 , qy , &t2 , group−>meth)) ;

56 MP_CHECKOK(group−>meth−>f i e l d_add (&t4 , px , &t4 , group−>meth)) ;
MP_CHECKOK(group−>meth−>f i e l d_sub (&t4 , qx , &t4 , group−>meth)) ;

}

MP_CHECKOK(group−>meth−>f i e l d_d i v (&t2 , &t4 , &t3 , group−>meth)) ;
61

MP_CHECKOK(group−>meth−>f i e l d_ s q r (&t3 , &t2 , group−>meth)) ;
MP_CHECKOK(group−>meth−>f i e l d_sub (&t2 , &t1 , &t2 , group−>meth)) ;

MP_CHECKOK(group−>meth−>f i e l d_sub (px , &t2 , &t4 , group−>meth)) ;
66 MP_CHECKOK(group−>meth−>f i e l d_mu l (&t4 , &t3 , &t4 , group−>meth)) ;

MP_CHECKOK(group−>meth−>f i e l d_sub (&t4 , py , &t4 , group−>meth)) ;

MP_CHECKOK(mp_copy(&t2 , r x)) ;
MP_CHECKOK(mp_copy(&t4 , r y)) ;

71

CLEANUP:
mp_clear(&t1) ;
mp_clear(&t2) ;
mp_clear(&t3) ;

76 mp_clear(&t4) ;
return r e s ;

}

mp_err ec_GFp_pt_mul_unif_bdj04 (const mp_int ∗n , const mp_int ∗px ,
const mp_int ∗py , mp_int ∗ rx , mp_int ∗ ry , const ECGroup ∗ group) {

81 mp_err r e s = MP_OKAY;
mp_int k , k3 , qx , qy , qny , sx , sy ;
i n t b1 , b3 , i , l ;

#i f d e f ECL_HRTIME
M_Time_DeclareVariables

86 #end i f

MP_DIGITS(&k) = 0 ; MP_DIGITS(&k3) = 0 ; MP_DIGITS(&qx) = 0 ;
MP_DIGITS(&qy) = 0 ; MP_DIGITS(&qny) = 0 ; MP_DIGITS(&sx) = 0 ;
MP_DIGITS(&sy) = 0 ;

163

Appendix A. Sample Code

91 MP_CHECKOK(mp_init(&k)) ; MP_CHECKOK(mp_init(&k3)) ;
MP_CHECKOK(mp_init(&qx)) ; MP_CHECKOK(mp_init(&qy)) ;
MP_CHECKOK(mp_init(&qny)) ; MP_CHECKOK(mp_init(&sx)) ;
MP_CHECKOK(mp_init(&sy)) ;

96 /∗ i f n = 0 then r = i n f ∗/
i f (mp_cmp_z(n) == 0) {

mp_zero (r x) ;
mp_zero (r y) ;
r e s = MP_OKAY;

101 goto CLEANUP;
}
/∗ Q = P, k = n ∗/
MP_CHECKOK(mp_copy(px , &qx)) ;
MP_CHECKOK(mp_copy(py , &qy)) ;

106 MP_CHECKOK(mp_copy(n , &k)) ;
/∗ i f n < 0 then Q = −Q, k = −k ∗/
i f (mp_cmp_z(n) < 0) {

MP_CHECKOK(group−>meth−>f i e l d_neg (&qy , &qy , group−>meth)) ;
MP_CHECKOK(mp_neg(&k , &k)) ;

111 }

l = mp l_ s i g n i f i c a n t_b i t s (&k) − 1 ;
MP_CHECKOK(mp_copy(&qx , &sx)) ;
MP_CHECKOK(mp_copy(&qy , &sy)) ;

116 f o r (i = l − 1 ; i >= 0 ; i−−) {
/∗ S = 2S ∗/

#i f d e f ECL_HRTIME
M_Time_Start

#end i f
121 MP_CHECKOK(ec_GFp_pt_add_unif_bdj04(&sx , &sy , &sx , &sy , &sx , &sy

, group)) ;
#i f d e f ECL_HRTIME

M_Time_Stop
p r i n t f ("d : ␣%l l u \n" , M_Time_Difference) ;

#end i f
126 /∗ i f k_i = 1 , then S = S + Q ∗/

i f (mpl_get_bit(&k , i) != 0) {
#i f d e f ECL_HRTIME

M_Time_Start
#end i f

131 MP_CHECKOK(ec_GFp_pt_add_unif_bdj04(&sx , &sy , &qx , &qy , &sx ,
&sy , group)) ;

#i f d e f ECL_HRTIME
M_Time_Stop
p r i n t f ("a : ␣%l l u \n" , M_Time_Difference) ;

#end i f
136 }

}
/∗ output S ∗/
MP_CHECKOK(mp_copy(&sx , r x)) ;
MP_CHECKOK(mp_copy(&sy , r y)) ;

141

CLEANUP:
mp_clear(&k) ; mp_clear(&k3) ; mp_clear(&qx) ;
mp_clear(&qy) ; mp_clear(&sx) ; mp_clear(&sy) ;
return r e s ;

146 }

164

Appendix A. Sample Code

A.1.3 Projective unified formula of Brier, Déchène, and Joye
(Section 6.3.2)

A.1.3.1 Formula verification in Maple

The following block of Maple code confirms that the projective unified point ad-
dition formula given in equation (6.8) mathematically corresponds to the affine
formula of Brier, Déchène, and Joye [BDJ04] in equation (6.7).
r e s t a r t ;
U1 := X1∗Z2 ; U2 := X2∗Z1 ; S1 := Y1∗Z2 ; S2 := Y2∗Z1 ; Z := Z1∗Z2 ;
T := U1+U2 ; V := U1−U2 ; M := S1+S2 ; N := S1−S2 ;

4 E := M+V; F := Z∗E ; L := F∗E ; G := L∗T;
R := T^2−U1∗U2+a∗Z^2+Z∗N; W := R^2−G;
Z3 := 2∗F^3; X3 := 2∗F∗W; Y3 := R∗(G−2∗W)−L∗F∗M;
X1 := x1∗Z1 ; Y1 := y1∗Z1 ; X2 := x2∗Z2 ; Y2 := y2∗Z2 ;
lambda := ((x1+x2)^2−x1∗x2+a+y1−y2) /(y1+y2+x1−x2) ;

9 x3 := lambda^2−x1−x2 ; y3 := 1/2∗(lambda ∗(x1+x2−2∗x3)−(y1+y2)) ;
s imp l i f y (X3−x3∗Z3)=0;
s imp l i f y (Y3−y3∗Z3)=0;

A.1.3.2 ecp_unif_bdj04_proj.c

The following block of C code implements the projective version of the unified point
addition formula of Brier, Déchène, and Joye as in equation (6.8). This code uses
the big integer library and elliptic curve library that is part of the Netscape Security
Services (NSS) toolkit [Moz08].
#inc lude " ecp . h"
#inc lude "mplog i c . h"
#inc lude <s t d l i b . h>

4 #inc lude " h r t ime . h"

mp_err ec_GFp_pt_add_unif_bdj04_proj (const mp_int ∗px , const mp_int ∗
py , const mp_int ∗pz , const mp_int ∗qx , const mp_int ∗qy , const
mp_int ∗qz , mp_int ∗ rx , mp_int ∗ ry , mp_int ∗ rz , const ECGroup ∗
group) {
mp_err r e s = MP_OKAY;
mp_int u1 , u2 , t , v , s1 , s2 , m, n , z , f , e , l , g , r , w ;

9 char s [1 0 0 0] ;

MP_CHECKOK(mp_init(&u1)) ; MP_CHECKOK(mp_init(&u2)) ;
MP_CHECKOK(mp_init(&t)) ; MP_CHECKOK(mp_init(&v)) ;
MP_CHECKOK(mp_init(&s1)) ; MP_CHECKOK(mp_init(&s2)) ;

14 MP_CHECKOK(mp_init(&m)) ; MP_CHECKOK(mp_init(&n)) ;
MP_CHECKOK(mp_init(&z)) ; MP_CHECKOK(mp_init(& f)) ;
MP_CHECKOK(mp_init(&e)) ; MP_CHECKOK(mp_init(& l)) ;
MP_CHECKOK(mp_init(&g)) ; MP_CHECKOK(mp_init(& r)) ;
MP_CHECKOK(mp_init(&w)) ;

19

/∗ I f e i t h e r P or Q i s the po i n t at i n f i n i t y , then r e t u r n the o th e r
p o i n t ∗/

i f (ec_GFp_pt_is_inf_proj (px , py , pz) == MP_YES) {
MP_CHECKOK(mp_copy(qx , r x)) ;
MP_CHECKOK(mp_copy(qy , r y)) ;

165

Appendix A. Sample Code

24 MP_CHECKOK(mp_copy(qz , r z)) ;
goto CLEANUP;

}
i f (ec_GFp_pt_is_inf_proj (qx , qy , qz) == MP_YES) {

MP_CHECKOK(mp_copy(px , r x)) ;
29 MP_CHECKOK(mp_copy(py , r y)) ;

MP_CHECKOK(mp_copy(pz , r z)) ;
goto CLEANUP;

}

34 /∗ u1 = x1 ∗ z2 , u2 = x2 ∗ z1 , t = u1 + u2 , v = u1 − u2 ∗/
MP_CHECKOK(group−>meth−>f i e l d_mu l (px , qz , &u1 , group−>meth)) ;
MP_CHECKOK(group−>meth−>f i e l d_mu l (qx , pz , &u2 , group−>meth)) ;
MP_CHECKOK(group−>meth−>f i e l d_sub (&u1 , &u2 , &v , group−>meth)) ;
MP_CHECKOK(group−>meth−>f i e l d_add (&u1 , &u2 , &t , group−>meth)) ;

39 /∗ s1 = y1 ∗ z2 , s2 = y2 ∗ z1 , m = s1 + s2 , n = s1 − s2 ∗/
MP_CHECKOK(group−>meth−>f i e l d_mu l (py , qz , &s1 , group−>meth)) ;
MP_CHECKOK(group−>meth−>f i e l d_mu l (qy , pz , &s2 , group−>meth)) ;
MP_CHECKOK(group−>meth−>f i e l d_sub (&s1 , &s2 , &n , group−>meth)) ;
MP_CHECKOK(group−>meth−>f i e l d_add (&s1 , &s2 , &m, group−>meth)) ;

44 /∗ z = z1 ∗ z2 , e = m + v , f = z ∗ e , l = f ∗ e , g = l ∗ t ∗/
MP_CHECKOK(group−>meth−>f i e l d_mu l (pz , qz , &z , group−>meth)) ;
MP_CHECKOK(group−>meth−>f i e l d_add (&m, &v , &e , group−>meth)) ;
MP_CHECKOK(group−>meth−>f i e l d_mu l (&z , &e , &f , group−>meth)) ;
MP_CHECKOK(group−>meth−>f i e l d_mu l (&f , &e , &l , group−>meth)) ;

49 MP_CHECKOK(group−>meth−>f i e l d_mu l (& l , &t , &g , group−>meth)) ;
/∗ r = t^2 − u1 ∗ u2 + a ∗ z^2 + z ∗ n ∗/
MP_CHECKOK(group−>meth−>f i e l d_ s q r (&t , &r , group−>meth)) ;
MP_CHECKOK(group−>meth−>f i e l d_mu l (&u1 , &u2 , &w, group−>meth)) ;
MP_CHECKOK(group−>meth−>f i e l d_sub (&r , &w, &r , group−>meth)) ;

54 MP_CHECKOK(group−>meth−>f i e l d_ s q r (&z , &w, group−>meth)) ;
MP_CHECKOK(group−>meth−>f i e l d_mu l (&group−>curvea , &w, &w, group−>

meth)) ;
MP_CHECKOK(group−>meth−>f i e l d_add (&r , &w, &r , group−>meth)) ;
MP_CHECKOK(group−>meth−>f i e l d_mu l (&z , &n , &w, group−>meth)) ;
MP_CHECKOK(group−>meth−>f i e l d_add (&r , &w, &r , group−>meth)) ;

59 /∗ w = r^2 − g ∗/
MP_CHECKOK(group−>meth−>f i e l d_ s q r (&r , &w, group−>meth)) ;
MP_CHECKOK(group−>meth−>f i e l d_sub (&w, &g , &w, group−>meth)) ;
/∗ x3 = 2 ∗ f ∗ w ∗/
MP_CHECKOK(group−>meth−>f i e l d_mu l (&f , &w, rx , group−>meth)) ;

64 MP_CHECKOK(group−>meth−>f i e l d_add (rx , rx , rx , group−>meth)) ;
/∗ y3 = r ∗ (g − 2 ∗ w) − l ∗ f ∗ m ∗/
MP_CHECKOK(group−>meth−>f i e l d_sub (&g , &w, ry , group−>meth)) ;
MP_CHECKOK(group−>meth−>f i e l d_sub (ry , &w, ry , group−>meth)) ;
MP_CHECKOK(group−>meth−>f i e l d_mu l (&r , ry , ry , group−>meth)) ;

69 MP_CHECKOK(group−>meth−>f i e l d_mu l (& l , &f , rz , group−>meth)) ;
MP_CHECKOK(group−>meth−>f i e l d_mu l (rz , &m, rz , group−>meth)) ;
MP_CHECKOK(group−>meth−>f i e l d_sub (ry , rz , ry , group−>meth)) ;
/∗ z3 = 2 ∗ f ^3 ∗/
MP_CHECKOK(group−>meth−>f i e l d_ s q r (&f , rz , group−>meth)) ;

74 MP_CHECKOK(group−>meth−>f i e l d_mu l (&f , rz , rz , group−>meth)) ;
MP_CHECKOK(group−>meth−>f i e l d_add (rz , rz , rz , group−>meth)) ;

CLEANUP:
mp_clear(&u1) ; mp_clear(&u2) ; mp_clear(&t) ;

79 mp_clear(&v) ; mp_clear(&s1) ; mp_clear(&s2) ;
mp_clear(&m) ; mp_clear(&n) ; mp_clear(&z) ;
mp_clear(& f) ; mp_clear(&e) ; mp_clear(& l) ;
mp_clear(&g) ; mp_clear(& r) ; mp_clear(&w) ;

166

Appendix A. Sample Code

return r e s ;
84 }

mp_err ec_GFp_pt_mul_unif_bdj04_proj (const mp_int ∗n , const mp_int ∗px
, const mp_int ∗py , mp_int ∗ rx , mp_int ∗ ry , const ECGroup ∗ group) {
mp_err r e s = MP_OKAY;
mp_int k , qx , qy , qz , sx , sy , s z ;

89 i n t i , l ;
#i f d e f ECL_HRTIME

M_Time_DeclareVariables
#end i f

94 MP_DIGITS(&k) = 0 ; MP_DIGITS(&qx) = 0 ; MP_DIGITS(&qy) = 0 ;
MP_DIGITS(&qz) = 0 ; MP_DIGITS(&sx) = 0 ; MP_DIGITS(&sy) = 0 ;
MP_DIGITS(&sz) = 0 ;
MP_CHECKOK(mp_init(&k)) ; MP_CHECKOK(mp_init(&qx)) ;
MP_CHECKOK(mp_init(&qy)) ; MP_CHECKOK(mp_init(&qz)) ;

99 MP_CHECKOK(mp_init(&sx)) ; MP_CHECKOK(mp_init(&sy)) ;
MP_CHECKOK(mp_init(& sz)) ;

/∗ i f n = 0 then r = i n f ∗/
i f (mp_cmp_z(n) == 0) {

104 mp_zero (r x) ;
mp_zero (r y) ;
r e s = MP_OKAY;
goto CLEANUP;

}
109 /∗ Q = P, k = n ∗/

MP_CHECKOK(ec_GFp_pt_aff2proj (px , py , &qx , &qy , &qz , group)) ;
MP_CHECKOK(mp_copy(n , &k)) ;
/∗ i f n < 0 then Q = −Q, k = −k ∗/
i f (mp_cmp_z(n) < 0) {

114 MP_CHECKOK(group−>meth−>f i e l d_neg (py , &qy , group−>meth)) ;
MP_CHECKOK(ec_GFp_pt_aff2proj (px , &qy , &qx , &qy , &qz , group)) ;
MP_CHECKOK(mp_neg(&k , &k)) ;

}
l = mp l_ s i g n i f i c a n t_b i t s (&k) − 1 ;

119 MP_CHECKOK(mp_copy(&qx , &sx)) ;
MP_CHECKOK(mp_copy(&qy , &sy)) ;
MP_CHECKOK(mp_copy(&qz , &sz)) ;
f o r (i = l − 1 ; i >= 0 ; i−−) {

/∗ S = 2S ∗/
124 #i f d e f ECL_HRTIME

M_Time_Start
#end i f

MP_CHECKOK(ec_GFp_pt_add_unif_bdj04_proj(&sx , &sy , &sz , &sx , &sy
, &sz , &sx , &sy , &sz , group)) ;

#i f d e f ECL_HRTIME
129 M_Time_Stop

p r i n t f ("d : ␣%l l u \n" , M_Time_Difference) ;
#end i f

/∗ i f k_i = 1 , then S = S + Q ∗/
i f (mpl_get_bit(&k , i) != 0) {

134 #i f d e f ECL_HRTIME
M_Time_Start

#end i f
MP_CHECKOK(ec_GFp_pt_add_unif_bdj04_proj(&sx , &sy , &sz , &qx ,

&qy , &qz , &sx , &sy , &sz , group)) ;
#i f d e f ECL_HRTIME

139 M_Time_Stop

167

Appendix A. Sample Code

p r i n t f ("a : ␣%l l u \n" , M_Time_Difference) ;
#end i f

}
}

144 /∗ output S ∗/
MP_CHECKOK(ec_GFp_pt_proj2aff(&sx , &sy , &sz , rx , ry , group)) ;

CLEANUP:
mp_clear(&k) ; mp_clear(&qx) ; mp_clear(&qy) ;

149 mp_clear(&qz) ; mp_clear(&sx) ; mp_clear(&sy) ;
mp_clear(& sz) ;
return r e s ;

}

A.1.4 Timing (Section 6.3.4)

A.1.4.1 hrtime.h

The following block of C preprocessor code provides operations that can be used
to time point operations. When used on Solaris, the code provides high-resolution
timing (up to 100 ns).
#inc lude <time . h>
#inc lude <sy s / t ime . h>

3 #inc lude <sy s / r e s o u r c e . h>

#def ine M_Time_UseHR
#def ine ECL_HRTIME

8 #i f d e f M_Time_UseHR
#def ine M_Time_DeclareVariables M_Time_DeclareVariablesHR
#def ine M_Time_Start M_Time_StartHR
#def ine M_Time_Stop M_Time_StopHR
#def ine M_Time_Print M_Time_PrintHR

13 #def ine M_Time_Difference M_Time_DifferenceHR
#el se
#def ine M_Time_DeclareVariables M_Time_DeclareVar iab lesBas ic
#def ine M_Time_Start M_Time_StartBasic
#def ine M_Time_Stop M_Time_StopBasic

18 #def ine M_Time_Print M_Time_PrintBasic
#def ine M_Time_Difference M_Time_DifferenceBasic
#end i f

#def ine M_Time_DeclareVar iab lesBas ic \
23 double M_Time_dStart , M_Time_dNow; \

s t ruc t r u s age M_Time_ru ; \
i n t M_Time_i ;

#def ine M_Time_StartBasic \
g e t r u s ag e (RUSAGE_SELF, &M_Time_ru) ; \

28 M_Time_dStart = (double)M_Time_ru . ru_utime . tv_sec+(double)M_Time_ru
. ru_utime . tv_usec ∗0 .000001 ;

#def ine M_Time_StopBasic \
g e t r u s ag e (RUSAGE_SELF, &M_Time_ru) ; \
M_Time_dNow = (double)M_Time_ru . ru_utime . tv_sec+(double)M_Time_ru .

ru_utime . tv_usec ∗0 .000001 ;
#def ine M_Time_DifferenceBasic M_Time_dNow − M_Time_dStart

33 #def ine M_Time_PrintBasic \

168

Appendix A. Sample Code

p r i n t f (" t : ␣%6.2 f ␣ s e c \n" , M_Time_DifferenceBasic) ;

#def ine M_Time_DeclareVariablesHR \
hrt ime_t M_Time_hrStart , M_Time_hrStop ; \

38 i n t M_Time_i ;
#def ine M_Time_StartHR \

M_Time_hrStart = ge th r t ime () ;
#def ine M_Time_StopHR \

M_Time_hrStop = ge th r t ime () ;
43 #def ine M_Time_DifferenceHR M_Time_hrStop − M_Time_hrStart

#def ine M_Time_PrintHR \
p r i n t f (" t : ␣%l l u ␣ nsec \n" , M_Time_DifferenceHR) ;

A.1.4.2 ecp_test.c

The following block of C code times various point multiplication formulæ.
#inc lude "mpi . h"
#inc lude "mplog i c . h"
#inc lude "mpprime . h"
#inc lude " e c l . h"

5 #inc lude " ec l−cu r ve . h"
#inc lude " ecp . h"
#inc lude <s t d i o . h>
#inc lude <s t r i n g s . h>
#inc lude <a s s e r t . h>

10

#inc lude <time . h>
#inc lude <sy s / t ime . h>
#inc lude <sy s / r e s o u r c e . h>

15 #def ine M_TimeOperation (op , k) { \
double dSta r t , dNow , dUserTime ; \
s t ruc t r u s age ru ; \
i n t i ; \
g e t r u s ag e (RUSAGE_SELF, &ru) ; \

20 dS t a r t = (double) ru . ru_utime . tv_sec+(double) ru . ru_utime . tv_usec
∗0 .000001 ; \

f o r (i = 0 ; i < k ; i++) { \
{ op ; } \

} ; \
g e t r u s ag e (RUSAGE_SELF, &ru) ; \

25 dNow = (double) ru . ru_utime . tv_sec+(double) ru . ru_utime . tv_usec
∗0 .000001 ; \

dUserTime = dNow−dS t a r t ; \
i f (dUserTime) p r i n t f ("␣␣␣␣%−45s ␣k : ␣%6i , ␣ t : ␣%6.2 f ␣ s e c \n" , #op , k ,

dUserTime) ; \
}

30 i n t ectest_curve_GFp (ECGroup ∗ group) {

mp_int gx , gy , rx , ry , n ;
i n t s i z e ;
mp_err r e s ;

35

/∗ i n i t i a l i z e v a l u e s ∗/
MP_CHECKOK(mp_init(&gx)) ; MP_CHECKOK(mp_init(&gy)) ;
MP_CHECKOK(mp_init(& rx)) ; MP_CHECKOK(mp_init(& ry)) ;

169

Appendix A. Sample Code

MP_CHECKOK(mp_init(&n)) ;
40

MP_CHECKOK(mp_set_int(&one , 1)) ;
MP_CHECKOK(mp_sub(&group−>order , &one , &order_1)) ;

/∗ encode base po i n t ∗/
45 i f (group−>meth−>f i e l d_de c) {

MP_CHECKOK(group−>meth−>f i e l d_de c (&group−>genx , &gx , group−>meth
)) ;

MP_CHECKOK(group−>meth−>f i e l d_de c (&group−>geny , &gy , group−>meth
)) ;

} e l s e {
MP_CHECKOK(mp_copy(&group−>genx , &gx)) ;

50 MP_CHECKOK(mp_copy(&group−>geny , &gy)) ;
}

/∗ compute random s c a l a r ∗/
s i z e = mp l_ s i g n i f i c a n t_b i t s (&group−>meth−>i r r) ;

55 i f (s i z e < MP_OKAY) {
goto CLEANUP;

}
MP_CHECKOK(mpp_random_size(&n , (s i z e + ECL_BITS − 1) / ECL_BITS)) ;
MP_CHECKOK(group−>meth−>fie ld_mod(&n , &n , group−>meth)) ;

60 /∗ t imed t e s t ∗/
M_TimeOperation (MP_CHECKOK (ec_GFp_pt_mul_aff(&n , &group−>genx , &

group−>geny , &rx , &ry , group)) , 100) ;
M_TimeOperation (MP_CHECKOK (ec_GFp_pt_mul_unif_bj02_proj(&n , &group
−>genx , &group−>geny , &rx , &ry , group)) , 100) ;

M_TimeOperation (MP_CHECKOK (ec_GFp_pt_mul_unif_bdj04_aff(&n , &group
−>genx , &group−>geny , &rx , &ry , group)) , 100) ;

M_TimeOperation (MP_CHECKOK (ec_GFp_pt_mul_unif_bdj04_proj(&n , &
group−>genx , &group−>geny , &rx , &ry , group)) , 100) ;

65 M_TimeOperation (MP_CHECKOK (ECPoint_mul (group , &n , NULL , NULL , &rx ,
&ry)) , 100) ;

M_TimeOperation (MP_CHECKOK (ECPoints_mul (group , &n , &n , &gx , &gy ,
&rx , &ry)) , 100) ;

CLEANUP:
mp_clear(&gx) ; mp_clear(&gy) ;

70 mp_clear(& rx) ; mp_clear(& ry) ; mp_clear(&n) ;
i f (r e s != MP_OKAY) {

p r i n t f ("␣␣ E r r o r : ␣ e x i t i n g ␣wi th ␣ e r r o r ␣ v a l u e ␣%i \n" , r e s) ;
}
return r e s ;

75 }

i n t main (i n t argv , char ∗∗ a rgc) {

i n t i ;
80 ECGroup ∗ group = NULL ;

ECCurveParams ∗params = NULL ;
mp_err r e s = MP_OKAY;

params = EC_GetNamedCurveParams (ECCurve_SECG_PRIME_160R1) ;
85 i f (params == NULL) {

r e s = MP_NO;
goto CLEANUP;

}
ECGroup_free (group) ;

90 group = ECGroup_fromHex (params) ;

170

Appendix A. Sample Code

i f (group == NULL) {
r e s = MP_NO;
goto CLEANUP;

}
95 MP_CHECKOK(ectest_curve_GFp (group)) ;

p r i n t f (" . . . ␣ okay . \ n") ;

CLEANUP:
EC_FreeCurveParams (params) ;

100 ECGroup_free (group) ;
i f (r e s != MP_OKAY) {

p r i n t f (" E r r o r : ␣ e x i t i n g ␣wi th ␣ e r r o r ␣ v a l u e ␣%i \n" , r e s) ;
}
return r e s ;

105 }

A.1.5 Binary projective unified formula of Brier, Déchène,
and Joye (Section 6.4)

A.1.5.1 Formula verification in Maple

The following block of Maple code confirms that the projective unified point addi-
tion formula for binary curves given in equation (6.34) mathematically corresponds
to the affine formula of Brier, Déchène, and Joye [BDJ04] in equation (6.33).
r e s t a r t ;
U1:=X1∗Z2 ; U2:=X2∗Z1 ; S1:=Y1∗Z2 ; S2:=Y2∗Z1 ; Z:=Z1∗Z2 ;
T:=U1+U2 ; M:=S1+S2 ;
E1:=U1+M; F1:=Z∗E1 ; L1:=F1∗E1 ; G1:=L1∗T; H1:=F1^2;

5 R:=T^2+U1∗U2+a∗Z∗T+Z∗S2 ;
K1:=F1∗R+G1+a∗H1 ; W1:=R^2+K1 ;
Z3:=F1∗H1 ; X3:=F1∗W1; Y3:=R∗(L1∗U1+W1)+X3+H1∗E1∗S1 ;
lambda :=((x1+x2)^2+x1∗x2+a ∗(x1+x2)+y2) /(x1+y1+y2) ;
x3 := lambda^2+lambda+x1+x2+a ;

10 y3 := lambda ∗(x1+x3)+x3+y1 ;
X1:=x1∗Z1 ; Y1:=y1∗Z1 ; X2:=x2∗Z2 ; Y2:=y2∗Z2 ;
s imp l i f y (X3−x3∗Z3)=0;
s imp l i f y (Y3−y3∗Z3)=0;

171

Colophon

This thesis was typeset using LATEX. The bibliography was typeset from a BibTEX
database using a custom bibliography stylesheet called halphads, based on the
halpha stylesheet and modified to included links to electronic resources identified
by Digital Object Identifiers (DOIs) and e-prints.

172

References

[Aar05] Scott Aaronson. Quantum copy-protection. Private correspondence, 2005.

[Aar09] Scott Aaronson. Quantum copy-protection and quantum money. In prepa-
ration, 2009.

[AARR02] Dakshi Agrawal, Bruce Archambeault, Josyula Rao, and Pankaj Rohatgi.
The EM side-channel(s). In B. S. Kaliski, Jr., Ç. K. Koç, and Christof
Paar, editors, Cryptographic Hardware and Embedded Systems (CHES)
2002, LNCS, volume 2523, pp. 29–45. Springer, 2002. doi:10.1007/3-540-
36400-5_4.

[ABB+04] William Aiello, Steven M. Bellovin, Matt Blaze, Ran Canetti, John Ioan-
nidis, Angelos D. Keromytis, and Omer Reingold. Just Fast Keying: Key
agreement in a hostile Internet. ACM Transactions on Information and
System Security, 7(2):1–30, May 2004. doi:10.1145/996943.996946.

[ABB+07] Romain Alléaume, Jan Bouda, Cyril Branciard, Thierry Debuisschert,
Mehrdad Dianati, Nicolas Gisin, Mark Godfrey, Philippe Grangier, Thomas
Länger, Anthony Leverrier, Norbert Lütkenhaus, Philippe Painchault,
Momtchil Peev, Andreas Poppe, Thomas Pornin, John Rarity, Renato Ren-
ner, Grégoire Ribordy, Michel Riguidel, Louis Salvail, Andrew Shields, Har-
ald Weinfurter, and Anton Zeilinger. SECOQC white paper on quantum
key distribution and cryptography, January 2007. eprint arXiv:quant-
ph/0701168.

[ABC+06] Michel Abdalla, Emmanuel Bresson, Olivier Chevassut, Bodo Möller, and
David Pointcheval. Provably secure password-based authentication in TLS.
In Shiuhpyng Shieh and Sushil Jajodia, editors, Proc. 2006 ACM Sym-
posium on Information, Computer and Communications Security (ASI-
ACCS’06), pp. 35–45. ACM Press, 2006. doi:10.1145/1128817.1128827.

[ABG+07] Antonio Acin, Nicolas Brunner, Nicolas Gisin, Serge Massar, Stefano
Pironio, and Valerio Scarani. Device-independent security of quan-
tum cryptography against collective attacks. Physical Review Let-
ters, 98(23):230501, 2007. doi:10.1103/PhysRevLett.98.230501. eprint
arXiv:quant-ph/0702152.

[ABMW03] Martín Abadi, Michael Burrows, Mark Manasse, and Ted Wobber. Mod-
erately hard, memory-bound functions. In Proc. Internet Society Net-
work and Distributed System Security Symposium (NDSS) 2003. Internet

173

http://dx.doi.org/10.1007/3-540-36400-5_4
http://dx.doi.org/10.1007/3-540-36400-5_4
http://dx.doi.org/10.1145/996943.996946
http://www.arxiv.org/abs/quant-ph/0701168
http://www.arxiv.org/abs/quant-ph/0701168
http://dx.doi.org/10.1145/1128817.1128827
http://dx.doi.org/10.1103/PhysRevLett.98.230501
http://arxiv.org/abs/quant-ph/0702152

References

Society, 2003. url http://www.isoc.org/isoc/conferences/ndss/03/
proceedings/.

[ABOE08] Dorit Aharonov, Michael Ben-Or, and Elad Eban. Interactive proofs for
quantum computations, October 2008. eprint arXiv:0810.5375.

[ACP05a] Michel Abdalla, Olivier Chevassut, and David Pointcheval. One-time
verifier-based encrypted key exchange. In Vaudenay [Vau05], pp. 47–64.
doi:10.1007/b105124. Full version available as [ACP05b].

[ACP05b] Michel Abdalla, Olivier Chevassut, and David Pointcheval. One-time
verifier-based encrypted key exchange, 2005. url http://www.di.ens.
fr/~mabdalla/papers/ACP05-letter.pdf. Extended abstract published
as [ACP05a].

[AE07] Andris Ambainis and Joseph Emerson. Quantum t-designs: t-wise inde-
pendence in the quantum world. In Proc. 22nd Ann. IEEE Conference
on Computational Complexity (CCC) 2007, pp. 129–140. IEEE, June 2007.
doi:10.1109/CCC.2007.26. eprint arXiv:quant-ph/0701126.

[AFP05] Michel Abdalla, Pierre-Alain Fouque, and David Pointcheval. Password-
based authenticated key exchange in the three-party setting. In Vaudenay
[Vau05], pp. 65–84. doi:10.1007/b105124.

[AGLL96] Derek Atkins, Michael Graff, Arjen K. Lenstra, and Paul C. Leyland. The
magic words are squeamish ossifrage (extended abstract). In Kim and Mat-
sumoto [KM96], pp. 265–277. doi:10.1007/BFb0034829.

[AJK04] Joseph B. Altepeter, Daniel F. V. James, and Paul G. Kwiat. Qubit quan-
tum state tomography. In Matteo Paris and Jaroslav Řeháček, editors,
Quantum State Estimation, Lecture Notes in Physics, volume 649, pp. 113–
145. Springer, 2004. doi:10.1007/b98673.

[AN96] Martín Abadi and Roger Needham. Prudent engineering practice for crypto-
graphic protocols. IEEE Transactions on Software Engineering, 22(1):6–15,
January 1996. doi:10.1109/32.481513.

[AN97] Tuomas Aura and Pekka Nikander. Stateless connections. In Yongei Han,
Tatsuaki Okamoto, and Sihan Qing, editors, Proc. 1st International Con-
ference on Information and Communications Security, LNCS, volume 1334,
pp. 87–97. Springer, November 1997. doi:10.1007/BFb0028465.

[ANL00] Tuomas Aura, Pekka Nikander, and Jussipekka Leiwo. DOS-resistant
authentication with client puzzles. In Bruce Christianson, Bruno
Crispo, James A. Malcolm, and Michael Roe, editors, SECPROT,
LNCS, volume 2133, pp. 170–177. Springer, 2000. doi:10.1007/3-540-
44810-1_22. url http://research.microsoft.com/en-us/um/people/
tuomaura/Publications/aura-nikander-leiwo-protocols00.pdf.

[Art91] Michael Artin. Algebra. Prentice-Hall, 1991.

174

http://www.isoc.org/isoc/conferences/ndss/03/proceedings/
http://www.isoc.org/isoc/conferences/ndss/03/proceedings/
http://arxiv.org/abs/0810.5375
http://dx.doi.org/10.1007/b105124
http://www.di.ens.fr/~mabdalla/papers/ACP05-letter.pdf
http://www.di.ens.fr/~mabdalla/papers/ACP05-letter.pdf
http://dx.doi.org/10.1109/CCC.2007.26
http://arxiv.org/abs/quant-ph/0701126
http://dx.doi.org/10.1007/b105124
http://dx.doi.org/10.1007/BFb0034829
http://dx.doi.org/10.1007/b98673
http://dx.doi.org/10.1109/32.481513
http://dx.doi.org/10.1007/BFb0028465
http://dx.doi.org/10.1007/3-540-44810-1_22
http://dx.doi.org/10.1007/3-540-44810-1_22
http://research.microsoft.com/en-us/um/people/tuomaura/Publications/aura-nikander-leiwo-protocols00.pdf
http://research.microsoft.com/en-us/um/people/tuomaura/Publications/aura-nikander-leiwo-protocols00.pdf

References

[Atk95] Randall Atkinson. Security architecture for the Internet Protocol, August
1995. url http://www.ietf.org/rfc/rfc1825.txt. RFC 1825.

[Bac97] Adam Back. A partial hash collision based postage scheme, 1997. url
http://www.hashcash.org/papers/announce.txt.

[BBBV97] Charles H. Bennett, Ethan Bernstein, Gilles Brassard, and Umesh Vazi-
rani. Strengths and weaknesses of quantum computing. SIAM J. Com-
puting, 26(5):1510–1523, 1997. doi:10.1137/S0097539796300933. eprint
arXiv:quant-ph/9701001.

[BBBW82] Charles H. Bennett, Gilles Brassard, Seth Breidbard, and Stephen Wiesner.
Quantum cryptography, or unforgeable subway tokens. In David Chaum,
Ronald L. Rivest, and Alan T. Sherman, editors, Advances in Cryptology –
Proc. CRYPTO ’82. Plenum Press, 1982.

[BBD09] Daniel J. Bernstein, Johannes Buchmann, and Erik Dahmen, editors. Post
Quantum Cryptography. Springer, 2009.

[BBF+07] Gilles Brassard, Anne Broadbent, Joseph Fitzsimons, Sébastien Gambs, and
Alain Tapp. Anonymous quantum communication. In Kurosawa [Kur07],
pp. 460–473. doi:10.1007/978-3-540-76900-2_28. eprint arXiv:0706.2356.

[BBHT98] Michel Boyer, Gilles Brassard, Peter Høyer, and Alain Tapp. Tight
bounds on quantum searching. Fortschritte der Physik, 46(4–
5):493–505, 1998. doi:10.1002/(SICI)1521-3978(199806)46:4/5<493::AID-
PROP493>3.0.CO;2-P. eprint arXiv:quant-ph/9605034.

[BCC+06] Steve Babbage, Dario Catalano, Carlos Cid, Louis Granboulan, Tanja
Lange, Arjen Lenstra, Phong Nguyen, Christof Paar, Jan Pelzl, Thomas
Pornin, Bart Preneel, Matt Robshaw, Andy Rupp, Nigel Smart, and
Michael Ward. ECRYPT yearly report on algorithms and keysizes (2005),
January 2006. url http://www.ecrypt.eu.org/documents/D.SPA.16-1.
0.pdf.

[BCC+08] Steve Babbage, Dario Catalano, Carlos Cid, Orr Dunkelman, Christian
Gehrmann, Louis Granboulan, Tanja Lange, Arjen Lenstra, Phong Nguyen,
Christof Paar, Jan Pelzl, Thomas Pornin, Bart Preneel, Christian Rech-
berger, Vincent Rijmen, Matt Robshaw, Andy Rupp, Nigel Smart, and
Michael Ward. ECRYPT yearly report on algorithms and keysizes (2007–
2008), July 2008. url http://www.ecrypt.eu.org/documents/D.SPA.
28-1.1.pdf.

[BDCZ98] H.-J. Briegel, W. Dür, J. I. Cirac, and P. Zoller. Quantum re-
peaters: The role of imperfect local operations in quantum com-
munication. Phys. Rev. Lett., 81(26):5932–5935, December 1998.
doi:10.1103/PhysRevLett.81.5932. eprint arXiv:quant-ph/9803056.

[BDJ04] Éric Brier, Isabelle Déchène, and Marc Joye. Unified point addition formulæ
for elliptic curve cryptosystems. In N. Nedjah and L. de Macedo Mourelle,
editors, Embedded Cryptographic Hardware: Methodologies and Architec-
tures, pp. 247–256. Nova Science Publishers, 2004.

175

http://www.ietf.org/rfc/rfc1825.txt
http://www.hashcash.org/papers/announce.txt
http://dx.doi.org/10.1137/S0097539796300933
http://arxiv.org/abs/quant-ph/9701001
http://dx.doi.org/10.1007/978-3-540-76900-2_28
http://arxiv.org/abs/0706.2356
http://dx.doi.org/10.1002/(SICI)1521-3978(199806)46:4/5<493::AID-PROP493>3.0.CO;2-P
http://dx.doi.org/10.1002/(SICI)1521-3978(199806)46:4/5<493::AID-PROP493>3.0.CO;2-P
http://arxiv.org/abs/quant-ph/9605034
http://www.ecrypt.eu.org/documents/D.SPA.16-1.0.pdf
http://www.ecrypt.eu.org/documents/D.SPA.16-1.0.pdf
http://www.ecrypt.eu.org/documents/D.SPA.28-1.1.pdf
http://www.ecrypt.eu.org/documents/D.SPA.28-1.1.pdf
http://dx.doi.org/10.1103/PhysRevLett.81.5932
http://arxiv.org/abs/quant-ph/9803056

References

[BFK08] Anne Broadbent, Joseph Fitzsimons, and Elham Kashefi. Universal blind
quantum computation, 2008. eprint arXiv:0807.4154.

[BGI+01a] Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit
Sahai, Salil Vadhan, and Ke Yang. On the (im)possibility of obfuscat-
ing programs, 2001. url http://www.wisdom.weizmann.ac.il/~oded/p_
obfuscate.html. Published as [BGI+01b].

[BGI+01b] Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sa-
hai, Salil Vadhan, and Ke Yang. On the (im)possibility of obfuscating pro-
grams. In Joe Kilian, editor, Advances in Cryptology – Proc. CRYPTO 2001,
LNCS, volume 2139, pp. 1–18. Springer, 2001. doi:10.1007/3-540-44647-
8_1. eprint http://eprint.iacr.org/2001/069. Full version available
as [BGI+01a].

[BHHM01] Michael Brown, Darrel Hankerson, Julio López Hernandez, and Alfred J.
Menezes. Software implementation of the NIST elliptic curves over prime
fields. In David Naccache, editor, Progress in Cryptography – CT-RSA 2001:
The Cryptographers’ Track at RSA Conference 2001, LNCS, volume 2020,
pp. 250–265. Springer, 2001. doi:10.1007/3-540-45353-9_19.

[BHK05] Jonathan Barrett, Lucien Hardy, and Adrian Kent. No signaling and
quantum key distribution. Physical Review Letters, 95(1):010503, 2005.
doi:10.1103/PhysRevLett.95.010503. eprint arXiv:quant-ph/0405101.

[BJ02] Éric Brier and Marc Joye. Weierstraß elliptic curves and side-channel at-
tacks. In Y. G. Desmedt, editor, Public Key Cryptography (PKC) 2002,
LNCS, volume 2274, pp. 87–100. Springer, 2002. doi:10.1007/3-540-45664-
3_24.

[BK07] Elaine Barker and John Kelsey. Recommendation for random number
generation using deterministic random bit generators (revised), March
2007. url http://csrc.nist.gov/publications/nistpubs/800-90/
SP800-90revised_March2007.pdf. NIST Special Publication 800-90.

[BLS01] Dan Boneh, Ben Lynn, and Hovav Shacham. Short signatures from the weil
pairing. In Colin Boyd, editor, Advances in Cryptology – Proc. ASIACRYPT
2001, LNCS, volume 2248, pp. 514–532. Springer, 2001. doi:10.1007/3-540-
45682-1_30.

[BM92] Steven M. Bellovin and Michael Merritt. Encrypted key exchange:
Password-based protocols secure against dictionary attacks. In Proceed-
ings of the 1992 IEEE Computer Society Conference on Research in Secu-
rity and Privacy, May 1992. doi:10.1109/RISP.1992.213269. url http:
//www.alw.nih.gov/Security/FIRST/papers/crypto/neke.ps.

[BM94] Steven M. Bellovin and Michael Merritt. Augmented encrypted key ex-
change: a password-based protocol secure against dictionary attacks and
password file compromise. Technical report, AT&T Bell Laboratories, c.
1994. url http://www.alw.nih.gov/Security/FIRST/papers/crypto/
aeke.ps.

176

http://arxiv.org/abs/0807.4154
http://www.wisdom.weizmann.ac.il/~oded/p_obfuscate.html
http://www.wisdom.weizmann.ac.il/~oded/p_obfuscate.html
http://dx.doi.org/10.1007/3-540-44647-8_1
http://dx.doi.org/10.1007/3-540-44647-8_1
http://eprint.iacr.org/2001/069
http://dx.doi.org/10.1007/3-540-45353-9_19
http://dx.doi.org/10.1103/PhysRevLett.95.010503
http://arxiv.org/abs/quant-ph/0405101
http://dx.doi.org/10.1007/3-540-45664-3_24
http://dx.doi.org/10.1007/3-540-45664-3_24
http://csrc.nist.gov/publications/nistpubs/800-90/SP800-90revised_March2007.pdf
http://csrc.nist.gov/publications/nistpubs/800-90/SP800-90revised_March2007.pdf
http://dx.doi.org/10.1007/3-540-45682-1_30
http://dx.doi.org/10.1007/3-540-45682-1_30
http://dx.doi.org/10.1109/RISP.1992.213269
http://www.alw.nih.gov/Security/FIRST/papers/crypto/neke.ps
http://www.alw.nih.gov/Security/FIRST/papers/crypto/neke.ps
http://www.alw.nih.gov/Security/FIRST/papers/crypto/aeke.ps
http://www.alw.nih.gov/Security/FIRST/papers/crypto/aeke.ps

References

[BM03] Colin Boyd and Anish Mathuria. Protocols for Authentication and Key
Establishment. Springer, 2003.

[BM07] Dagmar Bruß and Chiara Macchiavello. Approximate quantum cloning. In
Dagmar Bruß and Gerd Leuchs, editors, Lectures on Quantum Information.
Wiley-VCH, 2007.

[BMP00a] Victor Boyko, Philip MacKenzie, and Sarvar Patel. Provably secure
Password-Authenticated Key exchange using Diffie-Hellman. In Preneel
[Pre00], pp. 156–171. doi:10.1007/3-540-45539-6_12. Full version available
as [BMP00b].

[BMP00b] Victor Boyko, Philip MacKenzie, and Sarvar Patel. Provably se-
cure Password-Authenticated Key exchange using Diffie-Hellman, 2000.
eprint http://eprint.iacr.org/2000/044. Short version published as
[BMP00a].

[Bon98] Dan Boneh. The decision Diffie-Hellman problem. In J. P. Buhler, editor,
Proc. Analytic Number Theory 3rd International Symposium (ANTS) ’98,
LNCS, volume 1423, pp. 48–63. Springer, 1998. doi:10.1007/BFb0054851.
eprint http://crypto.stanford.edu/~dabo/abstracts/DDH.html.

[Bon03] Dan Boneh, editor. Advances in Cryptology – Proc. CRYPTO 2003, LNCS,
volume 2729. Springer, 2003. doi:10.1007/b11817.

[BP04] Mihir Bellare and Adriana Palacio. The knowledge-of-exponent assumptions
and 3-round zero-knowledge protocols. In Matt Franklin, editor, Advances
in Cryptology – Proc. CRYPTO 2004, LNCS, volume 3152, pp. 273–289,
2004. doi:10.1007/b99099.

[BPR00] Mihir Bellare, David Pointcheval, and Phillip Rogaway. Authenticated key
exchange secure against dictionary attacks. In Preneel [Pre00], pp. 139–155.
doi:10.1007/3-540-45539-6_11.

[BR93a] Mihir Bellare and Phillip Rogaway. Entity authentication and key
distribution, 1993. url http://www-cse.ucsd.edu/~mihir/papers/
key-distribution.html. Extended abstract published as [BR93b].

[BR93b] Mihir Bellare and Phillip Rogaway. Entity authentication and key dis-
tribution. In Douglas R. Stinson, editor, Advances in Cryptology –
Proc. CRYPTO ’93, LNCS, volume 773, pp. 232–249. Springer, 1993.
doi:10.1007/3-540-48329-2_21. Full version available as [BR93a].

[BR95] Mihir Bellare and Phillip Rogaway. Provably secure session key distribution:
the three party case. In Proc. 27th Ann. ACM Symp. on the Theory of Com-
puting (STOC), pp. 57–66. ACM Press, 1995. doi:10.1145/225058.225084.
url http://www-cse.ucsd.edu/~mihir/papers/3pkd.pdf.

[BR96] Mihir Bellare and Phillip Rogaway. The exact security of digital signatures
– how to sign with RSA and Rabin. In Maurer [Mau96], pp. 399–416.
doi:10.1007/3-540-68339-9_34.

177

http://dx.doi.org/10.1007/3-540-45539-6_12
http://eprint.iacr.org/2000/044
http://dx.doi.org/10.1007/BFb0054851
http://crypto.stanford.edu/~dabo/abstracts/DDH.html
http://dx.doi.org/10.1007/b11817
http://dx.doi.org/10.1007/b99099
http://dx.doi.org/10.1007/3-540-45539-6_11
http://www-cse.ucsd.edu/~mihir/papers/key-distribution.html
http://www-cse.ucsd.edu/~mihir/papers/key-distribution.html
http://dx.doi.org/10.1007/3-540-48329-2_21
http://dx.doi.org/10.1145/225058.225084
http://www-cse.ucsd.edu/~mihir/papers/3pkd.pdf
http://dx.doi.org/10.1007/3-540-68339-9_34

References

[BR04] Mihir Bellare and Phillip Rogaway. Random oracles are practical: a
paradigm for designing efficient protocols. In Pfitzmann and Liu [PL04],
pp. 62–73. doi:10.1145/168588.168596.

[Bra06] Gilles Brassard. Brief history of quantum cryptography: A personal per-
spective, 2006. eprint arXiv:quant-ph/0604072.

[Bro04] Daniel R. L. Brown. Generic groups, collision resistance, and
ECDSA. Designs, Codes and Cryptography, 35(1):119–152, April 2004.
doi:10.1007/s10623-003-6154-z. eprint http://eprint.iacr.org/2002/
026.

[BS08] Travis R. Beals and Barry C. Sanders. Distributed relay protocol for
probabilistic information-theoretic security in a randomly-compromised net-
work. In Reihaneh Safavi-Naini, editor, Third International Conference
on Information Theoretic Security (ICITS) 2008, LNCS, volume 5155,
pp. 29–39. Springer, 2008. doi:10.1007/978-3-540-85093-9_4. eprint
arXiv:0803.2919.

[BT07] Anne Broadbent and Alain Tapp. Information-theoretic security without
an honest majority. In Kurosawa [Kur07], pp. 410–426. doi:10.1007/978-3-
540-76900-2_25. eprint arXiv:0706.2010.

[Bus03] George W. Bush. Executive Order 13292. further amendment to Execu-
tive Order 12958, as amended, Classified National Security Information,
March 2003. url http://www.archives.gov/isoo/policy-documents/
eo-12958-amendment.pdf.

[BWJM97] Simon Blake-Wilson, Don Johnson, and Alfred Menezes. Key agreement
protocols and their security analysis. In Michael Darnell, editor, Cryptogra-
phy and Coding – 6th IMA International Conference, LNCS, volume 1355.
Springer, 1997. doi:10.1007/BFb0024447.

[CC86] D. V. Chudnovsky and G. V. Chudnovsky. Sequences of numbers gen-
erated by addition in formal groups and new primality and factorization
tests. Advances in Applied Mathematics, 7(4):385–434, December 1986.
doi:10.1016/0196-8858(86)90023-0.

[CEMM98] Richard Cleve, Artur Ekert, Chiara Macchiavello, and Michele Mosca.
Quantum algorithms revisited. Proc. Royal Society London A,
454(1969):339–354, January 1998. doi:10.1098/rspa.1998.0164. eprint
arXiv:quant-ph/9708016.

[Cer00] Certicom Research. SEC 2: Recommended elliptic curve domain parame-
ters, 2000. url http://www.secg.org/.

[CFN88] David Chaum, Amos Fiat, and Moni Naor. Untraceable electronic cash
(extended abstract). In Goldwasser [Gol88], pp. 319–327. doi:10.1007/0-
387-34799-2_25.

178

http://dx.doi.org/10.1145/168588.168596
http://arxiv.org/abs/quant-ph/0604072
http://dx.doi.org/10.1007/s10623-003-6154-z
http://eprint.iacr.org/2002/026
http://eprint.iacr.org/2002/026
http://dx.doi.org/10.1007/978-3-540-85093-9_4
http://arxiv.org/abs/0803.2919
http://dx.doi.org/10.1007/978-3-540-76900-2_25
http://dx.doi.org/10.1007/978-3-540-76900-2_25
http://arxiv.org/abs/0706.2010
http://www.archives.gov/isoo/policy-documents/eo-12958-amendment.pdf
http://www.archives.gov/isoo/policy-documents/eo-12958-amendment.pdf
http://dx.doi.org/10.1007/BFb0024447
http://dx.doi.org/10.1016/0196-8858(86)90023-0
http://dx.doi.org/10.1098/rspa.1998.0164
http://arxiv.org/abs/quant-ph/9708016
http://www.secg.org/
http://dx.doi.org/10.1007/0-387-34799-2_25
http://dx.doi.org/10.1007/0-387-34799-2_25

References

[Cha85] David Chaum. Security without identification: transaction systems to make
big brother obsolete. Communications of the ACM, 28(10):1030–1044, Oc-
tober 1985. doi:10.1145/4372.4373.

[Cha88] David Chaum. Privacy protected payments: Unconditional payer and/or
payee untracability. In Smartcard 2000. North Holland, 1988.

[Chi05] Andrew Childs. Secure assisted quantum computation. Quantum Informa-
tion and Computation, 5(6):456–466, September 2005. eprint arXiv:quant-
ph/0111046, url http://www.rinton.net/xqic5/qic-5-6/456-466.pdf.

[CHK+05] Ron Canetti, Shai Halevi, Jonathan Katz, Yehuda Lindell, and Philip
MacKenzie. Universally composable password-based key exchange.
In Ronald Cramer, editor, Advances in Cryptology – Proc. EURO-
CRYPT 2005, LNCS, volume 3494, pp. 404–421. Springer, 2005.
doi:10.1007/11426639_24.

[CK01a] Ran Canetti and Hugo Krawczyk. Analysis of key-exchange protocols and
their use for building secure channels. In Birgit Pfitzmann, editor, Advances
in Cryptology – Proc. EUROCRYPT 2001, LNCS, volume 2045, pp. 453–
474. Springer, 2001. doi:10.1007/3-540-44987-6_28. Full version available
as [CK01b].

[CK01b] Ran Canetti and Hugo Krawczyk. Analysis of key-exchange protocols and
their use for building secure channels, 2001. eprint http://eprint.iacr.
org/2001/040. Extended abstract published as [CK01a].

[CMMP08] Donny Cheung, Dmitri Maslov, Jimson Mathew, and Dhiraj K. Prad-
han. On the design and optimization of a quantum polynomial-time at-
tack on elliptic curve cryptography. In Yasuhito Kawano and Michele
Mosca, editors, Theory of Quantum Computation, Communication, and
Cryptography (TQC) 2008, LNCS, volume 5106, pp. 96–104. Springer, 2008.
doi:10.1007/978-3-540-89304-2_9. eprint arXiv:0710.1093.

[Cor99] Jean-Sébastien Coron. Resistance against differential power analysis for
elliptic curve cryptosystems. In Koç and Paar [KP99], pp. 292–302.
doi:10.1007/3-540-48059-5.

[CP92] David Chaum and Torben Pryds Pedersen. Transferred cash grows in size.
In Rainer A. Rueppel, editor, Advances in Cryptology – Proc. EUROCRYPT
’92, LNCS, volume 658, pp. 390–407. Springer-Verlag, 1992. doi:10.1007/3-
540-47555-9_32.

[CPS08a] Jean-Sebastien Coron, Jacques Patarin, and Yannick Seurin. The random
oracle model and the ideal cipher model are equivalent. In David Wagner,
editor, Advances in Cryptology – Proc. CRYPTO 2008, LNCS, volume 5157,
pp. 1–20. Springer, 2008. doi:10.1007/978-3-540-85174-5_1. Full version
available as [CPS08b].

[CPS08b] Jean-Sebastien Coron, Jacques Patarin, and Yannick Seurin. The random
oracle model and the ideal cipher model are equivalent, 2008. eprint http:
//eprint.iacr.org/2008/246. Extended abstract published as [CPS08a].

179

http://dx.doi.org/10.1145/4372.4373
http://arxiv.org/abs/quant-ph/0111046
http://arxiv.org/abs/quant-ph/0111046
http://www.rinton.net/xqic5/qic-5-6/456-466.pdf
http://dx.doi.org/10.1007/11426639_24
http://dx.doi.org/10.1007/3-540-44987-6_28
http://eprint.iacr.org/2001/040
http://eprint.iacr.org/2001/040
http://dx.doi.org/10.1007/978-3-540-89304-2_9
http://arxiv.org/abs/0710.1093
http://dx.doi.org/10.1007/3-540-48059-5
http://dx.doi.org/10.1007/3-540-47555-9_32
http://dx.doi.org/10.1007/3-540-47555-9_32
http://dx.doi.org/10.1007/978-3-540-85174-5_1
http://eprint.iacr.org/2008/246
http://eprint.iacr.org/2008/246

References

[CS08] Raymond Y. Q. Cai and Valerio Scarani. Finite-key analysis for practical
implementations of quantum key distribution, November 2008. eprint
arXiv:0811.2628.

[dB90] Bert den Boer. Diffie-Hellman is as strong as discrete log for certain primes.
In Goldwasser [Gol88], pp. 530–539. doi:10.1007/0-387-34799-2_38.

[DGN03] Cynthia Dwork, Andrew Goldberg, and Moni Naor. On memory-
bound functions for fighting spam. In Boneh [Bon03], pp. 426–444.
doi:10.1007/b11817.

[DH76] Whitfield Diffie and Martin E. Hellman. New directions in cryptography.
IEEE Trans. Information Theory, 22(6):644–654, November 1976.

[Die82] D. Dieks. Communication by EPR devices. Phys. Lett. A, 92(6):271–272,
November 1982. doi:10.1016/0375-9601(82)90084-6.

[DMR06] Sujata Doshi, Fabian Monrose, and Aviel D. Rubin. Efficient memory bound
puzzles using pattern databases. In Jianying Zhou, Moti Yung, and Feng
Bao, editors, Applied Cryptography and Network Security (ACNS) 2006,
LNCS, volume 3989, pp. 98–113. Springer, 2006. doi:10.1007/11767480_7.

[DN92] Cynthia Dwork and Moni Naor. Pricing via processing or combatting junk
mail. In Ernest F. Brickell, editor, Advances in Cryptology – Proc. CRYPTO
’92, LNCS, volume 740, pp. 139–147. Springer, 1992. doi:10.1007/3-540-
48071-4_10.

[DR06] Tim Dierks and Eric Rescorla. The Transport Layer Security (TLS) proto-
col version 1.1, April 2006. url http://www.ietf.org/rfc/rfc4346.txt.
RFC 4346.

[DvOW92] Whitfield Diffie, Paul van Oorschot, and Michael J. Wiener. Authentica-
tion and authenticated key exchanges. Designs, Codes and Cryptography,
2(2):107–125, June 1992. doi:10.1007/BF00124891.

[ECP+05] Chip Elliott, Alexander Colvin, David Pearson, Oleksiy Pikalo, John
Schlafer, and Henry Yeh. Current status of the DARPA quantum network,
2005. eprint arXiv:quant-ph/0503058.

[Edd07] Wesley M. Eddy. TCP SYN flooding attacks and common mitigations,
August 2007. url http://www.ietf.org/rfc/rfc4987.txt. RFC 4987.

[FMR99] Gerhard Frey, M. Muller, and H. Ruck. The Tate pairing and the discrete
logarithm applied to elliptic curve cryptosystems. IEEE Trans. Information
Theory, 45(5):1717–1719, 1999. doi:10.1109/18.771254.

[Gar77] Martin Gardner. Mathematical games: A new kind of cipher that would
take millions of years to break. Scientific American, pp. 120–124, August
1977.

[GB08] Damien Giry and Philippe Bulens. Keylength.com – cryptographyic key
length recommendation, 2008. url http://www.keylength.com/.

180

http://arxiv.org/abs/0811.2628
http://dx.doi.org/10.1007/0-387-34799-2_38
http://dx.doi.org/10.1007/b11817
http://dx.doi.org/10.1016/0375-9601(82)90084-6
http://dx.doi.org/10.1007/11767480_7
http://dx.doi.org/10.1007/3-540-48071-4_10
http://dx.doi.org/10.1007/3-540-48071-4_10
http://www.ietf.org/rfc/rfc4346.txt
http://dx.doi.org/10.1007/BF00124891
http://arxiv.org/abs/quant-ph/0503058
http://www.ietf.org/rfc/rfc4987.txt
http://dx.doi.org/10.1109/18.771254
http://www.keylength.com/

References

[GLLP04] Daniel Gottesman, Hoi-Kwong Lo, Norbert Lütkenhaus, and John Preskill.
Security of quantum key distribution with imperfect devices. Quantum
Information and Computation, 4(5):325–360, September 2004. eprint
arXiv:quant-ph/0212066, url http://www.rinton.net/xqic4/qic-4-5/
325-360.pdf.

[GMR88] Shafi Goldwasser, Silvio Micali, and Ronald L. Rivest. A digital signature
scheme secure against adaptive chosen-message attacks. SIAM J. Comput-
ing, 17(2):281–308, April 1988. doi:10.1137/0217017.

[GMR05] Craig Gentry, Philip MacKenzie, and Zulfikar Ramzan. PAK-Z+, Au-
gust 2005. url http://grouper.ieee.org/groups/1363/WorkingGroup/
presentations/pakzplusv2.pdf. Contribution to the IEEE P1363-2000
study group for Future PKC Standards.

[GMR06] Craig Gentry, Philip MacKenzie, and Zulfikar Ramzan. A method for mak-
ing password-based key exchange resilient to server compromise. In Cynthia
Dwork, editor, Advances in Cryptology – Proc. CRYPTO 2006, LNCS, vol-
ume 4117, pp. 142–159. Springer, 2006. doi:10.1007/11818175_9.

[GMT45] Jack Good, Donald Michie, and Geoffrey Timms. General report
on tunny. Technical report, Government Code and Cypher School,
1945. url http://www.alanturing.net/turing_archive/archive/
index/tunnyreportindex.html. Declassified September 28, 2000, by Pulic
Records Office, UK, documents HW 25/4 and HW 25/5.

[Gol88] Shafi Goldwasser, editor. Advances in Cryptology – Proc. CRYPTO ’88,
LNCS, volume 403. Springer, 1988. doi:10.1007/0-387-34799-2.

[Gol06] Oded Goldreich. On post-modern cryptography, 2006. eprint http://
eprint.iacr.org/2006/461.

[Gor93] Daniel M. Gordon. Discrete logarithms in GF(p) using the number field
sieve. SIAM J. Discrete Mathematics, 6(1):124–138, February 1993. url
http://www.ccrwest.org/gordon/log.pdf.

[GS95] Li Gong and Paul Syverson. Fail-stop protocols: An approach to de-
signing secure protocols. In Proceedings of the 5th IFIP Working Confer-
ence on Dependable Computing for Critical Applications (DCCA-5), pp.
44–55, September 1995. url http://citeseer.ist.psu.edu/article/
gong94failstop.html.

[HC98] Dan Harkins and Dave Carrel. The Internet Key Exchange (IKE), November
1998. url http://www.ietf.org/rfc/rfc2409.txt. RFC 2409.

[HHM00] Darrel Hankerson, Julio López Hernandez, and Alfred J. Menezes. Soft-
ware implementation of elliptic curve cryptography over binary fields. In
Ç. K. Koç and Christof Paar, editors, Cryptographic Hardware and Embed-
ded Systems (CHES) 2000, LNCS, volume 1965, pp. 1–24. Springer, 2000.
doi:10.1007/3-540-44499-8_1.

181

http://arxiv.org/abs/quant-ph/0212066
http://www.rinton.net/xqic4/qic-4-5/325-360.pdf
http://www.rinton.net/xqic4/qic-4-5/325-360.pdf
http://dx.doi.org/10.1137/0217017
http://grouper.ieee.org/groups/1363/WorkingGroup/presentations/pakzplusv2.pdf
http://grouper.ieee.org/groups/1363/WorkingGroup/presentations/pakzplusv2.pdf
http://dx.doi.org/10.1007/11818175_9
http://www.alanturing.net/turing_archive/archive/index/tunnyreportindex.html
http://www.alanturing.net/turing_archive/archive/index/tunnyreportindex.html
http://dx.doi.org/10.1007/0-387-34799-2
http://eprint.iacr.org/2006/461
http://eprint.iacr.org/2006/461
http://www.ccrwest.org/gordon/log.pdf
http://citeseer.ist.psu.edu/article/gong94failstop.html
http://citeseer.ist.psu.edu/article/gong94failstop.html
http://www.ietf.org/rfc/rfc2409.txt
http://dx.doi.org/10.1007/3-540-44499-8_1

References

[HLM03] Patrick Hayden, Debbie Leung, and Dominic Mayers. Composability of
authentication in QKD. Private communication, 2003.

[HMV04] Darrel Hankerson, Alfred J. Menezes, and Scott Vanstone. Guide to Elliptic
Curve Cryptography. Springer-Verlag, 2004.

[HRP+06] P. A. Hiskett, D. Rosenberg, C. G. Peterson, R. J. Hughes, S. Nam,
A. E. Lita, A. J. Miller, and J. E. Nordholt. Long-distance quantum
key distribution in optical fibre. New Journal of Physics, 8(9):193, 2006.
doi:10.1088/1367-2630/8/9/193. eprint arXiv:quant-ph/0607177.

[Hwa03] Won-Young Hwang. Quantum key distribution with high loss: To-
ward global secure communication. Phys. Rev. Lett., 91(5):057901, 2003.
doi:10.1103/PhysRevLett.91.057901. eprint arXiv:quant-ph/0211153.

[IT03] Tetsuya Izu and Tsuyoshi Takagi. Exceptional procedure attack on el-
liptic curve cryptosystems. In Y. G. Desmedt, editor, Public Key Cryp-
tography (PKC) 2003, LNCS, volume 2567, pp. 224–239. Springer, 2003.
doi:10.1007/3-540-36288-6_17.

[Jab08] David P. Jablon. Research papers on password-based cryptography, 2008.
url http://www.jablon.org/passwordlinks.html.

[JB99] Ari Juels and John Brainard. Client puzzles: A cryptographic countermea-
sure against connection depletion attacks. In Proc. Internet Society Net-
work and Distributed System Security Symposium (NDSS) 1999 [NDS99],
pp. 151–165.

[JJ99] Markus Jakobsson and Ari Juels. Proofs of work and bread pudding proto-
cols. In Bart Preneel, editor, Proceedings of the IFIP TC6/TC11 Joint
Working Conference on Secure Information Networks: Communications
and Multimedia Security, IFIP Conference Proceedings, volume 152, pp.
258–272. Kluwer, 1999. url http://www.rsa.com/rsalabs/node.asp?id=
2049.

[JN01] Antoine Joux and Kim Nguyen. Separating Decision Diffie-Hellman from
Diffie-Hellman in cryptographic groups, January 2001. eprint http://
eprint.iacr.org/2001/003.

[JV96] Mike Just and Serge Vaudenay. Authenticated multi-party key agreement.
In Kim and Matsumoto [KM96], pp. 36–49. doi:10.1007/BFb0034833.

[Kau05] Charlie Kaufman. Internet Key Exchange (IKEv2) protocol. Online, De-
cember 2005. url http://www.ietf.org/rfc/rfc4306.txt. RFC 4306.

[Kit95] A. Yu. Kitaev. Quantum measurements and the abelian stabilizer problem,
1995. eprint arXiv:quant-ph/9511026.

[KJJ99] P. Kocher, J. Jaffe, and B. Jun. Differential power analysis. In M. Wiener,
editor, Advances in Cryptology – Proc. CRYPTO ’99, LNCS, volume 1666,
pp. 388–397. Springer, 1999. doi:10.1007/3-540-48405-1_25.

182

http://dx.doi.org/10.1088/1367-2630/8/9/193
http://arxiv.org/abs/quant-ph/0607177
http://dx.doi.org/10.1103/PhysRevLett.91.057901
http://arxiv.org/abs/quant-ph/0211153
http://dx.doi.org/10.1007/3-540-36288-6_17
http://www.jablon.org/passwordlinks.html
http://www.rsa.com/rsalabs/node.asp?id=2049
http://www.rsa.com/rsalabs/node.asp?id=2049
http://eprint.iacr.org/2001/003
http://eprint.iacr.org/2001/003
http://dx.doi.org/10.1007/BFb0034833
http://www.ietf.org/rfc/rfc4306.txt
http://arxiv.org/abs/quant-ph/9511026
http://dx.doi.org/10.1007/3-540-48405-1_25

References

[KM96] Kwangjo Kim and Tsutomu Matsumoto, editors. Advances in Cryp-
tology – Proc. ASIACRYPT ’96, LNCS, volume 1163. Springer, 1996.
doi:10.1007/BFb0034829.

[KM04] Neal Koblitz and Alfred J. Menezes. Another look at “provable security”,
2004. eprint http://eprint.iacr.org/2004/152. Published as [KM07].

[KM07] Neal Koblitz and Alfred J. Menezes. Another look at “provable security”.
Journal of Cryptology, 20(1):3–37, 2007. doi:10.1007/s00145-005-0432-z.
Earlier version appeared as [KM04].

[Koc96] P. Kocher. Timing attacks on implementations of Diffie-Hellman, RSA,
DSS, and other systems. In Neal Koblitz, editor, Advances in Cryptology
– Proc. CRYPTO ’96, LNCS, volume 1109, pp. 104–113. Springer, 1996.
doi:10.1007/3-540-68697-5_9.

[KOY] Jonathan Katz, Rafail Ostrovsky, and Moti Yung. Efficient and secure
authenticated key exchange using weak passwords. url http://www.cs.
umd.edu/~jkatz/papers/password.pdf. Undated.

[KP99] Ç. K. Koç and Christof Paar, editors. Cryptographic Hardware and
Embedded Systems (CHES) ’99, LNCS, volume 1717. Springer, 1999.
doi:10.1007/3-540-48059-5.

[Kra03a] Hugo Krawczyk. SIGMA: The ‘SIGn-and-MAc’ approach to authenticated
Diffie-Hellman and its use in the IKE protocols. In Boneh [Bon03], pp.
400–425. doi:10.1007/b11817. Full version available as [Kra03b].

[Kra03b] Hugo Krawczyk. SIGMA: The ‘SIGn-and-MAc’ approach to authenticated
Diffie-Hellman and its use in the IKE protocols, 2003. url http://www.ee.
technion.ac.il/~hugo/sigma.ps. Short version published as [Kra03a].

[Kra05a] Hugo Krawczyk. HMQV: A high-performance secure Diffie-Hellman
protocol. In Victor Shoup, editor, Advances in Cryptology – Proc.
CRYPTO 2005, LNCS, volume 3621, pp. 546–566. Springer, 2005.
doi:10.1007/11535218_33. Full version available as [Kra05b].

[Kra05b] Hugo Krawczyk. HMQV: A high-performance secure Diffie-Hellman pro-
tocol, 2005. eprint http://eprint.iacr.org/2005/176.pdf. Extended
abstract published as [Kra05a].

[KS99] Phil Karn and William Allen Simpson. Photuris: Session-key management
protocol. Online, March 1999. url http://www.ietf.org/rfc/rfc2522.
txt. RFC 2522.

[Kur07] Kaoru Kurosawa, editor. Advances in Cryptology – Proc. ASIACRYPT
2007, LNCS, volume 4833. Springer, 2007. doi:10.1007/978-3-540-76900-2.

[KZ04] Phillip Kaye and Christof Zalka. Optimized quantum implementation of
elliptic curve arithmetic over binary fields, July 2004. eprint arXiv:quant-
ph/0407095.

183

http://dx.doi.org/10.1007/BFb0034829
http://eprint.iacr.org/2004/152
http://dx.doi.org/10.1007/s00145-005-0432-z
http://dx.doi.org/10.1007/3-540-68697-5_9
http://www.cs.umd.edu/~jkatz/papers/password.pdf
http://www.cs.umd.edu/~jkatz/papers/password.pdf
http://dx.doi.org/10.1007/3-540-48059-5
http://dx.doi.org/10.1007/b11817
http://www.ee.technion.ac.il/~hugo/sigma.ps
http://www.ee.technion.ac.il/~hugo/sigma.ps
http://dx.doi.org/10.1007/11535218_33
http://eprint.iacr.org/2005/176.pdf
http://www.ietf.org/rfc/rfc2522.txt
http://www.ietf.org/rfc/rfc2522.txt
http://dx.doi.org/10.1007/978-3-540-76900-2
http://arxiv.org/abs/quant-ph/0407095
http://arxiv.org/abs/quant-ph/0407095

References

[LC99] Hoi-Kwong Lo and H. F. Chau. Unconditional security of quantum key
distribution over arbitrarily long distances. Science, 283(5410):2050–2056,
1999. doi:10.1126/science.283.5410.2050. eprint arXiv:quant-ph/9803006.

[LD99] Julio López and Ricardo Dahab. Fast multiplication on elliptic curves over
gf(2m) without precomputation. In Koç and Paar [KP99], pp. 316–327.
doi:10.1007/3-540-48059-5_27.

[LLM07] Brian LaMacchia, Kristin Lauter, and Anton Mityagin. Stronger security of
authenticated key exchange. In Willy Susilo, Joseph K. Liu, and Yi Mu, ed-
itors, First International Conference on Provable Security (ProvSec) 2007,
LNCS, volume 4784, pp. 1–16. Springer, 2007. doi:10.1007/978-3-540-
75670-5_1. eprint http://eprint.iacr.org/2006/073.

[LP08] Jooyoung Lee and Je Hong Park. Authenticated key exchange secure under
the computational Diffie-Hellman assumption, August 2008. eprint http:
//eprint.iacr.org/2008/344.

[Lys08] Anna Lysyanskaya. Cryptography: How to keep your secrets safe. Scien-
tific American, pp. 89–94, September 2008. url http://www.sciam.com/
article.cfm?id=cryptography-how-to-keep-your-secrets-safe.

[Mac01] Philip MacKenzie. On the security of the SPEKE password-authenticated
key exchange protocol. Technical report, Bell Laboratories, Lucent Tech-
nologies, 2001. eprint http://eprint.iacr.org/2001/057.

[Mac02] Philip MacKenzie. The PAK suite: Protocols for password-authenticated
key exchange. Technical Report 2002-46, DIMACS Center, Rutgers
University, 2002. url http://dimacs.rutgers.edu/TechnicalReports/
abstracts/2002/2002-46.html.

[Mau96] Ueli M. Maurer, editor. Advances in Cryptology – Proc. EUROCRYPT ’96,
LNCS, volume 1070. Springer, 1996. doi:10.1007/3-540-68339-9.

[May97] Dominic Mayers. Unconditionally secure quantum bit commitment is impos-
sible. Phys. Rev. Lett., 78(17):3414–3417, April 1997. eprint arXiv:quant-
ph/9605044.

[Mea99] Catherine Meadows. A formal framework and evaluation method for net-
work denial of service. In Proc. 1999 IEEE Computer Security Foun-
dations Workshop (CSFW), p. 4. IEEE Computer Society Press, 1999.
doi:10.1109/CSFW.1999.779758.

[MNJH04] Robert Moskowitz, Pekka Nikander, Petri Jokela, and Thomas R. Hen-
derson. Host identity protocol. Online, February 2004. url http:
//tools.ietf.org/html/draft-moskowitz-hip-09. Internet-Draft.

[Mon85] Peter L. Montgomery. Modular multiplication without trial division. Math-
ematics of Computation, 44(170):519–521, 1985. url http://www.jstor.
org/stable/2007970.

184

http://dx.doi.org/10.1126/science.283.5410.2050
http://arxiv.org/abs/quant-ph/9803006
http://dx.doi.org/10.1007/3-540-48059-5_27
http://dx.doi.org/10.1007/978-3-540-75670-5_1
http://dx.doi.org/10.1007/978-3-540-75670-5_1
http://eprint.iacr.org/2006/073
http://eprint.iacr.org/2008/344
http://eprint.iacr.org/2008/344
http://www.sciam.com/article.cfm?id=cryptography-how-to-keep-your-secrets-safe
http://www.sciam.com/article.cfm?id=cryptography-how-to-keep-your-secrets-safe
http://eprint.iacr.org/2001/057
http://dimacs.rutgers.edu/TechnicalReports/abstracts/2002/2002-46.html
http://dimacs.rutgers.edu/TechnicalReports/abstracts/2002/2002-46.html
http://dx.doi.org/10.1007/3-540-68339-9
http://arxiv.org/abs/quant-ph/9605044
http://arxiv.org/abs/quant-ph/9605044
http://dx.doi.org/10.1109/CSFW.1999.779758
http://tools.ietf.org/html/draft-moskowitz-hip-09
http://tools.ietf.org/html/draft-moskowitz-hip-09
http://www.jstor.org/stable/2007970
http://www.jstor.org/stable/2007970

References

[Mon87] Peter L. Montgomery. Speeding the Pollard and elliptic curve methods
of factorization. Mathematics of Computation, 48(177):243–264, January
1987.

[Moz08] Mozilla Foundation, The. Netscape Security Services (NSS) v3.9, 2008. url
http://www.mozilla.org/projects/security/pki/nss/.

[MP02] Wenbo Mao and Kenneth G. Paterson. On the plausible deniability feature
of Internet protocols. Manuscript, 2002. url http://citeseer.ist.psu.
edu/678290.html.

[MS06] Michele Mosca and Douglas Stebila. Uncloneable quantum money. In
Canadian Quantum Information Students’ Conference (CQISC) 2006, Cal-
gary, Alberta, August 2006. url http://www.iqis.org/events/cqisc06/
papers/Mon-1130-Stebila.pdf.

[MS07] Michele Mosca and Douglas Stebila. A framework for quantum money. In
Quantum Information Processing (QIP) 2007, Brisbane, Australia, January
2007.

[MvOV01] Alfred J. Menezes, Paul van Oorschot, and Scott Vanstone. Handbook of
Applied Cryptography. CRC Press, 5th edition, 2001. url http://www.
cacr.math.uwaterloo.ca/hac/.

[MW99] Ueli M. Maurer and Stefan Wolf. The relationship between breaking the
Diffie-Hellman protocol and computing discrete logarithms. SIAM Journal
on Computing, 28(5):1689–1721, 1999. doi:10.1137/S0097539796302749.

[MY98] Dominic Mayers and Andrew C. Yao. Quantum cryptography with imper-
fect apparatus. In Proc. 39th Ann. IEEE Symp. Foundations of Comp. Sci.,
pp. 503–509. IEEE Press, 1998. doi:10.1109/SFCS.1998.743501. eprint
arXiv:quant-ph/9809039.

[Nat06] National Institute of Standards and Technology. Quantum information net-
works, 2006. url http://www.antd.nist.gov/qin/.

[NC00] Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and Quan-
tum Information. Cambridge University Press, 2000.

[NDS99] Proc. Internet Society Network and Distributed System Security Symposium
(NDSS) 1999. Internet Society, 1999. url http://www.isoc.org/isoc/
conferences/ndss/99/proceedings/.

[NIS07] NIST. Recommendations for key management – Part 1: General (re-
vised), March 2007. url http://csrc.nist.gov/groups/ST/toolkit/
documents/SP800-57Part1_3-8-07.pdf.

[OP01] Tatsuaki Okamoto and David Pointcheval. The gap-problems: A new class
of problems for the security of cryptographic schemes. In Kwangjo Kim,
editor, Public Key Cryptography (PKC) 2000, LNCS, volume 1992, pp. 104–
118. Springer, 2001. doi:10.1007/3-540-44586-2_8.

185

http://www.mozilla.org/projects/security/pki/nss/
http://citeseer.ist.psu.edu/678290.html
http://citeseer.ist.psu.edu/678290.html
http://www.iqis.org/events/cqisc06/papers/Mon-1130-Stebila.pdf
http://www.iqis.org/events/cqisc06/papers/Mon-1130-Stebila.pdf
http://www.cacr.math.uwaterloo.ca/hac/
http://www.cacr.math.uwaterloo.ca/hac/
http://dx.doi.org/10.1137/S0097539796302749
http://dx.doi.org/10.1109/SFCS.1998.743501
http://arxiv.org/abs/quant-ph/9809039
http://www.antd.nist.gov/qin/
http://www.isoc.org/isoc/conferences/ndss/99/proceedings/
http://www.isoc.org/isoc/conferences/ndss/99/proceedings/
http://csrc.nist.gov/groups/ST/toolkit/documents/SP800-57Part1_3-8-07.pdf
http://csrc.nist.gov/groups/ST/toolkit/documents/SP800-57Part1_3-8-07.pdf
http://dx.doi.org/10.1007/3-540-44586-2_8

References

[Ope08] OpenSSL Project, The. OpenSSL v0.9.8, 2008. url http://www.openssl.
org/.

[Osw05] Elisabeth Oswald. Side-channel analysis. In Ian F. Blake, Gadiel Seroussi,
and Nigel P. Smart, editors, Advances in Elliptic Curve Cryptography, pp.
69–86. Cambridge University Press, 2005.

[PAFdM+08] Josep Maria Perdigues Armengol, Bernhard Furch, Clovis Jacinto de Matos,
Olivier Minster, Luigi Cacciapuoti, Martin Pfennigbauer, Markus As-
pelmeyer, Thomas Jennewein, Rupert Ursin, Tobias Schmitt-Manderbach,
Guy Baister, John Rarity, Walter Leeb, Cesare Barbieri, Harald Wein-
furter, and Anton Zeilinger. Quantum communications at ESA: Towards
a space experiment on the ISS. Acta Astronautica, 63(1-4):165–178, 2008.
doi:10.1016/j.actaastro.2007.12.039.

[PL04] Birgit Pfitzmann and Peng Liu, editors. Proc. 11th ACM Conference on
Computer and Communications Security (CCS). ACM, 2004.

[PNM+05] M. Peev, M. Nölle, O. Maurhardt, T. Lorünser, M. Suda, A. Poppe,
R. Ursin, A. Fedrizzi, and A. Zeilinger. A novel protocol-authentication
algorithm ruling out a man-in-the-middle attack in quantum cryptography.
International Journal of Quantum Information, 3(1):225–231, March 2005.
doi:10.1142/S0219749905000797. eprint arXiv:quant-ph/0407131.

[Pol78] J. M. Pollard. Monte carlo methods for index computation (mod p). Math-
ematics of Computation, 32(143):918–924, 1978.

[PP04] Young Man Park and Sang Gyu Park. Two factor authenticated key ex-
change (TAKE) protocol in public wireless LANs. IEICE Transactions on
Communications, E87-B(5):1382–1385, May 2004.

[PPS04] Kenneth G. Paterson, Fred Piper, and Rüdiger Schack. Why quantum
cryptography?, June 2004. eprint arXiv:quant-ph/0406147.

[Pre00] Bart Preneel, editor. Advances in Cryptology – Proc. EUROCRYPT 2000,
LNCS, volume 1807. Springer, 2000. doi:10.1007/3-540-45539-6.

[PS96] David Pointcheval and Jacques Stern. Security proofs for signature schemes.
In Maurer [Mau96], pp. 387–398. doi:10.1007/3-540-68339-9_33.

[PS00] David Pointcheval and Jacques Stern. Security arguments for digital signa-
tures and blind signatures. J. Cryptology, 13(3):361–396, December 2000.
doi:10.1007/s001450010003.

[PZ03] John Proos and Christof Zalka. Shor’s discrete logarithm quantum algo-
rithm for elliptic curves. Quantum Information and Computation, 3(4):317–
344, July 2003. eprint arXiv:quant-ph/0301141, url http://www.rinton.
net/xqic3/qic-3-4/317-344.ps.

[PZ07] David Pointcheval and Sébastien Zimmer. Multi-factor authenticated key
exchange. In Jonathan Katz and Moti Yung, editors, Applied Cryp-
tography and Network Security (ACNS) 2007, LNCS, volume 4521, pp.

186

http://www.openssl.org/
http://www.openssl.org/
http://dx.doi.org/10.1016/j.actaastro.2007.12.039
http://dx.doi.org/10.1142/S0219749905000797
http://arxiv.org/abs/quant-ph/0407131
http://arxiv.org/abs/quant-ph/0406147
http://dx.doi.org/10.1007/3-540-45539-6
http://dx.doi.org/10.1007/3-540-68339-9_33
http://dx.doi.org/10.1007/s001450010003
http://arxiv.org/abs/quant-ph/0301141
http://www.rinton.net/xqic3/qic-3-4/317-344.ps
http://www.rinton.net/xqic3/qic-3-4/317-344.ps

References

277–295. Springer, 2007. doi:10.1007/978-3-540-72738-5. eprint ftp:
//ftp.di.ens.fr/pub/users/pointche/Papers/2008_acns.pdf.

[RSA] RSA Security Inc. RSA SecurID. url http://www.rsa.com/node.aspx?
id=1156.

[SBPC+08] Valerio Scarani, Helle Bechmann-Pasquinucci, Nicolas J. Cerf, Miloslav
Dusek, Norbert Lütkenhaus, and Momtchil Peev. The security of practical
quantum key distribution, 2008. eprint arXiv:0802.4155.

[Sch03] Bruce Schneier. Crypto-Gram: Quantum cryptography, December 2003.
url http://www.schneier.com/crypto-gram-0312.html#6.

[Sch07] Bruce Schneier. Schneier on Security: Switzerland protects its vote with
quantum cryptography, October 2007. url http://www.schneier.com/
blog/archives/2007/10/switzerland_pro.html.

[Sch08] Bruce Schneier. Quantum cryptography: As awesome as it is pointless.
Wired, October 2008. url http://www.wired.com/politics/security/
commentary/securitymatters/2008/10/securitymatters_1016.

[SDOF07] Stuart Schecter, Rachna Dhamija, Andy Ozment, and Ian Fischer. The
emperor’s new security indicators: An evaluation of website authentication
and the effect of role playing on usability studies. In Proc. IEEE Sympo-
sium on Security and Privacy (S&P) 2007, pp. 51–65. IEEE Press, 2007.
doi:10.1109/SP.2007.35. eprint http://usablesecurity.org/emperor/.

[SGNB06] Jason Smith, Juan Gonzalez-Nieto, and Colin Boyd. Modelling denial of
service attacks on JFK with Meadows’s cost-based framework. In Rajku-
mar Buyya, Tianchi Ma, Reihaneh Safavi-Naini, Chris Steketee, and Willy
Susilo, editors, Proc. 4th Australasian Information Security Workshop –
Network Security (AISW-NetSec) 2006, CRPIT, volume 54, pp. 125–134.
Australian Computer Society, 2006. url http://crpit.com/confpapers/
CRPITV54Smith.pdf.

[Sho94] Peter W. Shor. Algorithms for quantum computation: discrete logarithms
and factoring. In Proc. 35th Ann. IEEE Symp. Foundations of Comp. Sci.,
pp. 124–134. IEEE Press, 1994. doi:10.1109/SFCS.1994.365700. eprint
arXiv:quant-ph/9508027.

[Sho97] Peter W. Shor. Polynomial-time algorithms for prime factorization and dis-
crete logarithms on a quantum computer. SIAM J. Computing, 26(5):1484–
1509, 1997. doi:10.1137/S0097539795293172.

[Sho99a] Victor Shoup. On formal models for secure key exchange. Report RZ 3120,
IBM Research, April 1999.

[Sho99b] Victor Shoup. On formal models for secure key exchange (version 4), Novem-
ber 1999. url http://shoup.net/papers/skey.pdf. Earlier version ap-
peared as [Sho99a].

187

http://dx.doi.org/10.1007/978-3-540-72738-5
ftp://ftp.di.ens.fr/pub/users/pointche/Papers/2008_acns.pdf
ftp://ftp.di.ens.fr/pub/users/pointche/Papers/2008_acns.pdf
http://www.rsa.com/node.aspx?id=1156
http://www.rsa.com/node.aspx?id=1156
http://arxiv.org/abs/0802.4155
http://www.schneier.com/crypto-gram-0312.html#6
http://www.schneier.com/blog/archives/2007/10/switzerland_pro.html
http://www.schneier.com/blog/archives/2007/10/switzerland_pro.html
http://www.wired.com/politics/security/commentary/securitymatters/2008/10/securitymatters_1016
http://www.wired.com/politics/security/commentary/securitymatters/2008/10/securitymatters_1016
http://dx.doi.org/10.1109/SP.2007.35
http://usablesecurity.org/emperor/
http://crpit.com/confpapers/CRPITV54Smith.pdf
http://crpit.com/confpapers/CRPITV54Smith.pdf
http://dx.doi.org/10.1109/SFCS.1994.365700
http://arxiv.org/abs/quant-ph/9508027
http://dx.doi.org/10.1137/S0097539795293172
http://shoup.net/papers/skey.pdf

References

[Sho06] Victor Shoup. Sequences of games: A tool for taming complexity in secu-
rity proofs, 2006. url http://www.shoup.net/papers/games.pdf. First
version appear in 2004.

[Sho08] Shop.org/Forrester Research. Online sales to climb despite struggling econ-
omy, April 2008. url http://www.shop.org/c/journal_articles/view_
article_content?groupId=1&articleId=702&version=1.0.

[SMWF+07] Tobias Schmitt-Manderbach, Henning Weier, Martin Furst, Rupert Ursin,
Felix Tiefenbacher, Thomas Scheidl, Josep Perdigues, Zoran Sodnik, Chris-
tian Kurtsiefer, John G. Rarity, Anton Zeilinger, and Harald Weinfurter.
Experimental demonstration of free-space decoy-state quantum key dis-
tribution over 144 km. Physical Review Letters, 98(1):010504, 2007.
doi:10.1103/PhysRevLett.98.010504. eprint arXiv:quant-ph/0607182.

[Sti02] Douglas R. Stinson. Cryptography: Theory and Practice. Chapman & Hall,
2nd edition, 2002.

[SU08] Douglas Stebila and Berkant Ustaoğlu. Towards denial of service-resistant
key agreement protocols. Preprint, 2008. eprint http://www.douglas.
stebila.ca/research/papers/SU08.

[SW03] Nigel P. Smart and Edward John Westwood. Point multiplication on ordi-
nary elliptic curves over fields of characteristic three. Applicable Algebra in
Engineering, Communication and Computing, 13(6):485–497, April 2003.
doi:10.1007/s00200-002-0114-0.

[TOI03] Yuuki Tokunaga, Taisuaki Okamoto, and Nobuyuki Imoto. Anonymous
quantum cash. In ERATO Conference on Quantum Information Science
(EQIS) 2003, September 2003. url http://www.qci.jst.go.jp/eqis03/
program/papers/O09-Tokunaga.ps.gz.

[TWMP07] David Taylor, Thomas Wu, Nikos Mavrogiannopoulos, and Trevor Perrin.
Using the Secure Remote Password (SRP) protocol for TLS authentication,
November 2007. url http://www.ietf.org/rfc/rfc5054.txt. RFC 5054.

[Ust08a] Berkant Ustaoglu. Key establishment – security models, protocols and usage.
PhD thesis, University of Waterloo, July 2008. url http://hdl.handle.
net/10012/3827.

[Ust08b] Berkant Ustaoglu. Obtaining a secure and efficient key agreement protocol
from (H)MQV and NAXOS. Designs, Codes and Cryptography, 46(3):329–
342, March 2008. doi:10.1007/s10623-007-9159-1. eprint http://eprint.
iacr.org/2007/123.pdf.

[Vau05] Serge Vaudenay, editor. Public Key Cryptography (PKC) 2005, LNCS, vol-
ume 3386. Springer, 2005. doi:10.1007/b105124.

[Ver07] Eric Verheul. Selecting secure passwords. In Verification and Validation
of Software Systems (VVVS) 2007, March 2007. url http://www.laquso.
com/VVSS2007/presentations/track15b.pdf.

188

http://www.shoup.net/papers/games.pdf
http://www.shop.org/c/journal_articles/view_article_content?groupId=1&articleId=702&version=1.0
http://www.shop.org/c/journal_articles/view_article_content?groupId=1&articleId=702&version=1.0
http://dx.doi.org/10.1103/PhysRevLett.98.010504
http://arxiv.org/abs/quant-ph/0607182
http://www.douglas.stebila.ca/research/papers/SU08
http://www.douglas.stebila.ca/research/papers/SU08
http://dx.doi.org/10.1007/s00200-002-0114-0
http://www.qci.jst.go.jp/eqis03/program/papers/O09-Tokunaga.ps.gz
http://www.qci.jst.go.jp/eqis03/program/papers/O09-Tokunaga.ps.gz
http://www.ietf.org/rfc/rfc5054.txt
http://hdl.handle.net/10012/3827
http://hdl.handle.net/10012/3827
http://dx.doi.org/10.1007/s10623-007-9159-1
http://eprint.iacr.org/2007/123.pdf
http://eprint.iacr.org/2007/123.pdf
http://dx.doi.org/10.1007/b105124
http://www.laquso.com/VVSS2007/presentations/track15b.pdf
http://www.laquso.com/VVSS2007/presentations/track15b.pdf

References

[Wal04] Colin D. Walter. Simple power analysis of unified code for ECC double and
add. In Marc Joye and Jean-Jacques Quisquater, editors, Cryptographic
Hardware and Embedded Systems (CHES) 2004, LNCS, volume 3156, pp.
191–204. Springer, 2004. doi:10.1007/b99451.

[Wan01] Yongge Wang. IEEE P1363.2 submission / D2001-06-29 – standard specifi-
cations for public key cryptography: Password-based techniques – ECSRP,
2001. url http://www.sis.uncc.edu/~yonwang/papers/ecsrp.pdf.

[WC81] Mark N. Wegman and J. Lawrence Carter. New hash functions and their
use in authentication and set equality. J. Computer and System Sciences,
22(3):265–279, 1981. doi:10.1016/0022-0000(81)90033-7.

[Wee05] Hoeteck Wee. On obfuscating point functions. In Proc. 37th Ann. ACM
Symp. on the Theory of Computing (STOC), pp. 523–532. ACM Press,
2005. doi:10.1145/1060590.1060669. eprint http://eprint.iacr.org/
2005/001.

[WG00] David Wagner and Ian Goldberg. Proofs of security for the unix password
hashing algorithm. In Tatsuaki Okamoto, editor, Advances in Cryptology –
Proc. ASIACRYPT 2000, LNCS, volume 1976, pp. 560–572. Springer, 2000.
doi:10.1007/3-540-44448-3_43.

[Wie83] Stephen Wiesner. Conjugate coding. ACM SIGACT News, 15(1):78–88,
1983. doi:10.1145/1008908.1008920.

[WJHF04] Brent Waters, Ari Juels, J. Alex Halderman, and Edward W. Felten. New
client puzzle outsourcing techniques for dos resistance. In Pfitzmann and
Liu [PL04], pp. 246–256. doi:10.1145/1030083.1030117.

[WR03] Xiaofeng Wang and M.K. Reiter. Defending against denial-of-service attacks
with puzzle auctions. In Proc. 2003 IEEE Symposium on Security and
Privacy (SP’03), pp. 78–92. IEEE Press, 2003. url http://ieeexplore.
ieee.org/xpls/abs_all.jsp?isnumber=27002&arnumber=1199329.

[Wri87] Peter Wright. Spy Catcher: The Candid Autobiography of a Senior Intelli-
gence Officer. Penguin Viking, 1987.

[Wu98] Thomas Wu. The Secure Remote Password protocol. In Proc. Internet
Society Network and Distributed System Security Symposium (NDSS) 1998,
pp. 97–111. Internet Society, March 1998. url http://www.isoc.org/
isoc/conferences/ndss/98/ndss98.htm.

[Wu99] Thomas Wu. A real-world analysis of kerberos password security. In
Proc. Internet Society Network and Distributed System Security Symposium
(NDSS) 1999 [NDS99].

[Wu02] Thomas Wu. SRP-6: Improvements and refinements to the Secure Remote
Password protocol, October 2002. url http://srp.stanford.edu/srp6.
ps.

189

http://dx.doi.org/10.1007/b99451
http://www.sis.uncc.edu/~yonwang/papers/ecsrp.pdf
http://dx.doi.org/10.1016/0022-0000(81)90033-7
http://dx.doi.org/10.1145/1060590.1060669
http://eprint.iacr.org/2005/001
http://eprint.iacr.org/2005/001
http://dx.doi.org/10.1007/3-540-44448-3_43
http://dx.doi.org/10.1145/1008908.1008920
http://dx.doi.org/10.1145/1030083.1030117
http://ieeexplore.ieee.org/xpls/abs_all.jsp?isnumber=27002&arnumber=1199329
http://ieeexplore.ieee.org/xpls/abs_all.jsp?isnumber=27002&arnumber=1199329
http://www.isoc.org/isoc/conferences/ndss/98/ndss98.htm
http://www.isoc.org/isoc/conferences/ndss/98/ndss98.htm
http://srp.stanford.edu/srp6.ps
http://srp.stanford.edu/srp6.ps

References

[Wu08] Thomas Wu. The Stanford SRP authentication project. Online, 2008. url
http://srp.stanford.edu/.

[WZ82] William K. Wootters and W. H. Zurek. A single quantum cannot be cloned.
Nature, 299:802–803, October 1982. doi:10.1038/299802a0.

[XMM+07] Hai Xu, Lijun Ma, Alan Mink, Barry Hershman, and Xiao Tang.
1310-nm quantum key distribution system with up-conversion pump
wavelength at 1550 nm. Optics Express, 15(12):7247–7260, 2007.
doi:10.1364/OE.15.007247.

[YWWD06a] Guomin Yang, Duncan S. Wong, HuaxiongWang, and Xiaotie Deng. Formal
analysis and systematic construction of two-factor authentication scheme
(short paper). In Peng Ning, Sihan Qing, and Ninghui Li, editors, In-
formation and Communications Security, LNCS, volume 4307, pp. 82–
91. Springer, 2006. doi:10.1007/11935308_7. Full version available as
[YWWD06b].

[YWWD06b] Guomin Yang, Duncan S. Wong, Huaxiong Wang, and Xiaotie Deng.
Formal analysis and systematic construction of two-factor authentication
scheme (short paper), 2006. eprint http://eprint.iacr.org/2006/270.
Short version published as [YWWD06a].

[YY06] Eun-Jun Yoon and Kee-Young Yoo. An optimized two factor authenticated
key exchange protocol in PWLANs. In Vassil N. Alexandrov, Geert Dick
van Albada, Peter M.A. Sloot, and Jack Dongarra, editors, Computational
Science – ICCS 2006, LNCS, volume 3992, pp. 1000–1007. Springer, 2006.
doi:10.1007/11758525_133.

[ZFQ+08] Yi Zhao, Chi-Hang Fred Fung, Bing Qi, Christine Chen, and Hoi-Kwong Lo.
Experimental demonstration of time-shift attack against practical quantum
key distribution systems, March 2008. eprint arXiv:0704.3253v2.

Notes

doi denotes a Digital Object Identifier. An article labeled doi:xxx can be accessed elec-
tronically at the URL http://dx.doi.org/xxx.

Eprints labeled arXiv:xxx can be accessed electronically at the URL
http://arxiv.org/abs/xxx.

190

http://srp.stanford.edu/
http://dx.doi.org/10.1038/299802a0
http://dx.doi.org/10.1364/OE.15.007247
http://dx.doi.org/10.1007/11935308_7
http://eprint.iacr.org/2006/270
http://dx.doi.org/10.1007/11758525_133
http://arxiv.org/abs/0704.3253v2
http://dx.doi.org/xxx

Index

abelian, 9
abort, 24
accept, 24
acceptable pre-session, 93
advantage, 13
adversary, 24
affine coordinates, 12, 109
ake advantage, 26
ake-f1 advantage, 53
ake-f2 advantage, 53
asymmetric model, 23
authenticated key exchange, 80

black-box unforgeable, 155

c2s advantage, 27
Canetti-Krawczyk model, 82
CDH advantage, 15
characteristic, 10
chosen message attack, 18
CK01 model, 82
client, 22
client puzzles, 84
client-to-server authentication, 27, 53
Computational Diffie-Hellman assumption,

15
Computational Diffie-Hellman problem,

15
computationally bounded, 84
connection depletion attacks, 83
cookies, 84
coprime, 10
cyclic subgroup, 9

DDH advantage, 16
Decisional Diffie-Hellman assumption, 16
Decisional Diffie-Hellman problem, 16
denial of service, 79

denial-of-service-resilient, 93
Discrete Logarithm assumption, 13
Discrete Logarithm problem, 13
DL advantage, 13
DoS-exposed, 91
DoS-unexposed, 91
double-and-add algorithm, 109

eCK model, 82
elliptic curve, 11
eu-cma, 19
eu-cma advantage, 19
Euler phi function, 10
existential forgery, 19
existentially unforgeable under chosen mes-

sage attacks, 19
extended Canetti-Krawczyk model, 82

field, 10
finite field, 10
finite group, 9
first factor, 51
flows, 24
forward secrecy, 26
fresh, 26, 91
fresh against passive adversaries, 28
fresh in the first factor, 52
fresh in the second factor, 52

Galois field, 10
Gap Diffie-Hellman assumption, 17
Gap Diffie-Hellman problem, 17
GDH advantage, 17
generated by, 9
generator, 9
greatest common denominator, 10
group, 8

honest, 91

191

Index

identity, 9

List Computational Diffie-Hellman assump-
tion, 16

List Computational Diffie-Hellman prob-
lem, 16

List-CDH advantage, 16

ma advantage, 28
memory-bounded puzzles, 84
multi-channel, 48
multi-layer, 48
multiple-spending problem, 146
multiplicative group of integers modulo

n, 11
mutual authentication, 28, 54

negligible, 13
non-supersingular, 12
non-verifier-based model, 23

one-pass protocols, 81
oracle, 23
order

of a group, 9
of an element, 9

partner identifier, 24
partnered, 24
passive-ke advantage, 29
phishing, 46
point addition, 11

characteristic 2 fields, 11
characteristic 3 fields, 12
prime fields, 11
unified, 112

point at infinity, 11
point doubling, 11

characteristic 2 fields, 11
characteristic 3 fields, 12
prime fields, 11

point multiplication, 109
pre-session, 88
projective coordinates, 12, 110
puzzling relation, 92

quantum bill scheme, 152

quantum bills, 147
quantum coin scheme, 150
quantum coins, 147
queries, 24, 90

random hash function, 18
random oracle, 18
resource depletion attacks, 83
ring, 9

s2c advantage, 28
second factor, 51
secure, 92
secure multi-factor password authenticated

key agreement protocol, 54
secure password-authenticated key exchange

protocol, 27
server, 22
server-to-client authentication, 28, 54
session, 88
session identifier, 24, 89
session string identifier, 89
side channel, 108
signature scheme, 18
spyware, 46
SRP, 29
stateless connections, 83
subgroup, 9
supersingular, 12
symmetric model, 23

trace, 12
two-pass protocols, 81

unforgeable, 151
unit, 9

verifier-based model, 23

192

List of Symbols

Part I: Classical Authenticated Key Exchange
Advc2s

P (A) The c2s (client-to-server authentication) advantage of A attack-
ing protocol P .

Advma
P (A) The ma (mutual authentication) advantage of A attacking pro-

tocol P .
Advs2c

P (A) The s2c (server-to-client authentication) advantage of A attack-
ing protocol P .

AdvCDH
G,g (A) The CDH advantage of A on group G generated by g.

AdvDL
G,g(A) The DL advantage of A on group G generated by g.

AdvGDH
G,g (A) The GDH advantage of A on group G generated by g.

AdvLCDH
G,g (A) The List-CDH advantage of A on group G generated by g.

AdvLCDH
G,g (A) The List-CDH advantage of A on group G generated by g.

Advake
P (A) The ake advantange of A attacking protocol P .

Advp-ke
P (A) The passive-ke advantange of A attacking protocol P .

A The adversary; a probabilistic algorithm.
Challenges The set of challenges for a puzzling relation.
Clients The set of clients.
DH(gx, gy) The Diffie-Hellman value gxy of gx and gy.
dlogg(g

x) The discrete logarithm x of gx to the base g.
RevealEphemeralKey(sid) Returns the ephemeral private key of the owner in the

session sid.
EstablishParty(M̂,M) Establishes a party with identifier M̂ and static public key

M .
ExecuteP (Ĉ, i, Ŝ, j) Causes client instance ΠĈ

i and server instance ΠŜ
j to execute

protocol P and return the transcript of their messages.
Γ The verifier corresponding to γ
γ A long-term private value corresponding to a password.
gcd(a, b) The greatest common divisor of a and b.
λ (Chapter 5:) A security parameter.
λ (Chapters 2 and 6:) The slope in the elliptic curve point addition

formula.

193

List of Symbols

〈x〉 The group generated by x.
Zn The set of integers modulo n.
O The point at infinity.
R A puzzling relation.
GF(n) A Galois field.
ordG(x) The order of x.
padd

Ĉ A client.
Ŝ A server.
Passwords The set of password strings.
pdiff The probability of a conditional subtraction occurring in only one

of two Montgomery multiplications.
pdist The probability of observing conditional subtractions and thus

distinguishing point addition from point doubling.
ΠÛ
i The oracle representing protocol instance i of party Û .

pid A partner identifier.
psub The probability of a conditional subtraction occurring in a ran-

dom Montgomery multiplication.
pwŜ[Ĉ] The transformed password of client Ĉ with server Ŝ as held by

server Ŝ.
pwĈ,Ŝ The password of client Ĉ with server Ŝ.
qex Number of queries of type Execute.
qro Number of queries to random oracles.
qse Number of queries of type Send.
reŜ[Ĉ] The transformed short-term password of client Ĉ with server Ŝ

as held by server Ŝ.
reĈ,Ŝ The short-term password of client Ĉ with server Ŝ.
Responses The set of possible solutions to a puzzling relation (in Chapter 5).
Responses The set of short-term password strings.
RevealPWCP (Ĉ, Ŝ) Returns the password pwĈ,Ŝ of client Ĉ with server Ŝ.

RevealPWSP (Ŝ, Ĉ) Returns the transformed password pwŜ[Ĉ] of client Ĉ on server
Ŝ.

RevealReP (Ĉ, Ŝ) Returns the short-term password reĈ,Ŝ of client Ĉ with server Ŝ.

RevealSessionKeyP (Û , i) Returns the session key held by ΠÛ
i .

Salts The set of salts.
SendP (Û , i,M) Sends message M to instance ΠÛ

i which executes protocol P
based on M , updates its state, and returns any outgoing mes-
sages.

Servers The set of servers.

194

List of Symbols

sid A session identifier.
sk A session key.
Ψ Session string identifier in the eCK model.
RevealStaticKey(Â) Returns the static private key of party Â.
Succake

P (A) The event that A guesses the Test bit b in a fresh session.
Succake-f1

P (A) The event that A guesses the Test bit b in a fresh-in-the-first-
factor session.

Succake-f2
P (A) The event that A guesses the Test bit b in a fresh-in-the-second-

factor session.
Succp-ke

P (A) The event that A guesses the Test bit b in a fresh-against-passive-
adversaries session.

TestP (Û , i) Choose b ∈R {0, 1}; if b = 1, return the session key held by ΠÛ
i ,

otherwise return a random string.
texp The time required to perform an exponentiation in the group G.
ϕ The Euler phi function.
E An elliptic curve.
E(F) The group of points on the elliptic curve E over the field F .
F A finite field.
G A finite cyclic group of order q generated by g.
g The generator of the group G.
q (Chapters 2-5:) The order of the group G generated by g.
q (Chapter 6:) An odd prime which is the characteristic of the

finite field F .
r The length of an elliptic curve private key.
s A salt value.
t Running time.
Part II: Quantum Cryptography
(V, |ψ〉) A quantum coin scheme.
(V, {(si, |ψi〉) : i ∈ Γ}) A quantum bill scheme.
|ψ〉 An n-qubit pure state representing a quantum coin.
H2n A Hilbert space on n qubits.
k The number of coins provided to an adversary.
Uψ A verification oracle for quantum coins: Uψ = I − 2 |ψ〉 〈ψ|
V A quantum circuit for verifying a quantum coin.

195

	List of Figures
	Introduction
	Introduction
	Contributions
	Classical Authenticated Key Exchange
	Quantum Cryptography

	I Classical Authenticated Key Exchange
	Background
	Algebraic and number theoretic background
	Algebra
	Number theory
	Elliptic curves

	Cryptographic assumptions
	Discrete logarithm problem
	Diffie-Hellman problems
	Random oracle model
	Digital signatures

	Password-Authenticated Key Exchange
	Literature review
	Formal model
	Model setup
	Session key security
	Authentication
	Security against passive adversaries

	Protocols
	SRP: Secure Remote Password protocol
	PAK
	PAK-Z+

	Multi-Factor Password-Authenticated Key Exchange
	Introduction
	Literature review
	Security for multi-factor protocols
	Informal security criteria
	Formal model
	Using one-time passwords

	MFPAK
	Design ideas
	Protocol specification
	Efficiency
	Security analysis of MFPAK
	Example instantiation

	Denial-of-Service-Resilient Authenticated Key Exchange
	Introduction
	Literature review
	Security and denial of service resilience
	Informal security and denial of service criteria
	Formal model
	Model implications

	DoS-CMQV
	Design ideas
	Protocol specification
	Security analysis of DoS-CMQV
	Denial of service resilience analysis
	Instantiation

	Other constructions
	Memory-bound puzzling relations
	Stateless connections and cookies

	Unified Point Addition Formulæ in Elliptic Curve Cryptography
	Introduction
	Background
	Unified point addition formulæ for prime fields
	Unified formula of Brier and Joye
	Unified formula of Brier, Déchène and Joye
	Extending Walter's attack: conditional modular reduction attack
	Timing

	Unified point addition formulæ for binary fields

	II Quantum Cryptography
	The Case for Quantum Key Distribution
	Introduction
	A brief introduction to QKD
	Who needs quantum key distribution?
	The security of QKD
	Key usage: encryption
	Authentication
	Symmetric key authentication
	Public key authentication

	Limitations
	QKD Networks
	Concluding remaks

	Quantum Money
	Introduction
	Security goals
	Types of quantum money
	Quantum coins
	Quantum bills

	Black box quantum coins
	Verification
	Black-box unforgeability

	Quantum coins using blind quantum computation
	Appendices
	Sample Code
	Unified point addition formulæ in elliptic curve cryptography (Chapter 6)
	Projective unified formula of Brier and Joye (Section 6.3.1)
	Affine unified formula of Brier, Déchène, and Joye (Section 6.3.2)
	Projective unified formula of Brier, Déchène, and Joye (Section 6.3.2)
	Timing (Section 6.3.4)
	Binary projective unified formula of Brier, Déchène, and Joye (Section 6.4)

	References
	Index
	List of Symbols

