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Abstract

Elliptic Curve Cryptography (ECC) is emerging as an attractive alternative to traditional public-key
cryptosystems (RSA, DSA, DH). ECC offers equivalent security with smaller key sizes resulting in faster
computations, lower power consumption, as well as memory and bandwidth savings. While these char-
acteristics make ECC especially appealing for mobile devices, they can also alleviate the computational
burden on secure web servers.

This article studies the performance impact of using ECC with Secure Sockets Layer (SSL), the
dominant Internet security protocol. We benchmark the Apache web server with an ECC-enhanced
version of OpenSSL under a variety of conditions. Our results show that an Apache web server can
handle 11%-31% more HTTPS requests per second when using ECC rather than RSA at short-term
security levels. At security levels necessary to protect data beyond 2010, the use of ECC over RSA
improves server performance by 110%-279% under realistic workloads.

1 Introduction

Secure communication is an intrinsic requirement of today’s world of on-line transactions. Whether ex-
changing financial, business or personal information, people want to know with whom they are commu-
nicating (authentication) and they wish to ensure that the information is neither modified (data integrity)
nor disclosed (confidentiality) in transit. The Secure Sockets Layer (SSL) protocol [1] is the most popular
choice for achieving these goals.1

The protocol is application independent – conceptually, any application that runs over TCP can also run
over SSL. This is an important reason why SSL deployment has outpaced other security protocols such as
SSH [3], S/MIME [4] and SET [5]. There are many examples of application protocols like TELNET, FTP,
IMAP and LDAP running transparently over SSL. However, the most common usage of SSL is for securing
HTTP [6], the main protocol of the World Wide Web.2

∗On a student internship from the University of Waterloo.
1Throughout this paper, we use SSL to refer to all versions of the protocol including version 3.1 also known as Transport Layer

Security (TLSv1.0) [2].
2The use of HTTP over SSL is also referred to as HTTPS.
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Between its conception at Netscape in the mid-1990s, through its standardization within the IETF (Inter-
net Engineering Task Force) in the late-1990s, the protocol and its implementations have been scrutinized by
some of the world’s foremost security experts [7]. Today, SSL is trusted to secure transactions for sensitive
applications ranging from web banking, to stock trading, to e-commerce.

Unfortunately, the use of SSL imposes a significant performance penalty on web servers. Coarfaet al.
[8] have reported secure web servers running 3.4 to 9 times slower compared to regular web servers on
the same hardware platform. Slow response time is a major cause of frustration for on-line shoppers and
often leads them to abandon their electronic shopping carts during check out. According to one estimate,
the potential revenue loss from e-commerce transactions aborted due to Web performance issues exceeds
several billion dollars [9].

In its most common usage, SSL utilizes RSA encryption to transmit a randomly chosen secret that is
used to derive keys for data encryption and authentication. The RSA decryption operation is the the most
compute intensive part of an SSL transaction for a secure web server. Several vendors such as Broadcom,
nCipher, Rainbow and Sun now offer specialized hardware to offload RSA computations and improve server
performance.

This paper explores the use of Elliptic Curve Cryptography (ECC), an efficient alternative to RSA, as
a means of improving SSL performance without resorting to expensive special purpose hardware. ECC
was first proposed by Victor Miller [10] and independently by Neal Koblitz [11] in the mid-1980s and has
evolved into a mature public-key cryptosystem. Compared to its traditional counterparts, ECC offers the
same level of security using much smaller keys. This results in faster computations and memory, power
and bandwidth savings that are especially important in constrained environments,e.g.mobile phones, PDAs
and smart cards. More importantly, the advantage of ECC over its competitors increases as security needs
increase over time.

Recently, the National Institute of Standards and Technology (NIST) approved ECC for use by the U.S.
government [12]. Several standards organizations, such as IEEE, ANSI, OMA (Open Mobile Alliance) and
the IETF, have ongoing efforts to include ECC as a required or recommended security mechanism. The use
of ECC with SSL is described in an IETF draft [13]. We have implemented that specification in OpenSSL
[14] and created a version of the Apache [15] web server capable of handling HTTPS transactions using
both RSA and ECC.

The rest of this paper is structured as follows. Section 2 provides an overview of ECC technology.
Section 3 describes the SSL protocol and its usage of RSA and ECC public-key cryptosystems. Section 4
outlines the experiments we conducted to compare the performance of RSA and ECC-based SSL. Section 5
presents an analysis of our experimental results. Finally, we summarize our conclusions and discuss future
work in Section 6.

2 ECC Basics

At the foundation of every public-key cryptosystem is a hard mathematical problem that is computationally
intractable. The relative difficulty of solving that problem determines the security strength of the corre-
sponding system. Table 1 summarizes three types of well known public-key cryptosystems. As shown in
the last column, RSA, Diffie-Hellman and DSA can all be attacked using sub-exponential algorithms, but
the best known attack on ECC requires exponential time. For this reason, ECC can offer equivalent security
with substantially smaller key sizes.

Public-key schemes are typically used to transport or exchange keys for symmetric-key ciphers. Since
the security of a system is only as good as that of its weakest component; the work factor needed to break a
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Table 1: A comparison of public-key cryptosystems [16].

Public-key system Examples Mathematical Problem Best known method for
solving math problem
(running time)

Integer factorization RSA, Given a numbern, Number field sieve:
Rabin-Williams find its prime factors exp[1.923(log n)1/3(log log n)2/3]

(Sub-exponential)
Discrete logarithm Diffie-Hellman Given a primen, and Number field sieve:

(DH), DSA, numbersg andh, find exp[1.923(log n)1/3(log log n)2/3]
ElGamal x such thath = gx mod n (Sub-exponential)

Elliptic curve ECDH, Given an elliptic curveE Pollard-rho algorithm:
discrete logarithm ECDSA and pointsP andQ onE,

√
n

find x such thatQ = xP (Fully exponential)

symmetric key must match that needed to break the public-key system used for key exchange. Table 2 shows
NIST guidelines [17] on choosing computationally equivalent symmetric and public-key sizes. Clearly, the
use of 1024-bit RSA does not match the 128-bit or even 112-bit security level now used for symmetric ci-
phers in SSL, let alone the higher (192- and 256-bit) key sizes offered by AES [18], NIST’s new replacement
for DES. This underscores the need to migrate to larger RSA key sizes in order to deliver the full security
of symmetric algorithms with more than 80-bit keys. Recent work by Shamir and Tromer [19] on integer
factorization suggests that the migration needs to happen sooner than previously thought necessary. They
estimate that a specialized machine capable of breaking 1024-bit RSA in under one year can be built for
$10-$50 million dollars. Consequently, RSA Laboratories now considers 1024-bit RSA to be usafe for data
that must be protected beyond 2010 and recommends larger RSA keys for longer term protection [20]. At
higher key sizes, RSA performance issues become even more acute. Since the performance advantage of
ECC over RSA grows as the cube of the key size ratio, wider adoption of ECC seems inevitable.

Table 2: Computationally equivalent key sizes (in bits).
Symmetric ECC RSA/DH/DSA MIPS Years Protection

to attack lifetime [20]

80 160 1024 1012 until 2010
112 224 2048 1024 until 2030
128 256 3072 1028 beyond 2031
192 384 7680 1047

256 512 15360 1066

Unlike conventional cryptosystems which operate over integer fields, ECC operates over a group of
points on an elliptic curve. Its main cryptographic operation isscalar point multiplication, which computes
Q = kP (a pointP multiplied by an integerk resulting in another pointQ on the curve). Scalar multiplica-
tion is performed through a combination of point-additions and point-doublings. For example,11P can be
expressed as11P = (2 ∗ ((2 ∗ (2 ∗ P )) + P )) + P . The security of ECC relies on the difficulty of solving
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the Elliptic Curve Discrete Logarithm Problem (ECDLP), which states that givenP andQ = kP , it is hard
to find k. Besides the curve equation, an important elliptic curve parameter is thebase point, G, which is
fixed for each curve. In ECC, a large random integerk acts as a private key, while the result of multiplying
the private keyk with the curve’s base pointG serves as the corresponding public key.

Not every elliptic curve offers strong security properties and for some curves the ECDLP may be solved
efficiently [21]. Since a poor choice of the curve can compromise security, standards organizations like NIST
and SECG have published a set of curves [12] that possess the necessary security properties. The use of these
curves is also recommended as a means of facilitating interoperability between different implementations of
a security protocol.

Elliptic Curve Diffie Hellman (ECDH) [22] and Elliptic Curve Digital Signature Algorithm (ECDSA)
[23] are the elliptic curve counterparts of the well-known Diffie-Hellman and DSA algorithms, respectively.
In ECDH key agreement, two communicating parties A and B agree to use the same curve parameters. They
generate their private keyskA andkB , and corresponding public keysQA = kA.G andQB = kB .G. The
parties exchange their public keys and each multiplies its private key and the other’s public key to arrive at a
common shared secretkA.QB = kB .QA = kA.KB .G. While a description of ECDSA is not provided here,
it similarly parallels DSA.

3 Overview of the SSL Protocol

Secure Sockets Layer [1] is the most widely used security protocol on the Internet today. It offers encryp-
tion, source authentication and integrity protection for data and is flexible enough to accommodate differ-
ent cryptographic algorithms for key agreement, encryption and hashing. However, the specification does
recommend particular combinations of these algorithms, calledcipher suites, which have well-understood
security properties. For example, the cipher suiteRSA-RC4-SHAuses RSA for key exchange, RC4 for bulk
encryption, and SHA for hashing.

The two main components of SSL are the Handshake protocol and the Record Layer protocol. The
Handshake protocol allows an SSL client and server to negotiate a common cipher suite, authenticate each
other, and establish a sharedmaster secretusing public-key algorithms. The Record Layer derives symmetric
keys from the master secret and uses them with faster symmetric-key algorithms for bulk encryption and
authentication of application data.

Since public-key operations are computationally expensive, the protocol’s designers added the ability
for a client and server to reuse a previously established master secret. This feature is also known as “session
resumption”, “session reuse” or “session caching”. The resulting abbreviated handshake does not involve
any public-key cryptography, and requires fewer and shorter messages. Research indicates that session
caching does indeed improve web server performance [24]. The following subsections describe full and
abbreviated SSL handshakes using RSA and ECC.

SSL allows both client- and server-side authentication. However, due to the difficulty of managing user
certificates across multiple client devices, the former is rarely used. User authentication, in such cases,
happens at the application layer,e.g.through passwords sent over an SSL-protected channel. Client authen-
tication is not discussed further in this paper.

3.1 RSA-based Full Handshake

Today, the most commonly used public-key cryptosystem for establishing the master secret is RSA. Figure 1
shows the operation of an RSA-based handshake. The client and server first exchange random nonces (used
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ServerClient

ClientHello (Initial proposal)

(Conveys server’s authenticated

(Client verifies server’s encryption key

CertificateRequest*
ServerHelloDone

ServerHello

Certificate*
ClientKeyExchange

(Ciphersuite negotiated)

RSA encryption key)

and sends encrypted random secret)

CertificateVerify*

Application Data Application Data

Finished

[ChangeCipherSpec]

[ChangeCipherSpec]

Finished

Certificate

(Server decrypts random secret)

(Ready for bulk encryption, authentication)

ServerKeyExchange*

Figure 1: RSA-based SSL Handshake.

for replay protection) and negotiate a cipher suite withClientHelloandServerHellomessages. The server
then sends its signed RSA public key in theServerCertificatemessage. The client verifies the server’s RSA
key and uses it to encrypt a randomly generated 48-byte number (thepremaster secret). The encrypted result
is sent in theClientKeyExchangemessage. The server uses its RSA private-key to decrypt the premaster
secret. Both end points then use the premaster secret to create a master secret which, along with previously
exchanged nonces, is used to derive the cipher keys, initialization vectors and MAC (Message Authentication
Code) keys for bulk encryption by the Record Layer.

3.2 ECC-based Full Handshake

Figure 2 shows the operation of an ECC-based SSL handshake, as specified in [13]. Through the first two
messages (processed in the same way as for RSA), the client and server negotiate an ECC-based cipher
suite,e.g. ECDH-ECDSA-RC4-SHA. TheServerCertificatemessage contains the server’s ECDH public key
signed by a certificate authority using ECDSA. After validating the ECDSA signature, the client conveys its
ECDH public key to the server in theClientKeyExchangemessage. Next, each entity uses its own ECDH
private key and the other’s public key to perform an ECDH operation and arrive at a shared premaster secret.
The derivation of the master secret and symmetric keys is unchanged compared to RSA.

3.3 Abbreviated Handshake

The abbreviated handshake protocol is shown in Figure 3. Here, theClientHello message includes the
non-zero ID of a previously negotiated session. If the server still has that session information cached and
is willing to reuse the corresponding master secret, it echoes the session ID in theServerHellomessage.3

Otherwise, it returns a new session ID thereby signaling the client to engage in a full-handshake. The
derivation of symmetric keys from the master secret and the exchange ofChangeCipherSpecandFinished
messages is identical to the full handshake scenario.

3The likelihood of a cache hit depends on the server’s configuration and its current workload.
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Figure 2: ECC-based SSL Handshake (ECDH-ECDSA key exchange).
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[ChangeCipherSpec] (Both parties reuse master key from
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Finished previously established session)
[ChangeCipherSpec]

Finished
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Figure 3: Abbreviated SSL Handshake.
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The abbreviated handshake does not involve certificates or public-key cryptographic operations so fewer
(and shorter) messages are exchanged. Consequently, an abbreviated handshake is significantly faster than
a full handshake.

3.4 Public-Key Cryptography in SSL

Table 3 summarizes the various public-key cryptographic operations performed by a client and server in
different modes of the SSL handshake.

1. RSA key exchange
The client performs two RSA public-key operations – one to verify the server’s certificate and another
to encrypt the premaster secret with the server’s public key. The server only performs one RSA
private-key operation to decrypt theClientKeyExchangemessage and recover the premaster secret.

2. ECDH-ECDSA key exchange
The client performs an ECDSA verification to verify the server’s certificate and then an ECDH oper-
ation using its private ECDH key and the server’s public ECDH key to compute the shared premaster.
All the server needs to do is perform an ECDH operation to arrive at the same secret.

Table 3: Cryptographic operations in an SSL Handshake.

RSA ECDH-ECDSA

Client RSAverify + RSAencrypt ECDSAverify + ECDHop

Server RSAdecrypt ECDHop

4 Evaluation Methodology

The main goal of our experiments was to study the performance impact of replacing RSA with ECC in the
SSL protocol. Besides public-key cryptography, an HTTPS transaction involves several other operations
including symmetric encryption, hashing, message parsing and file system access. The cost of data encryp-
tion and hashing depends on the amount of data transferred. The effective cost of public-key operations is
determined by the frequency of session reuse which eliminates the need for public-key operations for some
transactions. In order to get a realistic estimate of SSL performance, it is important to use an appropriate
workload for the tests.

Other studies on SSL performance [8, 25, 26] have either reused the workload for a standard (not secure)
web server or synthesized one based on measurements from a sampling of secure web sites [27, 8]. We chose
the latter approach since “real-life” workloads for standard and secure web servers are likely to be different.
In particular, our workload is based on Badia’s survey [27] of half a dozen popular banking, investment and
retail sites (Amazon, Datek, ETrade, Fidelity, Merrill Lynch and Wells Fargo). The survey found that the
aggregate page size ranges between 10KB to 70KB with a 30KB median.4 It also identified two primary
usage models impacting SSL session reuse.

4A “page” consists of an HTML file and one or more embedded images. An average page in [27] consists of an 18KB HTML
file and seven image files averaging 1245 bytes.
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1. In theshopping cartmodel, Web sites reserve SSL strictly for transporting sensitive information like
credit card numbers and personal information. Amazon is a representative example of this usage
model – SSL is used when a customer is finalizing a purchase but not when he is browsing through
available products. The survey found an average of one new SSL session for every three pages in this
usage model.

2. In thefinancial institutionmodel, the first web page provides a link to a login screen protected by
SSL. After a successful login, all subsequent pages are also protected. This usage is exemplified by
ETrade and Wells Fargo and, on average, requires one new session for every eight pages.

4.1 Performance metrics

An SSL client fetches web pages sequentially but a server handles multiple requests concurrently. Due to
this difference in operation, we use two distinct metrics for evaluating performance from the client’s and
server’s perspective.

First-Response Time:This is the delay between initiating an SSL handshake (either full or abbreviated)
and receiving the first packet in the HTTPS response. It models the latency experienced by a user
between clicking on a URL and seeing the first update to the browser window.

Fetches per second:This measures the rate at which a server fulfills web page requests.

4.2 Experiments Performed

We used a public-domain tool called httpload [28] to run multiple HTTPS fetches in parallel and measured
the rate at which an Apache server satisfies these requests as well as the response time experienced by
clients. We performed this experiment using:

• Two different cipher suites:RSARC4SHA and ECDH ECDSARC4SHA to compare the use of
RSA and ECC in an SSL handshake. For each cipher suite, we studied two different public-key sizes
— 1024 bits and 2048 bits for RSA, 160 bits and 224 bits for ECC. As indicated in Table 2, 160-
bit ECC provides the same security as 1024-bit RSA and 224-bit ECC matches 2048-bit RSA. The
smaller keys are considered adequate for short-term protection but the larger keys are recommended
for longer-term protection (beyond 2010).

• Four different file sizes: 0KB, 10KB, 30KB and 70KB. These choices allow us to study the relative
cost of handshake and record layer processing in SSL under a variety of conditions.

• Four different session reuse models: 0% reuse (all fetches create a new session), 66% reuse (1 new
session for every three fetches), 87.5% reuse (1 new session for every eight fetches) and˜ 100% reuse
(only the first fetch from a client creates a new session). We had to modify httpload to support session
reuse. The measurements obtained for 0% and 100% reuse do not have much practical significance,
but they do allow us to analytically predict server throughput for any intermediate reuse figure.

We also used the OpenSSL speed command to measure the performance of raw RSA and ECC operations
for different key sizes. Since any security protocol will likely involve other (non public-key) operations,
these measurements provide only a loose upper bound on the expected performance improvement from
replacing RSA with ECC. Nevertheless, these microbenchmarks are useful in conveying an important fact

8



– ECC’s performance advantage over RSA grows much faster than its key-size advantage as security needs
increase.

4.3 Platform

Our experiments used the Apache 2.0.45 web server compiled with OpenSSL-SNAP-20030309 using the
Sun Forte Developer 7 C compiler without architecture-specific optimizations. This snapshot of the de-
velopment version of OpenSSL includes ECC code contributed by Sun Microsystems Laboratories [29].
Enhancements were made to the modssl component of Apache in order to make it ECC aware.

We ran the server on a single 900 MHz UltraSPARC III processor with 2GB of memory inside a Sun Fire
V480 server running the Solaris 9 operating system.5 For the HTTPS clients, we used a prototype Sun Fire
server equipped with seven 900 MHz UltraSPARC III processors, 14GB of memory and also running the
Solaris 9 operating system. The server and client machines were connected via a 100Mb ethernet network.

5 Analysis of Experimental Results

5.1 Comparison of ECC and RSA microbenchmarks

Table 4 shows a comparison of the RSA and ECC cryptographic operations performed by an SSL server.
We used the OpenSSL speed program to measure RSA decryption and ECDH operation for different key
sizes (a minor enhancement was made for collecting RSA-1536 numbers). These micro-benchmarks high-
light ECC’s performance advantage over RSA for different security levels. Note how ECC’s performance
advantage increases even faster than its key-size advantage as security needs increase.

Table 4: Measured performance of public-key algorithms.

ECC-160 RSA-1024 ECC-192 RSA-1536 ECC-224 RSA-2048

Ops/sec 271.3 114.3 268.5 36.4 195.5 17.8
Performance ratio 2.4 : 1 7.4 : 1 21.4 : 1

Key-size ratio 1 : 6.4 1 : 8 1 : 9.1

5.2 Relative Costs in an HTTPS Fetch

Figure 4 shows the average time taken by the server to fulfill an HTTPS request for different page sizes
and public keys with no session reuse. We used microbenchmark results for ECC, RSA, RC4, and SHA to
estimate the relative costs involved. RSA decryption continues to be the dominant cost in all of these cases.
According to SPECWeb99 which models real-world web traffic, 85% of the files are under 10KB. For such
files, RSA takes up anywhere between 63% to 88% of the overall time depending on the security level.

This suggests that efforts to reduce the RSA cost or replace it with a cheaper alternative will have a
significant payoff. Indeed, we see that using ECC reduces overall processing time at the server by 29% to
86% across the entire range of page sizes in our study.

5The server used in our tests is equipped with four such processors but the other three were turned off for these experiments.
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Figure 4: Relative costs in an HTTPS transaction.

5.3 Client Latency v/s Request Rate

Figure 5 plots the first-response time reported by httpload as a function of page requests generated per
second. The results shown are for a 30KB page size and 66% session reuse. Here again, we notice that the
use of ECC allows the server to handle a larger number of requests (30%-270% more) compared to RSA.
From a client’s perspective, there is not much of a latency difference at the smaller key sizes (as long as the
server is not close to being saturated). For larger key sizes, however, the latency due to ECC ( 350ms) is less
than 40% of the latency due to RSA ( 900ms) even at very light loads

5.4 Impact of Session Reuse

Figure 6 was obtained by measuring the maximum server throughput reported by httpload for 30KB page
accesses with 0% and 100% session reuse. Throughput numbers for other reuse values were derived analyt-
ically using the following formula (hereTr denotes server throughput forr% session reuse) and the values
derived forT66 andT87.5 were verified empirically.

Tr =
1

(1− r
100 )/T0 + ( r

100 )/T100

As expected, increasing the percentage of session reuse decreases the performance impact of choosing
any particular public-key cryptosystems. However, even with reuse values as high as 90% (one new session
for every ten fetches), an ECC based server handles 11% more requests compared to RSA at smaller key
sizes and 110% more at larger key sizes. For 66% reuse, the performance advantage due to ECC is 31% for
smaller keys and 279% for larger keys. The relative performance of ECC over RSA improves further for
smaller pages.
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Figure 5: Latency v/s Throughput plot for Apache web server.

Figure 6: Throughput v/s Session Reuse plot for Apache web server.
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6 Conclusions and Future Work

The above analysis suggests that the use of ECC cipher suites offers significant performance benefits to SSL
clients and servers especially as security needs increase.

Already, there is considerable momentum behind widespread adoption of the Advanced Encryption
Standard (AES) which specifies the use of 128-bit, 192-bit and 256-bit symmetric keys. As indicated in
Table 2, key sizes for public-key cryptosystems used to establish AES keys will correspondingly need to
increase from current levels. Furthermore, as users become increasingly sensitive to on-line privacy issues,
they are likely to demand SSL protection for more of their transactions. For example, Yahoo users might
demand the option to protect their email accesses, not just the login password, with SSL. Similarly, book
lovers might demand privacy protection for their browsing habits on Amazon. We believe these trends bode
well for broader deployment of ECC, in not just wireless environments but also desktop/server environments.

Besides OpenSSL, we have also added ECC support to Netscape Security Services (NSS) [30]. This
open-source cryptographic library powers the Mozilla/Netscape browsers and the Sun ONE web, directory
and messaging servers. We are now targeting ECC support in these servers and intend to perform a similar
study for their representative work loads.
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