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In many applications where encrypted traffic flows from an open (public) domain to a protected (private)
domain there exists a gateway that bridges these two worlds, faithfully forwarding all incoming traffic to
the receiver. We observe that the notion of indistinguishability against (adaptive) chosen-ciphertext attacks
(IND-CCA2), which is a mandatory goal in face of active attacks in a public domain, can be relaxed to
indistinguishability against chosen-plaintext attacks (IND-CPA) once the ciphertexts passed the gateway.
The latter then acts as an IND-CCA2/CPA filter by first checking the validity of an incoming IND-CCA2-
secure ciphertext, transforming it (if valid) into an IND-CPA-secure ciphertext, and finally forwarding it
to the recipient in the private domain. Non-trivial filtering can result in reduced decryption costs on the
recipient’s side.

We identify a class of encryption schemes with publicly verifiable ciphertexts that admit generic con-
structions of IND-CCA2/CPA filters (with non-trivial verification). These schemes are characterized by
existence of public algorithms that can distinguish ultimately between valid and invalid ciphertexts. To
this end, we formally define public verifiability of ciphertexts for general encryption schemes, key en-
capsulation mechanisms and hybrid encryption schemes, encompassing public-key, identity-based and
tag-based encryption flavours. We further analyze the security impact of public verifiability and discuss
generic transformations and concrete constructions that enjoy this property.

Keywords: Ciphertext filtering, public key encryption, identity-based encryption, chosen ciphertext
attacks

1. Introduction

Transmission of sensitive information over public networks necessitates the use
of cryptographic protection. Modern cryptography offers various techniques, includ-
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ing public key encryption (PKE) and identity-based encryption (IBE), by which the
sender can use public information to encrypt a message only the intended receiver
can decrypt. These two encryption flavours can be combined into a common syntax,
called general encryption (GE) [1]. For longer messages, hybrid encryption schemes
based on independent key and data encapsulation techniques are often more efficient
(cf. KEM/DEM approach [12]).

The most standard security notion for encryption schemes is indistinguishability
(IND) – a ciphertext may not leak any information about the encrypted message (ex-
cept possibly its length) – whose definitions consider different types of attacks.

The strongest is an adaptive chosen-ciphertext attack (CCA2), in which an at-
tacker can ask for decryption of ciphertexts of her own choice (other than the target
ciphertext). IND-CCA2 security hence protects encrypted messages of honest senders
despite the threat that receivers may also have to decrypt ciphertexts constructed by
the adversary. Such threats exist if the network is susceptible to active attacks. In
contrast, if senders are trustworthy and their messages are delivered over a network
that protects authenticity, then security against chosen-plaintext attacks (CPA) would
already provide sufficient confidentiality guarantees, possibly resulting in better per-
formance.

1.1. IND-CCA2/CPA-encrypted traffic filtering

Consider an intermediate party, called a gateway, and assume that encrypted
sender’s messages are transmitted over a public network until they reach that gate-
way and are then forwarded by the gateway over a private network to the receiver.
We assume that the gateway can be trusted to do this forwarding faithfully.

By the above reasoning, IND-CCA2 security would be required for the encrypted
traffic from (possibly malicious) senders towards the gateway. But for messages on
the internal network – including from the gateway to the receiver – IND-CPA secu-
rity would be sufficient in practice to preserve confidentiality. If the gateway just
forwards all (IND-CCA2) ciphertexts from the outside world without modification,
all security goals remain satisfied, but perhaps we can improve efficiency for the re-
ceiver by having the gateway do some processing on ciphertexts before forwarding
them.

An often observed difference between IND-CPA and IND-CCA2 schemes is that
IND-CPA schemes successfully decrypt every given ciphertext, whereas IND-CCA2
schemes typically check ciphertexts for consistency and decrypt only those that are
“well-formed” [8,12,21,22,24]. For such schemes, the gateway could act as a filter
that would sort out inconsistent IND-CCA2 ciphertexts. There exist few IND-CCA2
schemes [4,33,34] that decrypt every ciphertext to a possibly meaningless (random)
message. Such schemes are not well-suited to filtering since the gateway would need
to know the receiver’s private key to decide whether the message is meaningful,
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which would in general be unacceptable since it requires trusting gateways for con-
fidentiality, not just integrity.

In this paper, we are interested in solutions that allow an honest-but-curious gate-
way to transform IND-CCA2-secure traffic from a public network into IND-CPA-
secure traffic for a private network at low cost and while fully preserving confi-
dentiality of encrypted messages. Note that a simple approach where a gateway can
decrypt ciphertexts and then re-encrypt messages for intended receivers cannot be
applied here since the gateway is not supposed to learn the communication contents.
The key step behind our solution is that the gateway is trusted to correctly perform
a “validity check” of traffic from the public network before forwarding it on to the
private network. Recipient devices on the private network can then (potentially) use
a more efficient decryption procedure.

1.2. Applications of IND-CCA2/CPA filtering

Many applications could benefit from the described IND-CCA2/CPA filtering ap-
proach in the “sender–gateway–receiver” system model. In the following we give
some application domains where the trust relationship between the gateway per-
forming the filtering step on the incoming IND-CCA2-secure traffic and the receiver
obtaining the resulting IND-CPA-secure traffic is sufficient to preserve the overall se-
curity of the communication, while resulting in better communication efficiency and
network throughput.

1.2.1. Wireless sensor networks
A typical wireless sensor network (WSN) consists of many low-powered nodes

that communicate with each other locally in a multi-hop fashion and use a single
more powerful gateway device to communicate with the Internet.

Most battery-powered sensor nodes are particularly slow in processing public-
key operations; for example, the popular Crossbow TelosB node (equipped with an
8 MHz processor and 10 kB RAM) performs one pairing computation in about 14.5 s
(on a 256-bit curve), one modular exponentiation in about 10.2 s (with a 1024-bit ex-
ponent), and one elliptic curve scalar-point multiplication in about 1.5 s (on a 160-bit
curve) [17,41]. Any usage of public-key operations on such nodes must be consid-
ered with care; this holds in contrast to highly efficient symmetric key algorithms
(typically AES), for which sensor nodes often have hardware-based support. The ma-
jority of key distribution and secure initialization algorithms for WSNs (see Stelle et
al. [40] for a recent overview) equip sensor nodes with shared keys for securing the
multi-hop communication with other nodes and the gateway. Therefore, sensors only
need to resort to more expensive asymmetric algorithms when communicating with
the outside world.

In our filtering approach, the gateway could take IND-CCA2-secure traffic from
senders in the outside world, check it for validity, and convert it to a simpler
(IND-CPA-secure) format to reduce the processing costs for receiving sensor nodes.
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1.2.2. Encrypted emails and DoS-resistance
As a second application example, mail servers (MTAs) generally receive emails

over unprotected networks; email recipients contact these servers to access their
emails after having established an end-to-end authenticated (and possibly encrypted)
channel with them. This setting is for instance common to current web-based mail
hosting servers, such as Google Mail, to which clients can connect using TLS. The
trust assumption underlying this model matches the assumed trust relationship be-
tween the receiver and the gateway in our abstract “sender–gateway–receiver” sce-
nario; the mail server acting as a gateway is trusted to guarantee the integrity of
clients’ emails. Today we observe an increasing use of mobile devices for email com-
munication. Their power constraints are still known to be a limitation and processing
encrypted emails can constitute an additional burden on the available resources.

A requirement to send and receive encrypted emails, although not widely adopted
today, may eventually be prescribed by a policy of a company or institution. Mobile
device users would then potentially face the risk of DoS attacks from processing
encrypted emails or attachments. An attacker may send “garbage” emails, aiming to
lure the user into performing the decryption operation that will result in a waste of
resources. The DoS attack remains reasonable from the attacker’s point of view if
generation of “garbage” emails can be performed at a low cost without performing
the actual encryption operation.

Our filtering approach may help thwart such attacks for emails and attachments
encrypted with an IND-CCA2-secure cryptosystem. The idea is to let the mail server
perform a “sanity check” and filter out inconsistent ciphertexts, thus saving the client
from downloading and processing such emails.

1.2.3. Electronic elections
A frequent step within the electronic election process to guarantee vote privacy is

to let voters submit their votes, encrypted under some public key as input to a mix-
net comprised of several servers holding shares of the corresponding secret key to
obtain a (publicly verifiable) permuted list of votes whilst hiding the permutation that
was applied during the mixing process. For efficiency and re-randomization reasons,
most mix-net approaches require homomorphic properties of the input ciphertexts. In
order to ensure fair election, votes must however remain independent such that some
sort of non-malleability for submitted ciphertexts becomes necessary. Wikström [42]
identified the above problem and proposed a solution by defining a special class
of cryptosystems, called augmented cryptosystems, where partial knowledge of the
secret key can be used to essentially lift the non-malleability of ciphertexts, thus
enabling their homomorphic processing. Wikström [42] proved that Cramer–Shoup
PKE scheme [12] possesses all the properties of an augmented cryptosystem. In
order to ensure public verifiability of the permuted votes, servers are required to
reveal parts of the secret key. As acknowledged in [42], this is a major limitation of
the approach since each new election process requires setting up a new public key.

Given that non-malleability under adaptive chosen ciphertext attacks is equivalent
to IND-CCA2-security, the concept of augmented cryptosystems from [42] may at
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first be seen helpful to realize IND-CCA2/CPA filtering. However, as discussed in
the next section the requirement of using parts of the secret key to perform filtering
in general can essentially be seen as a drawback. Moreover, using IND-CCA2/CPA
filters where non-malleability property can be securely lifted without knowledge of
the secret key would in fact enable re-usability of the public key and thus result in a
more efficient solution to the problem addressed in [42].

1.3. Ciphertext consistency checks

IND-CCA2-secure encryption schemes where ‘invalid’ ciphertexts are filtered out
based on explicit consistency checks seem very suitable for our purposes. Consis-
tency checks can be either private or public: the check is private if it requires at least
partial knowledge of the private key (such as in [12]); public checks do not require
any secrets (e.g. in [8,21]).

We will focus on IND-CCA2-secure cryptosystems with publicly verifiable cipher-
texts. Interestingly, public verifiability has been treated so far in a rather folklore
manner, as a property of concrete schemes [8,21,22,24]. To make use of this property
in general, for example to enable “black-box” constructions of higher-level security
protocols from publicly verifiable encryption schemes, a more formal and thorough
characterization of public verifiability is merited. We also note that public verifia-
bility has been extensively addressed in a different context, namely with regard to
threshold encryption, where, as observed initially by Lim and Lee [29] and then
provably realized in several schemes [5,8,28,39], this property is useful to make the
threshold decryption process of an IND-CCA2-secure threshold encryption scheme
non-interactive and robust.

In our applications, public verifiability can immediately be used to detect and fil-
ter out invalid IND-CCA2 ciphertexts by trusting the gateway to perform the check.
This filtering could also be performed for IND-CCA2 schemes with private consis-
tency checks, as long as these checks need only parts of the private key that are by
themselves not sufficient to break IND-CPA security. Existence of such IND-CCA2
schemes has been demonstrated by Persiano [32] through his concept of trapdoor
cryptosystems. For instance, he proved that a trapdoor containing private-key com-
ponents that are used in the consistency check of Cramer–Shoup PKE [12] cannot be
used for an IND-CPA attack (although their disclosure allows malleability attacks).
Being concerned about IND-CCA2-security, Persiano argued that existence of such
trapdoors is a drawback. Taking a look at Persiano’s trapdoor cryptosystems [32]
from the perspective of our work, we observe that the gateway could indeed be given
trapdoor information to check IND-CCA2 consistency without losing IND-CPA se-
curity. However, this approach would offer somewhat weaker guarantees in contrast
to publicly verifiable schemes: if the delegated trapdoor keys are ever leaked, then
IND-CCA2 security can never be recovered. This contrasts with our approach, in
which the receiver always has the potential to obtain IND-CCA2 security at any par-
ticular time, simply by performing more operations.
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1.4. Contributions

1.4.1. Definitions
We formalize the property of publicly verifiable ciphertexts for general encryption

(Section 2), general KEMs (Section 3) and general KEM/DEM hybrid schemes (Sec-
tion 4). Our definitions emphasize the role of public ciphertext consistency checks
within the decryption procedure. In our approach, decryption algorithms of publicly
verifiable schemes follow a strictly modular design where the consistency check can
be performed independently of the remaining “lightweight” decryption procedure.
Success or failure of the entire decryption procedure is indicated ultimately by the
consistency check, which can be performed by any third party without access to any
secret information. The only exception is the KEM/DEM approach, where we relax
these conditions to account for decryption failures in the DEM part. Our definitions
employ the syntax of generalized encryption by Abdalla et al. [1] which we extend
to also capture tag-based encryption (TBE) [3,21] and to address KEMs and the
KEM/DEM framework.

With these definitions, we first prove in Section 2.2 the very general statement
that any IND-CCA2-secure scheme with publicly verifiable ciphertexts remains at
least IND-CPA-secure if the underlying consistency check is outsourced from the
decryption procedure. We focus in particular on the case where the verification algo-
rithm is non-trivial, meaning that the public consistency check fails exactly when the
IND-CCA2-secure scheme’s decryption algorithm fails, as such publicly verifiable
schemes can readily be used to build the aforementioned IND-CCA2/CPA filters.

1.4.2. Publicly verifiable PKEs
We provide several constructions (general and concrete) of IND-CCA2-secure

schemes with public verifiability.
First, we show (Sections 2.3–2.4) that some well-known general ways for obtain-

ing IND-CCA2 secure schemes readily offer a form of inconclusive public verifia-
bility, meaning there may be ciphertexts that pass verification but still fail decryp-
tion. This holds in particular for the Canetti–Halevi–Katz (CHK) transform [9] and
the non-interactive zero knowledge (NIZK)-based transform [30,36]. The result on
CHK contrasts with the related transform by Boneh and Katz [7] that uses a message
authentication code (MAC) and does not offer public verifiability.

Next, we give several concrete PKE schemes with publicly verifiable ciphertexts
and lightweight decryption algorithms. Scheme 1 (Section 2.5) is inspired in part
by a KEM by Kiltz and its security is based on the Hashed Diffie–Hellman assump-
tion. It offers an especially lightweight decryption procedure for ciphertexts that pass
its public verification, consisting of only a single exponentiation. The scheme also
makes use of a one-time signature scheme for integrity checking. This contrasts with
Scheme 2 (Section 2.6), which removes the need for the one-time signature scheme,
making encryption and verification less expensive, albeit by increasing the public
key by one group element.
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1.4.3. Publicly verifiably KEMs and hybrid encryption
In addition to PKE, we also consider KEMs in Section 3 and give examples of

public key-based, identity-based and tag-based KEMs with public verification. In
Section 4, we look into the KEM/DEM paradigm and show that public verification
of the KEM partially carries over to the hybrid scheme. More precisely, we define
a notion of partial public verification for hybrid encryption schemes by linking a
failure in the hybrid decryption process to a verification failure in either the KEM
or the DEM, and show that, by outsourcing the KEM consistency check, the hybrid
construction remains at least IND-CPA-secure.

1.4.4. Efficiency
Table 1 compares the efficiency of our schemes with some previous standard-

model PKEs and KEMs, including previous schemes with public consistency checks.
Our most computationally efficient Scheme 2 matches or even beats the efficiency
of previous PKE schemes. Scheme 1 offers the smallest public keys, albeit with a
slightly higher computational cost compared to other schemes. Note that compared
to Hanaoka–Kurosawa KEM, our schemes are slightly less efficient but are in fact
PKEs, whereas the aforementioned KEM requires the overhead of a DEM to achieve
the functionality of PKE.

2. Publicly verifiable ciphertexts in general encryption

We start by recalling the definition of general encryption (GE) of Abdalla et al. [1],
which we extend here to also address the notion of tag-based encryption (TBE)
[3,21].

2.1. Definition: General encryption

A general encryption (GE) scheme GE = (PG, KG, Enc, Dec) consists of four
algorithms:

PG(1k): On input security parameter 1k, the parameter generation algorithm PG
returns public parameters par and a master secret key msk. Public parameters
include a description of an identity space IDSp, a message space MsgSp, and a
tag space TagSp. Note that we assume all messages in MsgSp are of the same
length.

KG(par, msk, id): On input par, msk and id ∈ IDSp, the key generation algorithm KG
produces an encryption key ek and decryption key dk.

Enc(par, ek,M , t): On input par, ek, a message M ∈ MsgSp, and a tag t ∈ TagSp,
the encryption algorithm Enc outputs a ciphertext C.

Dec(par, ek, dk,C, t): On input par, ek, dk, C and a tag t ∈ TagSp, the decryption
algorithm Dec returns either a plaintext message M ∈ MsgSp, or ⊥ to indicate
that it rejects.
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Table 1

Efficiency comparison of standard-model public key encryption schemes and KEMs

Scheme PubVerify? Assumptions Tight? Size of Cost* of

public key ciphertext Enc Dec Dec′

overhead

Decisional (DDH or DBDH)-based schemes

Cramer–Shoup (CS1b) [12] N DDH, TCR Y 4G 3G 1ME + 3E 3E –

Boneh et al. (gap groups) [6] N DBDH, TCR Y 4G 3G 1ME + 2E 1.5E + 1P –

Boyen et al. (gap groups) [8] Y DBDH, CR N (k + 2)G 2G 1ME + 2E 1E + 1P 1P

Lai et al. (gap groups) [27] Y DBDH, CR Y 4G 3G 1ME + 2E 2E + 1P 1E + 1P

KEM: Kurosawa–Desmedt [26] N DDH, TCR Y 3G 2G 1ME + 2E 1ME –

HDH-based schemes

Kiltz (gap groups) [23, Appx B] Y HDH, CR N (k + 1)G 2G 1ME + 2E 2E 1E

KEM: Cash et al. (a) [10] Y HDH, TCR Y 4G 3G 1ME + 3E 3E 1E

Hanaoka–Kurosawa Section 5 [18] Y HDH, TCR Y 4G 2G+ |mac| 1ME + 2E 1ME 1E

Scheme 1 (Fig. 4) Y HDH, TCR Y 2G 2G+ |σ|+ |vk| 1ME + 2E + 1S 2E + 1V 1E

Scheme 2 (Fig. 5) Y HDH, CR Y 3G 2G+ Zp 1ME + 2E 2E 1E

Notes: G – size of group element; k – security parameter; ME – cost of group multi-exponentiation; E – cost of group exponentiation; P – cost of pairing;
σ – one-time signature; S – cost of computing σ; V – cost for verifying σ; vk – verification key for σ; Zp – integer mod p.
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The above GE formalism encompasses public-key, identity-based and tag-based en-
cryption flavours:

Public-Key Encryption (PKE): Let msk = ε (an empty string) and let IDSp and
TagSp contain a single fixed element. (Hence IDSp and TagSp can be omit-
ted in the notation of PKE algorithms.)

Identity-Based Encryption (IBE): Let KG always output ek = id and let TagSp con-
tain a single fixed element. (Hence TagSp can be omitted in the notation of
IBE algorithms.)

Tag-Based Encryption (TBE): Let msk = ε and let IDSp contain a single fixed ele-
ment. (Hence IDSp can be omitted in the notation of TBE algorithms.)

2.1.1. Correctness
A general encryption scheme GE = (PG, KG, Enc, Dec) is correct if, for all

(par, msk) ← PG, all identities id ∈ IDSp, all (ek, dk) ← KG(par, msk, id), all
plaintexts M ∈ MsgSp and all tags t ∈ TagSp, we have Dec(par, ek, dk, Enc(par,
ek,M , t), t) = M with probability one, where the probability is taken over the coins
of Enc.

2.1.2. Indistinguishability
The IND-CCA2/CPA security games between a challenger and an adversary A

are defined by the experiments in Fig. 1 (left column). The advantage of A in these
games is defined as

AdvIND-xxx
A,GE (k) =

∣
∣Pr

(
ExpIND-xxx,0

A,GE (k) = 1
)
− Pr

(
ExpIND-xxx,1

A,GE (k) = 1
)∣∣,

where xxx ∈ {CPA, CCA2}. A GE scheme is IND-xxx-secure if the advantage of any
PPT adversary A in the corresponding game is negligible in the security parameter k.

2.2. General encryption with publicly verifiable ciphertexts

In our definition of general encryption with publicly verifiable ciphertexts, we
require (a) the existence of a separate algorithm for ciphertext validation and (b) that
the scheme’s original decryption procedure can be logically divided into this public
validation check and a following ‘lightweight’ decryption algorithm.

Definition 1 (Publicly verifiable GE). A general encryption scheme GE = (PG, KG,
Enc, Dec) is said to be publicly verifiable1 with respect to auxiliary algorithms Ver
and Dec′ if:

(1) Dec(par, ek, dk,C, t) has the same input/output behavior as the following se-
quence of operations:

1Note a change in terminology compared to the extended abstract version of this work [16], where we
used the term “strictly non-trivial” publicly verifiable.
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ExpIND-xxx,b
A,GE (k):

(1) U ,V , KList, DList ← ∅
(2) (par, msk)

$← PG(1k)

(3) (st,M0,M1, id∗, t∗)
$← AOEK,ODK[,ODec]

1 (par)
If A queries OEK(id):

(a) If id ∈ U then return ⊥
(b) U ← U ∪ {id}

(c) (ek[id], dk[id])
$← KG(par, msk, id)

(d) Append (id, ek[id], dk[id]) to KList
(e) Answer A with ek[id]

If A queries ODK(id):

(a) If id /∈ U then return ⊥
(b) V ← V ∪ {id}
(c) Answer A with dk[id] from KList

If A queries ODec(C, id, t) (if xxx = CCA2):

(a) If id /∈ U then return ⊥
(b) M ← Dec(par, ek[id], dk[id],C, t)
(c) Append (C, id, t) to DList
(d) Answer A with M

(4) If id∗ /∈ U then return ⊥
(5) C∗ $← Enc(par, ek[id∗],Mb, t∗)

(6) b′ $← AOEK,ODK[,ODec]
2 (st,C∗)

Answer queries as above
(7) If id∗ ∈ V then return ⊥
(8) If (C∗, id∗, t∗) ∈ DList then return ⊥
(9) Return b′.

ExpIND-xxx,b
A,GKEM (k):

(1) U ,V , KList, DList ← ∅
(2) (par, msk)

$← PG(1k)

(3) (st, id∗, t∗)
$← AOEK,ODK[,ODec]

1 (par)
If A queries OEK(id):

(a) If id ∈ U then return ⊥
(b) U ← U ∪ {id}

(c) (ek[id], dk[id])
$← KG(par, msk, id)

(d) Append (id, ek[id], dk[id]) to KList
(e) Answer A with ek[id]

If A queries ODK(id):

(a) If id /∈ U then return ⊥
(b) V ← V ∪ {id}
(c) Answer A with dk[id] from KList

If A queries ODec(C, id, t) (if xxx = CCA2):

(a) If id /∈ U then return ⊥
(b) K ← Decap(par, ek[id], dk[id],C, t)
(c) Append (C, id, t) to DList
(d) Answer A with K

(4) If id∗ /∈ U then return ⊥
(5) (C∗,K∗

0 )
$← Encap(par, ek[id∗], t∗)

(6) K∗
1

$← KeySp(k)

(7) b′ $← AOEK,ODK[,ODec]
2 (st,C∗,K∗

b )
Answer queries as above.

(8) If id∗ ∈ V then return ⊥
(9) If (C∗, id∗, t∗) ∈ DList then return ⊥
(10) Return b′.

Fig. 1. IND-CCA2/CPA security experiments for General Encryption (left) and General Key Encapsulation
(right). Note that M0 and M1 ∈ MsgSp are by definition of the same length.

(a) C ′ ← Ver(par, ek,C, t)
(b) If C ′ = ⊥, then return ⊥
(c) M ← Dec′(par, ek, dk,C ′, t)
(d) Return M

(2) Ver and Dec′ satisfy the following:

Ver(par, ek,C, t): Given public parameters par, encryption key ek, cipher-
text C and tag t, this algorithm outputs either ⊥ if the ciphertext fails
the validation, or a (transformed) ciphertext C ′. Note that Ver does not
take any secrets as input.

Dec′(par, ek, dk,C ′, t): This algorithm takes input public parameters par, en-
cryption and decryption keys (ek, dk), ciphertext C ′ and tag t, and outputs
a message M ∈ MsgSp or ⊥.
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(3) and it holds that, for all (par, msk) ← PG(1k), id ∈ IDSp, t ∈ TagSp and
(ek, dk) ← KG(par, msk, id),

(a) Ver(par, ek,C, t) = ⊥ ⇔ Dec(par, ek, dk,C, t) = ⊥ for all C, and
(b) there exists a ciphertext C for which Dec(par, ek, dk,C, t) = ⊥.

Hereafter, when we say Dec = Dec′ ◦ Ver, we mean that algorithm Dec is composed
of two algorithms Ver and Dec′ according to the above construction.

Condition 3(a) requires that successful public verification is both necessary and
sufficient for the regular decryption algorithm not to fail. Condition 3(b) formally ex-
cludes IND-CCA2-secure schemes where Dec never outputs ⊥ (cf. [4,33,34] where
modified (challenge) ciphertexts decrypt to random messages, and it is left to the
receiver to decide whether the decrypted message is “meaningful”). While condi-
tion 3(b) may not completely exclude degenerate schemes with “useless” public veri-
fication, it at least partially captures the intuition that the public verification operation
should reject all ciphertexts that do not decrypt to “meaningful” messages.

Note that, formally, all IND-CCA2-secure general encryption schemes trivially
achieve parts 1 and 2 of the definition, with respect to the trivial algorithms
Ver(par, ek,C, t) := C and Dec′ := Dec. However, such a trivial scheme does
not achieve the part 3 of the definition. We are usually interested in the case where
something non-trivial is occurring in Ver: where the consistency check is essential
for successful decryption. (Note that this separation does not formally ensure that
Dec′ is more efficient than Dec, though in practice we are of course interested pri-
marily in such schemes.) However, occasionally we consider cases where this is not
necessarily the case, leading us to define:

Definition 2 (Inconclusive public verification). Let GE = (PG, KG, Enc, Dec) be a
general encryption scheme that is publicly verifiable with respect to auxiliary algo-
rithms Ver and Dec′. Algorithm Ver is said to be an inconclusive public verification
algorithm if it satisfies conditions 1 and 2 of Definition 1, but not necessarily condi-
tion 3.

The following Theorem 1 shows that any IND-CCA2-secure GE scheme with pub-
licly verifiable ciphertexts remains at least IND-CPA-secure if its decryption algo-
rithm Dec is replaced with Dec′. Since, in the original decryption procedure, a verifi-
cation process may change the ciphertext, we must ensure that ciphertexts output by
the encryption algorithm of the new scheme can be processed with Dec′ algorithm.
A potential (syntactical) mismatch is resolved via post-processing of original cipher-
texts using Ver and by viewing this step as part of the new encryption algorithm:

Theorem 1. Let GE = (PG, KG, Enc, Dec) be an IND-CCA2-secure general encryp-
tion scheme that is publicly verifiable with respect to Ver and Dec′. Let Enc′ := Ver◦
Enc (where ◦ denotes the obvious composition) and GE′ := (PG, KG, Enc′, Dec′).
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For every IND-CPA adversary A against GE′ there exists an IND-CCA2 adversary B
against GE such that, for all k � 0, AdvIND-CPA

A,GE′ (k) � AdvIND-CCA2
B,GE (k), where B has

(asymptotically) the same running time as A.

Proof. Let A be an adversary that breaks the IND-CPA security of GE′ and runs in
time tA. We build an algorithm B running in time tB that, using A as a sub-routine,
breaks the IND-CCA2 security of GE. Let CGE denote the challenger in the associated
IND-CCA2 security game for GE.

Algorithm B interacts with CGE and A. With A, B acts as a challenger playing
the IND-CPA security game for GE′. In detail, B does the following: On input public
par, B forwards them on to A. At some point A outputs the challenge consisting of
two messages M0 and M1, a target identity id∗ and a target tag t∗. B forwards M0
and M1 along with id∗ and t∗ to GE challenger CGE, which in turn responds with
a ciphertext C∗ on M∗

b for a random bit b (unknown to B). Since C∗ is publicly
verifiable, B hands C̄∗ ← Ver(par, ek[id∗],C∗, t∗) as the challenge ciphertext over
to A. Eventually, A outputs a bit b′, which B uses as it own output.

Queries of A to the oracles OEK and ODK are answered by B as follows:

• OEK(id): B queries OEK(id) to CGE and responds to A with whatever it receives
from CGE. Note that A is allowed to query OEK on id∗.

• ODK(id): B queries ODK(id) to CGE and responds to A with whatever it receives
from CGE. Note that A is not allowed to query ODK on id∗.

The total running time of B is tB � tA + tVer with tA being the running time of
A and tVer being the execution time of Ver.

Given the above perfect simulation of oracles, B clearly breaks the IND-CCA2
security of GE whenever A breaks the IND-CPA security of GE′. �

2.3. Publicly verifiable ciphertexts through CHK transformation

Canetti, Halevi and Katz [9] described a method for constructing an IND-CCA2-
secure public key encryption scheme PKE from any IND-CPA-secure identity-based
encryption scheme IBE with identity-space {0, 1}�s(k) and any strongly unforge-
able one-time signature scheme OTS = (KG, Sign, Vrfy) with verification key space
{0, 1}�s(k) (see [9] for the syntax of OTS and the details of the construction; note
that one-time signature schemes can be obtained from any one-way function [35]).
Later, Kiltz [21] showed that the CHK transform also works if the IND-CPA-secure
IBE scheme is replaced by a weakly IND-CCA2-secure tag-based encryption scheme
TBE with tag-space {0, 1}�s(k). In both cases (whether based on IBE or TBE), the
CHK transform picks a freshly chosen OTS signing key sigk to sign the ciphertext c
produced by the underlying encryption scheme and outputs c together with the cor-
responding signature σ and the public key vk. Upon decryption, σ is verified before
c gets decrypted with the decryption algorithm of the underlying scheme.
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PKE.Enc(par, ek,M ):

(1) (vk, sigk)
$← OTS.KG(1k)

(2) If IBE-based:
c ← IBE.Enc(par, vk,M )
If TBE-based:
c ← TBE.Enc(par, ek,M , vk)

(3) σ ← OTS.Sign(sigk, c)
(4) Return C = (c,σ, vk)

PKE.Ver(par, ek,C):

(1) (c,σ, vk) ← C
(2) If OTS.Vrfy(c,σ, vk) = ⊥

then return ⊥
(3) Return C ′ = (c, vk)

PKE.Dec′(par, ek, dk,C ′):

(1) (c, vk) ← C ′

(2) If IBE-based:
uskvk ← IBE.KG(par, dk, vk)
M ← IBE.Dec(par, vk,uskvk , c)
If TBE-based:
M ← TBE.Dec(par, ek, dk, c, vk)

(3) Return M

Fig. 2. PKE with publicly verifiable ciphertexts from CHK transformation.

Figure 2 (which uses our GE notation) shows that, in both cases, the resulting PKE
is at least inconclusively publicly verifiable with respect to PKE.Ver and PKE.Dec′.
In the IBE-based case, ek = ε remains empty, while dk = msk and par are output by
IBE.PG. In the TBE-based case, ek and dk are output by TBE.KG using par generated
by TBE.PG. The original IBE-based transform by Canetti et al. [9] and its TBE-based
version from Kiltz [21] are obtained by setting PKE.Dec = PKE.Dec′ ◦ PKE.Ver.

An interesting question with regard to the CHK transformation is whether it
achieves (conclusive) public verifiability. The statement PKE.Ver(par, ek,C) = ⊥ ⇒
PKE.Dec(par, ek, dk,C) = ⊥ from Definition 1 holds by construction for any under-
lying IBE and TBE schemes. For the other direction, we need to take a closer look
into the specification of the PKE.Dec′ algorithm. We observe that PKE.Dec′(par,
ek, dk,C ′) = ⊥ may occur only if ⊥ is among the possible outputs of the under-
lying algorithms IBE.Dec or TBE.Dec. Given that the TBE scheme needs to be at
least weakly IND-CCA2-secure, the TBE-based CHK transformation is inconclu-
sive. The case of IBE-based CHK transformation is slightly different as the un-
derlying IBE scheme needs to be at least IND-CPA-secure. This alone is not suf-
ficient for obtaining conclusive public verification in general, since the decryption
procedure of an IND-CPA-secure IBE scheme may still output ⊥. For instance, an
IBE scheme constructed in a hybrid manner from an IND-CPA-secure KEM and
an IND-CCA2-secure DEM would remain IND-CPA-secure, yet the corresponding
DEM decryption algorithm may still output ⊥. On the other hand, if we con-
sider only the class of IND-CPA-secure IBE schemes for which ⊥ is not among
the possible outputs of IBE.Dec (and this class represents the majority of direct
IND-CPA-secure IBE constructions known today) then PKE.Dec(par, ek, dk,C) =

⊥ ⇒ PKE.Ver(par, ek,C) = ⊥ would hold for the resulting CHK transform, whose
public verifiability would indeed be conclusive. This leads us to the following claim.
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Claim 1. If the underlying IBE scheme is IND-CPA-secure and ⊥ is not among the
possible outputs of the IBE.Dec algorithm then the PKE construction in Figure 2 is
publicly verifiable according to Definition 1.

2.4. Publicly verifiable ciphertexts using NIZKs

Basing on the Naor–Yung approach [30], any IND-CPA-secure public key encryp-
tion scheme PKE′ = (PG, KG, Enc, Dec) can be converted into an IND-CCA2-secure
one by extending it with a non-interactive zero-knowledge (NIZK) proof (P ,V )
with simulation soundness, as proven by Sahai [36]. The private/public key pair of
the resulting scheme, PKE, is given by (dk, ek) = ((dk1, dk2), (ek1, ek2, ρ)) where
(dki, eki), i ∈ {1, 2}, are obtained from two independent runs of PKE′.KG, and ρ is
the common reference string of the NIZK proof system for languages of the form

{
(c1, c2, ek1, ek2): ∃M , r1, r2 s.t. c1 = PKE′.Enc(par, ek1,M ; r1)

∧ c2 = PKE′.Enc(par, ek2,M ; r2)
}

,

where M and random tapes r1, r2 used in the encryption process take the role of
the witness. As demonstrated in Fig. 3, IND-CCA2 schemes obtained by this trans-
formation directly offer at least inconclusive public verifiability. This reasoning also
applies to the NIZK-based constructions of Elkind and Sahai [14] and to the first
IND-CCA2-secure PKE scheme by Dolev, Dwork and Naor [13] (that uses NIZK-
proofs in a slightly different way). Although NIZK-based schemes are generally re-
garded as not efficient, we notice that their lightweight decryption procedure Dec′ (if
the scheme is viewed from the public verifiability perspective) is as efficient as that
of our CHK-based schemes (cf. Fig. 2).

Observe that the NIZK-based transformation in fact offers conclusive public veri-
fication according to Definition 1 if it is used with an IND-CPA-secure PKE′ scheme
for which ⊥ is not among the possible outputs of PKE′.Dec algorithm. Although not

PKE.Enc(par, ek,M ):

(1) (ek1, ek2, ρ) ← ek
(2) c1 ← PKE′.Enc(par, ek1,M ; r1)
(3) c2 ← PKE′.Enc(par, ek2,M ; r2)
(4) π ← P ((M , r1, r2), (c1, c2, ek1, ek2), ρ)
(5) Return C = (c1, c2,π)

PKE.Ver(par, ek,C):

(1) (ek1, ek2, ρ) ← ek
(2) (c1, c2,π) ← C
(3) If V (ρ, (c1, c2, ek1, ek2),π) = ⊥

then return ⊥
(4) Return C ′ = c1

PKE.Dec′(par, ek, dk,C ′):

(1) (dk1, dk2) ← dk
(2) c1 ← C ′

(3) M ← PKE′.Dec(par, ek1, dk1, c1)
(4) Return M

Fig. 3. PKE with publicly verifiable ciphertexts from NIZK-based transformation.
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generally required, this property does hold for the majority of direct IND-CPA-secure
public-key encryption schemes.

Claim 2. If the underlying PKE′ scheme is IND-CPA-secure and ⊥ is not among the
possible outputs of the PKE′.Dec algorithm then the PKE construction in Fig. 3 is
publicly verifiable according to Definition 1.

It seems, however, that the Naor–Yung approach [30] and the NIZK-based ap-
proach from [14] could offer conclusive public verifiability per Definition 1 in gen-
eral if the corresponding proof of validity is modified such that it proves not only the
validity of the IND-CPA-secure encryption process but also that the encrypted mes-
sage does not correspond to ⊥, either using a dedicated symbol that represents ⊥
within the message space of PKE′ scheme or by considering ⊥ as an output of some
relation that can be proven within the NIZK proof. This leads us to the following
claim.

Claim 3. If the underlying PKE′ scheme is IND-CPA-secure, ⊥ is among the possi-
ble outputs of the PKE′.Dec algorithm, and π is a NIZK proof for languages of the
form

{
(c1, c2, ek1, ek2): ∃M , r1, r2 s.t. c1 = PKE′.Enc(par, ek1,M ; r1)

∧ c2 = PKE′.Enc(par, ek2,M ; r2) ∧M �= ⊥
}

,

then the PKE construction in Fig. 3 is publicly verifiable according to Definition 1.

2.5. Scheme 1: HDH-based PKE with publicly verifiable ciphertexts

In this section, we propose a practical IND-CCA2-secure PKE scheme with (con-
clusive) public verification as per Definition 1, which hence is well-suited for
IND-CCA2/CPA filters described in the introduction due to an especially lightweight
algorithm Dec′. Our construction is inspired by the IND-CCA2 public-key KEM
of Kiltz [22], which when plugged into a KEM/DEM framework would yield an
IND-CCA2-secure PKE scheme (but only obtain partial public verification as dis-
cussed in Section 4). In contrast, we obtain a (conclusively) publicly verifiable PKE
in a more direct way, by using the encapsulated key in [22] as a one-time pad for the
message and by linking the resulting ciphertext components together with a one-time
signature, whose verification key is in turn bound to the KEM ciphertext part through
a tweak on the original scheme from [22].

2.5.1. The scheme
Our PG algorithm is similar to [22] except that it uses gap groups: PG(1k) outputs

public parameters par = (G, p, g, DDH, H) where G = 〈g〉 is a multiplicative cyclic
group of prime order p, 2k < p < 2k+1, DDH is an efficient algorithm such that
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PKE.KG(par):

(1) x
$← Z

∗
p

(2) u ← gx, v
$← G

(3) ek ← (u, v), dk ← x
(4) Return (ek, dk)

PKE.Enc(par, ek,M ):

(1) (u, v) ← ek

(2) (vk, sigk)
$← OTS.KG(1k)

(3) r
$← Z

∗
p, c1 ← gr

(4) t ← TCR(c1, vk), π ← (utv)r

(5) K ← H(ur), c2 ← M ⊕K
(6) c ← (c1, c2,π)
(7) σ ← OTS.Sign(sigk, c)
(8) Return C = (c,σ, vk)

PKE.Ver(par, ek,C):

(1) (u, v) ← ek
(2) (c,σ, vk) ← C
(3) (c1, c2,π) ← c
(4) t ← TCR(c1, vk)
(5) If DDH(c1,utv,π) �= 1 or

OTS.Vrfy(c,σ, vk) = ⊥
return ⊥

(6) Return C ′ = (c1, c2)

PKE.Dec′(par, ek, dk,C ′):

(1) (c1, c2) ← C ′

(2) x ← dk
(3) K ← H(cx1 ), M ← c2 ⊕K
(4) Return M

Fig. 4. Scheme 1: PKE with publicly verifiable ciphertexts and small public keys, HDH-based, gap groups.

DDH(ga, gb, gc) = 1 ⇔ c = abmod p, and H :G → {0, 1}�1(k) is a cryptographic
hash function such that �1(k) is a polynomial in k. We also use a strong one-time
signature scheme OTS = (KG, Sign, Vrfy) with verification key space {0, 1}�2(k) such
that �2(k) is a polynomial in k and a target collision resistant hash function TCR :G×
{0, 1}�2(k) → Zp. The message space is MsgSp = {0, 1}�1(k). The scheme works as
shown in Fig. 4.

2.5.2. Security analysis
First we give intuition why our scheme is IND-CCA2-secure. Let (c∗,σ∗, vk∗) be

the challenge ciphertext. As we discussed above, without the CHK transform, the
proposed PKE can be seen as a KEM/DEM combination which is at least IND-CPA-
secure due to Herranz et al. [19]. As for the KEM, the Hashed Diffie–Hellman (HDH)
assumption [2] can be used to prove the IND-CPA security of the resulting PKE.
Note that the message does not depend on vk∗, and σ∗ is just the signature on c∗.
Therefore c∗ being an output of the IND-CPA-secure scheme hides the value of the
chosen b from the adversary.

We now claim that the IND-CCA2 adversary A may access a decryption oracle but
gains no help in guessing the value of b. Suppose the adversary submits a cipher-
text (c′,σ′, vk′) �= (c∗,σ∗, vk∗) to the decryption oracle. Now there are two cases:
(a) vk′ = vk∗ or (b) vk′ �= vk∗. When vk′ = vk∗, the decryption oracle will out-
put ⊥ as the adversary fails to break the underlying strongly unforgeable one-time
signature scheme with respect to vk′. When vk′ �= vk∗, the attacker B against the
HDH problem can set the public keys as seen in the IND-CCA2 security proof for the
KEM by Kiltz [22] such that (1) B can answer except for the challenge ciphertext all
decryption queries from A even without the knowledge of the secret key and (2) B
solves HDH if A wins. This security analysis is reflected in the following theorem.
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Theorem 2. Assume that TCR is a target collision resistant hash function and OTS
is a strongly unforgeable one-time signature scheme. Under the Hashed Diffie–
Hellman assumption for G and H, PKE Scheme 1 (PKE.KG, PKE.Enc, PKE.Dec =
PKE.Dec′ ◦ PKE.Ver) specified in Fig. 4 is IND-CCA2-secure.

Proof. Let A be a PPT adversary that breaks the IND-CCA2 security of the PKE
scheme with non-negligible advantage, makes at most q decryption queries and runs
in time tA. We construct an algorithm B running in time tB that uses A as a sub-
routine and breaks the HDH assumption with non-negligible advantage.

Before describing the algorithm B, we define the event Forge and find an up-
per bound for the probability that it occurs. Let (c∗,σ∗, vk∗) be the challenge ci-
phertext given by B to A. Let Forge be the event that A submits to the decryp-
tion oracle a ciphertext (c,σ, vk) �= (c∗,σ∗, vk∗) such that (c,σ) �= (c∗,σ∗) but
OTS.Vrfy(c,σ, vk∗) = 1. This event also includes the case that such a query is sub-
mitted by A before it receives the challenge ciphertext and therefore (c,σ, vk) �=
(c∗,σ∗, vk∗) is not needed in this case. This implies that A can be used to forge
the underlying one-time signature scheme OTS with probability PrA[Forge]. The
scheme OTS being a strongly unforgeable one-time signature scheme implies that
PrA[Forge] must be negligible in the security parameter k.

We now describe how B proceeds on input a random instance of the HDH problem
(u = ga, gb,W ). The goal of B is to decide whether W = H(gab) or W is a random
bit string of appropriate length. B interacts with A as a challenger in the IND-CCA2
security game for PKE. In detail, B proceeds as follows.

Setup. B runs the key generation algorithm of OTS to generate (vk∗, sigk∗). Then,

B selects d
$← Z

∗
p, computes part of the challenge ciphertext for A to be (c∗1 ,π∗) ←

(gb, (gb)d). Now B computes t∗ ← TCR(c∗1, vk∗) and v ← u−t∗ · gd and sets the
public key as (u, v). We say a ciphertext (c = (c1,π, c2),σ, vk) is consistent if π =
(utv)r for t ← TCR(c1, vk) and r = logg c1. Note that for a consistent ciphertext,

the setup of the public keys implies that π = (utv)r = (utu−t∗gd)r = (ur)t−t∗cd1
and H(ur) = H((π/cd1)(t−t∗)−1

). Then, B runs A on input the public key (u, v).

Decryption query: phase 1. Adversary A may query decryption oracle with a ci-
phertext (c,σ, vk) for which B proceeds as follows:

• If OTS.Vrfy(c,σ, vk) �= 1, then B returns ⊥.
• If OTS.Vrfy(c,σ, vk) = 1 and vk = vk∗, then the event Forge happens, so B

halts and outputs a random bit.
• If OTS.Vrfy(c,σ, vk) = 1 and vk �= vk∗, then for C = (c1,π, c2), B com-

putes t ← TCR(c1, vk) and utv and verifies the consistency of the ciphertext by

checking π
?
= (utv)r , i.e. B aborts if DDH(c1,utv,π) �= 1. Otherwise there are

three cases based on t ← TCR(c1, vk):
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Case 1: t = t∗ and c1 = c∗1: Since B hides c∗1 information theoretically from
A, the probability that c1 = c∗1 is at least q/p, with q being an upper bound
on the number of decryption queries A. In this case, B outputs a random
bit and aborts.

Case 2: t = t∗ and c1 �= c∗1: In this case B finds a collision c1 �= c∗1 but
TCR(c1, vk) = TCR(c∗1 , vk∗). So, B outputs the collision and aborts.

Case 3: t �= t∗: In this case B decrypts the message successfully as m ←
H((π/cd1)(t−t∗)−1

) ⊕ c2 and returns the message m to A.

Challenge. At some point, A outputs two messages M0 and M1 of the same length.
Using the already computed challenge ciphertext part (c∗1 ,π∗) ← (gb, (gb)d) and
(vk∗, sigk∗), B computes c∗2 ← W ⊕ Mδ for a random bit δ and sets the chal-
lenge ciphertext for A to be (c∗,σ∗, vk∗), where c∗ ← (c∗1,π∗, c∗2) and σ∗ ←
OTS.Sign(sigk∗, c∗).

Decryption query: phase 2. A may continue querying the decryption oracle except
for the challenge ciphertext. B answers these queries as before.

Guess. A outputs a bit δ′. If δ = δ′, then B outputs γ = 1, which means that B’s
guess is W = H(gab). If δ �= δ′, then B outputs γ = 0, which means that B’s guess
is that W is a random string.

From the above we see that unless B receives c∗1 from A (Case 1) or finds a col-
lision in TCR, B simulates the view of A perfectly, as in the original PKE security
experiment.

If A wins, then B also wins. Therefore, we have ∀k � 0,

AdvHDH
B (k) � AdvIND-CCA2

A,PKE (k) − AdvHash-colli
TCR,H (k) − PrA[Forge] − q/p.

The total running time of B is tB � tA + O(tG), where tA is the running time of
A and tG is the time to perform a basic operation in G. �

2.5.3. Efficiency
Recall that Table 1 compares the efficiency of our scheme with previous standard

model PKEs and KEMs.
Note that compared to some of the KEMs in the table, Scheme 1 is less efficient.

However to construct a PKE, adding a DEM to those KEMs impacts either perfor-
mance, ciphertext size, or uses stronger cryptographic assumptions as noted by Kiltz
and Galindo [25, Sections 5.2, 7.3].

In Scheme 1, public keys consist of 2 group elements, the ciphertext overhead
is 2 group elements, a one-time signature and a one-time verification key, encryp-
tion requires 3.5 group exponentiations (using simultaneous exponentiation) and 1
one-time signature, verification requires 1 group exponentiation, 2 pairings, and 1
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one-time signature verification, and lightweight decryption requires only one expo-
nentiation.

Amongst existing PKE constructions with public consistency checks, only two
seem to offer the same efficiency for lightweight decryption: Kiltz [22] describes a
(direct) PKE construction (in addition to KEM) that is publicly verifiable with the
same lightweight decryption cost of 1 group exponentiation, but at the cost of re-
quiring public keys with the number of group elements being linear in the security
parameter, as opposed to only 2 group elements in the public key of our scheme.
Hanaoka and Kurosawa [18] describe a publicly verifiable KEM that, when com-
bined with a DEM, would yield a partially (see Section 4) publicly verifiable PKE.
Its lightweight decryption would require 1 group exponentiation (plus any costs from
the DEM) but its public keys would contain 3 group elements, compared to 2 group
elements in our scheme.

2.6. Scheme 2: A more efficient HDH-based PKE with publicly verifiable
ciphertexts

We now describe another HDH-based scheme using the technique due to Lai et
al. [27]. We use a parameter generation algorithm PG that is the same as in the
HDH-based PKE schemes in Fig. 4. Additionally we use a collision-resistant hash
function CR :G × {0, 1}�1(k) → Zp. Our Scheme 2 with publicly verifiable cipher-
texts according to Definition 1 is specified in Fig. 5. Compared with Scheme 1 in the
previous subsection, Scheme 2 has shorter ciphertexts. Compared with Lai et al.’s
scheme [27], Scheme 2 has smaller public keys and is more efficient.

Theorem 3. Assume that CR is a collision resistant hash function. Under the
Hashed Diffie–Hellman assumption for G and H, PKE Scheme 2 (PKE.KG, PKE.
Enc, PKE.Dec = PKE.Dec′ ◦ PKE.Ver) specified in Fig. 5 is IND-CCA2-secure.

PKE.KG(par):

(1) x, y, z
$← Zp

(2) u ← gx, v ← gy ,w ← gz

(3) ek ← (u, v,w)
(4) dk ← (x, y, z)
(5) Return (ek, dk)

PKE.Enc(par, ek,m):

(1) r, s
$← Zp ; c1 ← gr

(2) K ← H(ur)
(3) c2 ← m⊕K
(4) t ← CR(c1, c2)
(5) π ← (utvsw)r

(6) C ← (c1, c2,π, s)

PKE.Ver(par, ek,C)):

(1) (c1, c2,π, s) ← C
(2) t ← CR(c1, c2)
(3) C ′ ← (c1, c2)
(4) If DDH(c1,utvsw,π) �= 1

then set C ′ = ⊥
(5) Return C ′

PKE.Dec′(par, dk,C ′):

(1) If C ′ = ⊥, then return ⊥
(2) (c1, c2) ← C ′

(3) K ← H(cx1 )
(4) m ← c2 ⊕K
(5) Return m

Fig. 5. Scheme 2: PKE with publicly verifiable ciphertexts and more efficient computation, HDH-based,
gap group.
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Proof. Let A be a PPT adversary that breaks the IND-CCA2 security of the PKE
scheme with non-negligible advantage, makes at most q decryption queries and runs
in time tA. We construct an algorithm B running in time tB that uses A as a sub-
routine and breaks the HDH assumption with non-negligible advantage.

We now describe how B proceeds on input a random instance of the HDH problem
(u = ga, gb,W ). The goal of B is to decide whether W = H(gab) or W is a random
bit string of appropriate length. B interacts with A as a challenger in the IND-CCA2
security game for PKE. In detail, B proceeds as follows.

Setup. B selects xv ,xw, yv , yw
$← Z

∗
p and sets u ← ga, v ← gaxvgyv and w ←

gaxwgyw . Now B chooses a collision resistant hash function CR : G× {0, 1}�1(k) →
Zp and sets the public key as (u, v,w). The private key (x, y, z) is (a, axv+yv , axw+
yw) that is unknown to B.

We say a ciphertext c = (c1, c2,π, s) is consistent if π = (utvsw)r for t ←
CR(c1, c2) and r = logg c1. Note that for a consistent ciphertext, the setup of
the public keys implies that π = (utvsw)r = ((ga)t(gaxvgyv )s(gaxwgyw ))r =
(gatgasxvgsyvgaxwgyw )r = (ga(t+sxv+xw)gsyv+yw )r = gar(t+sxv+xw)gr(syv+yw)

and hence

H
(
ur

)
= H

(
π/c

syv+yw
1

)(t+sxv+xw)−1
.

Then, B runs A on input the public key (u, v,w).

Decryption query: phase 1. Adversary A may query the decryption oracle with a
ciphertext c = (c1, c2,π, s) for which B proceeds as follows: First B computes t ←
CR(c1, c2), utvsw, and verifies the consistency of the ciphertext by checking π

?
=

(utvsw)r: B aborts if DDH(c1,utvsw,π) �= 1. Then B checks if t + sxv + xw =
0. If yes, then B aborts; otherwise, B decrypts the message successfully as m ←
H(π/csyv+yw

1 )(t+sxv+xw)−1 ⊕ c2 and returns the message m to A.

Challenge. At some point, A outputs two messages M0 and M1 of the same length.
Now B constructs the challenge ciphertext as follows:

(1) Selects a random bit δ.
(2) Sets c∗2 ← W ⊕Mδ , c∗1 ← gb, t∗ ← CR(c∗1, c∗2).
(3) Then, sets s∗ ← −(t∗ + xw)/xv and π∗ ← (gb)(s∗yv+yw).
(4) Finally returns the ciphertext c∗ = (c∗1 , c∗2 ,π∗, s∗) to A.

Note that by construction the challenge ciphertext is a consistent ciphertext. Also it
has the correct distribution whenever W = H(gab) else it is independent of δ from
A’s view.

Decryption query: phase 2. A may continue querying the decryption oracle for a
ciphertext c �= c∗ = (c∗1 , c∗2 ,π∗, s∗). B now does the following.
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(1) Check whether c = (c∗1, c2,π∗, s∗) and CR(c∗1 , c2) = t∗. In this case B finds a
collision in CR. So, B outputs the collision and aborts.

(2) Check whether t + sxv + xw = 0 where t ← CR(c1, c2). If yes, B outputs
a random bit and aborts, else B decrypts the message successfully as m ←
H(π/csyv+yw

1 )(t+sxv+xw)−1 ⊕ c2 and returns the message m to A.

Note that the values xv and xw are blinded using yv and yw, respectively and
thus they are hidden from A initially. Also when A makes a decryption query on a
ciphertext c, B outputs either ⊥ if c fails the consistency check or the corresponding
message. Thus answers to decryption queries do not leak any information to A about
either xv or xw. However for the challenge ciphertext, we have that t∗+s∗xv+xw =
0 and this fact is known to the adversary. There are only p possible (xv ,xw) pairs
satisfying this equation and each pair is equally likely. Thus, the probability that
t+ sxv + xw = 0 is at most 1/p.

Guess. A outputs a bit δ′. If δ = δ′, then B outputs γ = 1, which means that B’s
guess is W = H(gab). If δ �= δ′, then B outputs γ = 0, which means that B’s guess
is that W is a random string.

From the above we see that unless B aborts, B simulates the view of A perfectly,
as in the original PKE security experiment.

If A wins, then B also wins. Therefore, we have that, for all k � 0,

AdvHDH
B (k) � AdvIND-CCA2

A,PKE (k) − AdvCR
A (k) − q/p.

The total running time of B is tB � tA + O(tG), where tA is the running time of
A and tG is the time to perform a basic operation in G. �

3. Publicly verifiable ciphertexts in general KEMs

We now adapt the generalized encryption syntax to the setting of key encapsula-
tion mechanisms and explore the public verifiability of general KEMs.

3.1. Definition: General KEM

A general key encapsulation mechanism (GKEM) is a tuple GKEM = (PG, KG,
Encap, Decap) of four algorithms that are defined almost identically to general en-
cryption schemes (cf. Section 2.1). The difference to encryption schemes’ PG and
KG algorithms is that message space MsgSp is replaced by a key space KeySp. In
addition, the modification to Encap and Decap (when compared to Enc and Dec, re-
spectively) is that Encap outputs a ciphertext C and a session key K ∈ KeySp, while
Decap outputs either a key K, or ⊥.

Correctness of GKEM and its security definition through advantage function
AdvIND-xxx

A,GKEM(k), xxx ∈ {CPA, CCA2}, in the indistinguishability experiments are also
defined analogously to the case of general encryption and are shown in the right side
of Fig. 1.
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3.2. General KEMs with publicly verifiable ciphertexts

Definition 3 (Publicly verifiable GKEM). A general key encapsulation mechanism
GKEM = (PG, KG, Encap, Decap) is said to be publicly verifiable with respect to
auxiliary algorithms Ver and Decap′ if Decap = Decap′ ◦ Ver, and Ver and Decap′

satisfy the same criteria as Ver and Dec′ in Definition 1, with the proviso that Decap′

outputs a key K ∈ KeySp, not a message M ∈ MsgSp.

Theorem 4 (whose proof is identical to that of Theorem 1 and is thus omitted)
shows that any publicly verifiable IND-CCA2-secure GKEM scheme will remain at
least IND-CPA-secure if the verification algorithm Ver is run by an honest-but-curious
gateway. To account for a non-trivial verification process that may modify the cipher-
text, we again apply post-processing to the output of the encapsulation algorithm (cf.
discussion in Section 2.2).

Theorem 4. Let GKEM = (PG, KG, Encap, Decap) be an IND-CCA2-secure general
KEM that is publicly verifiable with respect to auxiliary algorithms Ver and Decap′.
Let Encap′ := Ver ◦ Encap and let GKEM′ := (PG, KG, Encap′, Decap′). Then for
every IND-CPA adversary A against GKEM′, there exists an IND-CCA2 adversary B
against GKEM such that, for all k � 0, AdvIND-CPA

A,GKEM′(k) � AdvIND-CCA2
B,GKEM (k), where B

has (asymptotically) the same running time as A.

3.3. Constructions of publicly verifiable KEMs

We now present some examples of KEMs with publicly verifiable ciphertexts.
First, we discuss the publicly verifiable construction of an identity-based KEM that
we obtain immediately from the IND-CCA2-secure IB-KEM proposed by Kiltz and
Galindo [24]. Parameters par′ = (G1,GT , p, g, e, H) chosen by parameter generation
algorithm PG(1k) are such that G1 = 〈g〉 is a multiplicative cyclic group of prime
order p > 22k, GT is a multiplicative cyclic group of the same order, e :G1 ×G1 →
GT is a non-degenerate bilinear map, and H : IDSp = {0, 1}�(k) → G1 is Waters’
hash function such that �(k) is a polynomial in k. We also use a target collision
resistant function TCR :G1 → Zp. Figure 6 details the scheme.

Note that by setting KEM.Decap = KEM.Decap′◦KEM.Ver we immediately obtain
the original Kiltz–Galindo IB-KEM [24]. It is easy to see that algorithm KEM.Ver is
publicly verifiable as per Definition 3. Further, Kiltz and Galindo noted that ignoring
all operations associated to the identity in their IB-KEM yields a simplified version
of the IND-CCA2-secure public-key schemes from [8,21]. Therefore, by removing
computations related to the ciphertext component c2 and the key generation algo-
rithm KG from Kiltz–Galindo’s IB-KEM, Theorem 4 implies that we immediately
obtain IND-CPA-secure publicly verifiable constructions of a public-key KEM and a
tag-based KEM.
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KEM.PG(1k):

(1) Generate
par′ = (G1,GT , p, g, e, H)

(2) α
$← G1, msk ← α

(3) u, v
$← G1, z ← e(g,α)

(4) pk ← (u, v, z)
(5) par ← (par′, pk)
(6) Return (par, msk)

KEM.Encap(par, id):

(1) (par′, pk) ← par
(2) Parse par′ and pk

(3) r
$← Z∗

p, c1 ← gr

(4) t ← TCR(c1)
(5) c2 ← H(id)r

(6) c3 ← (utv)r

(7) K ← zr ∈ GT
(8) C ← (c1, c2, c3) ∈ G3

1
(9) Return (C,K)

KEM.KG(par, msk, id):

(1) Parse (par′, pk) ← par and par′

(2) s
$← Zp, dk[id] ← (α · H(id)s, gs)

(3) Return dk[id]

KEM.Ver(par, pk, id,C):

(1) (par′, pk) ← par
(2) Parse par′ and pk
(3) (c1, c2, c3) ← C, t ← TCR(c1)
(4) If e(g, c3) �= e(c1,utv) or

e(g, c2) �= e(c1, H(id)),
then return ⊥

(5) Return C ′ = (c1, c2)

KEM.Decap′(par, id, dk[id],C ′):

(1) (par′, pk) ← par
(2) Parse par′

(3) (c1, c2) ← C ′, (d1, d2) ← dk[id]
(4) K ← e(c1, d1)/e(c2, d2)
(5) Return K

Fig. 6. Kiltz–Galindo IB-KEM with publicly verifiable ciphertexts.

4. Publicly verifiable ciphertexts in hybrid encryption

For its simplicity and flexibility, the KEM/DEM approach [12,37] to construct
PKE schemes has attracted much attention and is used in several encryption stan-
dards [20,31,38]. It has been shown that if both the KEM and the DEM are se-
cure against chosen-ciphertext attacks, then so is the resulting hybrid encryption
scheme [12]. Herranz et al. [19] studied a variety of other necessary and sufficient
conditions for KEMs and DEMs for the security of the hybrid construction. They
showed that, in order to obtain IND-CCA2 security of the hybrid scheme, the KEM
must be IND-CCA2-secure while the security requirement on the DEM can be relaxed
from IND-CCA2 to IND-OTCCA that prevents one-time (adaptive) chosen-ciphertext
attacks.

Therefore, when dealing with public verifiability of hybrid schemes, we must take
into account the existence of consistency checks in the decapsulation of DEM, in
addition to checks on the KEM part. Since DEM consistency checks are typically
performed using the decapsulated key, hybrid schemes cannot usually provide the
full form of public verification as specified in Definition 1. We show, however, that
these schemes can offer a somewhat relaxed property, where only the KEM part
is publicly verifiable, so successful public consistency check of the KEM part is
a necessary but not a sufficient condition for the overall success of decryption. In
the context of gateway-assisted IND-CCA2/CPA conversion, this property effectively
allows outsourcing the consistency check of the KEM part to the gateway. In this
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HGE.PG(1k):

(1) (par, msk)
$← KEM.PG(1k)

(2) Return (par, msk)

HGE.Enc(par, ek,M , t):

(1) (C1,K) ← KEM.Encap(par, ek, t)
(2) C2 ← DEM.Enc(K,M )
(3) Return C = (C1,C2)

HGE.KG(par, msk, id):

(1) (ek, dk)
$← KEM.KG(par, msk, id)

(2) Return (ek, dk)

HGE.Dec(par, ek, dk,C, t):

(1) (C1,C2) ← C
(2) K ← KEM.Decap(par, ek, dk,C1, t)
(3) If K = ⊥ then return ⊥
(4) M ← DEM.Dec(K,C2)
(5) Return M (possibly as ⊥)

Fig. 7. Hybrid general encryption scheme HGE.

way, clients would only need to perform private consistency checks for the DEM
part: in practice, the verification costs for DEMs are often much smaller than the
verification costs for KEMs.

4.1. Definition: Hybrid general encryption

Let GKEM = (PG, KG, Encap, Decap) be a general KEM scheme (as defined in
Section 3.1) and let DEM = (Enc, Dec) be a one-time symmetric key encryption
scheme [19]. The two schemes are assumed to be compatible, so session keys output
by KEM are appropriate for DEM.

A hybrid general encryption (HGE) scheme is a tuple HGE = (PG, KG, Enc, Dec)
of four algorithms as defined in Fig. 7.

4.1.1. Correctness
A hybrid general encryption scheme HGE = (PG, KG, Enc, Dec) is correct if,

for all (par, msk) output by HGE.PG, all plaintexts M , all identities id ∈ IDSp,
all (ek, dk) output by HGE.KG(par, msk, id), and all tags t ∈ TagSp, we have
HGE.Dec(par, ek, dk, HGE.Enc(par, ek,M , t), t) = M with probability 1, where the
probability is taken over the coins of HGE.Enc.

4.2. Hybrid general encryption with publicly verifiable ciphertexts

When defining public verifiability of HGE schemes with respect to Ver and Dec′,
we can reuse most of Definition 1 for general encryption. Note that message M
output by the lightweight decryption algorithm Dec′ could also be an error symbol ⊥.
However, as previously mentioned, in general, HGE do not satisfy condition 3(b) of
Definition 1 since, for hybrid schemes, failure of the original decryption procedure
HGE.Dec may not necessarily imply failure of the verification algorithm Ver′. For
this reason we define the following relaxed notion:

Definition 4 (Partial public verification). Let HGE = (PG, KG, Enc, Dec) be a hy-
brid general encryption scheme of the form given in Fig. 7. We say that HGE is
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partially publicly verifiable with respect to auxiliary algorithms Ver and Dec′ if it
satisfies conditions 1, 2 and 3(b) of Definition 1, as well as the following condition:

3(a)′ (Ver(par, ek,C, t) = ⊥∨DEM.Dec(K,C2) = ⊥) ⇔ Dec(par, ek, dk,C, t) = ⊥
for all C, where C = (C1,C2) and K = KEM.Decap(par, ek, dk,C1, t).

Condition 3(a)′ states that successful public verification by itself is not necessarily
sufficient for the decryption algorithm to successfully decrypt. More precisely, if Ver
succeeds, then the only reason that HGE.Dec fails is because of a failure in DEM.Dec.

The following theorem shows that, if the underlying general KEM is publicly
verifiable, then the hybrid general encryption scheme is partially publicly verifiable
and that by outsourcing verification of the KEM part the hybrid scheme remains at
least IND-CPA-secure.

Theorem 5. Let GKEM = (PG, KG, Encap, Decap) be an IND-CCA2-secure general
key encapsulation mechanism that is publicly verifiable with respect to GKEM.Ver
and GKEM.Decap′, DEM = (Enc, Dec) be an IND-OTCCA-secure data encapsula-
tion mechanism, and HGE = (PG, KG, Enc, Dec) be the resulting hybrid general
encryption scheme. Then the following hold:

(1) HGE is partially publicly verifiable with respect to HGE.Ver and HGE.Dec′.

(2) Let HGE′ := (PG, KG, Enc′, Dec′) with HGE′.Enc′ = HGE.Ver ◦HGE.Enc and
HGE′.Dec′ = HGE.Dec′. For any IND-CPA adversary A against HGE′, there
exists an IND-CPA adversary B1 against GKEM′ and an IND-OTCCA adversary
B2 against DEM such that

AdvIND-CPA
A,HGE′ (k) � AdvIND-CCA2

B1,GKEM′ (k) + AdvIND-OTCCA
B2,DEM (k) ∀k � 0,

and such that B1 and B2 have (asymptotically) the same running time as A.

Proof.
Statement 1. The first statement of the theorem is proven as follows: if GKEM as

used in the HGE construction is publicly verifiable (in the sense of Definition 3) then
there exist two algorithms GKEM.Ver and GKEM.Decap′ such that GKEM.Decap =
GKEM.Decap′ ◦ GKEM.Ver.

We construct now two algorithms HGE.Ver and HGE.Dec′ as follows:

HGE.Ver(par, ek,C, t): Given public parameters par, the encryption key ek, a cipher-
text C and a tag t, this algorithm first parses C into C1 and C2 and runs
GKEM.Ver(par, ek,C1, t). If GKEM.Ver(·) outputs ⊥ the algorithm HGE.Ver
also outputs C ′ = ⊥. Otherwise the output of GKEM.Ver(·) is a new (trans-
formed) ciphertext C ′

1 and in this case the algorithm HGE.Ver outputs a ci-
phertext C ′ = (C ′

1,C2).
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HGE.Dec′(par, ek, dk,C ′, t): The algorithm parses C ′ as (C ′
1,C2) and obtains K ←

GKEM.Decap′(par, ek, dk,C ′
1, t). If K = ⊥ then it outputs ⊥. Otherwise, it

runs DEM.Dec(K,C2) and outputs its result (which could also be ⊥).

From the above, it is easy to see that HGE.Dec = HGE.Dec′ ◦ HGE.Ver. That
is, HGE.Dec(par, ek, dk,C, t) has the same input/output behavior as the following
sequence of steps:

(1) (C1,C2) ← C
(2) C ′ ← HGE.Ver(par, ek,C, t)
(3) If C ′ = ⊥ then return ⊥
(4) M ← HGE.Dec′(par, ek, dk,C ′, t)
(5) Return M (possibly as ⊥)

This construction of HGE.Dec implies that HGE is at least inconclusively pub-
licly verifiable with respect to HGE.Ver and HGE.Dec′. Now observe that if
either HGE.Ver or HGE.Dec′ fails then so does HGE.Dec. By construction,
DEM.Dec(K,C2) = ⊥ leads to the failure of HGE.Dec′. Hence,

HGE.Ver(par, ek,C, t) = ⊥ ∨ DEM.Dec(K,C2) = ⊥
⇒ HGE.Dec(par, ek, dk,C, t) = ⊥. (1)

As for the opposite implication observe that if HGE.Dec outputs ⊥ then either
HGE.Ver(par, ek,C, t) = ⊥ or HGE.Dec′(par, ek, dk,C ′, t) = ⊥. Note that by con-
struction, HGE.Dec′ fails if GKEM.Decap′(par, ek, dk,C ′

1, t) = ⊥ or DEM.Dec(K,
C2) = ⊥. Since GKEM.Decap = GKEM.Decap′ ◦ GKEM.Ver and GKEM.Ver is con-
clusive we have GKEM.Decap′(par, ek, dk,C ′

1, t) = ⊥ if and only if C ′ = ⊥. Since
C ′ = ⊥ is equivalent to the failure of HGE.Ver we have

HGE.Dec(par, ek, dk,C, t) = ⊥
⇒ HGE.Ver(par, ek,C, t) = ⊥ ∨ DEM.Dec(K,C2) = ⊥. (2)

Combining (1) and (2) shows that HGE.Ver is partially publicly verifiable as per
Definition 4.

Statement 2. To prove the second statement, we first need to show that the hy-
brid general encryption scheme HGE′ := (PG, KG, Enc′, Dec′) is IND-CPA-secure.
Note that HGE′ is a general encryption scheme that is obtained through a hybrid
construction of GKEM′ := (PG, KG, Encap′, Decap′) and DEM = (Enc, Dec), where
GKEM′.Encap′ := GKEM.Ver ◦GKEM.Encap and GKEM′.Decap′ = GKEM.Decap′,
as defined in Theorem 4, which also says that GKEM′ is IND-CPA-secure. This im-
plies that HGE′ is obtained through combination of an IND-CPA-secure KEM and an
IND-OTCCA secure DEM. The result of Herranz et al. [19], who showed that this
combination achieves at least IND-CPA security, helps us to immediately conclude
the proof of the second statement. �
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4.3. Hybrid encryption schemes with publicly verifiable ciphertexts

Herranz et al. [19] showed that if an IND-CCA2-secure KEM is combined with
an IND-OTCCA-secure DEM then the resulting hybrid encryption scheme is also
IND-CCA2-secure. As shown by Cramer and Shoup [12], one can easily construct
an IND-OTCCA-secure DEM by adding a one-time MAC to a one-time-secure DEM
such as the one-time pad. Moreover, Theorem 5 states that if the underlying KEM is
publicly verifiable then the resulting hybrid encryption scheme is publicly verifiable
as well. We can thus immediately obtain from these two building blocks a range of
publicly verifiable constructions of hybrid encryption schemes with partial public
verifiability; for instance, we can apply publicly verifiable KEM constructions from
Section 3.3.

In the case of the tag-based KEM/DEM approach, Abe et al. [3] showed that
IND-CCA2-secure hybrid encryption can be obtained by combining an IND-CCA2-
secure tag-based KEM with a one-time secure DEM. They also provide constructions
of IND-CCA2-secure tag-based KEMs that they obtain generically from IND-CCA2-
secure public-key KEMs and one-time MACs. Our publicly verifiable public-key-
based KEM constructions from Section 3.3 can be used to instantiate their tag-based
KEMs, resulting in further publicly verifiable hybrid encryption schemes.

5. Conclusion

We studied the notion of public verifiability for encryption schemes, KEMs and
hybrid KEM/DEM encryption. Public verifiability allows any party to check the
well-formedness of a ciphertext. If a semi-trusted intermediate party, such as a gate-
way, performs the verification, then the final recipient need not perform the verifi-
cation and can simply decrypt. If the gateway does its job properly, then the overall
scheme has IND-CCA2 security. Regardless of the gateway’s behaviour, the recipient
has the guarantee of IND-CPA security; moreover, the recipient can always choose to
do the full verification to obtain full IND-CCA2 security. Compared with other out-
sourcing techniques, a scheme with public verifiability is compelling because it does
not require the recipient to disclose its private keys to the gateway.

Our formal definitions for publicly verifiable schemes adopt and extend the gen-
eralized syntax of Abdalla et al. [1], to cover public-key based, identity-based, and
tag-based settings. We demonstrate that the well-known CHK and NIZK-based trans-
forms generally offer at least some public verification. We propose several direct
constructions of publicly verifiable PKE schemes and KEMs. For hybrid KEM/DEM
schemes, we show that, although fully conclusive public verification is not achiev-
able, a relaxed notion of partial public verifiability of KEM ciphertexts can be ob-
tained: this IND-CCA2/CPA filter still offers performance gains that can be useful for
applications involving outsourcing ciphertext verification to an honest-but-curious
gateway without losing confidentiality.
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