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Abstract. During the Crypto Forum Research Group (CFRG)’s stan-
dardization of password-authenticated key exchange (PAKE) protocols, a
novel property emerged: a PAKE scheme is said to be “quantum-annoying”
if a quantum computer can compromise the security of the scheme, but
only by solving one discrete logarithm for each guess of a password. Con-
sidering that early quantum computers will likely take quite long to solve
even a single discrete logarithm, a quantum-annoying PAKE, combined
with a large password space, could delay the need for a post-quantum
replacement by years, or even decades.
In this paper, we make the first steps towards formalizing the quantum-
annoying property. We consider a classical adversary in an extension of
the generic group model in which the adversary has access to an oracle
that solves discrete logarithms. While this idealized model does not fully
capture the range of operations available to an adversary with a general-
purpose quantum computer, this model does allow us to quantify security
in terms of the number of discrete logarithms solved. We apply this
approach to the CPace protocol, a balanced PAKE advancing through
the CFRG standardization process, and show that the CPacebase variant
is secure in the generic group model with a discrete logarithm oracle.

Keywords: password-authenticated key exchange · post-quantum · quantum-
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1 Introduction

Password-authenticated key exchange protocols, or PAKEs, are used in scenarios where
public key infrastructure is unavailable, such as client-to-server authentication. Without
public keys, authentication comes from a password provided by the user. This puts
the security of PAKEs in an interesting place. These passwords are assumed to have
low entropy, so it is possible for a malicious adversary to perform brute-force searches
over the password space. The challenge in designing PAKEs is to obtain the maximum
amount of security possible, despite the fact that authentication comes from low-entropy
passwords. One important property of PAKEs is resistance against offline dictionary



attacks: if a passive adversary observes an honest session, they still should not have
enough information to break security via a brute-force search through the password
space. Moreover, for an online adversary sending messages to a target session, each
interaction should allow for only a single guess of the password. Thus, despite relying
on low-entropy secrets, a secure PAKE can only be compromised with many online
interactions, which would hopefully be noticed and stopped by a participant.

In 2019, the Crypto Forum Research Group (CFRG) issued a call for candidate
password-authenticated key exchange protocols to be recommended for use in IETF
protocols [14]. Both balanced PAKEs (where both parties share a password) and
augmented PAKEs (where one party only has information derived from the password)
were considered. Four balanced and four augmented PAKEs were considered, and in
early 2020 the balanced PAKE CPace and the augmented PAKE OPAQUE were selected
as recommended for usage in IETF protocols [13].

As PAKEs inherently can only be as secure the as the entropy of the password space
allows, extremely detailed and fine-grained security analysis of each scheme was a focus
of the selection process. In discussing potential security properties, Thomas proposed
the notion of a PAKE being “quantum annoying” [15]. If a scheme is quantum annoying,
then being able to solve discrete logarithms does not immediately provide the ability to
compromise a system; instead, each discrete logarithm an adversary solves only allows
them to eliminate a single possible password. Essentially, the adversary must guess
a password, solve a discrete logarithm based on their guess, and then check to see if
they were correct. This property became a topic of frequent discussion throughout the
process.

CPace tries to be quantum annoying by having the base used for the Diffie–Hellman
key exchange be a group element derived from the password: the parties exchange
U = gupw and V = gvpw, and the shared secret is (roughly speaking) guvpw. Seeing U and
V does not yield any information about the password, since in a prime order group
for every pw′ there exists a u′ such that gupw = gu

′

pw′ . For a quantum adversary to
check a password against a transcript, it could pick a password guess pw, compute
u = DLOG(gpw, U), then check if V u matches the session key. CPace would be quantum
annoying if this is the best way to check passwords. (The other PAKE recommended
by CFRG, OPAQUE, is not known to be quantum annoying.)

Current estimates for how long quantum computers will take to solve a cryptograph-
ically relevant discrete logarithm problem vary depending on factors such as the error
rate and the number of coherent qubits available. In a recent analysis, Gheorghiu and
Mosca [6] estimated that, to solve a discrete logarithm on the NIST P-256 elliptic curve,
it would take one day on a quantum computer with 226 physical qubits, or a 6 minutes
on a 234-physical-qubit quantum computer. With early quantum computers taking
hours or days, and even mature ones taking minutes for a single discrete logarithm,
brute-forcing passwords in a quantum-annoying scheme is probably infeasible for all
but the most dedicated and resourceful adversary. For well-chosen passwords from high
entropy spaces, considerable quantum resources would be needed to compromise a
single password. In such a scenario it would of course be best to replace PAKEs with a
suitable post-quantum primitive, but quantum annoyingness is still appealing.

However, there has thus far been little formal discussion or analysis of this property.
The perceived quantum annoyingness of each PAKE candidate was evaluated as part of
the recommendation process, but no proof for any scheme was provided. In fact, there
have been few efforts to even provide a formal definition. Quantum security models
are notoriously tricky to define and use in security proofs, especially when trying to
consider the cost of using Shor’s algorithm [11]. Clarifying what quantum annoyingness
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really means and establishing how the property can be assessed for a real scheme has
thus remained an open problem.

Our Contributions. In this work, we take the first steps towards putting the quantum
annoying property on solid theoretical foundations. There are many difficulties in
working within a fully quantum security model. Besides the typical challenges in proving
security in the quantum random oracle model [4], it is not even clear what problem
we could reduce to, or how that reduction would work, since we are considering an
adversary that can solve discrete logarithms.

Modelling quantum-annoying via the generic group model with a discrete logarithm
oracle. Instead, we consider a classical adversary in the generic group model [10,12]
who has access to a discrete logarithm oracle. This allows us to consider how ‘quantum
annoying’ a scheme is by considering how many queries to the discrete logarithm oracle
are needed in order to compromise security.

Part of the challenge in working with a discrete logarithm oracle is that the adversary
can freely mix together group elements to prepare an oracle query of their choosing.
For example, say we do not want the adversary to learn the discrete logarithm between
group elements A and C. If the adversary queries the oracle to get the discrete logarithm
between A and B, and then between B and C, they can calculate the target discrete
logarithm without ever having queried it. One of the main technical difficulties we
overcome in our proof is to construct a system that allows us to carefully account for
exactly how much information the adversary has been able to extract from their discrete
logarithm queries. We show that no matter how the adversary prepares their queries to
the oracle, the information they get can be modelled as a linear system. In this view,
questions about whether the adversary is ‘aware’ of the discrete logarithm between any
two group elements can be reduced to questions on whether certain vectors appear in
the rowspan of a matrix. The probability of certain events can in turn be reduced to
question about the rank of this matrix. To our knowledge, this is the first time a generic
group model proof has been extended with a discrete logarithm oracle, and we think
that the resulting system has an interesting structure that illuminates questions about
how solutions to discrete logarithms help (or don’t) with the calculation of additional
discrete logarithms.

Admittedly, a classical adversary in the generic group model with a discrete logarithm
oracle is not a perfect model of a quantum adversary. An innovative quantum adversary
could try to invent some new quantum algorithm inspired by Shor’s algorithm which
does not directly take discrete logarithms. Nonetheless, our approach allows for at least
some formal assessment of quantum annoyingness.

Security analysis of CPace. To make use of our techniques, we focus on the protocol
CPace, which was selected by the CFRG as the balanced PAKE recommendation for
use in IETF protocols. We prove that CPacebase, an abstraction of the protocol that
focuses on the most essential parts, is secure in a variant of the BPR model [2].

Our analysis proceeds as follows. First, we design in Section 3.1 a cryptographic
problem called CPacecore which in some sense captures the cryptographic core of
CPacebase. Next, we calculate the probability that an adversary can solve in the
CPacecore problem in the generic group model with a discrete logarithm oracle; the
success probability is measured in terms of the number of online interactions with
a protocol participant and the number of group operations and discrete logarithms
performed. An outline of the proof is provided in Section 3.2 and the full proof is given
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Client C Server S

Input: sid, S Input: sid, C

G← H1(sid‖pwC,S‖oc(C, S)) G← H1(sid‖pwC,S‖oc(C, S))

u←$ Zp v←$ Zp

U ← Gu U V ← Gv

K ← V u V K′ ← Uv

Abort if K = IG Abort if K′ = IG

sk← H2(sid‖K‖oc(U, V )) sk′ ← H2(sid‖K′‖oc(U, V ))

Output sk Output sk′

Fig. 1. The CPacebase protocol.

in Section 4. In Appendix A we provide an informal discussion on the meaning of the
quantum annoying property, its limitations, and some of the design decitions that may
impact it. Finally, we show in Appendix B that CPacebase is a secure PAKE in our
variant of the BPR model.

As a preview of our theorem, the probability that an adversary manages to win
the game is dominated by a term (qC + qD)/N term, where qC is the number of online
interactions, qD is the number of discrete log oracle queries, and N is the size of the
password space. This lines up exactly with the intuitive guarantees we would expect
a quantum annoying system to have: guess a password and try using it in an active
session, or guess a password and take a discrete logarithm based on it to see if it was
the password used in a passively-observed session.

2 Background

2.1 The CPace Protocol

CPace is a balanced PAKE with a simple and effective design, based on earlier protocols
SPEKE [9] and PACE [3,5]. It can (optionally) be used as a subroutine for the augmented
PAKE, AuCPace [8]. The fundamental structure is for the parties, sharing a password,
to hash that password to a group element G and then perform a Diffie–Hellman-like
key exchange with G acting as the generator. We describe it in full in Figure 1.

We will focus on CPacebase, a theoretical variant introduced by Abdalla, Haase,
and Hesse [1] that distills CPace to its most essential elements. The changes between
CPacebase and the full CPace protocol are that CPacebase uses a (multiplicatively
written) group with prime order p (instead of composite order), and assumes that the
random oracle H1 maps onto the group. This variant allows us to focus on the parts of
the protocol relevant to an adversary capable of solving discrete logarithms. Aspects of
the security related to the process of hashing a password to a group element have been
extensively covered in analysis by Abdalla et al. [1], who also give a security proof for
CPacebase in the universal composability framework. While their proof does not have
any consideration of quantum annoyingness (i.e., without considering an adversary who
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can compute discrete logarithms), one benefit of their proof is that it does not rely on
the stronger generic group model we use here.

In a CPacebase session, the client C and server S both have a copy of the shared
password pwC,S . They receive as input a session identifier sid, and the identifier of their
peer. The session identifier is assumed to come from a higher-level protocol; in some
contexts, the initiator is meant to choose an sid and provide it with the first message.
We will assume that the mechanism that distributes the sid to protocol participants
always distributes unique values; see Appendix B.1 for details. The parties hash the
session identifier, password, and a channel identifier (which is the ordered concatenation
oc(C, S) of the identities of the parties sorted by a canonical ordered) to obtain a group
element G, which they then use as the base in a Diffie–Hellman key exchange.

2.2 The Generic Group Model

The generic group model [10,12] is a cryptographic model that idealizes groups, similar
to how the random oracle model idealizes hash functions. In the random oracle model,
the adversary must ask the challenger to answer all hash function queries; in the generic
group model; the adversary must ask the challenger to carry out all group operations
using oracle queries. Group elements are represented as random strings in {0, 1}n; these
representations give the adversary no information about the structure of the group,
except what they can learn by querying for it.

The generic group model was first used to provide a lower bound on the number
of queries needed to solve the Diffie–Hellman problem [12] and establish bounds on
reducing the discrete logarithm to the Diffie–Hellman problem [10]. As an idealization,
proofs in the generic group model justify the security of these problems against an
adversary who attacks in generically, regardless of the group. In the real world schemes
can fall prey to better attacks, such as the number field sieve attacking the discrete
logarithm problem over finite fields. However, analyzing a cryptographic scheme in the
generic group model can provide some understanding of security where there otherwise
may be none available.

More recently, the generic group model has been used by Yun to consider the
security of the multiple discrete logarithm problem [17]. Yun showed that solving n
distinct discrete logarithm problems requires at least O(

√
np) group operations, which

matched known generic algorithms. The question of how much harder it is to solve n
instances of the discrete logarithm problem on a quantum computer, which is relevant
to the quantum annoying property, remains open.

3 Generic group model proof of CPacecore

We now define the CPacecore game, and prove an upper-bound on winning this game
in the generic group model. The CPacecore game is highly customized to go hand-in-
hand with the task of proving security of the CPacebase protocol, but the basic idea
of adding a discrete logarithm oracle to the generic group model as a way to capture
quantum-annoyingness may have applications beyond this specific scenario.3

3 We initially started out with a much simpler game in generic group model with
a discrete logarithm oracle, and planned to put most of the complexity into the
AKE proof. However, as developed the AKE proof, we frequently encountered steps
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3.1 CPacecore game definition

Overview. The game takes place over a collection of instances, each indexed by an
integer i. For each instance i, there are N generators gi,j . One of these generators is
picked at random (represented by a target index ti), and a Diffie–Hellman session is
initiated, picking random integers ui, vi←$ Zp, and calculating Ui ← gui

i,ti
, Vi ← gvii,ti .

All of this is set up by calls to a NewInstance oracle. We keep track of a counter variable
ctr that is incremented every time NewInstance is called to keep track of the number of
instances. When NewInstance is called, the adversary can optionally provide an index
` ≤ ctr. This indicates that they want the new instance to be linked to a previous
instances; linked instances use the same target index ti. (When we interface with a
PAKE adversary, this will represent sessions being instantiated with the same password.)
Note that even though the index is repeated, the set of generators is distinct.

At the beginning of the game, a challenge bit s is drawn uniformly. Eventually the
adversary may call a Challenge oracle with an instance i, a group element W , and a
bit b indicating if they want to challenge the U half or the V half. If the challenge
bit s = 0, then we provide H(i,Wui ,oc(Ui,W )) or H(i,W vi ,oc(Vi,W )) depending
on which half the adversary chose to challenge. If the challenge bit s = 1, then the
response they receive is drawn uniformly from C instead. The adversary is allowed
to query Challenge twice per instance, once each for the U and V halves. The main
challenge of the adversary is to determine the challenge bit s by trying to figure out
the Diffie–Hellman completion without knowing which target index was used.

The interface with the Challenge oracle may seem somewhat arbitrary at first,
with two Diffie–Hellman halves provided, and then the adversary allowed to use them
separately when querying the Challenge oracle. When we interface with a real PAKE
adversary in our proof of CPacebase, this simply reflects the fact that some sessions
may have one or both endpoints not controlled by the adversary.

The adversary has access to a few other sources of information. The group operation
(·) and DLOG oracles are how the adversary can find new information about group
elements and the relationships between them. The GetGen oracle gives the adversary a
representation of a generator for an instance and index, and the GetTarget oracle tells
the adversary the target index for an instance i. In order to not make the game trivial,
when GetTarget is called, we change the behaviour of the oracle H, so that whatever
information the adversary was provided before is made to be consistent with H.

Details. For a positive integer m, [m] represents the integers 1 through m. If m = 0 it
represents the empty set. Define the set G ⊆ {0, 1}n to be the representation of group
elements provided to an adversary, for some suitably large n. Define C = {0, 1}λ to be
a set of confirmation values.

Parameters of the game are N , the size of the generator space; and p, the (prime)
size of the group. The state of the game is maintained by a non-negative integer ctr and
a bit s, with ctr initially set to 0 and s sampled uniformly from {0, 1}. The adversary
is given (a representation of) a generator g of G, as well as the identity element. The
adversary has access to the following oracles:

where the only way we could see to proceed was to extend the generic group model
game. Interestingly, the proof of the generic group model game often did not change
very much as a result: the core idea of the proof—maintaining a linear system and
checking for certain events based on the rank of a consistency matrix—was robust
for the many features we added to the CPacecore problem.
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– · : G × G → G: The group operation oracle.

– DLOG : G × G → Zp: A discrete logarithm oracle.

– H : [ctr]×G×G×G → C: A confirmation value oracle. This acts as a random oracle,
taking in a counter, a Diffie–Hellman completion K, and the ordered concatenation
of two group elements, and returns a uniformly random group element.

– GetGen : [ctr]× [N ]→ G: On input (i, j), returns gi,j .

– NewInstance : [ctr] ∪ {⊥} → G × G: This oracle creates a new instance of the
problem. If the input is ⊥, a new instance independent from all previous instances
is generated:

1. Increment ctr.
2. Sample fresh generators gctr,j ←$ G for j ∈ [N ].

3. Sample a uniform target index tctr←$ [N ].

4. Sample uniform uctr, vctr←$ Zp and compute Uctr ← guctr
ctr,tctr

, Vctr ← gvctrctr,tctr
.

5. Return Uctr, Vctr.

If the input is ` ≤ ctr, the instance has the same target index as instance `. The
same steps are repeated but the same target index as that of session ` is used: step
3 is replaced by tctr ← t`. This instance is said to be linked to instance `, as well as
all other instances that instance ` is linked to.

– Challenge : [ctr] × {0, 1} × G → C: On input (i, b,Wi,b), if b = 0 we calculate
K ←Wui

i,0 , and if b = 1, K ←W vi
i,1. If K is equal to the identity element, return ⊥.

Otherwise if the challenge bit s = 0 or GetTarget has been called on this or a linked
instance, then return H(i,K,oc(Ui,Wi,b)) or H(i,K,oc(Vi,Wi,b)) depending on b.
If s = 1 and GetTarget has not been called on a linked instance, return a randomly
sampled hi←$ C. This oracle can only be called twice per instance i, once with
b = 0 and once with b = 1.

– GetTarget : [ctr]→ [N ]: Returns the target index ti for instance i. If s = 1, then for
each instance linked to instance i, we reprogram H to behave correctly: modify H
so that H(i,Wui

i,0,oc(Ui,Wi,0)) = hi,0, and H(i,W vi
i,1,oc(Vi,Wi,1)) = hi,1, where

hi,b is the value that was previously provided for the challenge. If Challenge has not
yet been called for one of the linked instances, then eventually is, H will skip the
check for the value of s and always return the output determined by H.

The adversary wins if any of three conditions is met:

1. The adversary queries H(i,Wui
i,0,oc(Ui,Wi,0)) after making a Challenge(i, 0,Wi,0)

query, but before making a GetTarget query on a linked instance.

2. The adversary queries H(i,W vi
i,1,oc(Vi,Wi,1)) after making a Challenge(i, 1,Wi,1)

query, but before making a GetTarget query on a linked instance.

3. At the end of the game, the adversary guesses s correctly.

We want to determine the probability of the adversary’s success in terms of the
number of queries they make. We count the number of queries as follows:

– qG , the number of queries to the group operation oracle.

– qD, the number of queries to the discrete logarithm oracle.

– qN , the number of queries to NewInstance (i.e., the total number of instances).

– qC , the number of queries to Challenge where the adversary did not submit (i, 0, Vi)
or (i, 1, Ui). In other words, the number of instances for which the adversary actively
participated in the Diffie–Hellman session, rather than passively observed one.

– qG, the number of queries to GetGen.
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While there are two conditions under which the adversary wins, in truth, they are
one and the same. The only way to find information on the challenge bit s is to detect
if the output of H is correct or not for a given instance. If a GetTarget query is made,
then the output of H changes to no longer depend on s for that or any linked instance,
and so the relevant query must be made prior to a GetTarget query. Thus the advantage
of the adversary is entirely quantified by their ability to query Challenge(i, b,Wi,b) and
then either H(i,Wui

i,0,oc(Ui,Wi,0)) or H(i,W vi
i,1,oc(Ui,Wi,1)) before ever making a

GetTarget(i) query.

The heart of the proof comes from the fact that even though NewInstance gives the
adversary Ui = gui

i,ti
and Vi = gvii,ti , it does not actually leak any information about

what index ti was used for instance i. We can write the elements of G in terms of the
generator provided to the adversary, g. The N generators for instance i can be rewritten
as

gi,1 = gpi,1 , gi,2 = gpi,2 , . . . , gi,N = gpi,N .

In this view, choosing a random generator corresponds to setting Ui = gpi,ti ·ui , for
a random ui and ti. But note that each generator and corresponding pi,ti value is
equally possible, as pi,ti · ui = pi,j · (p−1

i,j pi,tiui). Thus the only way for the adversary to
proceed is to guess the generator, compute the Wui

i,0 value and query it to H. However
each guess requires the adversary to know the discrete logarithm of either Ui, Vi, or
Wi,b with respect to the generator gi,j . This requires either a discrete logarithm query
to be made, or for the Wi,b value to have been crafted so that DLOG(gi,ti ,Wi,b) is
known to the adversary. We will therefore establish that each query to DLOG and each
customised query to Challenge essentially provides one guess for the target index ti, so
in expectation an adversary must make roughly N such queries.

Other than this, there are small terms in the upper bound that are related to the
adversary finding collisions in the generators (and thus being able to make a single
DLOG query relevant to multiple instances) and the adversary calculating discrete
logarithms by making group operation, rather than DLOG, queries, both of which are
divided by the group order p, which is cryptographically large.

Theorem 1. Let A be an adversary in the CPacecore game. The probability that A
wins the game is at most

1

2
+
qD + qC
N

+O(q2G/p) +O(qDq
2
G/p) .

3.2 Proof outline

As is typical for generic group model proofs, we will maintain a table T that translates
between the (additive) secret representation of elements as numbers in Zp and the
(multiplicative) public representation provided to the adversary, which are random
unique elements of {0, 1}n. The secret representation of the identity element is 0, and
the secret representation of the generator g is 1.

For an instance i and bit b, let Wi,b be the group element that the adversary
submitted to the Challenge oracle for the bit b, and let wi,b be DLOG(gi,ti ,Wi,b). To
provide an upper bound on the adversary’s ability to guess s, we need to determine
their ability to query g

uiwi,0

i,ti
or g

viwi,1

i,ti
to H. Except where it is relevant, for ease of

notation, we will focus on the b = 0 case for the adversary’s challenge queries, with the
understanding that an implicit ‘and similarly for b = 1’ follows.
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If gpi,ti = gi,ti , then this would mean that the adversary would be unable to make
a relevant query until the secret representation pi,tiuiwi,0 of g

uiwi,0

i,ti
is added to T .

However, rather than maintaining a specific pi,j ∈ Zp as the secret representation of
gi,j , we will instead maintain a variable Xi,j . For example, say the adversary queries
g1,1 · g to the group operation oracle. With a specific p1,1 in mind such that g1,1 = gp1,1 ,
the secret representation of such an element would be p1,1 + 1. Instead, we write the
secret representation as the linear combination X1,1 + 1, and, if we have not seen this
linear combination before, choose a new public representation for it and return that to
the adversary.

Similarly, the adversary may query g1,1 · g1,1 to the group operation oracle. We
would record 2X1,1 in the table, and assuming that this term has not appeared before,
give it a random unused representation. Other generators have corresponding variables
Xi,j . By making group operation oracle queries combining these terms, arbitrary linear
combinations of these variables can be added into the table T . This allows us to
precisely quantify the information that the adversary has obtained through the discrete
logarithm oracle, which in turn will allow us to precisely calculate the probability that
the adversary is capable of causing certain events to happen, like making relevant
queries to H.

On the other hand, the discrete logarithm oracle informs the adversary of the
relationship between those linear combinations. For example, if the adversary has used
the group operation oracle to figure out the representation of gc and gd, and queries
these to the discrete logarithm oracle, they must be provided with c−1d mod p. Of
course such a query provides no additional information to the adversary as they could
compute it themselves. Useful queries to the discrete logarithm oracle involve group
elements given to the adversary from the NewInstance or GetGen oracles. If the query
DLOG(g, gi,j) is made, then a value for the corresponding Xi,j must be decided and
provided as a response.

In order to query H with the completion of the Diffie–Hellman-like session, at
least one of DLOG(gi,ti , Ui), DLOG(gi,ti , Vi), DLOG(gi,ti ,Wi,b) must be defined. If all
are undefined, the completion is undefined as well, and not possible to query. In our
table T , the secret representation of Ui should be uiXi,ti . However, we will instead
choose a constant µi ∈ Zp and set that to be the secret representation of Ui (the secret
representation of Vi will be νi). This means that until the adversary makes a DLOG
query that causes Xi,ti to become defined, ui will not be defined.

When the adversary makes a Challenge query for an instance i, they choose a bit b
and submit a group element Wi,b. In our table T , Wi,b will have a secret representation
of some linear combination of the Xi,j variables, plus a possible constant. We must also
consider the adversary’s ability to cause DLOG(gi,ti ,Wi,b) to become defined. Essentially,
the adversary will get one guess per challenge query. The adversary can select an index
j and hope that j = ti. Then they can construct the challenge so that they know the
wi,b such that Wi,b = g

wi,b

i,ti
, in which case the discrete logarithm is defined and the

adversary can complete the challenge. We will establish however, that the adversary
will only get one such guess out of the Challenge queries that they craft themselves to
try and make the discrete logarithm defined.

So, the overall idea of the proof is that queries to the group operation oracle populate
the table T with linear expressions and the discrete logarithm oracle enforces linear
relationships between those expressions. With enough queries to the discrete logarithm
oracle, the adversary can force enough relations between the various Xi,j values that
each one is entirely decided. But unless the value of Xi,ti has been defined by making
the proper queries to the discrete logarithm oracle, or the adversary manages to guess ti
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when making a challenge oracle query, there is no way for the adversary to query g
uiwi,b

i,ti
to H, as that value is undefined, and thus has not been given a public representation.

Each query to the DLOG oracle imposes at most one linear constraint on the Xi,j
variables. Since any given j is not more likely than any other from the adversary’s
perspective, we need to consider the expected number of linear constraints that need to
be put on the X variables before Xi,ti is defined. We will show that the probability
Xi,ti is defined after qD queries to the discrete logarithm oracle is at most qD/N ,
which corresponds exactly to picking one session and performing a brute force search
of computing the discrete logarithm of gi,1, gi,2 . . . . (Viewed as a PAKE, this matches
the quantum annoying property exactly: the adversary guesses the password, computes
the generator that corresponds to that password, and finds the discrete logarithm with
respect to that generator to make a guess towards the secret key.)

The remaining terms in the theorem’s bound, O((qDq
2
G + q2G)/p) come from the

adversary’s ability to distinguish that the oracle has been managed with unknown Xi,j
variables, rather than ‘real’ secret representations. The O(q2G/p) term comes from the
fact that we will provide each generator with a unique representation, while in the real
world, we would expect there to eventually be collisions in the representation of the
generators.

The numerator in the other term, qDq
2
G , is asymptotically the same as the number

of queries to the group operation oracle required to calculate a discrete logarithm
(e.g., using the baby-step giant-step algorithm). So in our model, if the adversary uses
the group operation oracle to calculate a discrete logarithm, rather than the provided
discrete logarithm oracle, then they may notice that the discrete logarithm oracle is not
behaving entirely faithfully. This happens because, when calls to the discrete logarithm
oracle are made, the values of the Xi,j can become defined. If enough group elements
have been added to the table T , then it is possible that when an Xi,j becomes defined,
two of the linear polynomials in T will take on the same value in Zp, even though the
adversary was given different representations in the generic group. However for large
p, roughly

√
p values need to be added to the table T in order to expect a collision to

occur (the birthday paradox has come into effect).
Hence, as long as fewer than O((qG+qDq

2
G)/p) queries to the group operation oracle

happen, the discrete logarithm and group operation oracles will be managed in such a
way that the adversary is unlikely to notice any difference.

4 Proof of Theorem 1

We now get into the specifics of the proof: how is the table T managed, what exactly are
the linear relations imposed by the discrete logarithm oracle, and proofs of the bounds.
Algorithms 1 through 6 provide a reference for how all of the algorithms are simulated.

The main technical points of the proof consist of: how group operation oracle
queries add entries to T , how the NewInstance, GetGen, and Challenge oracles allow the
adversary to begin interacting with the group, how discrete logarithm oracle queries
are answered, and how we guarantee that responses to the oracles are consistent with
each other and with past responses. With this in hand we show bound the probability
that the discrete logarithm between gi,ti and Ui, Vi, or Wi,b is defined after qD queries
to the discrete logarithm oracle and qC modified queries to the Challenge oracle.

The group operation oracle and the table T . The table T is used to convert between
the public representations provided to the adversary and the secret representation of
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Algorithm 1 Simulating New Instance queries in GGM

Input: Integer ` ≤ ctr or ⊥
1: Increment ctr.
2: if input was integer ` then set the target index tctr ← t`. Mark instance ctr as

linked to instance `, as wall as all instances ctr is linked to, and vice versa.
3: else Sample a uniform tctr←$ [N ].

4: Sample uniform µctr, νctr←$ Z2
p, compute Uctr ← gµctr , Vctr ← gνctr .

5: Return Uctr, Vctr.

Algorithm 2 Simulating DLOG queries in GGM

Input: Query (ga, gb) ∈ G × G, table T , matrix D and row ~r.
1: Use table T to look up secret representations ga ↪→ a0 + a1X1 + · · ·+ aNXN and
gb ↪→ b0 + b1X1 + · · ·+ bNXN . If either secret representation doesn’t appear in T ,
then return ⊥.

2: Select a random ~s such that D~s = ~r.
3: Compute δ = (~a · ~s)−1(~b~s).
4: Compute the row [δ · a1 − b1, δ · a2 − b2, . . . , δ · aN − bN ] and the value b0 − δa0.
5: Append the row to D and the value to ~r.
6: Return δ, D, ~r.

the element in the additive group Zp. To begin with, the table has just 2 elements in
it: a generator g and the identity element. The public representation of each of these
elements is chosen at random from {0, 1}n. Note that it is common in generic group
model proofs to choose n large enough so that we do not need to worry about collisions
in our representations, or the adversary ‘guessing’ a group element that has not been
added to T . Since new public representations are added to T by queries to the group
operation and GetGen oracles, choosing n >> log2(qG + qG) is sufficient. It is also easy
to check and see if a representation has already been used and, if so, re-sample. Since it
is easy to choose a large enough n, and it impacts no other parts of the proof, we omit
a term that considers the probability of picking the same representation twice.

The secret representation of g is naturally 1, the identity element 0, and the secret
representation of each gi,j from GetGen is represented by a variable Xi,j . When the group
operation oracle is queried on elements ga and gb, the public representations are queried
in the table to find the corresponding secret representation. If no such representation
exists, then the query is considered invalid, and returned as such4. Otherwise, the secret
representation of ga and gb will be two linear combinations of the Xi,j variables as well as
a possible constant, which we can write as ga ↪→ a0+

∑
i∈[qN ]

∑
j∈[N ] ai,jXi,j = a0+~a· ~X

and gb ↪→ b0 +
∑
i∈[qN ]

∑
j∈[N ] bi,jXi,j = b0 + ~a · ~X, with ai,j , bi,j ∈ Zp. We can then

compute the secret representation of ga · gb ↪→ (a0 + b0) +
∑
i,j(ai,j + bi,j)Xi,j . Once

the secret representation has been computed, we can check to see if this new linear
combination already exists in the table. If it does, then use the already existing

4 This is correct behaviour so long as the representation does not later become valid.
Since representations are randomly chosen, the probability that this happens is
negligible in n, the bit length of the representations. As discussed, we assume n is
chosen to make this probability negligible.
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Algorithm 3 Simulating Challenge queries in GGM

Input: Instance i ∈ [ctr], bit b ∈ {0, 1}, group element Wi,b ∈ G.
1: if Query starting with i and b has been made before then return ⊥
2: if Instance i or a linked instance has had a GetTarget query issued then
3: if b = 0 then Return H(i,Wui

i,b , oc(Ui,Wi,b)
4: else Return H(i,W vi

i,b, oc(Vi,Wi,b).

5: else Sample a uniform hi,b←$ C and return.

Algorithm 4 Simulating GetTarget queries in the GGM

Input: Instance i ∈ [ctr].
1: if GetTarget has never been called before on i or a linked instance then
2: for Each instance j linked to instance i (including i) do
3: Mark that instance has had a GetTarget query called on a linked instance
4: Query DLOG(gj,tj , Uj) and DLOG(gj,tj , Vj) to cause Xj,tj , vj,tj to become

defined (if not already defined). Calculate uj ← X−1
j,tj

µj , vj ← X−1
j,tj

νj .

5: if Challenge(j, 0,Wj,0) has been called then
6: if H(i,W

uj

j,0 , oc(Uj ,Wj,0)) has been called then adversary has won game
7: else
8: Program oracle H so that H(i,W

uj

j,0 , oc(Uj ,Wj,0)) returns hj,0, the
response to the Challenge query.

9: if Challenge(j, 1,Wj,1) has been called then
10: if H(i,W

vj
j,1, oc(Vj ,Wj,1)) has been called then adversary has won game

11: else
12: Program oracle H so that H(i,W

vj
j,1, oc(Vj ,Wj,1)) returns hj,1, the

response to the Challenge query.

13: Return ti

representation of the group element. If not, then we can generate a new random public
representation for this new linear combination and provide it to the adversary.

This simple check will only work until the adversary begins to make discrete
logarithm oracle queries. As queries to the discrete logarithm oracle impose linear
relationships between the Xi,j variables, we need to check if that linear combination
modulo the relations defined already exists in the table. We will discuss more on this
point when we explain how linear relationships between the Xi,j variables are defined
by queries to the discrete logarithm oracle. As a preview, these linear relations will
be encoded into a matrix D. To check and see if two secret representations ~a and ~b
actually encode the same group element, we see if ~a−~b is linearly independent from
the rows of D. If it is, then its value is not dependent on the linear relations that have
been defined, and we can conclude that these represent distinct group elements.

Note as well that the group operation oracle can be extended to allow for inverses
to be calculated as well. This simply means calculating −a0 −

∑
i∈[qN ]

∑
j∈[N ] ai,jXi,j

and otherwise performing the same sequence of steps.

Oracles NewInstance, GetGen, and Challenge. The game begins with the adversary
only aware of a single generator element and the identity element. In order to begin
meaningfully interacting with the game, NewInstance must be called. When this happens,
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Algorithm 5 Simulating group operation oracle queries in GGM

Input: Query (ga, gb) ∈ G × G, table T , matrix D and row ~r.
Output: Response gc, updated table T .
1: Use table T to look up secret representations ga ↪→ a0 + a1X1 + · · ·+ aNXN and
gb ↪→ b0 + b1X1 + · · ·+ bNXN . If either secret representation doesn’t appear in T ,
then return ⊥.

2: Compute a0 + b0 +
∑
i,j(ai,j + bi,j)Xi,j . Look up this secret representation in the

table T . If it exists, return the corresponding public representation (no updates to
T necessary). Otherwise, proceed.

3: for each secret representation F ( ~X) in table T do
4: Compute row ~g = [c1,1−f1,1, c1,2−f1,2, . . . , cqN ,N−fqN ,N ] and value e = f0−c0.
5: Check and see if ~g is linearly independent from the rows of D. If it is, then

proceed to the next secret representation in the table.
6: Otherwise, there exists a linear combination of rows that adds up to ~g, i.e., a

row vector ~h such that ~h ·D = ~g. Compute such a ~h.

7: If ~h ·~r = −e, then return the public representation of F (X). Otherwise, proceed
to the next secret representation.

8: Sample a new public representation gc for C(X). Add C(X), gc to the table T and
return gc.

Algorithm 6 Simulating GetGen queries in GGM

Input: Instance i ∈ [ctr], index j ∈ [N ], table T
1: if Xi,j already appears in the table T then return the corresponding public

representation gi,j .
2: else Sample a new public representation gi,j and add Xi,j , gi,j to the table T and

return gi,j .

we increment ctr, and if the instance is not linked to another instance, then we sample
a new target index tctr from [N ].

Rather than earnestly generating a Diffie–Hellman-like instance from gctr,tctr , we
instead sample values µctr, νctr←$ Zp. We will set Uctr ← gµctr , Vctr ← gνctr . We calculate
the public representation of these elements (which may be entirely new, requiring new
entries into T ), and return the public representation to the adversary.

We do this, rather than sending honestly generated Ui and Vi values in order to
allow the discrete logarithm between gi,ti and Ui or Vi to remain undefined. Note that
this does not affect the distribution of Ui or Vi. Since ui and vi are chosen uniformly at
random, choosing the products µctr and νctr uniformly matches the distribution exactly.
But until Xi,ti becomes defined, the discrete logarithm between gi,ti and Ui and Vi is
similarly undefined.

After having created an instance, the adversary can access generators through the
GetGen oracle. When GetGen(i, j), where i ≤ ctr, is called, we sample a new public
representation and add it and Xi,j to T . We always sample unique representations,
and this does create a small incongruity with the real game. In the real game, after
sampling roughly

√
p generators, an adversary would expect to see repetition in the

public representations. But we will always provide unique representations, no matter
how many times the oracle is called. This results in a O(g2/p) term in the theorem
statement, representing the adversary’s ability to cause a collision in the generators.
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The challenge oracle is how the adversary is able to gain an advantage in winning
the game. When Challenge(i, 0,Wi,0) is called, we are expected to respond with either a
random hi←$ C or H(i,Wui

i,0, oc(Ui,Wi,0)). We will always respond with a random hi, so
long as GetTarget(i) has not been called on a related instance i. This is indistinguishable
as long as the adversary does not query Wui

i,0 without having previously made a
GetTarget(i) query. If such a query is made, we consider them to have won.

The discrete logarithm oracle and the linear relationship matrix D. For queries
to the discrete logarithm oracle, we need to define what linear relations are imposed,
and how future oracle responses are managed for consistency. When group elements
with secret representations α and β ∈ Zp are queried, the response should be a value
δ ∈ Zp such that α · δ ≡ β (mod p). So when a group element with secret representation
α = a0 +

∑
ai,jXi,j and β = b0 +

∑
Xi,j are queried, by returning a value δ ∈ Zp we

are declaring that

δ
(
a0 +

∑
i,j

ai,jXi,j
)

= b0 +
∑
i,j

bi,jXi,j ,

or equivalently, ∑
i,j

(δai,j − bi,j)Xi,j = b0 − δ · a0. (1)

When a discrete logarithm oracle query is made, we thus need to choose a value δ
consistent with all previous δ values provided. To do this we maintain a matrix D and
a vector ~r that encodes all previous responses. That is, when a linear equation (1) is
defined, we append the row

[δ · a1,1 − b1,1 δ · a1,2 − b1,2 . . . δ · aqN ,N − bqN ,N ] (2)

to D and extend ~r by the entry b0 − δ · a0. Thus the set of responses provided to the
adversary so far imposes the linear constraints D ~X = ~r, where

~X = [X1,1, X1,2, . . . , X1,N , X2,1, . . . , XqN ,N ]T .

With this linear system in place, when a new query comes in, we can pick an
arbitrary ~s such that D~s = ~r, i.e., an arbitrary solution. This can be done by, for
example, finding one solution and then choosing an arbitrary point in the kernel of D.
Then to respond to the query (a0 +~a · ~X, b0 +~b · ~X, we can replace the Xi,j values with

the random si,j values, and respond with δ = (a0 +~a · ~s)−1(b0 +~b · ~s). We then add the
row from (2) to D and append b0 − δ · a0 to ~r. Our new answer is guaranteed to be
consistent with all previous responses as it is consistent with ~s, which was chosen from
the solution space.

This also allows us to tell if a given a0 + ~a · ~X has a value determined by D and
~r, and if so, what that value is. If we can construct a linear combination of the rows
of D that add up to ~a, then the value of the linear combination is determined. Let ~w
be the linear combination of rows, so that ~wTD = ~aT . Then the matrix D is telling us
that ~a · ~X = (~wTD) ~X = ~wT (D ~X) = ~wT~r = ~w · ~r. Thus the value (in Zp) of a0 + ~a · ~X
is a0 + ~w · ~r, where ~w is the linear combination of the rows of D that add up to ~a.
If there is no such linear combination, i.e., ~a is not in the rowspace of D, then the
value of a0 + ~a · ~X is not yet determined by D and ~r. When D and ~r do determine
a secret representations value in Zp, we will write it as ∼=. So if ~wTD = ~aT , then
a0 + ~a · ~X ∼= a0 + ~w · ~r.

Now we may discuss how we check if a linear combination modulo the linear
constraints has already appeared in the table T . When a group operation oracle query
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is made that will add the secret representation a0 + ~a · ~X to the table T , we consider
the difference ~a−~b between ~a and the coefficients of every other linear combination of
Xi,j values in the table T , ~b. For each difference ~a−~b we need to check to see if the
linear relations set forth by D mean that the new group element a0 + ~a · ~X is actually
the same as b0 +~b · ~X.

To do this, we check to see if the rank of the matrix D is increased by appending
~a−~b as a row. If the rank does increase, this tells us that the relation between ~a and ~b
is not defined by D. But if the rank does not increase, then the relation is defined. This
means we can find the value c ∈ Zp such that ~a−~b ∼= c.

If c = b0−a0, then we know that these two group elements with secret representations
a0 +~a · ~X and b0 +~b · ~X must be the same given the relations provided to the adversary
by the discrete logarithm oracle. In this case, a new entry does not need to be added
to the table T , and instead the public representation for the element already provided
can be given. If c 6= b0 − a0, then the matrix D is telling us that ~a and ~b differ by a
constant factor, but they are not the same element, and so the next ~b can be checked.

One counterintuitive aspect is that the group operation oracle is being simulated in
a very expensive way. Each time a query is made, the simulator checks against each
previous query made, resulting in quadratic expense. But this is not relevant to the
bounds in the proof. We are not reducing CPacecore to another problem, but providing
an information-theoretic bound in terms of the number of oracle calls being made. Thus,
it does not matter how efficient the simulator is, only that it counts the number of
queries to the various oracle properly.

At this point, we have guarantees that (i) when a response to a discrete logarithm
query is provided, it is consistent with all previous responses to the discrete logarithm
oracle, and (ii) when a response to a group operation query is provided, it is consistent
with all previous responses to both the group operation oracle and the discrete logarithm
oracle. The remaining question is whether responses to the discrete logarithm oracle
are consistent with the previous responses to the group operation oracle. In fact, they
are not guaranteed to be so. Consider the case where the adversary enumerates through
the entire group to get the representation of g, g2, g3, . . . , gp−1. These will all be given
different public representations, but the representations will also be different from those
given to all of the generators returned from GetGen. If a discrete logarithm query of the
form (g, gi,j) is made, a specific pi,j ∈ Zp will be provided. But we will have already
given gpi a different representation than gi,j , causing an inconsistency.

Since the discrete logarithm oracle responds with random answers from the solution
space, these inconsistencies require the adversary to make an enormous number of group
operation oracle queries to happen: it is only if O(

√
p) queries to the group operation

oracle occur that we must worry about this inconsistency. We provide a full justification
for this claim after briefly discussing the adversary’s success probability.

We now return to the analysis of this game: what is the probability that the
adversary succeeds after making discrete logarithm queries, and what is the difference
between managing the group operation and discrete logarithm oracles in this way and
a ‘proper’ way?

As discussed, the adversary must have done one of two things in order to possibly
win. For a session i not linked to a session where a GetTarget query has been made,
they must either know the discrete logarithm between gi,ti and either Ui, Vi, or Wi,b.
We need to characterize when it is possible for an adversary to learn this based on the
matrix D, and then provide an upper bound on the adversary’s success probability in
triggering that event.
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Lemma 1. Let ~ei,ti be the standard basis vector in ZqN ·N with a 1 in position (i, ti)
and 0 everywhere else. Let ~w be the vector representation of Wi,b, the row vector whose
entries are the coefficients of the Xi,j variables in the corresponding secret representation.
Let D be the matrix of linear relations defined by the queries to the discrete logarithm
oracle. Then the discrete logarithm between gi,ti and Ui, Vi, or Wi,b is only defined if
~ei,ti appears in the rowspan of

[
D
~w

]
.

Proof. Recall that the secret representation of gi,ti is Xi,ti , and for Ui and Vi it is
a randomly chosen pair µi, νi←$ Z2

p. For the discrete logarithm between these two
to be defined, the value Xi,ti must be forced to have a specific value from the linear
constraints of D. If it is not entirely constrained, then it can still take on any value in Zp.
For it to take on a specific value, it must be the case that there is a linear combination
of the rows of D that add up to ~ei,ti .

Similarly, for Wi,b we consider its vector representation ~w. For the discrete logarithm
to be defined, we must be able to rewrite this vector as a multiple of Xi,ti . We can
assume that Xi,ti is undefined, since it being defined was already covered by the previous
case. So, it must be possible, modulo the linear relations defined, to rewrite ~w as a
multiple of ~ei,ti . But ‘zeroing out’ the other entries of ~v like this means that ~ei,ti is in
the rowspan of

[
D
~w

]
, as expected. ut

Corollary 1. Let W be the matrix whose rows consist of the vectorizations of each
Wi,b submitted to the Challenge oracle not equal to Ui or Vi. Then the instances i for
which Wui

i,b can be queried to H are restricted to those where ~ei,ti appears in
[
D
V

]
.

This corollary allows us to calculate the overall probability of having the relevant
discrete logarithms defined, and thus the probability of querying a Diffie-Hellman
completion and winning the game. The rank of the matrix

[
D
W

]
is at most the number

of rows of D plus the number of rows of W , which is qD + qC , the number of Challenge
queries where a customised Wi,b was submitted. The rank also limits the number of
basis vectors that can appear in the row span to the same number, so at most qD + qC
basis vectors can appear there.

This is how we can bound the probability that the adversary can submit the relevant
group element to H. To do this, they need to have an instance i for which no GetTarget
query has been made for any linked instance, and ~ei,ti is in the rowspan of

[
D
W

]
. Since

no GetTarget query has been made for this instance, the distribution of which ~ei,j basis
vectors appear in the rowspan is independent of ti. Thus the adversary has qD + qC
chances for a target basis vector to appear in the rowspan. So the overall probability
that one appears can be upper-bounded as (qN + qC)/N .

Next we consider the question of whether the adversary can detect that we are not
managing the group operation and discrete logarithm oracles perfectly. As mentioned,
we do not ensure that responses to the DLOG oracle are perfectly consistent with all
previous group operation oracle queries. With enough entries in T it is possible for the
adversary to notice a discrepancy in how queries were handled. For example, say the
adversary has queried for group elements with secret representation X1 and d, and in
the process of making discrete logarithm queries, the value of X1 is set to be d. Since
that happens after having queried X1 and d, the two group elements will be given
different public representations.

To determine the probability that any inconsistency occurs, we consider each pair
of linear combinations in the table T , (a0 + ~a · ~X, b0 +~b · ~X). For a given pair, we want
to check to see if a new linear constraint added to D has made these two previously
distinct elements take on the same value. This occurs if, before the discrete logarithm
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oracle query, ~a−~b was linearly independent from the rows of D, but after updating to
D′, it is now linearly dependent, and furthermore we have that ~a−~b ∼= b0 − a0.

For every pair of elements, the probability that this happens is at most 1/p. To see
this we will discuss the geometric structure of how linear constraints are added to D
and what two intersecting elements means in this geometry.

Each row of D and ~r adds a linear constraint to the system. If the first row of D is
~d and the first entry of ~r is r then the solution space is constrained so that ~d · ~X = r.
We can view this as an affine hyperplane, an (n− 1)-dimensional subspace of Zn. When
a new row is added, this corresponds to adding another affine hyperplane. The solution
space is the intersection of all hyperplanes.

The process of adding a new row to D is to select a random point in the solution
space, and then construct a response to the adversary’s query. The adversary’s query can
be seen as determining the direction of the affine hyperspace (i.e., the linear subspace
that goes through zero), but the response is determined by choosing a random point in
the solution space and offsetting the submitted linear subspace so that it goes through
that random point, constructing an affine space.

Meanwhile, pairs in our table T collide if ~a−~b is linearly independent before a row
is added, but linearly dependent after. The vector ~a −~b and value b0 − a0 also can
be viewed as a hyperplane H. So the geometric interpretation of the linear relations
(D,~r) forcing (~a−~b) · ~X to be equal to b0 − a0 is that the solution space S is contained
entirely within the hyperplane H.

This case occurs if, before a new hyperplane is added to the linear constraints, the
solution space is not entirely within the hyperplane H, but, after the discrete logarithm
oracle query, it is. As discussed, the process of adding a new hyperplane involves picking
a random point in the solution space and making sure the new hyperplane goes through
that point. For the resulting solution space to be entirely within H, it must be the
case that the random point that is chosen is also within H. So the question becomes,
how many points in the solution space S are also in H? Since it is not the case that S
is entirely contained within H, it cannot be all of them. Since S is generated by the
intersection of a series of affine hyperplanes, the intersection between that and H must
be either empty, or is at most a fraction 1/p of the space S, as desired. This is because
the intersection of such hyperplanes is an affine subspace with smaller dimension. Our
base field is Zp, and so the subspace must have a size a power of p.

So each time a new linear constraint is added to D and ~r, for every two entries
in the table T there is at most a 1/p chance that these two entries now represent the
same group element, modulo these constraints. Since this happens for each pair in the
table, we can upper bound the overall probability of any collision happening as O(q2G/p),
and the probability of a collision happening on any of the qD queries to the discrete
logarithm oracle as O(qDq

2
G/p).

Thus the probability that the adversary notices the oracles misbehaving is at most
O(qDq

2
G/p), the probability that it is noticed that generators are always unique is at most

O(q2G/p), and the probability that they win assuming they do not notice misbehaviour
is at most (qD + qC)/N . So the overall probability of winning is at most

(qD + qC)/N +O((qDq
2
G + q2G)/p) .

Acknowledgements. E.E. was supported by a Natural Sciences and Engineering
Research Council of Canada (NSERC) Alexander Graham Bell Canada Graduate
Scholarship. D.S. was supported by NSERC Discovery grant RGPIN-2016-05146 and a
Discovery Accelerator Supplement.

17



References

1. M. Abdalla, B. Haase, and J. Hesse. Security analysis of CPace. Cryptology ePrint
Archive, Report 2021/114, Jan. 2021. https://eprint.iacr.org/2021/114.

2. M. Bellare, D. Pointcheval, and P. Rogaway. Authenticated key exchange secure
against dictionary attacks. In B. Preneel, editor, EUROCRYPT 2000, volume
1807 of LNCS, pages 139–155. Springer, Heidelberg, May 2000. doi:10.1007/

3-540-45539-6_11.
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A Limitations to Quantum Annoyingness

A.1 Forward Secrecy

Providing a discrete logarithm oracle to an adversary makes them incredibly strong,
and it is impressive that some PAKEs can still achieve some manner of security in such
a model. But it is important to note that not all security properties we expect a PAKE
to have hold against an adversary capable of solving discrete logarithms. One such
notion is that of forward secrecy. In most PAKE security models, we would expect that
if two honest parties engage in a properly executed session, and then at some point
later, the adversary compromises the password used, this should not impact the security
of previous sessions.

This is does not necessarily hold when the adversary has access to a discrete logarithm
oracle. For example in CPace, if an adversary holds the transcript U = gupw, V = gvpw
for a previous session and later compromises the password pw used for that session,
then they can easily calculate the generator gpw used, make a single discrete logarithm
calculation to compute say u, and then easily recover the session key.

This limits the types of statements we can make about quantum annoyingness.
When analyzing PAKE security, we need to change the definition of a fresh session that
the adversary can try to defeat. In the BPR model [2] as described in Appendix B.1, we
restrict the adversary from trying to win on sessions where they have ever corrupted
the user. Contrast this with the traditionally desired property of forward secrecy in the
BPR model, where the adversary is restricted from targeting sessions where they had
corrupted the user’s password before the session started and then actively participated
in the session, but is allowed to target sessions where a user’s password is corrupted
after the session completed.

Of course, forward secrecy is a desirable property. CPace has fortunately been shown
to have forward secrecy against a classical adversary [1]. The attack above shows it
does not have forward secrecy against an attacker with discrete logarithm powers, but
our proof shows that it is at least non-forward-secret secure against such attackers (in
the generic group model).

A.2 Session and Channel Identifiers

While in this text, we restrict ourselves to the specific CPacebase protocol, CPace
has a more general design with various options for how different parts of the scheme
can be configured. In particular, the current CPace specification [7] is intentionally
flexible about where the session ID comes from and what information is included in
the channel identifier. While this is needed in order to allow the protocol to be used in
more situations, it means that not all instantiations of CPace may provide the same
level of quantum annoyingness.

It has been noted by participants on the CFRG mailing list that the uniqueness of
the sid affects the quantum annoying property in CPace [16]. Consider a situation where
both the session ID and the channel identifier are not used. For a set of N passwords
{pwj}j∈[N ], all sessions and users will share the same set of generators determined

19

https://doi.org/10.1007/978-3-662-46803-6_27


by H1(pw1), H1(pw2), etc. An adversary can then calculate the discrete logarithm of
each generator with respect to a global generator g, obtaining the p1, p2, . . . such that
H1(pw1) = gp1 , H1(pw2) = gp2 , . . . . This allows the adversary to perform an offline
dictionary attack on each user with a single Send query as follows. The adversary begins
a session with a target, and receives a group element U ; they respond with a group
element gx, for a random x←$ Zp; after receiving a message encrypted under the session
key, they can check if the session key equals gx/pi for one of the pi values, enabling
password recovery.

This is prevented by having unique session identifiers for each session. In this case,
the set of candidate generators for each session is unique, so the discrete logarithm
computations do not carry over from one session to another. There remains an interesting
question on what happens if the session identifier is not necessarily unique, but the
channel identifier is. If this happens, then for any given pair of users, the channel
identifier, and thus the set of candidate generators, is unique. But this pair of users always
uses the same password in all of their sessions. Thus, an adversary’s precomputation
advantage would be restricted to one pair of users. In our analysis, however, we consider
the case where the session identifiers are all unique.

B PAKE security of CPacebase

In this section we show that CPacebase is a secure password-authenticated key exchange
protocol in a variant of the Bellare–Pointcheval–Rogaway (BPR) model [2], assuming the
difficulty of the CPacecore problem from Section 3. Our BPR′ security model differs from
the BPR model in that it does not provide forward secrecy, assumes a balanced PAKE
(i.e., the server stores the client’s password directly, not a transformation thereof), and
accommodates externally specified session identifiers, in addition to providing generic
group model oracles.

B.1 The BPR′ Model

Participants and passwords. Fix a non-empty finite set C ∪ S of participants; each
participant is either a client or server, but never both. For each client-server pair (C, S),
a password pwC,S is chosen uniformly at random from a set P; each client and server
has a copy of the passwords relevant to them.5

Sessions and state. Each participant P can execute multiple instances of the protocol
simultaneously, each of which is called a session; sessions within a party are numbered
sequentially, and the ith session at participant P is denoted πiP . For each session i,
participant P maintains the following state variables:

– acciP ∈ {true, false}: whether the instance has successfully accepted a session key
– termi

P ∈ {true, false}: whether the instance has terminated, meaning no more
incoming or outgoing messages

– stateiP : private state of the protocol execution
– sidiP : the session identifier
– pidiP : the partner identifier (who U believes they are communicating with)
– skiP : the session key

5 When CPace is run inside of AuCPace [8], the CPace password is output from an
earlier phase of AuCPace.
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Adversarial interaction. The adversary in the security model has full control over the
network. The adversary initiates all actions, controls delivery of all protocol messages,
and can create, modify, delay, repeat, or delete messages. The adversary interacts with
honest participants via calls to the following oracles. In square brackets at the end of
each query’s description is the symbol we use to denote the number of queries made to
that oracle.

– Send(P, i,M): Captures an active attack. An adversary-selected message M is
sent to instance πiP , which processes it based on its current state and returns any
response message to the adversary. The first call to Send for each instance may
include additional context information in M , such as the identity of the intended
peer. [Number of Send queries: qS ]

– Execute(C, i, S, j): Captures the adversary’s ability to passively observe honest
sessions. If both πiC and πjS have not yet been used, this query executes the protocol
between those two instances. The adversary is provided a transcript of the messages
sent by each party. [qE ]

– Reveal(P, i): The session key skiP is revealed, if it has been set. [qR]

– Corrupt(C, S): Reveals pwC,S to the adversary. [qCo]

– Test(P, i): Issues the challenge for the adversary. Flips a bit b. If b = 1 the session
key skiP is revealed to the adversary. If b = 0 a uniformly random session key is
drawn and returned. This query can be called only once.

– ·(A,B): The group operation oracle. [qG ]

– DLOG(A,B): The discrete logarithm oracle. [qD]

The adversary’s goal in the security experiment is, for a sufficiently uncompromised
target sessions, to distinguish the real session key from a random one. At the end of
the experiment, the adversary outputs a bit, which is its guess as to whether it was
given the real session key or a random one.

Partnering and freshness. Since the adversary can compromise some values and
impersonate users, we have to restrict which sessions count as a win for the adversary.

Let πiC be a client instance and πjS be a server instance with acciC = accjS = true.
We say that πiC and πjS are partnered if pidiC = S, pidjS = C, skiC = skjS , sidiC = sidjS ,
and there is no other accepting instance with the same sid.

Further, an instance πiP is considered fresh if all of the following conditions are
satisfied:

– a Reveal(P, i) query has not been made;

– if a partnered instance πjP ′ exists, then a Reveal(P ′, j) query has not been made;

– no Corrupt(C, S) query has occurred, where C and S are the client and server
among P and pidiP .

Since we are aiming for security in the quantum-annoying model, we cannot hope
to achieve forward secrecy as noted in Appendix A.1: in CPacebase, an adversary with a
discrete logarithm oracle could Execute a session, Test its session key, then Corrupt the
password, hash it to get the corresponding generator, then use its discrete logarithm
oracle to find one party’s ephemeral shared secret and compute the session key. Thus,
our freshness condition above (specifically the third bullet point) does not capture
forward secrecy.
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Advantage. For a PAKE protocol Π, we say that the adversary succeeds if they make
a single Test query to an instance that has accepted and terminated and remains fresh
throughout the game, and the adversary returns a bit b′ that is equal to the bit b that
was sampled in the process of answering the Test query. The advantage of the adversary
A is defined as

AdvBPR′
Π (A) = 2 Pr[A succeeds]− 1 .

B.2 Security of CPacebase

The CPacecore problem defined in Section 3 is somewhat unnatural and rather complex,
but the benefit of that complexity is that it captures in a single problem all of the
characteristics needed to prove the security of CPacebase in the BPR′ model.

In CPacebase, session identifiers are externally provided. For example, when CPacebase
is run as a sub-protocol of AuCPace [8], an earlier stage of AuCPace establishes the a
session identifier. For the purposes of the proof, we will assume that session identifiers
are provided by the adversary to sessions, with the constraint that, for any session
identifier, the adversary may initiate at most one honest client session and at most
one honest server session with that session identifier. (This corresponds to the idea
that each honest party contributes something fresh and unique-within-that-party to
the identifier of each session they participate in, which is the case with how session
identifiers are established in AuCPace.)

Theorem 2. Let G be a cyclic group of prime order p, and let H1 : {0, 1}∗ → G and
H2 : {0, 1}∗ → {0, 1}λ be random oracles. Let P be a password space of size N . If the
CPacecore problem is hard in the generic group model (with a discrete logarithm oracle)
for G, then the CPacebase protocol is secure. In particular, if A is an adversary against
CPacebase in the BPR′ model, then there exists an adversary B against CPacecore such
that

AdvBPR′
CPacebase(A) ≤ 4qH2

p
+ AdvCPacecore(B) ,

where A makes at most qH2 queries to H2. Moreover, the running time of B is the about
the same as that of A, and the number of queries B makes to its CPacecore oracles, in
terms of the number of queries A makes to its CPacebase oracles, is as follows:

– · (the group operation oracle): qBG = qAG
– DLOG: qBD = qAD
– H: qBH ≤ qAH2

– GetGen: qBG ≤ qAH1

– NewInstance: qBN ≤ qAE + qAS + qACo + qAH1

– Challenge queries of type 1:6 qBC1 ≤ qAE
– Challenge queries of type 2: qBC2 ≤ qAS
– GetTarget: qBT ≤ qACo.

Combining Theorem 2 with Theorem 1 yields:

6 We distinguish Challenge queries that do submit either (i, 0, Vi) or (i, 1, Ui) and
Challenge queries that do not submit either of those as type 1 and type 2, respectively.
This is because the bounds in Theorem 1 about CPacecore only care about type 2
Challenge queries.
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Corollary 2. In the generic group model (with a discrete logarithm oracle) for a group
G of order p, for any adversary A making qH1 H1 and qH2 H2 random oracle queries,
qS Send queries, qG group operation queries, and qD discrete logarithm queries, the
advantage of A in breaking the security of CPacebase with a password dictionary of size
N is at most

AdvBPR′
CPacebase

(A) ≤ qD + qS
N

+
4qH2 +O(q2H1

+ qDq
2
G)

p
.

Proof (of Theorem 2). We give a reduction B that, using a CPacecore challenger,
simulates the BPR′ security experiment for CPacebase to A.

The idea behind the simulation B is as follows. B maintains a mapping ctr of
how CPacebase user pairs (C, S) and matching sessions (C, S, sid) map on to CPacecore
instances. Recall that calling CPacecore.NewInstance with a previously used counter
will cause the CPacecore instance to re-use the same target index; this will correspond
to sessions between the same pair of users using the same password; and calling
CPacecore.GetTarget will allow B to answer password Corrupt queries. B will use the
CPacecore.NewInstance oracle to simulate message generation and the CPacecore.Challenge
oracle to compute session keys. One significant difference in B’s simulation is that all
session keys – even those returned by Reveal, not just the one returned by Test – are
either real or random depending on the hidden secret s of the CPacecore game. But this
will not be a problem, as detecting this in the random oracle model requires a query to
the random oracle H2 which is forwarded to the CPacecore.H oracle, and would lead to
a win in the CPacecore game.

Initialize ctr∗ ← 0. Define the following subroutine:

– getUV(C, S, sid):

1. If ctrC,S,sid is defined: return (UC,S,sid, VC,S,sid).
2. Else if ctrC,S is defined: set (UC,S,sid, VC,S,sid)← CPacecore.NewInstance(ctrC,S),

increment ctr∗, and set ctrC,S,sid ← ctr∗. Return (UC,S,sid, VC,S,sid).
3. Else: Set (UC,S,sid, VC,S,sid) ← CPacecore.NewInstance(⊥), increment ctr∗, and

set ctrC,S and ctrC,S,sid to ctr∗.

B answers queries from A as follows:

– Execute(C, i, S, j, sid): We use the NewInstance (via getUV) and Challenge ora-
cles of the CPacecore challenger to generate a transcript and session key, and
receive a session identifier from the adversary, which must be previously un-
used by C and S. Set sidiC , sid

j
S ← sid. Set (U, V ) ← getUV(C, S, sid). Set

skiC ← CPacecore.Challenge(ctrC,S,sid, 0, V ) and skjS ← skiC . Return transcript
(U, V ).

– Send(C, i,M = (sid, S)) to a client C: We use the NewInstance oracle of the
CPacecore challenger (via getUV) to generate the message for the client side
of a session. Set sidiC ← sid. Run getUV(C, S, sid). Return outgoing message U iC .

– Send(S, j,M = (C, sid, U)) to a server S: We use the NewInstance oracle of the
CPacecore challenger (via getUV) to generate the message for the server side of
a session, and the Challenge oracle to generate the session key. Set sidjS ← sid.
Run getUV(C, S, sid) and set skjS ← CPacecore.Challenge(ctrC,S,sid, 1, U). Return
outgoing message V jS .

– Send(C, i,M = V ) to a client C: We use the Challenge oracle of the CPacecore
challenger to complete the session. Set skiC ← CPacecore.Challenge(ctrC,S,sidi

C
, 0, V ).
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– Reveal(P, i): Return skiP , if it has been set.
– Corrupt(C, S): We use the GetTarget oracle of the CPacecore challenger to let the

CPacecore challenger pick which password is being used for this client-server pair. If
pwC,S is set, return it. If ctrC,S is not defined, run getUV(C, S, sid) for a random,
unused sid. Let t ← CPacecore.GetTarget(ctrC,S). Set pwC,S ← P[t] (i.e., the tth
password in password dictionary P). Return pwC,S .

– Test(P, i): Return skiP .
– ·(A,B) (the group operation oracle): Return CPacecore. · (A,B).
– DLOG(A,B): Return CPacecore.DLOG(A,B).
– H1(sid‖pw‖oc(C, S)): If ctrC,S,sid is not defined, then run getUV(C, S, sid). Let t be

the index of pw in the password dictionary P. Return CPacecore.GetGen(ctrC,S,sid, t).
– H2(sid‖K‖oc(U, V )): If this query has already been asked, answer as before. Oth-

erwise:
• If there is no C, S such that ctrC,S,sid is defined, we maintain the random

oracle ourselves using a table H. If H[sid‖K‖oc(U, V )] is not defined, select it
uniformly at random from the set CPacecore.C. Return H[sid‖K‖oc(U, V )].

• If there exists C, S such that ctrC,S,sid is defined: Return CPacecore.H(ctrC,S,sid,K,oc(U, V )).

B runs A until either B wins the CPacecore game, or A terminates and outputs a
bit, in which case B uses that bit as its guess of s in the CPacecore game.

In most ways, B correctly simulates the execution of CPacebase to A. The password
pwC,S for a client-server pair corresponds to the tth password in the dictionary, where t
is the target index of all sessions between C and S (since they use the same ctr = ctrC,S
in calls to CPacecore.NewInstance). The messages in the Execute and Send queries are
distributed exactly as in CPacebase. The responses to Corrupt, ·, DLOG, and H1 are also
all distributed correctly.

Assuming the Test session πi
∗
P∗ remains fresh means that the adversary has not

made a Corrupt(C∗, S∗) query for the client C∗ and server S∗ in the test session prior
to the Test query. Therefore, B has not made a GetTarget(ctrC∗,S∗) query to CPacecore
prior to the Challenge query being issued for the instance corresponding to the Test
session, and thus the session key in the test session is real-or-random, depending on
the secret bit s of the CPacecore game. Thus the response to the Test query is properly
distributed.

The session keys set during Execute and Send queries are not perfectly simulated;
in the BPR′ experiment for CPacebase, only the response to the Test query should be
real-or-random, but in B’s simulation, all session keys are real-or-random (since they all
are generated by a call to CPacecore.Challenge) and thus all responses from Reveal are
real-or-random. Additionally, responses to H2 are not simulated correctly when called
with a sid which has not been already passed to a client or server instance via Execute
or Send. The rest of the proof focuses on why these inconsistencies are not a problem.

First we consider whether an adversary can detect that responses from a Reveal(P, i)
query are real-or-random, not real. Since session keys are the output of the random
oracle H2, this would mean that the adversary has to query H2 on sidiP ‖K‖oc(U, V )
where K = DH(U, V ) and U, V are the messages used by instance πiP ; call this E1.
Let C and S be the client and server instance respectively among P and pidiP . If the
adversary has called Corrupt(C, S) or Corrupt(S,C) prior to this Reveal query, then B
will have called GetTarget(ctrC,S), and CPacecore is defined such that a subsequent call
to Challenge for any instance linked to ctrC,S returns real session keys, regardless of
the hidden bit. If the adversary has not called Corrupt(C, S) or Corrupt(S,C) prior to
this reveal query, then B will not have called GetTarget(ctrC,S). Since πiP is a session at
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a party simulated by B, either U = UC,S,sidi
P

(if P = C) or V = VC,S,sidi
P

(if P = S).

Either way, at least one of U, V was the output of a call to NewInstance for ctrC,S,sidi
P

.

By construction, B relays an H2 query for a defined sidiP to CPacecore.H. Hence, B
queries CPacecore.H with either (i∗,W

ui∗
i∗,0,oc(Ui∗ ,Wi∗,0)) (in the case where P = C,

taking i∗ = ctrC,S,sidi
P

, Ui∗ = U = UC,S,sidi
P

, Wi∗,0 = V ) or (i∗,W
vi∗
i∗,1,oc(Vi∗ ,Wi∗,1))

(in the case where P = S, taking i∗ = ctrC,S,sidi
P

, Vi∗ = V = VC,S,sidi
P

, Wi∗,1 = U), both

of which are immediately winning queries to CPacecore. In other words, Pr[E1] ≤ ε,
where ε is the probability of winning CPacecore with the number of queries made by B.

Now we consider whether an adversary can detect that responses to H2 are not
simulated correctly when called with a sid which has not been already passed to a client
or server instance via Execute or Send; call this E2. We permitted the adversary to
choose sids for sessions, so we will not assume that sids are unpredictable before used
in an session at an honest party. However, when a session is activated at an honest
party using either Execute or Send, a fresh U or V value (depending on whether it is
a client or server session) will be chosen by the simulator. The chance that a U or V
value used in an H2 query for an undefined sid is the same as one of the U or V values
chosen when an honest party runs on that sid is at most 4/p, where p is the order of
the group. If A makes qH2 H2 queries, then the probability the simulation is invalid is
at most Pr[E2] ≤ 4qH2/p.

Note that when a Corrupt query is made, the induced GetTarget query in CPacecore
causes the oracle H to be reprpgrammed, which in turn reprograms H2. Thus we must
consider the adversary’s ability to notice such a reprogramming. However the only way
to notice a reprogramming is to already have queried H2 on a point that will induce a
query to H on a reprogrammed point. The reprogrammed points are those which will
eventually be used to induce session keys, queries of the form H(ctr,Wui

i,0,oc(Ui,Wi,0))
or H(ctr,W vi

i,1,oc(Vi,Wi,1)). But these are precisely the points that, if queried to H
before a Corrupt query, then the reduction B wins the CPacecore game. As a result,
any advantage the adversary has in noticing reprogrammed points is exactly conferred
to an advantage B has in winning CPacecore, and we need not be concerned with the
probability this happens.

Assuming neither E1 nor E2 occur, there is no inconsistency in B’s simulation of
the BPR′ security game to A. If A’s output changes based on whether the answer to
the Test query was real or random, then B’s output will change based on whether the
secret s in CPacecore is 0 or 1. Combining these two statements yields

AdvBPR′
CPacebase(A) ≤ 4qH2

p
+ AdvCPacecore(B) .

The runtime of B is the same as the runtime of A, plus a small bookkeeping overhead
for each query. Moreover, B makes the following number of queries to its CPacecore
oracles (distinguished with superscripts B and A when that oracle is available to both
parties):

– · (the group operation oracle): qBG = qAG
– DLOG: qBD = qAD
– H: qBH ≤ qAH2

– GetGen: qBG ≤ qAH1

– NewInstance: qBN ≤ qAE + qAS + qACo + qAH1

– Challenge queries of type 1: qBC1 ≤ qAE
– Challenge queries of type 2: qBC2 ≤ qAS
– GetTarget: qBT ≤ qACo ut
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