
Fixed Argument Pairings

Craig Costello? and Douglas Stebila

Information Security Institute, Queensland University of Technology,
Brisbane, Queensland, Australia

Email: craig.costello@qut.edu.au, douglas@stebila.ca

Abstract. A common scenario in many pairing-based cryptographic protocols is that one
argument in the pairing is fixed as a long term secret key or a constant parameter in the
system. In these situations, the runtime of Miller’s algorithm can be significantly reduced
by storing precomputed values that depend on the fixed argument, prior to the input or
existence of the second argument. In light of recent developments in pairing computation, we
show that the computation of the Miller loop can be sped up by up to 37% if precomputation
is employed, with our method being up to 19.5% faster than the previous precomputation
techniques.
Keywords: Pairings, Miller’s algorithm, Tate pairing, ate pairing, precomputation.

1 Introduction

Boneh and Franklin were among the first to present a pairing-based cryptosystem in 2001, when
they exploited the powerful bilinearity property of pairings to construct the first efficient and
provably secure identity-based encryption (IBE) scheme [9], answering an open question first
posed by Shamir in 1984 [44]. Boneh and Franklin’s discovery, alongside Joux’s one round tripartite
key agreement protocol [29], were major breakthroughs that gave rise to the now thriving field
of pairing-based cryptography and a vast array of new pairing-based primitives that followed,
including short signatures [11], hierarchical encryption [23], group signatures [8], ring signatures
[10], identity-based key agreement schemes [45, 13, 33], an IBE scheme secure in the standard
model [47], as well as generalizations of IBE such as attribute-based encryption [24, 31].

The computation of pairings via Miller’s algorithm [35] was initially too slow for them to
be considered practically viable, but this did not remain the case for long. Much research has
concentrated on achieving pairings at high security levels that are efficient enough for industrial
applications. Although use of the Weil pairing was initially proposed, it quickly became evident
that the computation of the Tate pairing was much faster in practice [9, 21, 22, 4]. A decade after
their introduction into cryptosystems, the computation of a pairing has accelerated from older
implementations that took a few minutes [34], to current state-of-the-art implementations that
take only a few milliseconds [25, 1, 37]. Many of the avenues for improving the computation speed
of cryptographic pairings on elliptic curves have been somewhat exhausted:

– the Miller loop has been truncated to optimal lengths [3, 28, 32, 46, 27];
– improvements inside the Miller iterations, such as denominator elimination, have been thor-

oughly explored [4, 5];
– the choice of the groups G1 and G2 as the two eigenspaces of the Frobenius endormorphism

is now standard [28, 18];
– there is now a flexible array of curve constructions that facilitate fast implementations [20];
– different elliptic curve representations and coordinates systems have been explored in efforts

to reduce the field operations encountered when computing the Miller functions [2, 16, 17]; and
– many other improvements have become standard in optimal or restricted implementations,

such as compressed pairings [39, 36], optimized field constructions [30, 6], fast hashing [40],
and fast final exponentiation [41] techniques.

? The first author acknowledges funding from the Queensland Government Smart State PhD Scholarship.

While these techniques have allowed for relatively fast implementations of pairings, there are
still some possible improvements that are yet to be explored to their full potential. In this paper
we explore one such technique: the implementation of pairings with one argument fixed, which
allow for improvements in runtime performance based on precomputations. In the pairing e(R,S)
of two points R and S on an elliptic curve, we call the argument R fixed if it is constant in terms
of the corresponding protocol that employs the pairing, for example, R is a long-term private key
that is “paired” with ephemeral or dynamic values (different S values) at runtime.

Scott [38] was the first to comment on the possibility of exploiting the nature of a fixed argument
R, suggesting to precompute all multiples of the point R required in the Miller loop. Scott et al.
[42] took this idea further by also precomputing the gradients, λi, of each of the line functions that
arise in the Miller iterations, since these are also values depending solely on the first argument R.
Essentially, this means that the coefficients of the affine Miller functions have been computed in
advance and are just “waiting” as indeterminate functions until S is known, so that they can be
evaluated and used to update the Miller function.

We adopt this same approach by performing all computations that are solely dependent on the
fixed argument R, and storing these before the second argument S is available. Since R-dependent
computations can be performed once only and stored in the long term, it is only the subsequent
S-dependent computations that affect the runtime of the pairing algorithm. The question that we
address in this paper arises naturally: are there further R-dependent (pre)computations that can
be done to reduce the workload encountered when the dynamic second argument S is known?

In light of recent developments in pairing computation [14, 15], we address this question by
considering another: is it computationally cheaper to evaluate a function before operating on its
result, or can it be advantageous to operate on the indeterminate function before evaluating it?

When neither of the pairing arguments are fixed, the results in [14] and [15] show that many
cases of pairing implementations favour the latter. In the case of fixed argument pairings, this
becomes even more evident when we observe that any computations on the indeterminate Miller
functions are entirely R-dependent and can be done in advance. We show that for both the
Tate and ate pairings, the Miller loop can be computed with between 25 and 37% fewer field
multiplications (or squarings) if an optimal amount of precomputation is performed in the fixed
argument, compared to the case when no precomputation is performed.

The rest of this paper is organized as follows. In Section 2, we present background information
on computing pairings using Miller’s algorithm. In Section 3, we separate the R-dependent pre-
computations from the S-dependent dynamic computations in preparation for Section 4, where
we present our main technical innovation: we show how to merge multiple iterations of the loop
in Miller’s algorithm in the precomputation stage to reduce the cost of the S-dependent computa-
tions. Section 5 presents the optimal number of iterations to merge for various security levels, and
Section 6 lists a number of cryptosystems which can benefit from our techniques. We conclude in
Section 7.

2 Preliminaries

Let E be an elliptic curve defined over a large prime field Fp which is given by the short Weierstrass
equation E : y2 = x3 + ax + b, the identity element of which is denoted by O. Let r be a large
prime and let E[r] be the group of points with order r (the r-torsion) on E. Let k > 1 be the
smallest integer such that r | pk−1; we call k the embedding degree. Let πp be the p-power Frobenius
endormorphism on E. The two eigenspaces of πp, restricted to the r-torsion on E, form two linearly
independent groups of order r, written as G1 = E[r]∩ ker(πp − [1]) and G2 = E[r]∩ ker(πp − [p]).
The group G1 is defined over the base field Fp, whilst the group G2 is defined over the full extension
field Fpk .

A bilinear pairing e of two points R,S ∈ E can be computed as

e(R,S) = fm,R(S)(p
k−1)/r,

where m ∈ Z, and fm,R is a function with divisor div(fm,R) = m(R)− ([m]R)− (m− 1)(O). For
our purposes, k will always be even, which allows us to write the function fm,R as a polynomial
in x and y so that fm,R(x, y) is evaluated at the coordinates of the point S when the pairing is
computed. For the Tate pairing, the first argument R comes from G1 and the second argument
S comes from G2, whilst the ate pairing takes R ∈ G2 and S ∈ G1. In either case, the function
fm,R(S) evaluates as an element of the finite field Fpk , and this value is raised to the power
(pk − 1)/r in the “final exponentiation” stage. The function fm,R is called the Miller function,
since it is constructed in a double-and-add like fashion using Miller’s algorithm, which is described
in Algorithm 1.

Algorithm 1 Miller’s affine double-and-add algorithm with denominator elimination
Input: R = (xR, yR), S = (xS , yS), m = (ml−1...m1,m0)2.
Output: fm,R(S)← f .

1: T ← R, f ← 1.
2: for i from l − 2 to 0 do
3: Compute g(x, y) = y − yT + λ(xT − x), where λ is the gradient of the tangent line to T .
4: T ← [2]T = [2](xT , yT).
5: g ← g(xS , yS).
6: f ← f2 · g.
7: if mi 6= 0 then
8: Compute g(x, y) = y − yT + λ(xT − x), where λ is the gradient of the line joining T and R.
9: T ← T +R.

10: g ← g(xS , yS).
11: f ← f · g.
12: end if
13: end for
14: return f .

If we were to discard lines 5 and 10 of Algorithm 1, the output would be an indeterminate
function fm,R(x, y) of degree m, rather than a field element fm,R(xS , yS) ∈ Fpk . The reason we
include lines 5 and 10 and evaluate the intermediate functions in each iteration is because m is
usually quite large (for example, no smaller than 220), and storing so many coefficients is infeasible;
memory constraints force us to evaluate the g functions as we go.

Modern pairing implementations make use of the twisted curve E′ of E, to define a group
G′2 ∈ E′ that is isomorphic to G2 ∈ E, but is defined over a smaller subfield Fpe of Fpk . We let
ψ : E′ → E be the twisting isomorphism from E′ to E, so that ψ(G′2) = G2. A point P ∈ G2 is
usually written as P = P ′ · α, where P ′ ∈ G′2 is defined over Fpe and α is an algebraic element
used in the twisting isomorphism (cf. [28, 17]). In both the Tate and ate pairings, such points in
G2 are often multiplied by elements in the base field Fp, and because of the representation of G2

over the twisted curve, these multiplications are counted as e multiplications in the base field.

To count field multiplications and squarings across the different fields employed in pairing
computations, we use mi and si to respectively denote a multiplication and a squaring in the field
Fpi . We maintain generality (across both Tate and ate like pairings) by assuming that the first
argument R is written as an element of Fpu and that the second argument S is written as an
element of Fpv , where it is understood that the Tate pairing has (u, v) = (1, e) and that the ate
pairing has (u, v) = (e, 1). In both cases, the argument defined over Fpk is actually treated as an
element of Fpe using G′2.

3 R-dependent versus S-dependent Computations

We begin by separating the R-dependent (fixed) computations from the S-dependent (dynamic)
computations. Our goal is to minimize the computational complexity of the S-dependent compu-
tations.

When the first argument in the pairing, R, is a fixed or constant parameter in a protocol, Scott
et al. [42] propose precomputing and storing all the multiples of R (the T values in Algorithm
1) and all of the gradients (the λ values) in each of the Miller lines (the functions g). This is
essentially the same as writing each of the Miller lines as g(x, y) = y−λx−c, where c = yT −λxT is
precomputed and stored alongside λ (see Algorithm 1). We prefer to precompute and store (λ, c) at
each iteration, rather than (xT , yT , λ), since this saves an extra multiplication (λ by xT) at runtime
and only requires the storage of two values for each iteration, as well as somewhat simplifying the
description of what the precomputation achieves. Namely, we do not store the multiples of the
point R, since they are not necessarily required once S is input. Instead, we compute all of the
R-dependent coefficients of the Miller line functions that are required, in complete preparation for
the “arrival” of the argument S.

In this light, fixing one argument in the pairing allows us to split Miller’s algorithm into two
parts. The first part involves all of the R-dependent (pre)computations that can be performed in
advance: computing a set of indeterminate Miller lines defined by (λ, c). The second part involves
all of the S-dependent computations, namely those which cannot be performed until the argument
S is known. We describe the R-dependent precomputations in Algorithm 2 and the S-dependent
dynamic computations in Algorithm 3. For ease of exposition, we assume from here on that the
Miller lines are of the form g(x, y) = y+ λ̃x+ c̃, instead of the usual g(x, y) = y−λx−c, by taking
λ̃ = −λ and c̃ = −c, and make an abuse of notation by relabeling and writing g(x, y) = y+λx+ c
from now on. We use #DBL and #ADD in both algorithms to denote the number of doublings and
additions, respectively, that occur in the run of Miller’s algorithm. Clearly, #DBL = l − 1 (from
Algorithm 1) and #ADD is equal to the number of non-zero bits in the binary representation of the
loop parameter m (excluding the most significant bit). We also write the binary representation
of m from m = (ml−1...m1,m0)2 to m = (m̃0, m̃1...m̃#DBL−1, m̃#DBL)2, so that m̃0 is now
the most significant bit, and Miller’s algorithm proceeds from m̃1 to m̃#DBL; we relabel so that
m = (m0,m1...m#DBL−1,m#DBL)2 from now on.

Algorithm 2 R-dependent precomputations
Input: R = (xR, yR), m = (m0,m1...m#DBL−1,m#DBL)2.
Output: GDBL = {(λ1, c1), (λ2, c2), ..., (λ#DBL, c#DBL)} and

GADD = {(λ′1, c′1), (λ′2, c
′
2), ..., (λ′#ADD, c

′
#ADD)}.

1: T ← R, GDBL ← {∅}, GADD ← {∅}.
2: for i from 1 to #DBL do
3: Compute λi and ci, such that y + λix+ ci is the line tangent to T .
4: T ← [2]T .
5: Append (λi, ci) to GDBL.
6: if mi 6= 0 then
7: Compute λ′i and c′i, such that y + λ′ix+ c′i is the line joining T and R.
8: T ← T +R.
9: Append (λ′i, c

′
i) to GADD.

10: end if
11: end for
12: return GDBL, GADD.

It is important to note that we are solely focussed on minimizing the computational complexity
of the algorithm that is S-dependent. We are assuming that the R-dependent precomputations
are carried out well in advance on a platform that is not too restricted (within reason) with

Algorithm 3 S-dependent computations
Input: S = (xS , yS), m = (m0,m1...m#DBL−1,m#DBL)2, GDBL and GADD (from Algorithm 2).
Output: fm,R(S)← f .

1: f ← 1, countADD ← 1.
2: for i from 1 to #DBL do
3: Compute g ← (yS + λixS + ci).
4: f ← f2 · g.
5: if mi 6= 0 then
6: Compute g ← (yS + λ′countADDxS + c′countADD).
7: countADD ← countADD + 1.
8: f ← f · g.
9: end if

10: end for
11: return f .

computational time. For example, in pairings where both arguments are dynamic, one would
never compute the Miller point operations and the Miller line functions in affine coordinates, as
this involves costly field inversions. Such pairings always resort to avoiding these inversions by
using projective coordinates, but in these cases the Miller lines that arise are almost always (cf.
[17]) of the form g(x, y) = gx · x + gy · y + g0. Employing projective coordinates would certainly
reduce the computational time spent performing the R-dependent precomputations, but this would
produce slightly more complicated Miller lines (the extra coefficient gy in front of y), and would
inevitably slow down the dynamic computations involving S. In the theme of this paper then,
we opt for affine coordinates throughout, with the ultimate goal of minimizing the S-dependent
runtime. We do point out however, that the methods in this paper are entirely compatible with an
implementation where the precomputation complexity might still be somewhat crucial, in which
case the precomputation could be performed in projective coordinates. In such cases, one would
split the algorithm and the analogous computational cost analysis described in [15].

In Table 1, we present the S-dependent dynamic computational complexity in a typical iteration
of Algorithm 3, ignoring the cost of the precomputations in Algorithm 2.

Iteration R-dependent Storage S-dependent Dynamic
values ∈ Fpu computations costs

1 λ1, c1 2 λ1 · xS , f ← f2, f ← f · g em1 + sk + m̃k

2 λ2, c2 2 λ2 · xS , f ← f2, f ← f · g em1 + sk + m̃k

...
...

...
...

...
i λi, ci 2 λi · xS , f ← f2, f ← f · g em1 + sk + m̃k

...
...

...
...

...
#DBL λ#DBL, c#DBL 2 λ#DBL · xS , f ← f2, f ← f · g em1 + sk + m̃k

Table 1. The complexity of S-dependent computations and storage requirements for Miller’s double-and-
add routine

Table 1 also includes the storage requirements for the Miller lines in each iteration. We do not
include the extra storage and S-dependent computations required for the addition steps in our
analysis, since additions only occur a small number of times in state-of-the-art implementations
that make use of well-chosen, low Hamming-weight loop parameters. In each iteration, the multi-
plication of the Miller function f by the update g is counted as m̃k, where m̃k is actually less than
a general mk, since the updates g are sparse. The complexity of m̃k compared with mk depends
on the degree of the twist and the nature of the field construction.

The R-dependent precomputations described above are somewhat natural in the context of
fixed argument pairings. In the next section, we investigate whether more precomputation can be
done to reduce the overall S-dependent complexity (the total of all the entries in the “Dynamic
costs” column).

4 Further Precomputations: Merging n Iterations at a Time

It was shown very recently [14, 15] that speedups in pairing computations can be achieved if
the Miller lines for consecutive iterations are combined before they are evaluated at the second
argument of the pairing. In [15], speedups were achieved by developing a general algorithm for
merging n consecutive iterations. This involves multiplying n Miller lines together, each of which is
raised to a different exponent depending on how many field squarings it would otherwise encounter
in the standard Miller routine, given as

Gn(x, y) =
n∏

i=1

gi(x, y)2
n−i

. (1)

The technique in [14] is much the same, except the formulas for the above line product were
presented in (slightly faster) explicit formulas, depending on the shape of the curve employed.

Our approach is analogous to that of [15], where we derive an algorithm to give Gn(x, y) in
its general form. We note two important differences between the results herein, and those in [15].
Firstly, the Miller lines in this paper are given in affine form, and so the general product in (1) will
have a slightly different form. Secondly, the only computational costs we are concerned with are
the dynamic S-dependent costs. This means that the (potentially very expensive) computational
costs associated with building up the combined products in (1) can be ignored when determining
the optimal number of lines to combine.

We start the discussion by determining the nature of the function Gn(x, y), since the Gn(x, y)
products will be evaluated at S, and this is the first S-dependent cost incurred in each of the n-at-
a-time iterations. We reiterate that the cost associated with building the indeterminate Gn(x, y)
functions is ignored since the coefficients of these functions are solely R-dependent. We assume
that Gn(x, y) is reduced modulo the curve equation y2 = h(x), so that the result will always be
(at most) linear in y, given as

Gn(x, y) = fn(x) + gn(x)y, (2)

(where fn(x) and gn(x) are not to be confused with the f and g functions described in the
algorithms in the previous sections). The following lemma can be used to determine the exact
degree of fn(x) and gn(x) for all n.

Lemma 1. Let y2 = h(x) define an elliptic curve, where h(x) is a monic polynomial with deg(h) =
3. Let n consecutive affine Miller doubling updates be given by g1(x, y) = y+λ1x+c1,..., gn(x, y) =
y + λnx+ cn. If Gn is defined as in Equation (1), then Gn(x, y) takes the form

Gn(x, y) = fn(x) + gn(x)y,

where g(x) is a monic polynomial such that deg(gn) = deg(fn)− 1.

Proof. When n = 1, we have G1(x, y) = g1(x, y) = y + λ1x+ c1 = f1(x) + g1(x)y, where f1(x) =
λ1x+ c and g1(x) = 1, so that deg(g1) = deg(f1)− 1 and g1(x) is trivially monic.

For induction, assume Gk = fk(x) + gk(x)y, where deg(gk) = deg(fk) − 1 and gk is monic.
Gk+1 is computed as

Gk+1 = G2
k · gk+1

=
(
fk(x) + gk(x)y

)2 · (y + λk+1x+ ck+1

)
=
(
fk(x)2 + 2fk(x)gk(x)y + gk(x)2h(x)

)
(y + λk+1x+ ck+1

)
= fk+1(x) + gk+1(x)y,

where

fk+1(x) = 2fk(x)gk(x)h(x) +
(
fk(x)2 + gk(x)2h(x)

)(
λk+1x+ ck+1

)
and

gk+1(x) = fk(x)2 + gk(x)2h(x) + 2fk(x)gk(x)
(
λk+1x+ ck+1

)
.

The degree of fk+1(x) is easily seen to be deg(fk+1) = deg(fk) + def(gk) + deg(h) = deg(fk) +
(deg(fk)−1)+3 = 2·deg(fk)+2, and the degree of gk+1(x) is 2·deg(gk)+deg(h) = 2·deg(fk)+1, so
that deg(gk+1) = deg(fk+1)− 1. Lastly, gk(x)2h(x) is the only expression contributing to gk+1(x)
whose degree is the same as the degree of gk+1(x), and gk(x)2h(x) is clearly monic (since both
gk(x) and h(x) are monic), so gk+1(x) is also monic. ut

To determine the degrees of fn and gn, we couple the initial values, deg(f1) = 1 and deg(g1) = 0,
with the conditions deg(fk+1) = 2 · deg(fk) + 2 and deg(gk+1) = 2 · deg(fk) + 1; hence

deg(fn) = 3 · (2n−1 − 1) + 1 and deg(gn) = 3 · (2n−1 − 1), (3)

agreeing with the analogous result for projective coordinates in [15, Eq. (10)].
Since we are combining n iterations into one, the R-dependent precomputation stage of the

pairing algorithm will now involve two sub-algorithms. Firstly, Algorithm 2 will precompute the
(λ, c) and (λ′, c′) pairs as usual. Then, another sub-algorithm will be called to combine these pairs
(which define lines g(x, y) = y + λx+ c), combining n at a time into products of the form in (2),
the degrees of which are described in (3). Since this sub-algorithm deals with n of the blog2(m)c
standard Miller iterations at a time, it will involve blog2n(m)c iterations.

For exactly the same reason, the modified S-dependent evaluation stage of the pairing algorithm
will now also involve blog2n(m)c iterations. We now turn to determining the cost of each of these
dynamic iterations. Each of the Gn(i) takes the form Gn(i)(x, y) = fn(i)(x) + gn(i)(x)y, containing
deg(fn) + 1 + deg(gn) = 2 · deg(fn) = 6 · (2n−1 − 1) + 2 non-trivial coefficients, since gn is monic.
Thus, for each 1 ≤ i ≤ blog2n(m)c, we must store 6 ·(2n−1−1)+2 elements in Fpu . Apart from the
constant term of fn(i)(x), every one of these 6 · (2n−1 − 1) + 2 non-trivial coefficients is multiplied
by a product of the coordinates of S, each multiplication of which costs em1. Thus, the cost of
evaluating Gn(i) at S is [6 · (2n−1 − 1) + 1]em1. We summarize the S-dependent “per-iteration”
costs in Table 2. Importantly, we note that each of the n-at-a-time iterations will also involve n
squarings of the Miller function f , as well as one (rather than n) multiplication of f by G(S) (see
[14, 15]). For n > 1, this multiplication becomes a general full extension field multiplication mk,
rather than the m̃k that is reported for n = 1, since G(S) is no longer sparse.

Each of the blog2n(m)c iterations requires the computation of fn(1)(Sx) and gn(1)(Sx) · Sy.
Thus, each iterate requires the same products of Si

x and Sj
xSy, where 2 ≤ i ≤ deg(fn) and

1 ≤ j ≤ deg(gn), and these products, which are dependent on the dynamic input, are precomputed
before the first iteration. We use the term precomputed here carefully, since these S-dependent pre-
computations are not to be confused with the R-dependent precomputations that don’t contribute
to the complexity at runtime. Where possible, we would like to use field squarings to determine
the Si

x and Sj
xSy terms, rather than the slightly more expensive field multiplications. We can com-

pute the Si
x terms, which range from S2

x to Sdeg(fn)
x , where 2 ≤ i ≤ 2blog2(deg(fn))c, using one field

squaring each (cf. [14, §5.2]). The remaining Si
x terms, where i > 2blog2(deg(fn))c, are computed

using (deg(fn) − 2blog2(deg(fn))c) field multiplications. These multiplications and squarings occur
in the field Fpv , so that the total dynamic cost of obtaining Si

x for 2 ≤ i ≤ deg(fn) is

(2blog2(deg(fn))c − 1)sv + (deg(fn)− 2blog2(deg(fn))c)mv.

To compute the Sj
xSy products, where 1 ≤ j ≤ deg(gn), we require deg(gn) multiplications1 since

we already have all of the Sj
x. Each of these multiplications occur in Fpv , so that the total cost of

1 This is the cheapest way to compute these products, as trying to use field squarings to form the products
would require us to compute Sj

xSy = ((Sj
x + Sy)2 − S2j

x + S2
y); even though we have S2

y via the curve
equation, the squaring (Sj

x + Sy)2 would require a full extension field squaring.

Iterations R-dependent Storage S-dependent Dynamic
values ∈ Fpu computations costs

1 coefficients of 6(2n−1 − 1) fn(1)(S), gn(1)(S) (6(2n−1 − 1) + 1)em1

↓ fn(1), gn(1) +2 f ← f2n

nsk

n f ← f ·G(S) mk

n+ 1 coefficients of 6(2n−1 − 1) fn(2)(S), gn(2)(S) (6(2n−1 − 1) + 1)em1

↓ fn(2), gn(2) +2 f ← f2n

nsk

2n f ← f ·G(S) mk

...
...

...
...

...

in+ 1 coefficients of 6(2n−1 − 1) fn(i)(S), gn(i)(S) (6(2n−1 − 1) + 1)em1

↓ fn(i), gn(i) +2 f ← f2n

nsk

(i+ 1)n f ← f ·G(S) mk

...
...

...
...

...

Table 2. The complexity of S-dependent computations and storage requirements for n combined iterations

the S-dependent precomputation is given by adding deg(gn)mv = (deg(fn)−1)mv to the previous
cost, giving

(2blog2(deg(fn))c − 1)sv + (2 · deg(fn)− 2blog2(deg(fn))c − 1)mv.

Substituting deg(fn) = 3(2n−1−1)+1 (from (3)) into the above equation requires the evaluation of
2blog2(3(2

n−1−1)+1)c. To simplify this expression we rewrite the index as blog2(2n + 2n−1− 2)c = n,
so that the total number of S-dependent computations simplifies to

(2n − 1)sv + (2n+1 − 5)mv. (4)

From Table 2, each of the iterations costs
(
[6 · (2n−1 − 1) + 2]em1 + nsk + mk

)
. Summing this

cost over the blog2n(m)c iterations, and adding the S-dependent precomputation in (4), gives the
total S-dependent computation complexity as

blog2n(m)c
(
[6 · (2n−1 − 1) + 1]em1 + nsk + mk

)
+ (2n − 1)sv + (2n+1 − 5)mv. (5)

We summarize the total storage and the total costs for all n in Table 3. Once more, we reiterate
that the total complexity is independent of the field containing the first argument, Fpu , and is
only dependent on the field containing the second argument, Fpv . Interestingly, this means that
even if the ate and Tate pairings had equal loop lengths, a fixed argument ate pairing (v = 1) will
still perform faster than a fixed argument Tate pairing (v = e) in general. As far as storage goes,
the ate pairing will require storing values in the field Fpe , whilst the Tate pairing will store values
in the base field Fp. However, because of the shorter loop lengths achieved in the ate pairing, the
total storage needed in the ate pairing may still end up being less than for the Tate pairing. Unlike
the speedups achieved in [14] and [15] which mainly benefit the Tate pairing, it is clear that our
techniques will also speed up the ate pairing when a fixed argument can be exploited. In the next
section, we use the complexities in Table 3 to determine the optimal amount of precomputation
for implementations over various embedding degrees.

5 Optimising n

With the ultimate goal of minimizing the dynamic computations incurred in a pairing with a fixed
argument, we use the total complexities for the Miller loop in Table 3 to determine the best value
of n for both the Tate and ate pairings at different security levels. In Table 4, we summarize our
results for a variety of common security levels (taken from [20]) and embedding degrees, for both
the Tate and ate pairings. At each security level, we list:

n Storage ∈ Fpu S-dependent costs

1 2blog2mc blog2(m)c(em1 + sk + m̃k)

≥ 2 blog2n mc(6(2n−1 − 1) + 2) blog2n(m)c
`
(6(2n−1 − 1) + 1)em1 + nsk + mk

´
+(2n − 1)sv + (2n+1 − 5)mv

Table 3. The total storage requirements and S-dependent complexity for a fixed argument pairing

– the optimal2 length of the Miller loop (mTate and mate, respectively) for both pairings (taken
from [17]). ;

– the optimal value of n, the number of iterations to merge, based on the analysis in Section 4;
– the overall cost of S-dependent dynamic Miller loop doubling operations in terms of base field

(Fp) multiplications, assuming that s1 = 0.8m1, and counting multiplications in fields with
extension degrees of the form k = 2i3j , as mk = 3i5jm1 (cf. [30]);

– the percentage reductions in Miller loop operations between an optimal n implementation (this
paper) and (i) the previous precomputation methods [42] (which correspond to n = 1 herein),
(ii) no precomputation, but with optimal delayed multiplications [14].

We point out that these percentage speedups are based on the computation of the Miller loop
only, and do not take into account the fixed cost of the final exponentation, so that the relative
speedups for the entire pairing computation will be less than those reported in Table 4.

Security r k Best Fp Fpe Fpk Pairing m n #m1 % Speedup
(bits) (bits) ρ (bits) (bits) (bits) pre. no pre.

80 160 6 2.000 320 320 1920 Tate 80 2 1843 7.8 37.1
ate 80 2 1846 7.7 37.0

8 1.500 240 480 1920 Tate 120 2 5069 11.2 30.8
ate 120 2 5058 11.4 30.9

112 224 12 1.000 224 448 2688 Tate 112 3 7308 11.8 29.5
ate 56 3 3646 12.0 29.7

16 1.250 280 1120 4480 Tate 112 2 13460 14.6 25.9
ate 28 2 3346 15.1 26.3

128 256 12 1.000 256 512 3072 Tate 128 3 8263 12.7 30.3
ate 64 2 4198 11.3 29.2

16 1.250 320 1280 4096 Tate 128 2 15368 14.7 26.0
ate 32 2 3823 15.1 26.3

18 1.333 342 1026 4608 Tate 128 3 13590 13.6 28.5
ate 43 3 4697 11.1 26.5

192 384 18 1.333 512 1536 6912 Tate 192 3 20173 14.2 29.3
ate 64 3 6881 12.5 27.6

24 1.250 478 1912 9216 Tate 192 3 34540 18.2 30.4
ate 48 3 8577 18.7 30.9

256 512 32 1.125 576 4608 16384 Tate 256 3 87876 17.9 25.7
ate 32 3 10777 19.5 27.1

36 1.167 598 3588 18432 Tate 264 3 102960 18.2 29.5
ate 43 3 13202 16.1 27.7

Table 4. The optimal number of iterations to merge (n), the resulting S-dependent base field operation
counts (#m1), and the percentage speedup compared to previous precomputation (pre.) [42] and no
precomputation (no pre.) techniques, for a variety of security levels and embedding degrees (k).

2 These loop lengths are commonly mTate = log(r)/2 and mate = log(r)/φ(k), corresponding to the
twisted ate [28] and optimal ate [46] pairings respectively.

(a) Tate and ate pairing multiplication
vs. storage costs with r = 256 and k = 12
for various n.

(b) Tate pairing multiplication costs with
different r and k for various n.

(c) ate pairing multiplication costs with
different r and k for various n.

Fig. 1. S-dependent costs for various n values for the Tate and ate pairings.

In Figure 1(a), we show the operation count (in terms of number of base field multiplications)
for the entire S-dependent dynamic Miller loop doubling operations in the Tate and ate pairings for
a curve with r = 256 and k = 12 based on the analysis in Section 4, as well as the precomputation
storage costs in terms of number of base field elements, for various amounts of precomputation; n =
0 corresponds to no precomputation, while n ≥ 1 corresponds to the complexity from Table 3. The
optimal amount of precomputation for this case occurs at n = 3, at which point the precomputation
storage costs are 860 base field elements, which is not too prohibitive for many applications.

Figure 1(b) shows the base field multiplication costs for the S-dependent dynamic Miller loop
doubling operations in a Tate pairing for a variety of subgroup sizes and embedding degrees based
on the amount (n) of precomputation. With the exception of the r = 160 case, the optimal n is 3,
meaning for those cases we should use precomputation to merge 3 iterations of the Miller loop at
a time, as described in Section 4. Figure 1(c) shows the same costs in an ate pairing.

6 Applications

There are many pairing-based cryptosystems that can benefit from precomputation when one of
the arguments is fixed. In Table 5, we have listed some pairing-based cryptosystems that have
fixed arguments and hence which can benefit from the improvements in this paper.

In some cases, such as the Boneh-Franklin identity-based encryption scheme [9] or the Chen-
Kudla identity-based key agreement protocol [13], one party computes a pairing where the first
argument is fixed while the other party computes a pairing where the second argument is fixed;
here, our technique can only be applied to speed up one party’s pairing computation.

In others cases, such as the McCullagh-Barreto identity based key agreement protocol [33],
the two parties employing the cryptosystem can both benefit because they each compute pairings
where the fixed value appears in the same argument of the pairing. Our speed-up is also applicable
to attribute-based encryption schemes such as those of Goyal et al. [24, §4] and Lewko et al. [31,

§2] which perform a large number of pairings (one or two for each attribute used in decryption),
as in these schemes the second arguments in all these pairing computations are long-term values
(fixed across multiple runs of the protocol, though not all identical within a single run of the
protocol).

fixed # fixed
pairings arguments pairings arguments

Public key encryption Encryption Decryption

Boyen-Mei-Waters [12] 0 1 2nd

ID-based encryption Encryption Decryption

Boneh-Franklin [9] 1 2nd 1 1st

Boneh-Boyen [7] 0 1 2nd

Waters [47] 0 2 both in 2nd

Attribute-based encr. Encryption Decryption
GPSW [24, §4] 0 ≤ #attr. all in 1st

LOSTW [31, §2] 0 ≤ 2 · #attr. all in 2nd

ID-based signatures Signing Verification

Waters [47] 0 2 1 in 2nd

ID-based key exchange Initiator Responder

Smart-1 [45] 2 1 in 1st, 1 in 2nd 2 1 in 1st, 1 in 2nd

Chen-Kudla [13] 1 1st 1 2nd

McCullagh-Barreto [33] 1 2nd 1 2nd

Table 5. Fixed arguments in various pairing-based cryptosystems.

7 Conclusions

We have shown how using precomputation to merge iterations of the Miller loop in Tate and ate
pairings can reduce the cost of the dynamic running time when computing a pairing with one
fixed argument and one dynamic argument. This improves the runtime cost by between 25% and
37% when compared to a pairing computation with no precomputation, and up to 19.5% when
compared to previous precomputation techniques. While the precomputation stage is somewhat
expensive compared to the cost of pairing computation, it can still be run quite quickly (in a few
seconds or less) on modern computers, and the amount of precomputation storage required is not
prohibitive for many settings. Given the wide variety of pairing-based cryptosystems where one
argument (say, a long-term private key or system parameter) is fixed across many protocol runs,
we believe our techniques have wide applicability.

References

1. Aranha, D.F., López, J., Hankerson, D.: High-speed parallel software implementation of the ηT pairing.
In: Pieprzyk, J. (ed.) Topics in Cryptology – CT-RSA 2010. Lecture Notes in Computer Science, vol.
5985, pp. 89–105. Springer (2010)

2. Arene, C., Lange, T., Naehrig, M., Ritzenthaler, C.: Faster pairing computation. Cryptology ePrint
Archive, Report 2009/155 (2009)

3. Barreto, P.S.L.M., Galbraith, S.D., O’Eigeartaigh, C., Scott, M.: Efficient pairing computation on
supersingular abelian varieties. Designs, Codes and Cryptography 42(3), 239–271 (2007)

4. Barreto, P.S.L.M., Kim, H.Y., Lynn, B., Scott, M.: Efficient algorithms for pairing-based cryptosys-
tems. In: Yung, M. (ed.) Advances in Cryptology – Proc. CRYPTO 2002. Lecture Notes in Computer
Science, vol. 2442, pp. 354–368. Springer (2002)

5. Barreto, P.S.L.M., Lynn, B., Scott, M.: Efficient implementation of pairing-based cryptosystems. J.
Cryptology 17(4), 321–334 (2004)

6. Benger, N., Scott, M.: Constructing tower extensions for the implementation of pairing-based cryp-
tography. In: Hasan and Helleseth [26]

7. Boneh, D., Boyen, X.: Efficient selective-ID secure identity-based encryption without random oracles.
In: Cachin, C., Camenisch, J. (eds.) Advances in Cryptology – Proc. EUROCRYPT 2004. Lecture
Notes in Computer Science, vol. 3027, pp. 223–238. Springer (2004)

8. Boneh, D., Boyen, X., Shacham, H.: Short group signatures. In: Franklin [19], pp. 41–55

9. Boneh, D., Franklin, M.: Identity-based encryption from the Weil pairing. In: Kilian, J. (ed.) Advances
in Cryptology – Proc. CRYPTO 2001. Lecture Notes in Computer Science, vol. 2139, pp. 213–229.
Springer (2001)

10. Boneh, D., Gentry, C., Lynn, B., Shacham, H.: Aggregate and verifiably encrypted signatures from
bilinear maps. In: Biham, E. (ed.) Advances in Cryptology – Proc. EUROCRYPT 2003. Lecture Notes
in Computer Science, vol. 2656, pp. 416–432. Springer (2003)

11. Boneh, D., Lynn, B., Shacham, H.: Short signatures from the Weil pairing. J. Cryptology 17(4),
297–319 (2004)

12. Boyen, X., Mei, Q., Waters, B.: Direct chosen ciphertext security from identity-based techniques. In:
Meadows, C., Syverson, P. (eds.) Proc. 12th ACM Conference on Computer and Communications
Security (CCS). pp. 320–329. ACM (2005)

13. Chen, L., Kudla, C.: Identity based authenticated key agreement protocols from pairings. In: Proceed-
ings 16th IEEE Computer Security Foundations Workshop (CSWF-16). pp. 219–233. IEEE (2003)

14. Costello, C., Boyd, C., Nieto, J.M.G., Wong, K.K.H.: Avoiding full extension field arithmetic in pairing
computations. In: Progress in Cryptology – Proc. AFRICACRYPT 2010. Lecture Notes in Computer
Science, Springer (2010)

15. Costello, C., Boyd, C., Nieto, J.M.G., Wong, K.K.H.: Delaying mismatched field multiplications in
pairing computations. In: Hasan and Helleseth [26]

16. Costello, C., Hisil, H., Boyd, C., Nieto, J.M.G., Wong, K.K.H.: Faster pairings on special Weierstrass
curves. In: Shacham and Waters [43], pp. 89–101

17. Costello, C., Lange, T., Naehrig, M.: Faster pairing computations on curves with high-degree twists.
In: Nguyen, P.Q., Pointcheval, D. (eds.) Public Key Cryptography (PKC) 2010. Lecture Notes in
Computer Science, vol. 6056, pp. 224–242. Springer (2010)

18. Devegili, A.J., Scott, M., Dahab, R.: Implementing cryptographic pairings over Barreto-Naehrig
curves. In: Takagi, T., Okamoto, T., Okamoto, E., Okamoto, T. (eds.) Pairing-Based Cryptography –
Pairing 2007. Lecture Notes in Computer Science, vol. 4575, pp. 197–207. Springer (2007)

19. Franklin, M.K. (ed.): Advances in Cryptology – Proc. CRYPTO 2004, Lecture Notes in Computer
Science, vol. 3152. Springer (2004)

20. Freeman, D., Scott, M., Teske, E.: A taxonomy of pairing-friendly elliptic curves. J. Cryptology 23(2),
224–280 (2010)

21. Galbraith, S.D.: Supersingular curves in cryptography. In: Boyd, C. (ed.) Advances in Cryptology –
Proc. ASIACRYPT 2001. Lecture Notes in Computer Science, vol. 2248, pp. 495–513. Springer (2001)

22. Galbraith, S.D., Harrison, K., Soldera, D.: Implementing the Tate pairing. In: Fieker, C., Kohel, D.R.
(eds.) Proc. Algorithmic Number Theory 6th International Symposium (ANTS) 2002. Lecture Notes
in Computer Science, vol. 2369, pp. 324–337. Springer (2002)

23. Gentry, C., Silverberg, A.: Hierarchical ID-based cryptography. In: Zheng, Y. (ed.) Advances in Cryp-
tology – Proc. ASIACRYPT 2002. Lecture Notes in Computer Science, vol. 2501, pp. 548–566. Springer
(2002)

24. Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-grained access control
of encrypted data. In: Wright, R., De Capitani de Vimercati, S., Shmatikov, V. (eds.) Proc. 13th ACM
Conference on Computer and Communications Security (CCS). pp. 89–98. ACM (2006)

25. Hankerson, D., Menezes, A.J., Scott, M.: Software implementation of pairings. In: Joye, M., Neven,
G. (eds.) Identity-Based Cryptography. pp. 188–206. IOS Press (2008)

26. Hasan, A., Helleseth, T. (eds.): International Workshop on the Arithmetic of Finite Fields (WAIFI)
2010. Lecture Notes in Computer Science, Springer (2010)

27. Hess, F.: Pairing lattices. In: Galbraith, S.D., Paterson, K.G. (eds.) Pairing-Based Cryptography –
Pairing 2008. Lecture Notes in Computer Science, vol. 5209, pp. 18–38. Springer (2008)

28. Hess, F., Smart, N.P., Vercauteren, F.: The eta pairing revisited. IEEE Transactions on Information
Theory 52(10), 4595–4602 (2006)

29. Joux, A.: A one round protocol for tripartite Diffie-Hellman. In: Bosma, W. (ed.) Proc. Algorithmic
Number Theory 5th International Symposium (ANTS) 2000. Lecture Notes in Computer Science, vol.
1838, pp. 385–394. Springer (2000)

30. Koblitz, N., Menezes, A.: Pairing-based cryptography at high security levels. In: Smart, N.P. (ed.)
Cryptography and Coding – 10th IMA International Conference. Lecture Notes in Computer Science,
vol. 3796, pp. 13–36. Springer (2005)

31. Lewko, A., Okamoto, T., Sahai, A., Takashima, K., Waters, B.: Fully secure functional encryption:
Attribute-based encryption and (hierarchical) inner product encryption. In: Advances in Cryptology
– Proc. EUROCRYPT 2010. Lecture Notes in Computer Science, Springer (2010)

32. Matsuda, S., Kanayama, N., Hess, F., Okamoto, E.: Optimised versions of the ate and twisted ate
pairings. In: Galbraith, S.D. (ed.) Cryptography and Coding – 11th IMA International Conference.
Lecture Notes in Computer Science, vol. 4887, pp. 302–312. Springer (2007)

33. McCullagh, N., Barreto, P.S.: A new two-party identity-based authenticated key agreement. In:
Menezes, A.J. (ed.) Topics in Cryptology — CT-RSA 2005. Lecture Notes in Computer Science,
vol. 3376, pp. 262–274. Springer (2005)

34. Menezes, A.J.: Elliptic Curve Public Key Cryptosystems. Kluwer Academic Publishers (1993)
35. Miller, V.S.: The Weil pairing, and its efficient calculation. Journal of Cryptology 17, 235–261 (2004)
36. Naehrig, M., Barreto, P.S.L.M., Schwabe, P.: On compressible pairings and their computation. In: Vau-

denay, S. (ed.) Progress in Cryptology – AFRICACRYPT 2008. Lecture Notes in Computer Science,
vol. 5023, pp. 371–388. Springer (2008)

37. Naehrig, M., Niederhagen, R., Schwabe, P.: New software speed records for cryptographic pairings.
Cryptology ePrint Archive, Report 2010/186 (2010)

38. Scott, M.: Implementing cryptographic pairings. In: Takagi, T., Okamoto, T., Okamoto, E. (eds.)
Pairing-Based Cryptography – Pairing 2007. Lecture Notes in Computer Science, vol. 4575, pp. 177–
196. Springer (2007)

39. Scott, M., Barreto, P.S.L.M.: Compressed pairings. In: Franklin [19], pp. 140–156
40. Scott, M., Benger, N., Charlemagne, M., Perez, L.J.D., Kachisa, E.J.: Fast hashing to G2 on pairing-

friendly curves. In: Shacham and Waters [43], pp. 102–113
41. Scott, M., Benger, N., Charlemagne, M., Perez, L.J.D., Kachisa, E.J.: On the final exponentiation for

calculating pairings on ordinary elliptic curves. In: Shacham and Waters [43], pp. 78–88
42. Scott, M., Costigan, N., Abdulwahab, W.: Implementing cryptographic pairings on smartcards. In:

Goubin, L., Matsui, M. (eds.) Cryptographic Hardware and Embedded Systems (CHES) 2006. Lecture
Notes in Computer Science, vol. 4249, pp. 134–147. Springer (2006)

43. Shacham, H., Waters, B. (eds.): Pairing-Based Cryptography – Pairing 2009, Lecture Notes in Com-
puter Science, vol. 5671. Springer (2009)

44. Shamir, A.: Identity-based cryptosystems and signature schemes. In: Goos, G., Hartmanis, J. (eds.)
Advances in Cryptology – Proc. CRYPTO 1984. Lecture Notes in Computer Science, vol. 196, pp.
47–53. Springer (1984)

45. Smart, N.P.: Identity-based authenticated key agreement protocol based on Weil pairing. Electronics
Letters 38(13), 630–632 (June 2002)

46. Vercauteren, F.: Optimal pairings. IEEE Transactions on Information Theory 56(1), 455–461 (2010)
47. Waters, B.: Efficient identity-based encryption without random oracles. In: Cramer, R. (ed.) Advances

in Cryptology – Proc. EUROCRYPT 2005. Lecture Notes in Computer Science, vol. 3494, pp. 114–127.
Springer (2005)

