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Errata and updates
In Table 1 we list errata and updates to the specification document.

Table 1: Errata and updates to the document.

Type Date Description
Typo fix June 2018 The secret key is supposed to be stored in the NTT domain during key generation. Due

to a typo this was not specified correctly and has been fixed in Algorithm 1 by changing
sk = EncodePolynomial(s) to sk = EncodePolynomial(ŝ). We are thankful to James Howe for
reporting this issue.
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1 Written specification

1.1 Mathematical background
1.1.1 Basic definitions

Let Z be the ring of rational integers. We define for an x ∈ R the rounding function bxe = bx+ 1
2c ∈ Z. Let

Zq, for an integer q ≥ 1, denote the quotient ring Z/qZ. We define R = Z[X]/(Xn + 1) as the ring of integer
polynomials modulo Xn + 1. By Rq = Zq[X]/(Xn + 1) we mean the ring of integer polynomials modulo
Xn + 1 where each coefficient is reduced modulo q. In case χ is a probability distribution over R, then x $← χ
means the sampling of x ∈ R according to χ.

For a probabilistic algorithm A we denote by y $← A that the output of A is assigned to y and that A is
running with randomly chosen coins. We recall the discrete Gaussian distribution DZ,σ, which is parametrized
by the Gaussian parameter σ ∈ R and defined by assigning a weight proportional to exp(−x

2

2σ2 ) to all integers
x.

The Euclidean length ‖v‖ of a vector v = (v1, . . . vn) ∈ Rn is defined as ‖v‖ =
√∑n

i=1 v
2
i . A lattice

is a discrete subgroup of a finite dimensional Euclidean vector space, i.e. a discrete subgroup L ⊂ Rn.
The minimal distance of a lattice is defined as the Euclidean length of its shortest non-zero vector, namely
λ1(L) = minv∈L\{0} ‖x‖.

1.1.2 Computational problems on lattices

The shortest vector problem (SVP) and the closest vector problem (CVP) are two fundamental problems in
lattices and their conjectured intractability is the foundation for a large number of cryptographic applications
of lattices.

The (Approximate) Shortest Vector Problem, (SVP), statement from [106]. The shortest vector
problem (SVP) asks, given a lattice basis B, to find a shortest nonzero lattice vector, i.e., a vector v ∈ L(B)
with ‖v‖ = λ1(L(B)). In the γ-approximate SVPγ , for γ ≥ 1, the goal is to find a shortest nonzero lattice
vector v ∈ L(B) \ {0} of norm at most ‖v‖ ≤ γ · λ1(L(B)).

The SVP asks for a shortest nonzero vector in a lattice, but not the shortest nonzero vector as several short
vectors can exist. The approximate SVPγ is more difficult for a small factor γ and becomes easier for an
increasing γ. An algorithm that solves SVP in polynomial time and with exponential approximation factor
2O(n) is the Lenstra, Lenstra, Lovász (LLL) algorithm [96], which was extended in works like [135, 134, 64]
(see [113] for a survey). Algorithms that achieve an exact solution or approximate solutions of SVP within
poly(n) factors either run in 2O(n) and require exponential space [4] or in 2O(n logn) and require only polynomial
space [89]. Based on these observations Micciancio and Regev conclude that “there is no polynomial time
algorithm that approximates lattice problems to within polynomial factors” [108].

The (Approximate) Closest Vector Problem, (CVP), statement from [106]. The closest vector
problem (CVP) asks, given a lattice basis B and target vector t, to find the lattice vector v ∈ L(B)
such that the distance to the target ‖v− t‖ is minimized. In the γ-approximate CVPγ , for γ ≥ 1, the goal is
to find a lattice vector v ∈ L(B) such that ‖v− t‖ ≤ γ · dist(t,L(B)) where dist(t,Λ) = inf{‖v− t‖ : v ∈ Λ}
is the distance of t to Λ.

The CVP is the inhomogeneous version of the SVP and can also be formulated as syndrome decoding
problem for full rank lattices [106]. The NP-hardness of SVP was shown by van Emde Boas in [140] for
the `∞ norm. Ajtai then proved that SVP is NP-hard for the `2 norm using randomized reductions [3] and
that the corresponding decision problem is NP-complete. It was also shown in [140] that CVP is NP-hard.
However, when building cryptosystems in practice only subclasses of CVP or SVP are used that are not
supposed to be NP-hard (see [84, Remark 6.24.]). A comprehensive discussion of the hardness of SVP, CVP,
and its variants can be found in [141, Section 2.3] and [107]. In [77] Hanrot et al. provide a survey on the
history and state-of-the-art of solvers for SVP and CVP.
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1.1.3 Ring-LWE problem

The Learning with Errors (LWE) problem was popularized by Regev [126] who showed that, under a quantum
reduction, solving a random LWE instance is as hard as solving certain worst-case instances of certain
lattice problems. The LWE problem can be seen as a generalization of the learning parity with noise (LPN)
problem [29] and is related to hard decoding problems [108]. In general, to solve the LWE problem, one
has to recover a secret vector s ∈ Znq when given a sequence of approximate random linear equations on s.
Non-quantum reductions from variants of the shortest vector problem to variants of the LWE problem have
also been shown [118]. The LWE problem is usually used to build primitives such as CPA or CCA-secure
public-key encryption, identity-based encryption (IBE), or fully-homomorphic encryption schemes [128]. It
can be defined as a search problem (sLWE) where the task is to recover the secret vector s or as a decision
problem (dLWE) that asks to distinguish LWE samples from uniformly random samples.

The Learning With Errors Problem [126], (sLWE), search version. The learning with errors prob-
lem, search version, sLWEn,m,q,χ, with n unknowns, m ≥ n samples, modulo q and with error distribution χ
is as follows: for a random secret s uniformly chosen in Znq , and given m samples of the form (a, b = 〈s,a〉+ e

mod q) where e $← χ and a is uniform in Znq , recover the secret vector s.

The Learning With Errors Problem [126], (dLWE), decisional version. The learning with errors
problem, decisional version, dLWEn,m,q,χ, with n unknowns, m ≥ n samples, modulo q and with error
distribution χ is as follows: for a random secret s uniformly chosen in Znq , and given m samples either all
of the form (a, b = 〈s,a〉+ e mod q) where e $← χ, or from the uniform distribution (a, b)

$← U(Zn × Zq),
decide if the samples come from the former or the latter case.

An interesting property of the LWE problem is the equivalence of the (search) sLWE problem and the
(decisional) dLWE problem. While it is clear that a solver for the sLWE problem can be used to solve the
dLWE problem, it is also possible to solve the sLWE problem if the dLWE problem can be solved.

Theorem 1.1 (Decision to Search Reduction for LWE) For any integers n and m, any prime q ≤
poly(n), and any distribution χ over Zq, if there exists a PPT algorithm that solves dLWEn,m,q,χ with non-
negligible probability, then there exists a PPT algorithm that solves sLWEn,m′,q,χ for some m′ = m · poly(n)
with non-negligible probability.

Variants of the LWE problem relying on the ring of integer of a number field (or polynomial rings) were later
defined and studied [138, 103]. More specifically, the lattices underlying this problem are module lattices, as
in NTRU [83, 137], and its hardness can be related to the worst case hardness of finding short vectors in
ideal lattices [138, 103]. The Ring-LWE problem may be defined over the ring of integers of an arbitrary
number-field [104, 121]. The general definition is rather intricate involving the so-called co-different ideal R∨.
For simplicity we restrict our definition to the case of cyclotomic number field with a power-of-two conductor.

The Ring Learning With Errors Problem [126], dRLWE, decisional version LetR denote the ring
Z[X]/(Xn + 1) for n a power of 2, and Rq the residue ring R/qR. The ring learning with errors problem,
decisional version, dRLWEm,q,χ, with m unknowns, m ≥ 1 samples, modulo q and with error distribution χ is
as follows: for a uniform random secret s $← U(Rq), and given m samples either all of the form (a,b = a · s+e
mod q) where the coefficients of e are independently sampled following the distribution χ, or from the uniform
distribution (a,b)

$← U(Rq ×Rq), decide if the samples come from the former or the latter case.

We will in fact rely on a variant of the above problem, where the secret s follows the same distribution χn as
the error e. These variants can be proven to be equivalent to the original problem by putting the system in
systematic form, as done in [13].

1.2 Algorithm description
The NewHope cryptosystem is a suite of key encapsulation mechanisms (KEM) denoted as NewHope-
CPA-KEM and NewHope-CCA-KEM that are based on the conjectured quantum hardness of the RLWE
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problem. Both schemes are based on a variant of the previously proposed NewHope-Simple [8] scheme
modeled as semantically secure public-key encryption (PKE) scheme with respect to adaptive chosen plaintext
attacks (CPA) that we refer to as NewHope-CPA-PKE. However, in this submission NewHope-CPA-
PKE is only used inside of NewHope-CPA-KEM and NewHope-CCA-KEM and not intended to be an
independent CPA-secure PKE scheme, in part because it does not accept arbitrary length messages. For our
proposed NewHope-CPA-KEM we provide a transformation of NewHope-CPA-PKE into a passively
secure KEM. For NewHope-CCA-KEM we show how to realize a semantically secure key encapsulation
with respect to adaptive chosen ciphertext attacks (CCA) based on NewHope-CPA-PKE. In this section
we only provide a functional description of the algorithms and refer to Section 1.3 for more background on
our design decisions. Note that some algorithms, especially the ones dealing with encoding and decoding,
are optimized for dimensions n = 512 or n = 1024 that we are supporting in NewHope. Moreover, the
algorithms are designed for q = 12289 and k = 8 (parameter of the noise distribution). Further information
on the supported parameters can be found in Section 1.4.

1.2.1 IND-CPA-secure public key encryption scheme

For our intermediate building block, the passively secure PKE scheme NewHope-CPA-PKE with a
fixed message space of 256 bits, we define key generation in Algorithm 1 (NewHope-CPA-PKE.Gen),
encryption in Algorithm 2 (NewHope-CPA-PKE.Encrypt), and decryption in Algorithm 3 (NewHope-
CPA-PKE.Decrypt). All sub-functions used in NewHope-CPA-PKE are described in this section. Note
that we assume in every function implicit access to the global parameters n, q, γ that are determined by the
chosen parameter set.

Sampling, randomness, byte arrays and SHAKE. Besides polynomials in Rq and vectors, the main
other data structure we use are byte arrays. As an example, all randomness is sampled as byte arrays. In key
generation, seed $← {0, . . . , 255}32 denotes the sampling of a byte array with 32 uniform integer elements in
the range 0 to 255 from a random number generator. This random number generator shall be unpredictable
and should thus be using a physical source of entropy or other means.

As strong hash function we use SHAKE256 as specified in [112]. The SHAKE256(l, d) function takes as
input an integer l that specifies the number of output bytes and an input data byte array d. The amount
of data to be absorbed is the length of d. As an example, in key generation we use SHAKE256 to compute
v ← SHAKE256(64, seed) where we hash a 32 byte random seed denoted as seed and output a byte array v
with 64 elements in the range {0, . . . , 255}.

To access byte arrays we use the bracket notation where v[i] for a positive integer i denotes the i-th byte
in the array v. To access ranges of bytes we use the notation x← v[i : j] for positive integers i ≤ j where
x is assigned byte i to j of v. By r ← {0, . . . , 255}x we declare that r is a byte array of length x. Using a
similar notation, by r← Rq we declare that a variable r is a polynomial in Rq where all coefficients are zero.
For bit-operations we use the operators �, �, |, and & as in the context of the C programming language.
Thus x� i for positive integers i, x denotes a right-shift by i. The same operator can be applied to a byte
of a byte array so that y[j]� i for positive integer i, j represents a right shift by i of the j-th byte of the
byte array y. A left shift is denoted as x� i for positive integers i, y and implicit modular reduction modulo
232 is assumed (equal to writing (x� i) mod 232). When the left shift operator is applied to the j-th byte
of the byte array y as y[j] � i for positive integer i, j an implicit reduction modulo 28 is assumed (equal
to writing (y[j]� i) mod 28). The a | b operator denotes a bit-wise ‘or’ while the a& b operator denotes a
bitwise ‘and’ of two positive integers a, b or of two bytes in a byte array. To convert a byte a[i] in a byte
array a to a positive integer z we use z = b2i(a[i]). To denote positive integers in hexadecimal representation
we use the prefix 0x such that 0x01010101 = 16843009. To compute the Hamming weight, the sum of all
bits that are set to one in binary notation, of a byte or integer b we write HW(b).

Note that NewHope-CPA-PKE.Encrypt does not directly access a random number generator as all
pseudo-random data is derived by expansion of a 32-byte user supplied seed coin ∈ {0, . . . , 255}32 that has
to be obtained from a true random value generator. This is required to allow the straightforward use of
NewHope-CPA-PKE.Encrypt in standard CCA transformations. Decryption is deterministic and does
not need random values. For the distribution of the RLWE secret and error we use the centered binomial
distribution ψk of parameter k = 8. In general, one may sample from ψk for integer k > 0 by computing∑k−1
i=0 bi− b′i, where the bi, b′i ∈ {0, 1} are uniform independent bits. The distribution ψk is centered (its mean
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Algorithm 1 NewHope-CPA-PKE Key Generation

1: function NewHope-CPA-PKE.Gen()
2: seed

$← {0, . . . , 255}32

3: z ← SHAKE256(64, seed)
4: publicseed← z[0:31]
5: noiseseed← z[32:63]
6: â← GenA(publicseed)
7: s← PolyBitRev(Sample(noiseseed, 0))
8: ŝ← NTT(s)
9: e← PolyBitRev(Sample(noiseseed, 1))

10: ê← NTT(e)

11: b̂← â ◦ ŝ + ê
12: return (pk = EncodePK(b̂, publicseed), sk = EncodePolynomial(ŝ))

Algorithm 2 NewHope-CPA-PKE Encryption

1: function NewHope-CPA-PKE.Encrypt(pk ∈ {0, . . . , 255}7·n/4+32, µ ∈ {0, . . . , 255}32,
coin ∈ {0, . . . , 255}32)

2: (b̂, publicseed)← DecodePk(pk)
3: â← GenA(publicseed)
4: s′ ← PolyBitRev(Sample(coin, 0))
5: e′ ← PolyBitRev(Sample(coin, 1))
6: e′′ ← Sample(coin, 2)
7: t̂← NTT(s′)
8: û← â ◦ t̂ + NTT(e′)
9: v← Encode(µ)

10: v′ ← NTT−1(b̂ ◦ t̂) + e′′ + v
11: h← Compress(v′)
12: return c = EncodeC(û, h)

Algorithm 3 NewHope-CPA-PKE Decryption

1: function NewHope-CPA-PKE.Decrypt(c ∈ {0, . . . , 255}7 n
4 +3 n

8 , sk ∈ {0, . . . , 255}7·n/4)
2: (û, h)← DecodeC(c)
3: ŝ← DecodePolynomial(sk)
4: v′ ← Decompress(h)
5: µ← Decode(v′ − NTT−1(û ◦ ŝ))
6: return µ

is 0), has variance k/2 and we set k = 8 in all instantiations. This gives a standard deviation of ς =
√

8/2.
We describe sampling from ψ8 in Algorithm 4 as the function Sample that takes as input a 32 byte seed
seed and an integer parameter 0 ≤ nonce < 28 for domain separation. This way one seed can be used to
sample multiple polynomials. The output is a polynomial r ∈ Rq where all n coefficients are independently
distributed according to ψ8.

Polynomials and the NTT. The main mathematical objects that are manipulated in NewHope are
polynomials in Rq = Zq[X]/(Xn + 1) like s, e, ŝ, â, b̂, s′, e′, e′′, t̂, û, ê,v,v′. For a polynomial c ∈ Rq
where c =

∑n−1
i=0 ciX

i we denote by ci the i-th coefficient of c for integer i ∈ {0, . . . , n − 1}. We use
the same notation to access elements of vectors that are not necessary in Rq. Addition or subtraction of
polynomials in Rq (denoted as + or −, respectively) is the usual coefficient-wise addition or subtraction,
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Algorithm 4 Deterministic sampling of polynomials in Rq from ψn8

1: function Sample(seed ∈ {0, . . . , 255}32, positive integer nonce)
2: r← Rq
3: extseed← {0, . . . , 255}34

4: extseed[0:31]← seed[0:31]
5: extseed[32]← nonce
6: for i from 0 to (n/64)− 1 do
7: extseed[33]← i
8: buf ← SHAKE256(128, extseed)
9: for j from 0 to 63 do

10: a← buf [2 ∗ j]
11: b← buf [2 ∗ j + 1]
12: r64∗i+j = HW(a) + q − HW(b) mod q

13: return r ∈ Rq

such that for a =
∑n−1
i=0 aiX

i ∈ Rq and b =
∑n−1
i=0 biX

i ∈ Rq we get a + b =
∑n−1
i=0 (ai + bi mod q)Xi

and a − b =
∑n−1
i=0 (ai − bi mod q)Xi. In general, fast quasi-logarithmic algorithms exist for polynomial

multiplication. We explicitly specify how to use the Number Theoretic Transform (NTT); some polynomials
are also transmitted in a transformed representation. However, an implementer may choose a different
algorithm for polynomial multiplication, like Karatsuba or Schoolbook multiplication, and then transform the
result into the NTT domain such that it is compliant with this specification. Moreover, here we just describe
the basic definition and refer to [76, 2] and Section 2 for details on the efficient implementation of the NTT.

With the NTT, a polynomial multiplication for elements in Rq = Zq[X]/(Xn + 1) can be performed
by computing c = NTT−1(NTT(a) ◦ NTT(b)) for a,b, c ∈ Rq. The ◦ operator denotes coefficient-wise
multiplication of two polynomials a,b ∈ Rq such that a ◦ b =

∑n−1
i=0 (ai · bi mod q)Xi. The NTT defined in

Rq can be implemented very efficiently if n is a power of two and q is a prime for which it holds that q ≡ 1
mod 2n. This way a primitive n-th root of unity ω and its square root γ =

√
ω mod q exist. By multiplying

coefficient-wise by powers of γ before the NTT computation and after the reverse transformation by powers
of γ−1 mod q, no zero padding is required and an n-point NTT can be used to transform a polynomial with
n coefficients.

For a polynomial g =
∑n−1
i=0 giX

i ∈ Rq we define

NTT(g) = ĝ =

n−1∑
i=0

ĝiX
i, with

ĝi =

n−1∑
j=0

γjgjω
ij mod q,

where ω is an n-th primitive root of unity and γ =
√
ω mod q.

Note that most implementations will use an in-place NTT algorithm which usually requires bit-reversal
operations that are not included in the previously given straightforward description of the NTT. As an
optimization, we allow implementations to skip these bit-reversals for the forward transformation as all
inputs are only random noise. Thus, and slightly counter-intuitive, we define bit-reversal and perform
it on polynomials that go into the NTT. With bit-reversal and our straightforward NTT definition, im-
plementers do not need to apply a reversal when using an in-place NTT. Note that in key generation
this optimization is transparent to the protocol, but due to the re-encryption implementers have to fol-
low our instructions. For a positive integer v and a power of two n we formally define bit-reversal as
BitRev(v) =

∑log2(n)−1
i=0 (((v � i)&1)� (log2(n)− 1− i)). For polynomials s, z ∈ Rq the bit-reversal of a

polynomial s is z = PolyBitRev(s) =
∑n−1
i=0 siX

BitRev(i).
The function NTT−1 is the inverse of the function NTT. The computation of NTT−1 is essentially the

same as the computation of NTT, except that it uses ω−1 mod q, multiplies by powers of γ−1 mod q after
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the summation, and also multiplies each coefficient by the scalar n−1 mod q so that

NTT−1(ĝ) = g =

n−1∑
i=0

giX
i, with

gi =

n−1γ−i
n−1∑
j=0

ĝjω
−ij

 mod q.

Note that we define the x mod q operation for integers x, q to always produce an output in the range [0, q− 1].
Unless otherwise stated, when we access an element ai of a polynomial a ∈ Rq we always assume that ai is
reduced modulo q and in the range [0, q − 1].

Definition of GenA. The public parameter a is generated by GenA which takes as input a 32 byte array
seed. The function is described in Algorithm 5. The resulting polynomial a (denoted as â) is considered
to be in the NTT domain. This is possible because the NTT transforms uniform polynomials to uniform
polynomials. Inside of GenA we use the SHAKE128 hash function [112] to expand the pseudorandom seed and
we define a function that absorbs a byte array into the internal state of SHAKE128 and then we use another
function to obtain pseudorandom data by squeezing the internal state. The state ← SHAKE128Absorb(d)
functions takes as input a byte array d. It outputs a byte array of length 200 that represents the state after
absorbing d. To obtain pseudorandom values buf, state← SHAKE128Squeeze(j, state) is used. As input the
function takes a positive integer j determining the amount of output blocks of SHAKE128 to be produced
and the 200 byte state. It outputs a byte array buf of length 168 · j and a byte array state of length 200.

Algorithm 5 Deterministic generation of â by expansion of a seed

1: function GenA(seed ∈ {0, . . . , 255}32)
2: â← Rq
3: extseed← {0, . . . , 255}33

4: extseed[0 : 31]← seed[0:31]
5: for i from 0 to (n/64)− 1 do
6: ctr ← 0
7: extseed[32]← i
8: state← SHAKE128Absorb(extseed)
9: while ctr < 64 do

10: buf, state← SHAKE128Squeeze(1, state)
11: j ← 0
12: for j < 168 and ctr < 64 do
13: val← b2i(buf [j]) |(b2i(buf [j + 1])� 8)
14: if val < 5 · q then
15: âi∗64+ctr ← val
16: ctr ← ctr + 1

17: j ← j + 2

18: return â ∈ Rq

Encoding and decoding of the secret and public key. Note that polynomials are transmitted in the
NTT domain and thus for interoperability our definition and parametrization of the NTT has to be used.

To encode a polynomial in Rq into an array of bytes we use EncodePolynomial as described in Algorithm 6.
The function DecodePolynomial as described in Algorithm 7 converts a byte array into an element in Rq.
The secret key consists only of one polynomial s ∈ Rq and thus we can directly apply EncodePolynomial(ŝ).
The secret key is then either encoded into an array of 869 bytes (n = 512) or 1792 bytes (n = 1024). The
public key is encoded as an array of 928 bytes (n = 512) or 1824 bytes (n = 1024) by EncodePK(b̂, seed)

described in Algorithm 8. It takes as input a polynomial b̂ ∈ Rq and a byte array seed with 32 elements.
The DecodePk(pk) function decodes the public key and is provided in Algorithm 9.
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Algorithm 6 Encoding of a polynomial in Rq to a byte array

1: function EncodePolynomial(ŝ)
2: r ← {0, . . . , 255}7·n/4
3: for i from 0 to n/4− 1 do
4: t0← ŝ4∗i+0 mod q
5: t1← ŝ4∗i+1 mod q
6: t2← ŝ4∗i+2 mod q
7: t3← ŝ4∗i+3 mod q
8: r[7 ∗ i+ 0]← t0&0xff

9: r[7 ∗ i+ 1]← (t0� 8) |(t1� 6)&0xff

10: r[7 ∗ i+ 2]← (t1� 2)&0xff

11: r[7 ∗ i+ 3]← (t1� 10) |(t2� 4)&0xff

12: r[7 ∗ i+ 4]← (t2� 4)&0xff

13: r[7 ∗ i+ 5]← (t2� 12) |(t3� 2)&0xff

14: r[7 ∗ i+ 6]← (t3� 6)&0xff

15: return r ∈ {0, . . . , 255}7·n/4

Algorithm 7 Decoding of a polynomial represented as a byte array into an element in Rq
1: function DecodePolynomial(v ∈ {0, . . . , 255}7·n/4)
2: for i from 0 to n/4− 1 do
3: r ← Rq
4: r4∗i+0 ← b2i(v[7 ∗ i+ 0])‖((b2i(v[7 ∗ i+ 1]) & 0x3f)� 8)
5: r4∗i+1 ← (b2i(v[7 ∗ i+ 1])� 6)‖(b2i(v[7 ∗ i+ 2])� 2)‖((b2i(v[7 ∗ i+ 3]) & 0x0f)� 10)
6: r4∗i+2 ← (b2i(v[7 ∗ i+ 3])� 4)‖(b2i(v[7 ∗ i+ 4])� 4)‖((b2i(v[7 ∗ i+ 5]) & 0x03)� 12)
7: r4∗i+3 ← (b2i(v[7 ∗ i+ 5])� 2)‖(b2i(v[7 ∗ i+ 6])� 6)

8: return r ∈ Rq

Algorithm 8 Encoding of the public key

1: function EncodePK(b̂ ∈ Rq, publicseed ∈ {0, . . . , 255}32)
2: r ← {0, . . . , 255}7·n/4+32

3: r[0 : 7 · n/4− 1]← EncodePolynomial(b̂)
4: r[7 · n/4 : 7 · n/4 + 31]← publicseed[0 : 31]
5: return r ∈ {0, . . . , 255}7·n/4+32

Algorithm 9 Decoding of the public key

1: function DecodePk(pk ∈ {0, . . . , 255}7·n/4+32)
2: b̂← DecodePolynomial(pk[0 : 7 · n/4− 1])
3: seed← pk[7 · n/4 : 7 · n/4 + 31])

4: return (b̂ ∈ Rq, seed ∈ {0, . . . , 255}32)
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Encoding and decoding of the ciphertext. The ciphertext encoding is described in Algorithm 13. The
ciphertext c is encoded as an array of 1088 bytes (n = 512) or 2176 bytes (n = 1024) by EncodeC(û, h) that
takes as input a polynomial in û ∈ Rq and an array h of 3 · n/8 bytes that was generated by Compress(v′) as
given in Algorithm 12. The compression and decompression functions simply perform coefficient-wise modulus
switching between modulus q and modulus 8 by multiplying by the new modulus and then performing a
rounding division by the old modulus. To decode the ciphertext the DecodeC function is used that outputs
û ∈ Rq and a byte array h that is then given to Decompress to obtain v′ ∈ Rq.

In NewHope-CPA-PKE the 256-bit message µ represented as an array of 32 bytes has to be encoded
into an element in Rq during encryption and decoded from an element in Rq into a byte array during
decryption. To allow robustness against errors each bit of the 256-bit message µ ∈ {0, . . . , 255}32 is encoded
into bn/256c coefficients by Encode (see Algorithm 10). The decoding function Decode (see Algorithm 11)
maps from bn/256c coefficients back to the original key bit. For example, for n = 1024, take 4 = b1024/256c
coefficients (each in the range {0, . . . , q − 1}, subtract bq/2c from each of them, accumulate their absolute
values, and set the key bit to 0 if the sum is larger than q or to 1 otherwise.

Algorithm 10 Message encoding

1: function Encode(µ ∈ {0, . . . , 255}32)
2: v← Rq
3: for i from 0 to 31 do
4: for j from 0 to 7 do
5: mask ← −((msg[i]� j) & 1)
6: v8∗i+j+0 ← mask&(q/2)
7: v8∗i+j+256 ← mask&(q/2)
8: if n equals 1024 then
9: v8∗i+j+512 ← mask&(q/2)

10: v8∗i+j+768 ← mask&(q/2)

11: return v ∈ Rq

Algorithm 11 Message decoding

1: function Decode(v ∈ Rq)
2: µ← {0, . . . , 255}32

3: for i from 0 to 255 do
4: t← |(vi+0 mod q)− (q − 1)/2|
5: t← t+ |(vi+256 mod q)− (q − 1)/2|
6: if n equals 1024 then
7: t← t+ |(vi+512 mod q)− (q − 1)/2|
8: t← t+ |(vi+768 mod q)− (q − 1)/2|
9: t← ((t− q))

10: else
11: t← ((t− q/2))

12: t← t� 15
13: µ[i� 3]← µ[i� 3] |(t� (i& 7))

14: return µ ∈ {0, . . . , 255}32

1.2.2 Interconversion to IND-CPA KEM

NewHope-CPA-PKE can be converted to an IND-CPA-secure key encapsulation mechanism by using the
public key encryption scheme to convey a secret, K. The PKE’s coins and the secret K are computed by
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Algorithm 12 Ciphertext compression

1: function Compress(v′ ∈ Rq)
2: k ← 0
3: t← {0, . . . , 255}8
4: h← {0, . . . , 255}3·n/8
5: for ` from 0 to n/8− 1 do
6: i← 8 · `
7: for j from 0 to 7 do
8: t[j]← v′i+j mod q
9: t[j]← ((b2i(t[j]� 3) + q/2)/q) & 0x7

10: h[k + 0]← t[0] |(t[1]� 3) |(t[2]� 6)
11: h[k + 1]← (t[2]� 2) |(t[3]� 1) |(t[4]� 4) |(t[5]� 7)
12: h[k + 2]← (t[5]� 1) |(t[6]� 2) |(t[7]� 5)
13: k+← 3

14: return r in{0, . . . , 255}3·n/8

Algorithm 13 Ciphertext encoding

1: function EncodeC(û ∈ Rq, h ∈ {0, . . . , 255}3·n/8)
2: c[0 : (7 · n/4− 1)]← EncodePolynomial(û)
3: c[(7 · n/4) : (7 · n/4 + 3 · n/8− 1)]← h
4: return c ∈ {0, . . . , 255}7·n/4+3·n/8

Algorithm 14 Ciphertext decoding

1: function DecodeC(c ∈ {0, . . . , 255}7·n/4+3·n/8)
2: û← DecodePolynomial(c[0 : (7 · n/4− 1)])
3: h← c[(7 · n/4) : (7 · n/4 + 3 · n/8− 1)]
4: return (û ∈ Rq, h ∈ {0, . . . , 255}3·n/8)

Algorithm 15 Ciphertext decompression

1: function Decompress(h ∈ {0, . . . , 255}3·n/8)
2: k ← 0
3: for ` from 0 to n/8− 1 do
4: i← 8 · `
5: ri+0 ← a[k + 0] & 7
6: ri+1 ← (a[k + 0]� 3) & 7
7: ri+2 ← (a[k + 0]� 6) |((a[1]� 2) & 4)
8: ri+3 ← (a[k + 1]� 1) & 7
9: ri+4 ← (a[k + 1]� 4) & 7

10: ri+5 ← (a[k + 1]� 7) |((a[2]� 1) & 6)
11: ri+6 ← (a[k + 2]� 2) & 7
12: ri+7 ← (a[k + 2]� 5)
13: k ← k + 3
14: for j from 0 to 7 do
15: ri+j ← (ri+j ∗ q + 4)� 3

16: return v′ ∈ Rq
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hashing random coins, rather than using random coins directly, to protect against attacks involving disclosure
of system randomness. The final shared secret is derived from the secret K by hashing. The resulting
algorithms for NewHope-CPA-KEM are shown in Algorithms 16, 17, and 18.

Algorithm 16 NewHope-CPA-KEM Key Generation

1: function NewHope-CPA-KEM.Gen()
2: (pk, sk)

$← NewHope-CPA-PKE.Gen()
3: return (pk, sk)

Algorithm 17 NewHope-CPA-KEM Encapsulation

1: function NewHope-CPA-KEM.Encaps(pk)
2: coin

$← {0, . . . , 255}32

3: K‖coin′ ← SHAKE256(64, coin) ∈ {0, . . . , 255}32+32

4: c← NewHope-CPA-PKE.Encrypt(pk,K; coin′)
5: ss← SHAKE256(32,K)
6: return (c, ss)

Algorithm 18 NewHope-CPA-KEM Decapsulation

1: function NewHope-CPA-KEM.Decaps(c, sk)
2: K ′ ← NewHope-CPA-PKE.Decrypt(c, sk)
3: return ss = SHAKE256(32,K ′)

1.2.3 Transform from IND-CPA PKE to IND-CCA KEM1

The Fujisaki–Okamoto transform [59] constructs an IND-CCA2-secure public-key encryption scheme from a
one-way-secure public key encryption scheme in the classical random oracle model (with an assumption on
the distribution of ciphertexts for each plaintext being sufficiently close to uniform). Targhi and Unruh [139]
gave a variant of the Fujisaki–Okamoto transform and showed its IND-CCA2 security against a quantum
adversary in the quantum random oracle model under similar assumptions. The results of both FO and TU
proceed under the assumption that the public key encryption scheme has perfect correctness, which is not
the case for lattice-based schemes. Hofheinz, Hövelmanns, and Kiltz [85] gave a variety of constructions in a
modular fashion. We apply their QFO 6⊥m transform which constructs an IND-CCA-secure key encapsulation
mechanism from an IND-CPA public key encryption scheme and three hash functions; following [32], we
make the following modifications, denoting the resulting transform QFO 6⊥′m :
• A single hash function (with longer output) is used to compute K, coin′, and d.
• The computation of K, coin′, and d also takes the public key pk as input.
• The computation of the shared secret ss also takes the encapsulation c and d as input.

QFO 6⊥′m transform Let PKE = (KeyGen,Encrypt,Decrypt) be a public key encryption scheme with message
space M and ciphertext space C, where the randomness space of Encrypt is RE . Let lens, lenK , lend, lenss
be parameters. Let G : {0, . . . , 255}∗ → {0, . . . , 255}lenK × RE × {0, . . . , 255}lend and F : {0, . . . , 255}∗ →
{0, . . . , 255}lenss be hash functions. Define QKEM6⊥′m = QFO 6⊥′m [PKE, G, F ] be the key encapsulation mechanism
with QKEM6⊥′m .KeyGen, QKEM6⊥′m .Encaps and QKEM6⊥′m .Decaps as shown in Figure 1.

1The text in this section is shared with the FrodoKEM submission.
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1: function QKEM6⊥′m .KeyGen( )
2: (pk, sk)

$← PKE.KeyGen()

3: s
$← {0, . . . , 255}lens

4: sk ← (sk, pk, s)
5: return (pk, sk)

1: function QKEM6⊥′m .Encaps(pk)
2: µ

$←M
3: (K, coin′, d)← G(pk‖µ)
4: c← PKE.Encrypt(pk, µ; coin′)
5: ss← F (K‖c‖d)
6: c← (c, d)
7: return (c, ss)

1: function QKEM6⊥′m .Decaps((c, d), (sk, pk, s))
2: µ′ ← PKE.Decrypt(c, sk)
3: (K ′, coin′′, d′)← G(pk‖µ′)
4: if c = PKE.Encrypt(pk, µ′; coin′′) and d = d′ then
5: return ss′ ← F (K ′‖c‖d)
6: else
7: return ss′ ← F (s‖c‖d)

Figure 1: Construction of an IND-CCA-secure key encapsulation mechanism QKEM6⊥′m = QFO 6⊥′m [PKE, G, F ]
from a public key encryption scheme PKE and hash functions G and F .

1.2.4 IND-CCA-secure key encapsulation mechanism

NewHope-CCA-KEM is derived from NewHope-CPA-PKE by applying the QFO 6⊥′m transformation.
The hash functions G and F are both taken to be SHAKE256. The length parameters are taken as
lens = lenK = lend = lenss = 32. The randomness space is {0, . . . , 255}32. The message space M is
{0, . . . , 255}32. The ciphertext component c to F is instead computed as SHAKE256(c) for efficiency (a
new buffer does not need to be allocated). The KEM public key also caches a hash of the public key to
save on computation. Finally, some random values (seed, rand in NewHope-CCA-KEM.Gen and µ in
NewHope-CCA-KEM.Encaps) are computed by hashing random coins, rather than using random coins
directly, to protect against attacks involving disclosure of system randomness. The resulting algorithms for
NewHope-CCA-KEM are shown in Algorithms 19, 20, and 21.

1.2.5 Interconversion to IND-CCA PKE

NewHope-CCA-KEM can be converted to an IND-CCA-secure public key encryption scheme using standard
conversion techniques as specified by NIST. In particular, shared secret ss can be used as the encryption key
in an appropriate data encapsulation mechanism in the KEM/DEM (key encapsulation mechanism / data
encapsulation mechanism) framework [46].

1.3 Design rationale
Currently, we see two main approaches to build practical lattice-based PKEs. One is to base the schemes on
NTRU or a related assumption [83, 137]. The other approach we are using in this work is the LWE/RLWE
assumption [102]. However, usage of the LWE assumption comes with a cost as keys become rather large. This
can be avoided by relying on ideal lattices and the Ring-Learning With Errors (RLWE) assumption. While
RLWE certainly features more structure than LWE, no algorithms are known that can exploit this structure
and that are thus working more efficiently on RLWE than on LWE. When restricting the design space to
ideal lattices due to smaller key sizes, then the seminal work by Lyubashevsky, Peikert and Regev [103, 102]
(from now on referred to as LPR10) can be considered as the core basis for follow-up work like [31, 50, 120].

The traditional approach for passively secure LWE-based (and Ring-LWE-based) key encapsulation (KEM)
or key exchange is derived straight-forwardly from LWE-based (or Ring-LWE-based) encryption schemes like
the ones described in [127, 99, 70]: Alice generates a key pair (skA, pkA), sends pkA to Bob; Bob chooses a
(symmetric) key k, encrypts this key under pkA and sends it to Alice; Alice decrypts to obtain k. See, for
example, [118, Sec. 4.2] for an adaptation of the passively secure lattice-based cryptosystem from [69] to this
KEM setting. We will in the following refer to this approach as a Key Transport Mechanism (KTM) or as
the encryption-based approach for RLWE-based key exchange.
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Algorithm 19 NewHope-CCA-KEM Key Generation

1: function NewHope-CCA-KEM.Gen()
2: (pk, sk)

$← NewHope-CPA-PKE.Gen()

3: s
$← {0, . . . , 255}32

4: return (pk, sk = sk‖pk‖SHAKE256(32, pk)‖s)

Algorithm 20 NewHope-CCA-KEM Encapsulation

1: function NewHope-CCA-KEM.Encaps(pk)
2: coin

$← {0, . . . , 255}32

3: µ← SHAKE256(32, coin) ∈ {0, . . . , 255}32

4: K‖coin′‖d← SHAKE256(96, µ‖SHAKE256(32, pk)) ∈ {0, . . . , 255}32+32+32

5: c← NewHope-CPA-PKE.Encrypt(pk, µ; coin′)
6: ss← SHAKE256(32,K‖SHAKE256(32, c‖d))
7: return (c = c‖d, ss)

Algorithm 21 NewHope-CCA-KEM Decapsulation

1: function NewHope-CCA-KEM.Decaps(c, sk)
2: c‖d← c ∈ {0, . . . , 255}32+32

3: sk‖pk‖h‖s← sk ∈ {0, . . . , 255}32+32+32+32

4: µ′ ← NewHope-CPA-PKE.Decrypt(c, sk)
5: K ′‖coin′′‖d′ ← SHAKE256(96, µ′‖h) ∈ {0, . . . , 255}32+32+32

6: if c = NewHope-CPA-PKE.Encrypt(pk, µ′; coin′′) and d = d′ then
7: fail← 0
8: else
9: fail← 1

10: K0 ← K ′

11: K1 ← s
12: return ss = SHAKE256(32,Kfail‖SHAKE256(32, c‖d))

A slightly different approach is what we will in the following call the reconciliation-based approach. Instead
of letting Bob choose a secret key, Alice and Bob compute a noisy shared secret value and then use some
reconciliation mechanism that allows them to agree on the same shared key (often also referred to as key
agreement mechanism in the literature). This idea of a reconciliation mechanism to extract an exact shared
value from noisy data is essentially the idea of a fuzzy extractor [52], known, for example, from physically
unclonable functions. See, for example, [34, 80].

The reconciliation-based approach for Ring-LWE-based key agreement was listed as a special instance
of “Noisy Diffie Hellman” by Gaborit (presenting joint work with Aguilar, Lacharme, Schrek, and Zémor)
in his talk at PQCrypto 2010 [61, Slide 6]. It was also described by Lindner and Peikert as “(approximate)
key agreement” [99, Sec. 3.1] and was already mentioned vaguely in an invited lecture of Peikert at TCC
2009 [119, Slide 14]. In [48] Ding described an instantiation of a reconciliation-based approach of LWE-based
key exchange. The reconciliation mechanism can be used on top of a matrix form of LWE (as already used
earlier, for example in [68] and [99, Sec. 2.2 and 3.1]) or on top of RLWE [102]. Neither of [61, 99, 119]
describe a concrete reconciliation mechanism; the first reconciliation mechanism was the one described by
Ding in [48, Sec 1.3] and [50]. Note that later and revised versions of [50] also list Lin [49] and Xie and
Lin [51] as authors. Peikert in [120] tweaked Ding’s reconciliation mechanism to obtain unbiased keys; the
approach by Ding inevitably produces slightly biased key bits.

The main reason for the reconciliation-based approach is a reduced bandwidth requirement. For exam-
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ple, [120] advertises “nearly halving the ciphertext size”. This estimate comes from the fact that (in a naive
version of the encryption-based approach) the second ciphertext polynomial has coefficients in {0, . . . , q − 1}
whereas the coefficients are in {0, 1} (for [50, 49, 51] and [120]) or in {0, 1, 2, 3} (for [9]) when using the
reconciliation approach.

Our proposal: NewHope. Our submission, NewHope, is based on NewHope-Simple [8] which is
a variant of NewHope-Usenix [9]. The main difference is that NewHope-Simple uses the encryption-
based approach while NewHope-Usenix is based on the reconciliation-based approach. Alternatively, our
submission could also be described as a variant of the scheme by Lyubashevsky, Peikert and Regev [103, 102]
to which we apply the modifications from NewHope-Usenix [9] and the ciphertext size reduction technique
from [123].

The basic NewHope-CPA-PKE scheme is a semantically secure public-key encryption with respect to
adaptive chosen plaintext attacks. This allows us to apply standard transformations to build passively and
actively secure KEMs and PKEs. This enables the use of our submission in unauthenticated key-exchange
protocol but also in settings where a CCA-secure KEM or PKE is required. As a consequence, in this
section we mainly focus on the properties of NewHope-CPA-PKE for which we define key generation in
Algorithm 1 encryption in Algorithm 2 and decryption in Algorithm 3.

Parameter choices. We fix q = 12289 and k = 8 and provide two parameter sets that differ in only one
parameter. For our NewHope512 with a bit-security level of 101 we set n = 512 and for NewHope1024 with
a bit-security level of 233 we choose n = 1024. However, for long-term security we recommend NewHope1024.
As k is fixed the same binomial sampler can be used for implementations of both parameter sets. Due to
the fact that the security level grows with the noise-to-modulus ratio, it makes sense to choose the modulus
as small as possible, improving compactness and efficiency together with security. As noise parameter k of
the binomial distribution ψk =

∑k
i=1 bi − b′i we set k = 8 for both parameter sets. This way we achieve a

negligible error probability for both parameter sets. We chose the modulus q = 12289 as it is the smallest
prime for which it holds that q ≡ 1 mod 2n so that the number-theoretic transform (NTT) can be realized
efficiently and that we can transfer polynomials in NTT encoding (see Section 1.2.1). The choice is also
appealing as the prime is already used by some implementations of Ring-LWE encryption [132, 47, 100] and
BLISS signatures [54, 122]; thus sharing of some code (or hardware modules) between our proposal and an
implementation of BLISS would be possible.

Error correction and reconciliation. The reconciliation technique of NewHope-Usenix [9] is generalizing
and improving the previous approaches and extracts a single key bit from multiple polynomial coefficients. It
relies on non-trivial lattice-codes and lattice-quantizers [43]. It is efficient, but fairly complex. Due to the
complexity of the reconciliation approach in NewHope-Usenix [9] we propose the usage of the encryption-
based approach. The difference in bandwidth requirements for NewHope-Usenix and NewHope is much
smaller than one might expect. Specifically, the message from Bob to Alice (the ciphertext) in NewHope-
Simple requires only 2176 bytes (compared to 2048 bytes in NewHope-Usenix); the message from Alice to
Bob (the public key) has the same size (1824 bytes) for both variants. We obtain this result by carefully
analyzing and optimizing a technique that is known since at least [118, Sec. 4.2] and has also been used
in [123], for lattice-based signatures in [75], in the context of fully homomorphic encryption in [36, Sec. 4.2]
and [33, Sec. 5.4] and for lattice-based PRFs in [18] and that was also applied in works like [88]. The idea of
this technique is that the low bits of each coefficient of v mainly carry noise and contribute very little to the
successful recovery of the plaintext. One can thus decide to “discard” (i.e, not transmit) those bits and thus
shorten the length of v. This can also be seen as switching to a smaller modulus and is therefore also called
“modulus switching”.

We combine this technique with a simple technique to encode one key bit into 4 coefficients that was first
described by Güneysu and Pöppelmann in [123] and minimize the ciphertext size under the constraint that
the failure probability of NewHope-Simple does not exceed the failure probability of NewHope.

Noise distribution. We do not use discrete Gaussians as the noise distribution but instead use the centred
binomial distribution ψk of parameter k = 8 for the secret and error term. The reason is that it turns out to
be challenging to implement a discrete Gaussian sampler efficiently and protected against timing attacks
(see [31, 9]). On the other hand, sampling from the centered binomial distribution is easy and does not require
high-precision computations or large tables as one may sample from ψk by computing

∑k−1
i=0 bi− b′i, where the
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bi, b
′
i ∈ {0, 1} are uniform independent bits. The distribution ψk is centered (its mean is 0), has variance k/2

and for k = 8 this gives a standard deviation of ς =
√

8/2. In Section 4.1.1 a justification of the security of
this design decision is given. As explained in Section 4.2, our choice of parameters in NewHope1024 leaves
a comfortable margin to the targeted 128 bits of post-quantum security (NIST level 5), which accommodates
for the slight loss in security indicated by Theorem 4.1 due to the use of the binomial distribution. Even
more important from a practical point of view is that no known attack makes use of the difference in error
distribution; what matters for attacks are entropy and standard deviation.

No backdoor. One serious concern in lattice-based cryptography may be the presence of constant polynomials,
e.g., the fixed system parameter a in [31]. As described in Section 1.2.1, our proposal includes pseudorandom
generation of this parameter for every key exchange. In the following we discuss the reasons for this decision.

In the worst scenario, the fixed parameter a could be backdoored. For example, inspired by NTRU
trapdoors [83, 137], a dishonest authority may choose mildly small f ,g such that f = g = 1 mod p for
some prime p ≥ 4 · 8 + 1 and set a = gf−1 mod q. Then, given (a,b = as + e), the attacker can compute
bf = afs + fe = gs + fe mod q, and, because g, s, f , e are small enough, compute gs + fe in Z. From this he
can compute t = s + e mod p and, because the coefficients of s and e are smaller than 8, their sums are in
[−2 · 8, 2 · 8]: knowing them modulo p ≥ 4 · 8 + 1 is knowing them in Z. It now only remains to compute
(b− t) · (a− 1)−1 = (as− s) · (a− 1)−1 = s mod q to recover the secret s.

One countermeasure against such backdoors is the “nothing-up-my-sleeve” process, which would, for
example, choose a as the output of a hash function on a common universal string like the digits of π. Yet,
even this process may be partially abused [22], and when not strictly required it seems preferable to avoid it.

All-for-the-price-of-one attacks. Even if this common parameter has been honestly generated, it is still
rather uncomfortable to have the security of all connections rely on a single instance of a lattice problem. The
scenario is an entity that discovers an unforeseen cryptanalytic algorithm, making the required lattice reduction
still very costly, but say, not impossible in a year of computation, given its outstanding computational power.
By finding once a good enough basis of the lattice Λ = {(a, 1)x+ (q, 0)y|x, y ∈ R}, this entity could then
compromise all communications, using for example Babai’s decoding algorithm [15].

This idea of massive precomputation that is only dependent on a fixed parameter a and then afterwards
can be used to break all key exchanges is similar in flavor to the 512-bit “Logjam” DLP attack [1]. This
attack was only possible in the required time limit because most TLS implementations use fixed primes for
Diffie-Hellman. One of the recommended mitigations by the authors of [1] is to avoid fixed primes.

Against all authority. Fortunately, all those pitfalls can be avoided by having the communicating parties
generate a fresh a at each instance of the protocol (as we propose). If in practice it turns out to be too
expensive to generate a for every connection, it is also possible to cache a on the server side2 for, say a few
hours without significantly weakening the protection against all-for-the-price-of-one attacks. Additionally, the
performance impact of generating a is reduced by sampling a uniformly directly in NTT format (recalling
that the NTT is a one-to-one map), and by transferring only a short 256-bit seed for a.

A subtle question is to choose an appropriate primitive to generate a “random-looking” polynomial a
out of a short seed. For a security reduction, it seems to the authors that there is no way around the
(non-programmable) random oracle model (ROM). It is argued in [62] that such a requirement is in practice
an overkill, and that any pseudorandom generator (PRG) should also work. And while it is an interesting
question how such a reasonable pseudo-random generator would interact with our lattice assumption, the
cryptographic notion of a PRG is not helpful to argue security. Indeed, it is an easy exercise3 to build (under
the NTRU assumption) a “backdoored” PRG that is, formally, a legitimate PRG, but that makes our scheme
insecure. Instead, we prefer to base ourselves on a standard cryptographic hash-function, which is the typical
choice of an “instantiation” of the ROM. As a suitable option we see Keccak [27], which has recently been
standardized as SHA3 in FIPS-202 [112], and which offers extendable-output functions (XOF) named SHAKE.
This avoids costly external iteration of a regular hash function and directly fits our needs. We use SHAKE128
for the generation of a, which offers 128-bits of (post-quantum) security against collisions and preimage
attacks. With only a small performance penalty we could have also chosen SHAKE256, but we do not see any

2But recall that the secrets s, e, s′, s′, e′′ have to be sampled fresh for every connection.
3Consider a secure PRG p, and parse its output p(seed) as two small polynomial (f ,g): an NTRU secret-key. Define

p′(seed) = gf−1 mod q: under the decisional NTRU assumption, p′ is still a secure PRG. Yet revealing the seed does reveal
(f ,g) and provides a backdoor as detailed above.
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Table 2: Parameters of NewHope512 and NewHope1024 and derived high-level properties.

Parameter Set NewHope512 NewHope1024

Dimension n 512 1024
Modulus q 12289 12289
Noise parameter k 8 8
NTT parameter γ 49 7
Decryption error probability 2−213 2−216

Claimed post-quantum bit-security 101 233
NIST Security Strength Category 1 5

Table 3: Sizes of public keys, secret keys, and ciphertexts of our NewHope instantiations in bytes.

Parameter Set |pk| |sk| |ciphertext|
NewHope512-CPA-KEM 928 869 1088
NewHope1024-CPA-KEM 1824 1792 2176
NewHope512-CCA-KEM 928 1888 1120
NewHope1024-CCA-KEM 1824 3680 2208

reason for such a choice, in particular because neither collisions nor preimages lead to an attack against the
proposed scheme.

Short-term public parameters. NewHope does not rely on a globally chosen public parameter a as the
efficiency increase in doing so is not worth the measures that have to be taken to allow trusted generation of
this value and the defense against backdoors [22]. Moreover, this approach avoids the rather uncomfortable
situation that all connections rely on a single instance of a lattice problem (see Section 1.3) in the flavor of
the “Logjam” DLP attack [1].

1.4 Parameters
1.4.1 NewHope512 and NewHope1024

For our NewHope cryptosystem we specify the two parameter sets NewHope512 and NewHope1024 in
Table 2. These parameter sets are used to instantiate the NewHope-CPA-KEM or NewHope-CCA-KEM
scheme. In case the security level should be specified together with the scheme we use the exemplary
notation NewHope1024-CPA-KEM to refer to the NewHope-CPA-KEM scheme instantiated with the
NewHope1024 parameter set. In Table 3 we provide public key, secret key, and ciphertext sizes for our two
KEMs that support the transmission of a 256-bit message or key. For the justification of the NIST level we
refer to Section 5 and for the justification of the post-quantum bit-security we refer to Section 4.2.

The parameters in Table 2 fully define NewHope and all other intermediary parameters can be calculated
from there. For convenience, we list intermediary parameters:
• NewHope512: γ =

√
ω = 49; ω = 2401; ω−1 mod q = 11813; γ−1 mod q = 1254; n−1 mod q = 12265

• NewHope1024: γ =
√
ω = 7; ω = 49; ω−1 mod q = 1254; γ−1 mod q = 8778; n−1 mod q = 12277

Note that the parameters of NewHope cannot be freely chosen. The dimension n has to be an integer
power of two to support efficient NTT algorithms and to maintain the security properties of RLWE. Degrees
that are not power of 2 are also possible, but come with several complications [104, 121], in particular the
defining polynomial of the ring can not have the form Xn + 1 anymore.

Additionally, n has to be greater or equal than 256 due to our choice of the encoding function that needs
to embed a 256-bit message into an n-dimensional polynomial in NewHope-CPA-PKE. The modulus q
has to be chosen as integer prime q such that q ≡ 1 mod 2n to support efficient NTT algorithms. The
integer parameter k of the noise distribution has to be chosen such that the probability of decryption errors
is negligible. On a high-level, the final security of NewHope depends on (q, n, k) where a larger n and a
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larger k
q lead to a higher security level. The choice of γ does not have an impact on the security but is need

for correctness (see Section 1.2) and is simply the smallest possible value.
In the unlikely case that a higher security level is required while confidence in the RLWE assumption

remains, it is straightforward to choose a NewHopeLudicrous parameter set with dimension n = 2048 and
k = 8. This would basically double execution times and the size of public keys, ciphertexts, secrete keys
(maybe). A small increase in security for the NewHope-CPA-KEM is also possible. As the scheme should
in practice only be used in an ephemeral setting where decryption errors are less critical it might be possible
to slightly increase k (e.g., k = 16 as in NewHope-Usenix).

We do not belief that a larger modulus q will result in a performance benefit or better performance/security
tradeoff. However, in case q is increased, the parameter k has to be adapted as well. Choosing n not as a
power of two would render the scheme insecure. In general, RLWE-based schemes do not requires a prime
modulus q for security or performance. However, as NewHope directly uses properties of a negacyclic NTT,
parameters have to be chosen so that q is prime and that q ≡ 1 mod 2n. A scheme without restrictions
regarding the modulus q would look quite different than NewHope from an implementers perspective.

1.4.2 Toy/challenge parameters

We do no encourage the use of smaller dimensions that n = 512 for practical applications. As toy parameter
set for cryptanalysis we propose NewHopeToy1 with n = 256, q = 7681, k = 4. An even smaller toy
parameter NewHopeToy2 set with n = 128, q = 256, k = 1 could also be a target for cryptanalysis but
would require the reduction of the length of the message supported by NewHope-CPA-PKE to 128-bit.

1.4.3 Cryptographic primitives

NewHope relies on the SHAKE hash function [112] for several purposes:
• NewHope-CPA-PKE uses SHAKE128 to generate the public parameters â from a public seed seed.

In this instance the assumption is that SHAKE128 acts as a public random function for the given output
length. Additionally, SHAKE256 is used to hash and extend the output of the random number generator
in key generation.

• NewHope-CPA-KEM uses SHAKE256 to derive intermediate random values and the shared secret.
The assumption is that SHAKE256 is a pseudorandom function.
• NewHope-CCA-KEM uses SHAKE256 to derive random keys, intermediate random values, and the

shared secret; and to hash the public key and ciphertext. When hashing the public key pk and ciphertext
c, the assumption is that SHAKE256 is collision-resistant. When deriving seed, rand, s, µ, and ss, the
assumption is that SHAKE256 is a pseudorandom function.

No padding is used in the derivations above. Multiple inputs are combined by concatenating bitstrings;
lengths of the concatenated values are fixed.

1.4.4 Provenance of constants and tables

The following constants are used in NewHope:
• Dimension n: Selected as a power of two to support efficient NTT algorithms and to maintain the

security of RLWE.
• Modulus q: Selected as the smallest prime such that q ≡ 1 mod 2n so that the number-theoretic

transform (NTT) can be realized efficiently.
• Noise parameter k: Selected so that the probability of decryption errors is negligible.
• NTT parameter γ: Must be n-th primitive root of unity; we select the smallest such value.
• Domain separation in calls to SHAKE: â is generated pseudorandomly using SHAKE128 from a seed;

domain separators are used internally in this generation, and are simply selected as counters.
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2 Performance analysis

2.1 Estimated performance on the NIST PQC reference platform
In this section we provide details on our reference implementation written in C and estimate its perfor-
mance on the NIST PQC reference platform. In Table 4 we list the directory in which the code of our
reference implementation located in the submission file. The respective Gen (crypto_kem_keypair), Encaps
(crypto_kem_enc), and Decaps (crypto_kem_dec) functions for each instantiation are defined in the file
kem.c in the respective directory. Note that the code of reference and optimized implementation is identical
but we provide two directory structures for completeness. The size of the produced keys and ciphertexts is
not dependent on the platform and the numbers can be found in Table 3.

Table 4: Directories of the code of our reference implementation.

Reference Implementation
NewHope512-CPA-KEM Reference_Implementation/crypto_kem/newhope512cpa
NewHope512-CCA-KEM Reference_Implementation/crypto_kem/newhope512cca
NewHope1024-CPA-KEM Reference_Implementation/crypto_kem/newhope1024cpa
NewHope1024-CCA-KEM Reference_Implementation/crypto_kem/newhope1024cca

The main emphasis in the C reference implementation is on simplicity and portability. It does not use
any floating-point arithmetic and outside of the Keccak (SHAKE256 and SHAKE128) implementation only
needs 16-bit and 32-bit integer arithmetic.

NTT Implementation. All polynomial coefficients are represented as unsigned 16-bit integers. Our in-
place NTT implementation transforms from bit-reversed to natural order using Gentleman-Sande butterfly
operations [67, 42]. One would usually expect that each NTT is preceded by a bit-reversal, but all inputs to
NTT are noise polynomials that we can simply consider as being already bit-reversed. This is supported in
the description of the algorithm. As explained earlier, the NTT−1 operation still involves a bit-reversal. For
n = 1024 the core of the NTT and NTT−1 operation consists of 10 layers of transformations, each consisting
of 512 butterfly operations of the form described in Listing 2.

Montgomery arithmetic and lazy reductions. The performance of operations on polynomials is largely
determined by the performance of NTT and NTT−1. The main computational bottleneck of those operations
are 2304 (n = 512) or 5120 (n = 1024) butterfly operations, each consisting of one addition, one subtraction
and one multiplication by a precomputed constant. Those operations are in Zq; recall that q is a 14-bit
prime. To speed up the modular-arithmetic operations, we store all precomputed constants in Montgomery
representation [111] with R = 218, i.e., instead of storing ωi, we store 218ωi (mod q). After a multiplication
of a coefficient g by some constant 218ωi, we can then reduce the result r to gωi (mod q) with the fast
Montgomery reduction approach. In fact, we do not always fully reduce modulo q, it is sufficient if the
result of the reduction has at most 14 bits. The fast Montgomery reduction routine given in Listing 1a
computes such a reduction to a 14-bit integer for any unsigned 32-bit integer in {0, . . . , 232 − q(R− 1)− 1}.
Note that the specific implementation does not work for any 32-bit integer; for example, for the input
232 − q(R− 1) = 1073491969 the addition a=a+u causes an overflow and the function returns 0 instead of the
correct result 4095. In the following we establish that this is not a problem for our software.

Aside from reductions after multiplication, we also need modular reductions after addition, which, for
the sake of simplicity and readability, are written as the C modulo operator %). An alternative and faster
approach is to use use “short Barrett reduction” [19] as detailed in Listing 1b. Again, this routine does not
fully reduce modulo q, but reduces any 16-bit unsigned integer to an integer of at most 14 bits which is
congruent modulo q.

In the context of the NTT and NTT−1, we make sure that inputs have coefficients of at most 14 bits. This
allows us to avoid reductions after addition on every second level, because coefficients grow by at most one bit
per level and the short Barrett reduction (and the % operator) can handle 16-bit inputs. Let us turn our focus
to the input of the Montgomery reduction (see Listing 2). Before subtracting a[j+d] from t we need to add a
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multiple of q to avoid unsigned underflow. Coefficients never grow larger than 15 bits and 3 · q = 36867 > 215,
so adding 3 · q is sufficient. An upper bound on the expression ((uint32_t)t + 3*12289 - a[j+d]) is
obtained if t is 215−1 and a[j+d] is zero; we thus obtain 215 +3 ·q = 69634. All precomputed constants are in
{0, . . . , q − 1}, so the expression (W * ((uint32_t)t + 3*12289 - a[j+d]), the input to the Montgomery
reduction, is at most 69634 · (q − 1) = 855662592 and thus safely below the maximum input that the
Montgomery reduction can handle.

Listing 1 Reduction routines used in the reference implementation.
(a) Montgomery reduction (R = 218).

uint16_t mred(uint32_t a) {
uint32_t u;
u = (a * 12287);
u &= ((1 << 18) - 1);
a += u * 12289;
return a >> 18;

}

(b) Short Barrett reduction.

uint16_t bred(uint16_t a) {
uint32_t u;
u = ((uint32_t) a * 5) >> 16;
a -= u * 12289;
return a;

}

Listing 2 The Gentleman-Sande butterfly inside odd levels of our NTT computation. All a[j] and W are of
type uint16_t.

W = omega[jTwiddle++];
t = a[j];
a[j] = bred(t + a[j+d]);
a[j+d] = mred(W * ((uint32_t)t + 3*12289 - a[j+d]));

Fast random sampling. As a first step before performing any operations on polynomials, both Alice and
Bob need to expand the seed to the polynomial a using SHAKE256. The implementation we use is based on
the “simple” implementation by Van Keer for the Keccak permutation and slightly modified code taken from
the “TweetFIPS202” implementation [26] for everything else.

Implementation of GenA. The public parameter a is generated from a 32-byte seed through the extendable-
output function SHAKE128 [112, Sec. 6.2]. The approach described here slightly differs from the approach
described in [9]. Specifically, the coefficients of a are generated in n/64 independent blocks of 64 coefficients
each. To generate block i (of coefficients ranging from a64i to a64i+63) is generated by concatenating the
32− byte seed with a one-byte value of i and feeding the resulting 33-byte extended seed to SHAKE128 is then
considered as an array of 16-bit, unsigned, little-endian integers. Each of those integers is used as a coefficient
of a if it is smaller than 5q and rejected otherwise. The first such 16-bit integer is used as the coefficient a64i,
the next one as coefficient of a64i+1 and so on. Each block needs a total of 64 coefficients, so at least 128
bytes of output from SHAKE128. The probability that a 16-bit value is smaller than 5q is 93.75%, so the
expected number of bytes of SHAKE128 output per block of a is 137. One block of output of SHAKE128 has
168 bytes, so with very large probability only one block of SHAKE128 output is required for each block of a.

Performance results. Benchmark results for our reference implementation are reported in Table 5 and were
obtained on an Intel Core i7-4770K (Haswell) running at 3491.953 MHz with Turbo Boost and Hyperthreading
disabled. We compiled our C reference implementation with gcc-4.9.2 and flags -O3 -fomit-frame-pointer
-march=native. For all other routines we report the median of 1000 runs.

2.2 Performance on x86 processors using vector extensions
Intel processors since the “Sandy Bridge” generation support Advanced Vector Extensions (AVX) that operate
on vectors of 8 single-precision or 4 double-precision floating-point values in parallel. With the introduction
of the “Haswell” generation of CPUs, this support was extended also to 256-bit vectors of integers of various
sizes (AVX2). It is not surprising that the enormous computational power of these vector instructions has
been used before to implement very high-speed crypto (see, for example, [23, 74, 24]) and also our optimized
reference implementation targeting Intel Haswell processors uses those instructions to speed up multiple
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Table 5: Cycle counts of our NewHope C reference implementation compiled with gcc-4.9.2 on an Intel Core
i7-4770K (Haswell) with Turbo Boost and Hyperthreading disabled.

Operation NH-512-CPA-KEM NH-512-CCA-KEM NH-1024-CPA-KEM NH-1024-CCA-KEM

NTT 21,772 21,772 49,920 49,772

NTT−1 23,384 23,420 53,596 53,408

GenA 16,012 16,052 32,248 32,240

Gen 106,820 117,128 222,922 244,944

Encaps 155,840 180,648 330,828 377,092

Decaps 40,988 206,244 87,080 437,056

Table 6: Cycle counts of an additional NewHope implementation using AVX extensions compiled with
gcc-4.9.2 on an Intel Core i7-4770K (Haswell) with Turbo Boost and Hyperthreading disabled.

Operation NH-512-CPA-KEM NH-512-CCA-KEM NH-1024-CPA-KEM NH-1024-CCA-KEM

NTT 4888 4820 8416 8496

NTT−1 6352 6344 11,708 11,680

GenA 10,804 10,808 21,308 21,480

Gen 56,236 68,080 107,032 129,670

Encaps 85,144 109,836 163,332 210,092

Decaps 19,472 114,176 35,716 220,864

components of the key exchange. We have done an implementation of NewHope targeting such a vectorized
architecture.

NTT optimizations. The AVX instruction set has been used before to speed up the computation of
lattice-based cryptography, and in particular the number-theoretic transform. Most notably, Güneysu, Oder,
Pöppelmann and Schwabe achieve a performance of only 4 480 cycles for a dimension-512 NTT on Intel Sandy
Bridge [76]. For arithmetic modulo a 23-bit prime, they represent coefficients as double-precision integers.

We experimented with multiple different approaches to speed up the NTT in AVX. For example, we
vectorized the Montgomery arithmetic approach of our C reference implementation and also adapted it to
a 32-bit-signed-integer approach. In the end it turned out that floating-point arithmetic beats all of those
more sophisticated approaches, so we are now using an approach that is very similar to the approach in [76].
One computation of a dimension-1024 NTT takes ≈ 8 450 cycles, unlike the numbers in [76] this does include
multiplication by the powers of γ and unlike the numbers in [76], this excludes a bit-reversal.

Fast sampling. For the computation of SHAKE-128 we use the same code as in the C reference implementa-
tion. One might expect that architecture-specific optimizations (for example, using AVX instructions) are able
to offer significant speedups, but the benchmarks of the eBACS project [25] indicate that on Intel Haswell,
the fastest implementation is the “simple” implementation by Van Keer that our C reference implementation
is based on. The reasons that vector instructions are not very helpful for speeding up SHAKE (or, more
generally, Keccak) are the inherently sequential nature and the 5 × 5 dimension of the state matrix that
makes internal vectorization hard.

Performance results. Benchmark results for our AVX implementation are reported in Table 6 and were
obtained on an Intel Core i7-4770K (Haswell) running at 3491.953 MHz with Turbo Boost and Hyperthreading
disabled. -no-pie -O3 -fomit-frame-pointer -msse2avx -mavx2 -march=native

2.3 Performance estimation on ARM Cortex-M0 and M4
For the performance estimation of NewHope on ARM Cortex-M0 and M4 micrcontrollers we refer to
the implementation of NewHope-Usenix by Alkim, Jakubeit, and Schwabe [10]. Their work shows that
an implementation of NewHope-Usenix can outperform an implementation of Curve25519 [21] for the
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Table 7: Cycle counts of a NewHope-Usenix implementation on a Cortex-M0 and Cortex-M4 microcontroller
obtained from [10].

Operation Cortex-M0 Cortex-M4

NTT 148,517 87,223

NTT−1 167,405 97,789

Generation of a 380,855 293,975

Key generation (equiv. to Gen) 1,168,224 964,440

Key gen + shared key (equiv. to Encaps) 1,738,922 1,418,124

Shared key (equiv. to Decaps) 298,877 178,874

ROM usage (bytes) 30,178 22,828

Table 8: Cycle counts of an implementation of a CPA or CCA-secure public-key encryption scheme that is
similar to NewHope (both use n = 1024, q = 12289, k = 8) on a Cortex-M0 and Cortex-M4 microcontroller
obtained from [116].

Operation Cycle Counts
Unmasked Masked

Key generation 2,669,559 -
CCA2-secure encryption 4,176,684 -
CCA2-secure decryption 4,416,918 25,334,493
CPA-secure encryption 3,910,871 19,315,432
CPA-secure decryption 163,887 550,038
SHAKE128 87,738 201,997
NTT 83,906 -
NTT−1 104,010 -
Uniform sampling (TRNG) 60,014 -
Noise sampling (PRNG) 1,142,448 6,031,463
PRNG (64 bytes) 88,778 202,454

Cortex-M0, like the one presented in [55], by more than a factor of two. Their cycle counts are given in
Table 7.

Additionally, we also refer to the work by Oder, Schneider, Pöppelmann, and Güneysu [116] who describe
an implementation of CCA2-secure public-key encryption that is similar to NewHope with and without
side-channel countermeasures. In Table 8 we provide their results on a Cortex-M4. The instantiated scheme
is ring-LWE public-key encryption (n = 1024, q = 12289, and binomial distribution with parameter k = 8)
parametrized for negligible decryption errors so that the Fujisaki-Okamoto [59] transformation by Targhi
and Unruh can be used [139]. The CCA2-secure encryption takes 4,176,684 cycles, which translates to 25
milliseconds when operating at a clock frequency of 168 MHz. Key generation takes 16 ms at 168 MHz. The
application of the CCA2-conversion to the decryption causes a much higher overhead due to the necessary
re-encryption. In the unmasked case, it requires 27 times more cycles.

2.4 Performance on MIPS64
Starting as an academic project in Stanford in the 1980s, the MIPS architecture is nowadays, typically utilized
in network equipment, laser printers and consumer electronics. It was formerly part of superscalar processors
(e.g. the MIPS I R2000 and R3000 of 32-bits, the R4000 of 64 bits (MIPS III) and the R10000 (MIPS IV))
and video game consoles (e.g. PlayStation 1–2 and Nintendo64). Developed by MIPS Technologies, Inc. (now
Imagination Technologies4), the MIPS architecture is based on the RISC instruction set.

4https://www.imgtec.com/mips/
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From year 2000, several synthesizable cores has appeared such as the 32-bit 4k, 24k and 64-bit 5k.
Afterwards the MIPS325 and MIPS646 specifications were created. Nowadays, companies such as Loongson
Technology, Cavium, Broadcom and Toshiba have licenses for MIPS64. Given the availability of the MIPS64
in the market in a myriad of different network routers, we have selected the MIPS64r3 release for optimizing
NewHope1024 and NewHope512. Besides, the size of the available registers makes it ideal for vectorizing
the polynomial arithmetic of the algorithm as well as for reducing memory access (this is the case, for instance,
of our implementation of the Keccak-f[1600] permutation).

Our target device is a 28 nm cnMIPS III core from a CN7130 SoC, based on the MIPS64r3 architecture,
clocked at 1.6 GHz and equipped with 78K instruction cache, 32K data cache and a floating point unit.

The MIPS64r3 architecture. The MIPS64r3 architecture has 32 64-bits registers and standardizes three
co-processor encoding regions: CP0 for CPU configuration, cache control, interrupt control and memory
management, CP1 is the FPU and CP2 available to other peripherals. The register file is comprised of 64-bit
32 registers where 27 can be used: v0-v1 (value returned by subroutines), a0-a3 (subroutine parameters), t0-t9
(temporary), s0-s8 (subroutine registers), gp (global pointer) and ra (return address). Further, co-processor
CP1 provides an additional set of 32 64-bit registers, typically part of the FPU.

NTT optimization. As mentioned before, our choice for a 64-bits architecture instead of the MIPS32 one
is largely based on the idea of vectorizing the NTT implementation. In so doing, we apply the following
strategy: first, we parallelize the NTT by vectorizing the butterfly operation, second, and directly related to
the former idea, we merge the layers of the NTT. Also both the Montgomery and Barrett reductions have
been adapted for dealing with 64-bit integers.

Our approach is to parallelize the execution of the NTT by processing more than one coefficient (16 bits)
in the architecture registers of 64-bit length. Out of the 32 registers of the MIPS64 architecture, only 27 are
available to us for processing the 1,024 or 512 coefficients of the NTT. This way, we could execute one NTT’s
butterfly operation for n pairs of coefficients in parallel. However, due to the overflow bits of the butterfly
operations (addition and multiplication) we can store 2 coefficients in 1 register. In our implementation, we
use 16 registers for storing the coefficients, meaning that is actually possible to process 2 · 16 = 32 coefficients
at a time, merging at most log2 32 = 5 layers. Nonetheless due to the fact that after the 5th layer the blocks
of coefficients must be chosen from a different block of coefficients, that is, not from an adjacent one, we
merge 4 layers.

Table 9: Performance figures of the NTT on MIPS64 in number of cycles.

Implementation no optimization (#cycles) -O2 (#cycles) -O3 (#cycles) opt (#cycles)

NTT1024 (NewHope1024 c32) 439,970 196,989 196,990 -
NTT512 (NewHope512 c32) 197,296 86,651 86,647 -
NTT1024 (vectorized) - - - 85,348
NTT512 (vectorized) - - - 38,755

Polynomial arithmetic vectorization. The same approach we utilized for optimizing the NTT can be
applied to implement the polynomial arithmetic operations of NewHope1024 and NewHope512. However,
in order to perform coefficients multiplication and pointwise multiplication via vectorization, both 128-
bit registers and respective SIMD instructions are required in order to avoid overflows. Since our target
architecture lacks both components we have only addressed the vectorization of the coefficient addition whose
overflow can be controlled. Further, in order to reduce the impact of our strategy, we reused the coefficient
storage method describe in the prior subsection. In this respect, we can perform two coefficient additions
using a single addition instruction after an NTT has been performed.

Keccak. The XOF SHAKE used in NewHope relies on the Keccak-f[1600] permutation [27]. Since the
main operations against internal state of 5x5 are performed on 64-bit words, MIPS64 is ideal for doing the
permutation directly on 64-bit registers. Besides, loading words into the state is also done using 64-bit words

5https://www.imgtec.com/mips/architectures/mips32/
6https://www.imgtec.com/mips/architectures/mips64/
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and cycle reduction is achieved by (1) maintaining the 25 64-bit words of the state in registers exploiting the
large amount of registers available in the MIPS64 architecture during the ρ and χ layers and (2) reducing
memory access in the computation of the ρ layer by storing the input values directly from the θ layer.

However, when comparing our implementation with other architectures, the lack of a Bitwise Bit Clear
BIC instruction in the MIPS64r3 ISA (available for instance in the ARMv7-M architecture7) creates a small
performance penalty, since every operation of the χ layer requires three instructions (that is, one and, one or
and one xor operation).

Performance results. In order to estimate the number of cycles required by each primitive of NewHope1024
and NewHope512 we rely on the performance counters of the coprocessor 0 (CP0). In so doing, we set up
the performance counters in the before the start of of the primitive and measure again after the execution
has finished.

Table 10: Performance figures of NewHope1024 and NewHope512 (CPA) on MIPS64 in number of cycles.

Implementation no optimization (#cycles) -O2 (#cycles) -O3 (#cycles) opt (#cycles)

NewHope1024 8,421,677 3,099,586 2,456,793 1,705,203
NewHope-CPA-KEM Key Generation 2,948,707 1,114,148 857,679 589,613
NewHope-CPA-KEM Encapsulation 4,378,938 1,645,474 1,277,601 882,443
NewHope-CPA-KEM Decapsulation 1,093,115 339,177 322,128 232,543

NewHope512 4,079,865 1,518,736 1,186,890 864,812
NewHope-CPA-KEM Key Generation 1,425,656 544,466 413,041 299,922
NewHope-CPA-KEM Encapsulation 2,123,245 806,941 617,037 448,791
NewHope-CPA-KEM Decapsulation 530,569 167,074 156,203 115,767

Table 11: Performance figures of NewHope1024 and NewHope512 (CCA) on MIPS64 in number of cycles.

Implementation no optimization (#cycles) -O2 (#cycles) -O3 (#cycles) opt (#cycles)

NewHope1024 14,466,351 5,524,430 4,290,417 2,871,081
NewHope-CCA-KEM Key Generation 3,329,101 1,298,382 981,655 651,810
NewHope-CCA-KEM Encapsulation 5,078,734 1,481,606 1,517,853 1,021,702
NewHope-CCA-KEM Decapsulation 6,058,512 2,244,514 1,791,563 1,197,556

NewHope512 7,029,073 2,702,808 2,063,742 1,473,698
NewHope-CCA-KEM Key Generation 1,611,787 633,120 470,209 334,100
NewHope-CCA-KEM Encapsulation 2,485,018 979,139 734,888 530,373
NewHope-CCA-KEM Decapsulation 2,931,568 1,089,937 858,111 609,107

Our performance figures suggest that it is possible to achieve a reduction of 196,990 - 85,348 = 111,642
cycles in the NTT computation from NewHope1024 (that is, a speed up of factor 2.3) and a reduction of
86,647 - 38,755 = 47,892 cycles in the NTT computation from NewHope1024 (that is, a speed up of factor
1.8) (See Table 9). With opt we refer to the implementations based on the optimization techniques described
in this section. Besides, we noticed an overall reduction of factor 1.49 and factor 1.40 in the computation
of the whole protocol (NewHope1024 and NewHope512 respectively (CCA-KEM)). These improvements
were obtained by comparing our results with a compilation of NewHope1024/ NewHope512 using an
aggressive optimization option (-O3)8 (Table 11).

7http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0406c/index.html
8Using gcc version 4.7.0 for cross-compiling on Linux 4.12.0-2-amd64
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3 Known Answer Test values
All KAT values are included in subdirectories of the directory KAT of the submission package. Specifically, the
KAT values of NewHope512-CPA-KEM are in the subdirectory KAT/newhope512cpa, the KAT values of
NewHope512-CCA-KEM are in the subdirectory KAT/newhope512cca, the KAT values of NewHope1024-
CPA-KEM are in the subdirectory KAT/newhope1024cpa, and the KAT values of NewHope1024-CCA-
KEM are in the subdirectory KAT/newhope1024cca. Each of those directories contains the KAT values as
generated by the PQCgenKAT_kem program provided by NIST. Specifically, those files are:
• KAT/newhope512cpa/PQCkemKAT_896.req
• KAT/newhope512cpa/PQCkemKAT_896.rsp
• KAT/newhope512cca/PQCkemKAT_1888.req
• KAT/newhope512cca/PQCkemKAT_1888.rsp
• KAT/newhope1024cpa/PQCkemKAT_1792.req
• KAT/newhope1024cpa/PQCkemKAT_1792.rsp
• KAT/newhope1024cca/PQCkemKAT_3680.req
• KAT/newhope1024cca/PQCkemKAT_3680.rsp

4 Justification of security strength

4.1 Provable security reductions
A summary of the provable security reductions underlying the security of NewHope-CCA-KEM is as
follows:

1. Using the centred binomial distribution ψk instead of a discrete Gaussian distribution provides negligible
advantage to an adversary. Section 4.1.1 gives a justification.

2. Using a pseudorandomly generated â in NewHope-CPA-PKE instead of a uniformly random â
provides no advantage to an adversary, under the assumption that SHAKE128 is a random oracle.

3. NewHope-CCA-KEM is an IND-CCA-secure KEM under the assumption that NewHope-CPA-PKE
is an IND-CPA-secure public key encryption scheme and that G and F (both instantiated as SHAKE256
are random oracles. Theorem 4.2 gives a tight, classical reduction against classical adversaries in the
classical random oracle model. Theorem 4.3 gives a non-tight, classical reduction against quantum
adversaries in the quantum random oracle model.

4. NewHope-CPA-PKE is an IND-CPA-secure public key encryption scheme under the assumption that
the decision ring learning with errors problem is hard. Theorem 4.4 gives a tight, classical reduction
against classical or quantum adversaries in the standard model.

5. The decision ring learning with errors problem is hard under the assumption that the search version of
the approximate shortest vector problem is hard (in the worst case) on ideal lattices in R, for appropriate
parameters. Lyubashevsky et al. [102, Thm. 3.6] give a polynomial-time quantum reduction against
classical or quantum adversaries in the standard model. See also [120, Thm. 2.7] for a simplified version
of this result.

4.1.1 Binomial noise distribution

The original worst-case to average-case reductions for LWE [127] and Ring-LWE [103] state hardness for
continuous Gaussian distributions (and therefore also trivially apply to rounded Gaussians, which differ from
discrete Gaussians). This also extends to discrete Gaussians [35] but such proofs are not necessarily intended
for direct implementations. The use of discrete Gaussians (or other distributions with very high-precision
sampling) is only crucial for signatures [101] and lattice trapdoors [70], to provide zero-knowledgeness.

The following theorem states that choosing ψk as error distribution in NewHope-CPA-KEM (i.e., using
the algorithm Sample) does not significantly decrease security compared to a rounded Gaussian distribution
with the same standard deviation σ =

√
8/2.
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Theorem 4.1 Let ξ be the rounded Gaussian distribution of parameter σ =
√

4, that is, the distribution of
b
√

4 · xe where x follows the standard normal distribution. Let P be the idealized version of NewHope-
CPA-KEM, where outputs from Sample are replaced by samples from ξ. If an (unbounded) algorithm, given
as input the public key and ciphertext of NewHope-CPA-KEM succeeds in recovering the shared secret ss
with probability p, then it would also succeed against P with probability at least

q ≥ p9/8 · 2−14.

The result also holds for NewHope-CCA-KEM.

In [17], Bai et al. identify Rényi divergence as a powerful tool to improve or generalize security reductions
in lattice-based cryptography. We review the key properties. The Rényi divergence [129, 17] is parametrized
by a real a > 1, and defined for two distributions P,Q by:

Ra(P‖Q) =

 ∑
x∈Supp(P )

P (x)a

Q(x)a−1

 1
a−1

.

It is multiplicative: if P, P ′ are independent, and Q,Q′ are also independent, then Ra(P × P ′‖Q ×Q′) ≤
Ra(P‖Q) · Ra(P ′‖Q′). Finally, Rényi divergence relates the probabilities of the same event E under two
different distributions P and Q:

Q(E) ≥ P (E)a/(a−1)/Ra(P ||Q).

Proof For our argument, recall that because the final shared key ss is obtained through hashing as
ss← SHAKE256(K) before being used, then, in the random oracle model (ROM), any successful attacker
must recover K exactly. We call this event E. We also define ξ to be the rounded Gaussian distribution
of parameter σ =

√
k/2 =

√
4, that is the distribution of b

√
4 · xe where x follows the standard normal

distribution.
A simple script in [9] computes R9(ψ8‖ξ) ≈ 1.002. Yet because 5n samples are used per instance of the

protocol, we need to consider the divergence R9(P‖Q) = R9(ψ8, ξ)
5n where P = ψ5n

8 and Q = ξ5n. For
n = 512 we get R9(P‖Q) ≈ 164, and for n = 1024, we get R9(P‖Q) ≈ 26889. In both cases, R9(P‖Q) ≤ 214.

The choice a = 9 is rather arbitrary but seemed a good trade-off between the coefficient 1/Ra(ψ8‖ξ) and
the exponent a/(a − 1). This reduction is provided as a safeguard: switching from Gaussian to binomial
distributions can not dramatically decrease the security of the scheme. With practicality in mind, we will
simply ignore the loss factor induced by the above reduction, since the best-known attacks against LWE do
not exploit the structure of the error distribution, and seem to depend only on the standard deviation of the
error (except in extreme cases [14, 90]).

4.1.2 Security of IND-CCA KEM

Theorem 4.2 (IND-CPA PKE =⇒ IND-CCA KEM in classical ROM) We define a public key en-
cryption scheme PKE = (KeyGen,Encrypt,Decrypt) with message spaceM and which is δ-correct. Let G and
F be independent random oracles. Let QKEM6⊥′m = QFO 6⊥′m [PKE, G, F ] be the KEM obtained by applying the
QFO 6⊥′m transform as in subsubsection 1.2.3. For any classical algorithm A against the IND-CCA security of
QKEM6⊥′m that makes qG and qF queries to its G and F oracles, there exists a classical algorithm B against
the IND-CPA security of PKE such that

Advind-cca
QKEM 6⊥′m

(A) ≤ 4 · qRO + 1

|M|
+ qRO · δ + 3 ·Advind-cpa

PKE (B)

where qRO = qG + qF . Moreover, the running time of B is about that of A.

Theorem 4.2 follows from Theorems 3.2 and 3.4 of Hofheinz, Hövelmanns, and Kiltz [85], with the following
modifications. In the application of HHK’s Theorem 3.2, we take qV = 0. Note that Theorems 3.2 and
3.4 of HHK are about the FO 6⊥ transform, which differs from the QFO 6⊥′m in the following ways. 1) QFO 6⊥′m
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uses a single hash function (with longer output) to compute K and coin′ whereas FO 6⊥ uses two; but this
is equivalent in the random oracle model with appropriate output lengths. 2) QFO 6⊥′m ’s computation of K
and coin′ also takes the public key pk as input whereas FO 6⊥ does not; this does not negatively affect any of
the theorems, and has the potential to provide multi-target security. 3) QFO 6⊥′m includes the d value in the
ciphertext, whereas FO 6⊥ does not; since d is computed by applying a random oracle G to the secret µ ∈M,
taking advantage of d requires querying G on µ, which occurs with the additional q

|M| probability term added
in the theorem.

Theorem 4.3 (IND-CPA PKE =⇒ IND-CCA KEM in quantum ROM) We define a public key
encryption scheme PKE = (KeyGen,Encrypt,Decrypt) with message spaceM and which is δ-correct. Let G
and F be independent random oracles. Let QKEM6⊥′m = QFO 6⊥′m [PKE, G, F ] be the KEM obtained by applying
the QFO 6⊥′m transform as in subsubsection 1.2.3. For any quantum algorithm A against the IND-CCA security
of QKEM6⊥′m that makes qG and qF queries to its quantum G and F oracles, there exists a quantum algorithm
B against the IND-CPA security of PKE such that

Advind-cca
QKEM 6⊥′m

(A) ≤ 9 · qRO ·

√√√√q2
RO · δ + qRO ·

√
Advind-cpa

PKE (B) +
1

|M|

where qRO = qG + qF . Moreover, the running time of B is about that of A.

Theorem 4.3 follows from Lemma 2.3 and Theorems 4.4 and 4.6 of Hofheinz, Hövelmanns, and Kiltz [85],
with the following modifications. Note that Theorems 4.4 and 4.6 of HHK are about the QFO 6⊥m transform,
which differs from the QFO 6⊥′m in the following ways. 1) QFO 6⊥′m uses a single hash function (with longer output)
to compute K, coin′, and d whereas FO 6⊥ uses two; but this is equivalent in the random oracle model with
appropriate output lengths. 2) QFO 6⊥′m ’s computation of K, coin′, and d also takes the public key pk as input
whereas FO 6⊥ does not; this does not negatively affect any of the theorems, and has the potential to provide
multi-target security. 3) QFO 6⊥′m ’s computation of the shared secret ss also takes the encapsulation c as input;
this does not negatively affect any of the theorems, and provides robustness against ciphertext modification.

4.1.3 Security of IND-CPA PKE

Theorem 4.4 (dRLWE =⇒ IND-CPA security of NewHope-CPA-PKE) Let n and q be integers.
Let χ be a probability distribution on Rq. For any quantum algorithm A against the IND-CPA security of
NewHope-CPA-PKE (with uniformly random â), there exists quantum algorithms B1 and B2 against the
decision ring-LWE problem such that

Advind-cpa
NewHope-CPA-PKE(A) ≤ AdvdRLWE

n,q,χ (B1) + AdvdRLWE
n,q,χ (B2) .

Moreover, the running times of B1 and B2 are about that of A.

The proof of Theorem 4.4 is essentially the same as that of Lemma 4.1 of [120] or Theorem 1 of [31].

4.2 Cryptanalytic attacks
For our security analysis in this section we mainly rely on the (very pessimistic) concrete security analysis of
Ring-LWE based cryptosystems from [9]. Additionally, we also estimate the security level with the approach
presented in [7].

4.2.1 Methodology: the core SVP hardness

RLWE as LWE. We analyze the hardness of Ring-LWE as an LWE problem, since, so far, the best known
attacks do not make use of the ring structure. Indeed, while some new quantum algorithms against Ideal-SVP
recently appeared [56, 39, 28, 44, 45], they do not seem to affect Ring-LWE. Precisely, in [45] two obstacles
are discussed. First the approximation factor reached are asymptotically sub-exponential and it is therefore
unlikely to affect cryptographic parameters. Secondly, Ring-LWE is proven to be at least as hard as Ideal-SVP,
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but the natural approach for a converse reduction seems to require the ring Z[X]/(Xn + 1) to be Euclidean,
which is only the case for n ∈ {1, 2, 4} (see [97]).

Attacks against LWE. There are many algorithms to consider in general (see the survey [7]), yet many of
those are irrelevant for our parameter set. In particular, because there are only m = n samples available one
may rule out BKW types of attacks [90] and linearization attacks [14]. This essentially leaves us with two
BKZ [136, 41] attacks, usually referred to as primal and dual attacks that we will briefly recall below.

The algorithm BKZ proceeds by reducing a lattice basis using an SVP oracle in a smaller dimension b.
It is known [78] that the number of calls to that oracle remains polynomial, yet concretely evaluating the
number of calls is rather painful, and this is subject to new heuristic ideas [41, 40, 12]. We choose to ignore
this polynomial factor, and rather evaluate only the core SVP hardness, that is the cost of one call to an
SVP oracle in dimension b, which is clearly a pessimistic estimation from the defender’s point of view.

4.2.2 Enumeration versus quantum sieve

Typical implementations of BKZ [65, 41, 38] use an enumeration algorithm as its SVP oracle, yet this
algorithm runs in super-exponential time 2Θ(n logn). On the other hand, the sieve algorithms are known to
run in exponential time, but are so far slower in practice for accessible dimensions b ≈ 130. In recent work
Ducas [53] has shown that sieving techniques (in the classical setting) can be used in practice for exact-SVP,
being now less than an order of magnitude slower than enumeration already in dimension 60 to 80.

For simplicity and conservatism, we will choose a reasonable lower bound for both enumeration and sieving.
Namely, our bounds follow the asymptotic complexity of sieving algorithms, yet ignoring sub-exponential
factors, when calculating cost in those attacks. According to the prediction of [41], even with Grover
acceleration, the cost of enumeration is also lower-bounded by our estimates for blocksizes b ≥ 250.

Quantum sieve. A lot of recent work has pushed the efficiency of the original lattice sieve algorithms [114,
109], improving the heuristic complexity from (4/3)b+o(b) ≈ 20.415b down to

√
3/2

b+o(b)
≈ 20.292b using

Locality Sensitive Hashing (LSH) techniques [93, 20]. The hidden sub-exponential factor is known to be much
greater than one in practice, so again, estimating the cost ignoring this factor leaves us with a significant
pessimistic margin.

Most of those algorithms have been shown [94, 92] to benefit from Grover’s quantum search algorithm,
bringing the complexity down to 20.265b. It is unclear if further improvements are to be expected, yet, because
all those algorithms require classically building lists of size

√
4/3

b+o(b)
≈ 20.2075b. It is thus very plausible

that the best quantum SVP algorithm would run in time greater than 20.2075b.

Discarding enumeration for our analysis. In [41], predictions of the cost of solving SVP classically using
sophisticated heuristic enumeration algorithms are given. For example, solving SVP in dimension 100 requires
visiting about 239 nodes, and 2134 nodes in dimension 250. Note that the cost for enumeration are here given
in term of visited nodes in the enumeration tree, and visiting each of those nodes require about 100 cycles
according to [41]. For simplicity and conservatism, we will assume that each node requires only one cycle.

Because this enumeration is a backtracking algorithm, it does benefit from the recent quasi-quadratic
speedup [110], decreasing the quantum cost to about at least 220 to 267 operations as the dimension increases
from 100 to 250. Again, this is quite conservative as the quantum version of this backtracking algorithm is
subject to slowdowns polynomial in the depth of the tree.

On the other hand, our best-known attack bound 20.265b gives a cost of 266 in dimension 250, and the
best plausible attack bound 20.2075b ≈ 239. Because enumeration is super-exponential (both in theory and
practice), its cost will be worse than our bounds in dimension larger than 250 and we may safely ignore this
algorithm.9

We note that a recent technique formalized as discrete pruning [60, 11] seems to outperform the previous
pruned enumeration of [41]. Unfortunately, no tools are currently available to fully predict the cost of this
new techniques. We hope that future work will clarify these issues. Our current understanding is that this
methods visits more nodes of the enumeration tree, but visit them much faster by removing the intricate
backtracking steps. By counting the number of visited nodes rather than the count of CPU cycles, our lower
bound should therefore also apply to this new discrete pruning technique.

9The numbers are taken from the latest full version of [41] available at http://www.di.ens.fr/~ychen/research/Full_BKZ.
pdf.
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4.2.3 Primal attack

The primal attack consists of constructing a unique-SVP instance from the LWE problem and solving it using
BKZ. We examine how large the block dimension b is required to be for BKZ to find the unique solution. Given
the matrix LWE instance (A,b = As+e) one builds the lattice Λ = {x ∈ Zm+n+1 : (A|−Im|−b)x = 0 mod q}
of dimension d = m+ n+ 1, volume qm, and with a unique-SVP solution v = (s, e, 1) of norm λ ≈ ς

√
n+m.

Note that the number of used samples m may be chosen between 0 and 2n in our case and we numerically
optimize this choice.

Success condition. We model the behavior of BKZ using the geometric series assumption (which is known
to be optimistic from the attacker’s point of view), that finds a basis whose Gram-Schmidt norms are given
by ‖b?i ‖ = δd−2i−1 ·Vol(Λ)1/d where δ = ((πb)1/b · b/2πe)1/2(b−1) [40, 7]. The unique short vector v will be
detected if the projection of v onto the vector space spanned by the last b Gram-Schmidt vectors is shorter
than b?d−b. Its projected norm is expected to be ς

√
b, that is the attack is successful if and only if

ς
√
b ≤ δ2b−d−1 · qm/d. (1)

We note that this analysis introduced in [9] differs and is more conservative than prior works, which were
typically based on the hardness of unique-SVP estimates of [63]. The validity of the new analysis has been
confirmed by further analysis and experiments in [6].

4.2.4 Dual attack

The dual attack consists of finding a short vector in the dual lattice w ∈ Λ′ = {(x,y) ∈ Zm × Zn : Atx =
y mod q}. Assume we have found a vector (x,y) of length ` and compute z = vt · b = vtAs + vte =
wts + vte mod q which is distributed as a Gaussian of standard deviation `ς if (A,b) is indeed an LWE
sample (otherwise it is uniform mod q). Those two distributions have maximal variation distance bounded
by ε = 4 exp(−2π2τ2) where τ = `ς/q, that is, given such a vector of length ` one has an advantage ε against
decision-LWE.

The length ` of a vector given by the BKZ algorithm is given by ` = ‖b0‖. Knowing that Λ′ has dimension
d = m+ n and volume qn we get ` = δd−1qn/d. Therefore, obtaining an ε-distinguisher requires running BKZ
with block dimension b where

− 2π2τ2 ≥ ln(ε/4). (2)

Note that small advantages ε are not relevant since the agreed key is hashed: an attacker needs an advantage
of at least 1/2 to significantly decrease the search space of the agreed key. He must therefore amplify his
success probability by building about 1/ε2 many such short vectors. Because the sieve algorithms provide
20.2075b vectors, the attack must be repeated at least R times where

R = max(1, 1/(20.2075bε2)).

This makes the conservative assumption that all the vectors provided by the Sieve algorithm are as short as
the shortest one.

4.2.5 Security analysis

The cost of the primal attack and dual attacks are given in Table 12. They were obtained by executing
our script in scripts/PQsecurity.py. According to our analysis, we claim that our proposed parameters
for NewHope1024 offer 233 bits of security. Thus we are stronger (and quite likely with a large margin)
than a post-quantum security level of 128 bits. In particular, NewHope1024 could even withstand a
dimension-halving attack in the line of [66, Sec 8.8.1] based on the Gentry-Szydlo algorithm [71, 98] or
the subfield approach of [5]. Note that so far, such attacks are only known for principal ideal lattices or
NTRU lattices, and there are serious obstructions to extend them to Ring-LWE, but such precaution seems
reasonable until lattice cryptanalysis stabilizes. For our NewHope512 parameter set we claim 101 bits of
security.

In addition to our own analysis, we have used a freely available tool to evaluate the concrete security of
LWE instances [7]. This approach is less pessimistic than our original security analysis, in particular it takes
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Known Known Best
Attack m b Classical Quantum Plausible

BCNS proposal [31]: q = 232 − 1, n = 1024, ς = 3.192

Primal 1062 296 86 78 61
Dual 1055 296 86 78 61
NTRUencrypt [82]: q = 212, n = 743, ς ≈

√
2/3

Primal 613 603 176 159 125
Dual 635 600 175 159 124
JarJar-Usenix [9]: q = 12289, n = 512, ς =

√
12

Primal 623 449 131 119 93
Dual 602 448 131 118 92
NewHope-Usenix [9]: q = 12289, n = 1024, ς =

√
8

Primal 1100 967 282 256 200
Dual 1099 962 281 255 199

NewHope512: q = 12289, n = 1024, ς =
√
4

Primal 540 384 112 101 79
Dual 545 383 112 101 79
NewHope1024: q = 12289, n = 1024, ς =

√
4

Primal 999 886 259 235 183
Dual 1048 881 257 233 182

Table 12: Core hardness of NewHope512 and NewHope1024 and selected other proposals from the literature as
well as previous instantiations of NewHope. The value b denotes the block dimension of BKZ, and m the number of
used samples. Cost is given in log2 of CPU operations and is the smallest cost for all possible choices of m and b.
Note that our estimation is very optimistic about the abilities of the attacker so that our result for the parameter
set from [31] does not indicate that it can be broken with ≈ 280 bit operations, given today’s state-of-the-art in
cryptanalysis.

account for the number of SVP calls, and estimate the cost of classical sieving to 2.292b+16. In Table 13 we
provide the results for NewHope512 and NewHope1024. These values have been obtained by executing
for different values of n and k using the sage module as follows:

load("https://bitbucket.org/malb/lwe-estimator/raw/HEAD/estimator.py")
k = 8.0; n = 1024; q = 12289; stddev = sqrt(k/2); alpha = alphaf(sigmaf(stddev), q)
_ = estimate_lwe(n, alpha, q, reduction_cost_model=BKZ.sieve)

The estimation in Table 13 also leads to the conclusion that NewHope1024, with a security level of
289 bits, reaches well beyond a security level of 128 bits. For NewHope512 a bit-security level of 142
bits is obtained. Most other (R)LWE-based or NTRU-based proposals achieve considerably lower security
than NewHope1024. For comparison we also give a lower bound on the security of [31] and do notice a
significantly improved security in our proposal. Yet, because of the numerous pessimistic assumption made in
our analysis, we do not claim any quantum attacks reaching those bounds. The highest-security parameter
set used for RLWE encryption in [72] is very similar to the parameters of JarJar-Usenix. The situation
is different for NTRUencrypt, which has been instantiated with parameters that achieve about 128 bits
of security according to our analysis10. Specifically, we refer to NTRUencrypt with n = 743 as suggested
in [82]. A possible advantage of NTRUencrypt compared to NewHope is somewhat smaller message sizes,
however, this advantage becomes very small when scaling parameters to achieve a similar security margin as
NewHope.

10For comparison we view the NTRU key-recovery as an homogeneous Ring-LWE instance. We do not take into account
the combinatorial vulnerabilities [86] induced by the fact that secrets are ternary. We note that NTRU is a potentially a
weaker problem than Ring-LWE: it is in principle subject to a subfield-lattice attack [5], but the parameters proposed for
NTRUencrypt are immune.
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usvp dec dual
JarJar-Usenix 161 198 185
NewHope-Usenix 313 410 356
NewHope512 142 171 163
NewHope1024 289 373 334

Table 13: Hardness of NewHope512 and NewHope1024 in the model of [7]. The analysis is based on a cost of
2.292b+16.4 for each call to the (classical) sieve of [20], an estimate that lies between our lower bound of 2.292b, and
the measured cost in practice [20, 105]. This models also account for the number of calls to the sieve inside BKZ.
The ‘usvp’ attack is similar what we call the ‘primal’ attack, while the ‘dec’ attack is a weaker variation trying to
solve BDD without embedding it to a unique-SVP problem, by first reducing the primal lattice and then decoding the
target vector using Babai decoding. Please refer to [7] for details. The dual attack they consider is also similar to the
one described above.

4.2.6 Cost model and margins

Considering that lattice cryptanalysis is not a fully matured research area and that substantial improvement
are still appearing, it seems preferable to leave significant margins in our security claims. The state-of-the art
is unfortunately not as refined for lattice algorithm as it is can be for a memory-less brute-force attack on
AES [73]. An analysis based on the current state of the art, using a model as refined as suggested by the
call for proposal seems, in our case, way too intricate, prone to mistakes, and would likely become irrelevant
within a few year.

We prefer to perform our analysis in simpler model; yet all the simplifications are done in favor of the
attacker, and serve as margins. Those simplifications also contribute to make our analysis and scripts easier
to verify. We list them here.

Asymptotic versus concrete. We used theoretical complexity of Sieving omitting sub-exponential factors.
For the best asymptotic sieve algorithm [20] with complexity 2.292b+o(b), it is typically reported that the
fitted practical complexity f · 2cb is quite larger than 2.292b, including a large constant factor f and a constant
c. For example, the initial implementation [20] reports a fit of about 2.387b+16 clock-cycles on a x86-64 CPU,
in the range of dimensions 60− 80.

We prefer not to conclude on a quantified margin considering further works. Indeed, the implementation
of [105] reports significant speed-ups using fine tuning and low-level optimizations (up to ×50), but unfortu-
nately no fit is provided. Further improvements are expected by combining those techniques with the very
recent SubSieve algorithm of [53]: quantified claims seems premature.

Core SVP hardness versus BKZ. We also ignored the fact that the attacks actually require polynomially
many calls to BKZ, and the best concrete predictions are typically based on simulations [41, 7]. Those
simulation gets more complicated to perform as we include more techniques such as [12]. One may doubt the
reliability of such simulations and fear further improvement of BKZ strategies. Moreover, some amortization
strategies of sieving in BKZ sketched in [53] remains to be studied. Our core SVP-hardness approach dismisses
those concerns.

CPU cycles versus gates. We also note that the concrete cost measured above is expressed in numbers of
x86-64 CPU cycles, rather than gate count. If one wishes to evaluate the gate count, we warn against naive
implementations whose main cost are derived from ‘Multiply-and-Add’ operations inside inner-product loops.
Some recent works [57, 53] show how to avoid most inner-products, resorting primarily to ‘xor-popcount’
operations.

RAM model versus circuits. The complexity of those algorithms have been analyzed in the quantumly
accessible RAM model, but considering the amount of memory they require, it is not clear whether realistic
architecture would scale well. Even for classical algorithm, it is not clear that the complexity 2.292b+o(b) can
be achieved by a circuit. On the contrary, for the simplest version of the sieve algorithm with complexity
20.415b, it seems possible to design an efficient circuit with area = time = 2.2075b+o(b).11 It is plausible that

11While this has not been studied in details for now, this was pointed out by Paul Kirchner on a public mailing-
list https://groups.google.com/d/msg/cryptanalytic-algorithms/BoSRL0uHIjM/wAkZQlwRAgAJ.
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the LSH techniques can also be applied in the circuit model to some extent, but these techniques will likely
be more costly than in the RAM model, if not by exponential factors, at least by a substantial polynomial
factor.

Amount of memory. Even without considering the issues with (quantumly) accessing such large amount of
memory, mobilizing the required amount of memory can already be considered completely infeasible for the
parameters of NewHope1024. Indeed, the fastest algorithm requires 20.265b+o(b) bits of storage, estimated
at 2233 bits. It is claimed in [20] that the amount of memory may be reduced down to 2.2075b+o(b) without
affecting the asymptotic running time, but it may affect it significantly in practice. Moreover, even this
amount 2.2075b+o(b) of memory, concretely lower bounded by 2182 bits for NewHope1024 already exceed the
numbers of atoms on earth. For NewHope512, the memory lower bound of 279 bits is comparable to the
total amount of data storage available world-wide in 2017 (estimated to 295 exabytes ≈ 271 in 2007 [81], and
growing at a rate of 58% per year).

We note that some variants of sieving require less memory at the cost of being significantly slower both
asymptotically and in practice [16, 79].

MAXDEPTH for quantum computation. While the maximal depth of a quantum computation have a
direct impact on the security level of primitives like AES, we note that this may not be the case for the lattice
attacks considered here. Indeed, while sieving is subject to Grover accelerations [94, 92], these Grover search
are applied to a rather small search space, and many of them may be ran in parallel. In that respect, it seems
that setting MAXDEPTH to 264 or even 240 may not affect the efficiency of a quantum attack. For simplicity
and conservatism, we prefer to not account for such a limitation on the adversary computational resources.

4.2.7 Failure analysis and attack exploiting failure

For our analysis of the failure rate of NewHope512 and NewHope1024 we follow the approach from [9].
The script in scripts/failure-1024k8.py gives a failure rate of less than 2−216 for NewHope1024. For
our NewHope512 instance we obtain a similar failure rate of less than 2−213 as provided in the script
scripts/failure-512k8.py.

Attacks exploiting failure have been studied in [58] against a CPA version of NewHope, and required
generating about 4000 decryption requests. The attack consist of using much larger errors than defined by
the protocol.

One may fear that an attacker using Grover search could produce a failing ciphertext in time about
2−216/2 for the CCA versions of our scheme. Yet, this would require the adversary to decide offline whether a
ciphertext triggers failure. This is not possible, since triggering failure also involves the randomness of the
decryptor’s secret. Moreover, the failure rate given above are upper bounds, that we do not expect to be so
tight. In conclusion, we do not expect decapsulation failures to induce any weaknesses.

5 Expected security strength
In the light of the analysis of Section 4.2 we estimate the following security levels for the two versions of our
scheme, according to the 1 to 5 scale provided in Section 4.A.5 (Security Strength Categories) of the call
provided by the NIST:
• NewHope512: Level 1 (equivalent to AES128, i.e. 2170/MAXDEPTH quantum gates or 2143 classical

gates) with a claimed post-quantum bit-security of 101 bits.
• NewHope1024: Level 5 (equivalent to AES256, i.e. 2298/MAXDEPTH quantum gates or 2272 classical

gates) with a claimed post-quantum bit-security of 233 bits.
The above claims are meant for any value of MAXDEPTH ≥ 240. Indeed, we note that this level are

easier to achieve as MAXDEPTH increase (since the security of AES decrease as MAXDEPTH increase,
while MAXDEPTH does not affect the security analysis of our scheme).

In more details, the cost given in Table 13 following the methodology of [7] are directly corroborating
these security strength, despite optimistic cost of Sieving, and counting CPU cycles rather than gates. The
much more conservative lower bounds of Table 12 remain somewhat below the gatecounts associated to
these level. Yet, in the lights of the margins discussed in Section 4.2.6, this security strength should still
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be comfortably conservative. In particular, in unlike attacks against AES, the fastest attacks against our
scheme resort to very large amounts of memory (at least 279 bits for NewHope512, and at least 2182 bits
for NewHope1024), which makes a direct comparison of gatecounts less relevant.

6 Advantages and limitations

6.1 Summary
From our point of view, NewHope is a fast, efficient, and simple scheme that is a suitable replacement of
RSA and ECC. The main advantages of NewHope and our parameter choices are:

– High performance. NewHope has been implemented on a wide range of platforms and showed very
good performance and features reasonable sized key and ciphertexts. Even for a category 5 scheme with
233 bits of security, performance seems to be similar to currently used elliptic curve based cryptosystems.

– Simplicity and ease of implementation. A basic NewHope implementation is very simple and
can be done with only few lines of code in a tool like SageMath or other mathematical software. The
complexity of the final reference implementation mostly stems from encoding and decoding functions
that are unavoidable as well as the particular NTT implementation. Additionally, the difference between
parameter sets is kept minimal as only n and γ change between NewHope512 and NewHope1024.
Moreover, the NewHope-Usenix code has already been ported into various programming languages12.
A successful integration of NewHope-Usenix into Google Chrome [95] and OpenSSL/Apache [30]
shows the suitability for usage in a hybrid setup.

– Memory efficiency. The implicit usage of the NTT allows for memory efficient in place computation.
No big temporary data structures are required.

– Conservative design. We claim that NewHope1024 has a considerable security margin and is based
on a conservative security analysis that leaves room for improvements in cryptanalysis. Moreover, the
scheme is designed to be somewhat misuse resistant: for example, the leakage of information from the
system random number generator more difficult because we always hash random coins before using
them.

– Implementation security. While more effort on implementation security is needed, some works
already exist that deal with lattice-based cryptography and schemes similar to NewHope.

Some of our design choices lead to certain trade-off and we came to the conclusion we accept some disadvantages
in our design due to the benefits we gain in other areas (e.g., speed, performance, simplicity). The disadvantages
of NewHope we would like to point out are:

– Small noise distribution. The choice of k = 8 was made as a tradeoff for both parameter sets, to
achieve negligible decryption error rates, and to simplify sampling as we can access the randomness
byte-wise. However, some security could be gained by optimizing k for n = 512 and n = 1024 and
for more security in an ephemeral Diffie-Hellman variant where correctness is less important (like the
original NewHope-Usenix).

– Ring-LWE. The usage of the Ring-LWE problem is the basis for the good performance and simplicity
of NewHope and currently no attacks are known that can exploit the addition structure. However,
the standard LWE assumption could be considered more conservative and thus a better choice in case
the next years lead to progress in the cryptanalysis of RLWE.

– Limited Parametrization. It is hard with the current structure of NewHope to construct a scheme
that achieves NIST security category 2,3, or 4 as either ring dimension n = 512 or n = 1024 has to be
used.

– Restrictions due to usage of the NTT. We use the NTT in our basic CPA-secure scheme for
efficiency reasons and we output elements in the NTT domain. Past research shows that the NTT is a
very suitable way to implement polynomial multiplication on various platforms, especially for large
dimensions n. However, this design choice also somewhat restricts the implementer from choosing
a polynomial multiplication algorithm of their choice, like Nussbaumer, Karatsuba, or Schoolbook
multiplication, or at least leads to a performance impact of doing so. If a different polynomial

12See https://ianix.com/pqcrypto/pqcrypto-deployment.html.
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multiplication algorithm is used, it is still required to transform elements into the NTT domain with
our exact parameters.

6.2 Compatibility with existing deployments and hybrid schemes
The original IND-CPA-secure key encapsulation mechanism NewHope-Usenix has been demonstrated as
suitable for use in existing network protocol deployments and in hybrid schemes by several works.

An experiment conducted by Google [95] used NewHope-Usenix alongside ephemeral elliptic curve
Diffie–Hellman (ECDH) key exchange in a hybrid TLS 1.2 ciphersuite in an experimental version of the
Chrome browser. In their report at the end of a 4 month experiment, Google engineers reported that they
“did not find any unexpected impediment to deploying something like NewHope. There were no reported
problems caused by enabling it.” They further elaborated that “the median connection latency only increased
by a millisecond, the latency for the slowest 5% increased by 20ms and, for the slowest 1%, by 150ms”, and
speculated the the latency increase was due primarily to increased communication sizes, not computational
overhead due to the low computational cost of NewHope-Usenix.

Bos et al. [30] compared the performance of several post-quantum key exchange methods, including
NewHope-Usenix, within TLS 1.2 using OpenSSL and Apache, measuring latency and throughput of
HTTPS connections using either only post-quantum key exchange or hybrid post-quantum key exchange
with ECDH in a local network environment. They found that, despite the larger communication size of
NewHope-Usenix, it could support more connections per second and had lower latency than ECDH. Hybrid
ECDH + NewHope-Usenix did result in a small decrease in throughput and latency compared to only
ECDH connections, but only a 3–5% decrease. For details, see Table 5 of [30].

While the above results were about NewHope-Usenix, NewHope-CCA-KEM should not behave very
differently. As noted earlier, the primary difference is that NewHope-CCA-KEM uses key transport to
establish its shared secret, rather than reconciliation like in NewHope-Usenix, and that NewHope-CCA-
KEM achieves IND-CCA security by using a variant of the Fujisaki–Okamoto transform to reconstruct
and check ciphertexts. Communication sizes (ciphertexts) increase by 32 bytes, which should have minimal
effect. Computation costs of NewHope-CCA-KEM are higher than NewHope-Usenix, primarily to the
re-encryption in the decapsulation operation. NewHope-CCA-KEM’s extremely fast performance means
the cost of this re-encryption is still quite small.

6.3 Ease of implementation and hardware implementations
Implementations of the RLWE scheme of Lyubashevsky et al. [102] (LPR10) on microcontrollers are given
in [100, 124]. Additionally, Infineon has announced the successful implementation of a variant of NewHope
on a smart card microcontroller [87].

Several implementations of lattice-based cryptography on reconfigurable hardware have been provided so
far. Instantiations of the basic LPR10 scheme on FPGAs are given in [72, 132, 123]. Works that implement
NewHope-Usenix on FPGAs are [91] and [115].

6.4 Side-channel resistance
Several works already consider side-channel attacks on lattice-based primitives and the construction of
countermeasures. Basic mechanism to protect the NTT and arithmetic of lattice-based schemes can be
found in [133]. Works that deal proposed protected implementations of CPA-secure Ring-LWE-based scheme
are [131] and [130]. Simple power analysis (SPA) attacks are proposed in [125] and [117]. The first work
dealing with side-channel protection of a CCA-secure Ring-LWE-based scheme can be found in [116] (see
Table 8 and Section 2.3). They provide a provably first-order secure masking scheme and its non-trivial
integration into a CCA2 conversion. An interesting result is that for full protection of the secret key and
message in the probing model, a masked noise sampler is required for re-encryption and a first design
of corresponding protected binomial sampler is provided. The implementation and measurements were
carried out on an ARM Cortex-M4F were experimentally verified by using the common non-specific t-test
methodology. The masked CCA2-decryption, with very similar parameters and construction as proposed
for NewHope, takes 25,334,493 cycles which is an overhead factor of 5.7 compared to the CCA2-secure
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decryption without masking. Thus decryption requires roughly to 152 milliseconds runtime at 168 MHz. The
overhead cost for the masking of the CCA2-secure decryption is mainly due to the high cost of the sampling.
The sampling in turn heavily depends on the performance of the PRNG, in this case SHAKE128. An insecure
approach with an unmasked re-encryption would require around 2 million cycles only. However, such an
implementation would not provide sufficient protection against a side-channel adversary in a chosen-ciphertext
scenario. Due to the high similarity of [116] and NewHope we expect very similar results for a side-channel
secured implementation of our proposal.
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