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Abstract

We analyze the handshake protocol of the Transport Layer Security (TLS) protocol, ver-
sion 1.3. We address both the full TLS 1.3 handshake (the one round-trip time mode, with
signatures for authentication and (elliptic curve) Diffie–Hellman ephemeral ((EC)DHE) key ex-
change), and the abbreviated resumption/“PSK” mode which uses a pre-shared key for authen-
tication (with optional (EC)DHE key exchange and zero round-trip time key establishment).
Our analysis in the reductionist security framework uses a multi-stage key exchange security
model, where each of the many session keys derived in a single TLS 1.3 handshake is tagged
with various properties (such as unauthenticated versus unilaterally authenticated versus mu-
tually authenticated, whether it is intended to provide forward security, how it is used in the
protocol, and whether the key is protected against replay attacks). We show that these TLS 1.3
handshake protocol modes establish session keys with their desired security properties under
standard cryptographic assumptions.
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1 Introduction
The Transport Layer Security (TLS) protocol is one of the most widely deployed cryptographic
protocols in practice, protecting numerous web and e-mail accesses every day. The TLS handshake
protocol allows a client and a server to authenticate each other and to establish a key, and the
subsequent record layer protocol provides confidentiality and integrity for communication of appli-
cation data. Originally developed as the Secure Sockets Layer (SSL) protocol version 3 in 1996,
TLS version 1.0 was standardized by the Internet Engineering Task Force (IETF) in 1998 [DA99],
with subsequent revisions to version 1.1 (2006) [DR06] and version 1.2 (2008) [DR08]. Despite
its large-scale deployment, or perhaps because of it, we have witnessed frequent successful attacks
against TLS. Starting around 2009, there were many practical attacks on the then-current version
1.2 of TLS that received significant attention, exploiting weaknesses in underlying cryptographic
primitives (such as weaknesses in RC4 [ABP+13]), errors in the design of the TLS protocol (e.g.,
BEAST [Duo11], the Lucky 13 attack [AP13], the triple handshake attack [BDF+14], the POODLE
attack [MDK14], the Logjam attack [ABD+15]), or flaws in implementations (e.g., the Heartbleed
attack [Cod14], state machine attacks (SMACK [BBDL+15])).

1.1 Development and Standardization of TLS 1.3

With concerns rising about the security of TLS version 1.2 due to the many attacks, but also
motivated by desire to deprecate old algorithms, enhance privacy, and reduce connection establish-
ment latency, in 2014 the IETF’s TLS working group initiated a multi-year process to develop and
standardize a new version of TLS, eventually called version 1.3. From 2014 through 2018, a total
29 drafts of TLS 1.3 were published, with active feedback from industry and academia, including
extensive security analyses by various teams from academia (see [PvdM16] for a chronicle of the
development and analysis of TLS 1.3). The document standardizing TLS 1.3, RFC 8446 [Res18],
was published in August 2018 and has already seen widespread adoption.

From a cryptographic perspective, major design changes in TLS 1.3 compared to version 1.2
include: (1) encrypting some handshake messages with an intermediate session key, to provide
confidentiality of handshake data such as the client certificate; (2) signing the entire handshake
transcript for authentication; (3) including hashes of handshake messages in a variety of key calcu-
lations; (4) using different keys to encrypt handshake messages and application data; (5) deprecating
a variety of cryptographic algorithms (including RSA key transport, finite-field Diffie–Hellman key
exchange, SHA-1, RC4, CBC mode, MAC-then-encode-then-encrypt); (6) using modern authenti-
cated encryption with associated data (AEAD) schemes for protecting application data; and (7)
providing handshakes with fewer message flows to reduce latency.

There are two primary modes of the TLS 1.3 handshake protocol. One is the full, one round-
trip time (1-RTT) handshake, which uses public-key certificates for server and (optionally) client
authentication, and (elliptic curve) Diffie–Hellman ephemeral ((EC)DHE) key exchange, inspired
by Krawczyk’s ‘SIGn-and-MAc’ (SIGMA) design [Kra03]. Several session keys are established for
a variety of purposes in this mode: to encrypt part of the handshake, to enable export of keying
material to other applications, for session resumption, and of course to encrypt application data.
This mode gets its name from the fact that application data can be sent from the client to the
server with the handshake’s completion after a full round trip, meaning there is one round-trip
time (1-RTT) until the first application message can be sent (not counting non-TLS networking
operations such as DNS lookups or the TCP 3-way handshake).

The other primary mode of the TLS 1.3 handshake protocol is the resumption or pre-shared
key (PSK) mode, in which authentication is based on a symmetric pre-shared key, with optional
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(EC)DHE key exchange for forward secrecy; this generalizes the abbreviated session resumption
handshake from earlier versions of TLS. The PSK mode can optionally be augmented with a zero
round-trip time (0-RTT) key establishment, allowing the client to send—along with its first TLS
flow—application data encrypted under a key derived from the PSK.

1.2 Security Analyses of TLS

TLS 1.2 and prior versions. A long line of work has analyzed various versions of the SSL/TLS
protocol using both formal methods and reductionist security proofs. In the reductionist secu-
rity paradigm, early work [JK02, MSW08, Gaj08] on the handshake protocol dealt with modified
or truncated versions of the protocol, necessary because TLS 1.2 and earlier did not have strict
key separation: the session key was also used to encrypt messages within the handshake proto-
col, barring security proofs in strong indistinguishability-based authenticated key exchange models
in the Bellare–Rogaway [BR94] style. There were also formalizations of the security of the au-
thenticated encryption in the record layer [Kra01, PRS11]. A major milestone in reductionist
analyses of TLS was the development of the authenticated and confidential channel establishment
(ACCE) security model which allowed for the combined analysis of a full TLS 1.2 handshake and
secure channel in a single model [JKSS12], sidestepping the aforementioned key separation issue;
this work was followed by a range of other works analyzing the security of various aspects of
TLS 1.2 [KPW13, KSS13, LSY+14, GKS13, DS15]. Other approaches to proving the security of
TLS 1.2 within the reductionist security paradigm include a range of modular and compositional
approaches [BFS+13] as well as approaches that combine formal analysis and reductionist security
[BFK+13, BFK+14].

TLS 1.3 drafts. The handshake protocol in initial drafts of TLS 1.3 was based in part on the
OPTLS protocol [KW16]. There were a variety of investigations on the security of various drafts
throughout the TLS 1.3 standardization process. Using the reductionist security paradigm, there
have been analyses of the handshake protocol [DFGS15, KMO+15, DFGS16, KW16, LXZ+16,
FGSW16, Kra16b, FG17, BFG19a] and the record layer [BMM+15, BT16, LP17, GM17, PS18].
There has been a range of work involving formal methods and tools, such as model checkers and
symbolic analysis [CHSv16, CHH+17], and approaches combining verified implementations with
formal analysis and reductionist security [BFK16, BBD+15, BBF+16, DFK+17].

TLS 1.3 standard. Since TLS 1.3 was published as an RFC in August 2018, some works have
addressed the final TLS 1.3 standard. The Selfie attack [DG21b] led to updated analyses of
PSK handshakes [DG21b, AASS19]. Arfaoui et al. [ABF+19] investigated the privacy features
of the TLS 1.3 handshake. Revised computational security proofs of the full 1-RTT handshake
by Diemert and Jager [DJ21] and Davis and Günther [DG21a] translated techniques of Cohn-
Gordon et al. [CCG+19] to establish tighter reductions. There have also been academic propos-
als for improvements to or modifications of TLS 1.3, considering forward security for the 0-RTT
handshake [AGJ21], running TLS 1.3 over a different network protocol [CJJ+19], or defining a
KEM-based alternative handshake enabling the deployment of post-quantum schemes [SSW20].

1.3 Our Contributions

We give a reductionist security analysis of three modes of the TLS 1.3 handshake: the full 1-RTT
handshake, the PSK handshake (with optional 0-RTT mode), and the PSK-(EC)DHE handshake
(with optional 0-RTT mode); based on a cryptographic abstraction of the protocols we provide
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in Section 3. In order to carry out our analysis, we formalize a multi-stage key exchange security
model which can capture a variety of characteristics associated to each stage key. Our analysis
shows that the design of the TLS 1.3 handshake follows sound cryptographic principles.

Security model. Our security model, given in Section 4, follows the Bellare–Rogaway (BR)
model [BR94] for authenticated key exchange security based on session key indistinguishability, as
formalized by Brzuska et al. [BFWW11, Brz13], and our model builds specifically on the multi-
stage model of Fischlin and Günther [FG14, Gün18]. The latter deals with key exchange protocols
that derive a series of session keys in the course of multiple protocol stages. Our extension of their
multi-stage key exchange model allows us to capture the following characteristics associated to the
session key established at each stage, which we call the stage key:

• Authentication: whether a stage key is unauthenticated, unilaterally authenticated, or mutu-
ally authenticated. We further extend the multi-stage model to capture upgradable authenti-
cation: a stage’s key may be considered, say, unauthenticated at the time it is accepted, but
the authentication level of this key may be “raised” to unilaterally authenticated or, poten-
tially in a second step, mutually authenticated after some later operations, such as verification
of a signature in a later message.

• Forward secrecy: whether a stage key is meant to provide forward secrecy, namely that it
remains secure after compromise of a long-term secret involved in its derivation.

• Key usage: whether a stage key is meant to be used internally within the protocol (for
example, to encrypt later handshake messages), or externally (for example, composed with a
symmetric encryption scheme to protect application messages or used in some other external
symmetric-key protocol).

• Replayability: whether it is guaranteed that a stage key is not established in result of a replay
attack; early stages of the 0-RTT modes do not have this guarantee.

Our security model comes in two flavors that capture security established through two types of
credentials: public keys or symmetric pre-shared keys. Following the BR model, our model of com-
promise includes long-term key compromise (Corrupt) and stage key compromise (Reveal). While
other models [CK01, LLM07] further capture the compromise of session state or ephemeral ran-
domness, TLS is not designed to be secure against such exposure of ephemeral values and we hence
do not include these compromise capabilities in our model.

In addition to capturing indistinguishability of stage keys, the model also ensures soundness of
session identifiers using the Match-security notion of [BFWW11, Brz13].

Protocol analysis. We apply our multi-stage key exchange security model in Sections 5 and 6
to analyze the three modes of the TLS 1.3 handshake: full 1-RTT, PSK, and PSK-(EC)DHE, with
the latter two having optional 0-RTT keys. There are four main classes of stage keys covered in
the analysis: early data encryption and export keys (ETS, EEMS, only present in the PSK with
0-RTT modes); handshake traffic secrets (tkchs, tkshs); application traffic secrets (CATS, SATS);
and exported keys (RMS for session resumption, EMS for other exported keys). This results in six
stage keys in the full 1-RTT mode and eight stage keys in the PSK modes.

As noted above, our security model allows us to precisely capture various characteristics of
different stage keys. For example, consider the client handshake traffic secret tkchs, used to encrypt
handshake messages from the client to the server. In the full 1-RTT handshake, this key is initially
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unauthenticated, then unilaterally authenticated through a server signature after stage 3 is reached,
and may ultimately be mutually authenticated after stage 6 is reached if the client authenticates;
it is forward secret; is intended for internal use within the protocol; and it is guaranteed to be non-
replayed. In contrast, in the PSK handshake, this key is mutually authenticated as soon as it is
established, but does not have forward secrecy. Finally, in the PSK-EC(DHE) handshake, this key
is unauthenticated initially, then is upgraded to unilateral and eventually mutual authentication
after stages 5 and 8, when MACs within the Finished messages are verified; and it is forward
secret.

The reductions showing the security of the protocol modes in the model follow a game hopping
technique, and mainly rely on standard signature resp. MAC scheme unforgeability (for authenti-
cation in the full 1-RTT resp. PSK handshake), hash function collision resistance, PRF security
(and in some cases dual PRF security), and an interactive Diffie–Hellman assumption (a variant of
the PRF-Oracle-Diffie–Hellman assumption [JKSS12, BFGJ17] called dual-snPRF-ODH).

Observations on the design and security of TLS 1.3. In Section 7, we include a discussion
about various characteristics of TLS 1.3 based on results of our security analysis, including how
a variety of TLS 1.3 design decisions positively impact the security analysis (key separation and
key independence, including the session hash in signatures and key derivation), some subtleties
on the role of handshake encryption and key confirmation via Finished messages, as well as the
susceptibility of 0-RTT keys to replays.

Relation to our earlier work. This paper is successor work to [DFGS15, DFGS16] and [FG17],
as well as [Dow17, Gün18]. In [DFGS15], we first extended the multi-stage key exchange model
of [FG14] as needed, then applied it to analyze two early drafts of TLS 1.3: draft-05, which
has the same basic signed-Diffie–Hellman structure but a simplified key schedule compared to the
final version, and an alternative proposal called draft-dh incorporating ideas from the OPTLS
design [KW16], in which servers could have a semi-static DH key share. In [DFGS16], we updated
our analysis to draft-10 and added an analysis of the, by then revised, pre-shared-key handshake
mode. In [FG17], a subset of us analyzed the 0-RTT pre-shared key and PSK-(EC)DHE mode in
draft-14, as well as the later deprecated Diffie–Hellman-based 0-RTT mode using semi-static DH
key shares in draft-12, which introduced the notion of replayable stages into the multi-stage key
exchange security model. In a PhD thesis [Dow17], one of us updated the work from [DFGS16]
to address the full, PSK, and PSK-(EC)DHE handshakes in draft-16; in another PhD thesis
[Gün18], another of us unified the MSKE model and the aforementioned results on the full and
PSK handshakes of draft-10 and the 0-RTT handshakes of draft-12 and draft-14.

This paper updates this prior work to the final version of TLS 1.3 as published in RFC 8446 [Res18]
(recall that there were 29 drafts leading up to the final standard). It addresses, in a unified security
model, the full, PSK, and PSK-(EC)DHE handshakes, the latter two with optional 0-RTT keys.
The security model in this paper includes enhancements not present in earlier works, particularly
for capturing upgradable authentication. The model and analysis for the PSK mode have been
updated to reflect the observations of Drucker and Gueron’s “Selfie” attack [DG21b] by associating
intended roles with a pre-shared key.

Section 7.1 provides more details on technical differences between this paper and our earlier
work.

Limitations. The TLS 1.3 protocol allows users to support and negotiate different cryptographic
algorithms including the used signature schemes, Diffie–Hellman groups, and authenticated en-
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cryption schemes. Many implementations will simultaneously support TLS 1.3, TLS 1.2, and even
earlier versions. We do not aim to capture the security of this negotiation process nor security
when a cryptographic key (e.g., a signing key) is re-used across different algorithm combinations or
with earlier versions of TLS [JSS15]. For the PSK modes of TLS 1.3, we do not treat how parties
negotiate which pre-shared key to use. Our analysis assumes that all parties use only TLS 1.3 with
a single combination of cryptographic algorithms and do not re-use keying material outside of that
context (beyond consuming session keys established by the TLS 1.3 handshake).

In our proofs of key indistinguishability for all three TLS 1.3 handshake modes, some of our
proof steps involve guessing parties and/or sessions, and thus are non-tight, similar to most proofs
of authenticated key exchange protocols. Recently, Diemert and Jager [DJ21] as well as Davis and
Günther [DG21a] have established new security proofs for the TLS 1.3 full 1-RTT handshake with
tight reductions to the strong Diffie–Hellman assumption, translating techniques of Cohn-Gordon
et al. [CCG+19].

Our focus is entirely on the TLS 1.3 handshake protocol, and thus does not address secu-
rity of the record layer’s authenticated encryption. TLS 1.3 also includes a variety of additional
functionalities outside the core handshake that we treat as out of scope. Examples include session
tickets, post-handshake authentication [Kra16b], the alert protocol, and changes for Datagram TLS
(DTLS) 1.3 [RTM19], as well as other extensions to TLS 1.3 currently in the Internet-Draft state.

Security in practice obviously relies on many more factors, such as good implementations and
good operational security, which are important but outside the scope of this analysis.

2 Preliminaries
We begin with introducing the basic notation we use in this paper and recapping some core building
blocks and cryptographic assumptions employed in our security analysis.

2.1 Notation

With N we denote the natural numbers. We write a bit as b ∈ {0, 1} and a (bit) string as s ∈ {0, 1}∗,
with |s| indicating its (binary) length; {0, 1}n is the set of bit strings of length n. We write x← y
for the assignment of value y to the variable x and x←$ X for uniformly sampling x from a (finite)
set X.

For an algorithm A we write x ← A(y), resp. x←$A(y), for the algorithm deterministically,
resp. probabilistically, outputting x on input y. We indicate by AO an algorithm A running with
oracle access to some other algorithm O.

2.2 Collision-Resistant Hash Functions

As often the case in practice, the cryptographic hash functions used in TLS 1.3 are unkeyed.
When considering a hash function’s collision resistance, we hence demand that a security re-
duction provides effective means for constructing a concrete algorithm generating a collision (cf.
Rogaway [Rog06]).

Definition 2.1 (Hash function and collision resistance). A hash function H : {0, 1}∗ → {0, 1}λ
maps arbitrary-length messages m ∈ {0, 1}∗ to a hash value H(m) ∈ {0, 1}λ of fixed length λ ∈ N.

We can now measure the collision resistance (COLL) with respect to an adversary A via the
advantage

AdvCOLL
H,A := Pr

[
(m, m′)←$A : m ̸= m′ and H(m) = H(m′)

]
.
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In the common asymptotic notion we would demand that one cannot construct an efficient adver-
sary A where this advantage is non-negligible with respect to the security parameter λ.

2.3 HMAC and HKDF

TLS 1.3 employs HKDF [Kra10, KE10] as its key derivation function, with HMAC [BCK96, KBC97]
at its core. We briefly recap their definition and usage.

HMAC [BCK96, KBC97] is based on a cryptographic hash function H : {0, 1}∗ → {0, 1}λ and
keyed with some key K ∈ {0, 1}λ (larger key material is hashed through H to obtain a λ-bit key).
Computing the HMAC value on some message m is then defined as HMAC(K, m) := H((K ⊕
opad) ∥H((K⊕ ipad) ∥m)), where opad and ipad are two λ-bit padding values consisting of repeated
bytes 0x5c and 0x36, respectively.

HKDF follows the extract-then-expand paradigm for key derivation [Kra10, KE10], instantiated
with HMAC. We adopt the standard notation for the two HKDF functions: HKDF.Extract(XTS,
SKM) on input an (non-secret and potentially fixed) extractor salt XTS and some (not necessar-
ily uniform) source key material SKM outputs a pseudorandom key PRK. HKDF.Expand(PRK,
CTXinfo, L) on input a pseudorandom key PRK (from the Extract step) and some (potentially
empty) context information CTXinfo outputs pseudorandom key material KM of length L bits.
(For simplicity, we omit the third parameter L in Expand when L = λ, which is the case through-
out TLS 1.3 except when deriving traffic keys (cf. Table 2).) Both functions are instantiated
with HMAC, where directly HKDF.Extract(XTS, SKM) := HMAC(XTS, SKM) and HKDF.Expand
iteratively invokes HMAC to generate pseudorandom output of the required length (see [Kra10]).

2.4 Dual PRF Security and the PRF-ODH Assumption

Most key derivation steps in TLS 1.3 rely on regular pseudorandom function (PRF) security for
the HKDF and HMAC functions. In our analysis of the PSK handshakes, we also treat HMAC as
a collision-resistant unkeyed hash function over the pair of inputs, as in Definition 2.1. For some
of its applications, we however need to deploy stronger assumptions which we recap here.

The first assumption is concerned with the use of HMAC as a dual PRF (cf. [Bel06]).

Definition 2.2 (Dual PRF security). Let f : K × L → O be a pseudorandom function with key
space K and label space L such that K = L. We define the dual PRF security of f as the PRF
security of f swap(k, l) := f(l, k) and the according advantage function as

Advdual-PRF-sec
f,A := AdvPRF-sec

f swap,A .

The second assumption, the so-called pseudorandom-function oracle-Diffie–Hellman (PRF-ODH)
assumption, has been introduced by Jager et al. [JKSS12] in their analysis of the TLS 1.2 key ex-
change. It is a variant of the oracle-Diffie–Hellman assumption introduced by Abdalla et al. [ABR01]
in the context of the DHIES encryption scheme. Basically, the PRF-ODH assumption states that
the value PRF(guv, x⋆) for a Diffie–Hellman-type key guv is indistinguishable from a random string,
even when given gu and gv and when being able to see related values PRF(Su, x) and/or PRF(T v, x)
for chosen values S, T , and x. The PRF-ODH assumption comes in various variants, which have
been generalized and studied by Brendel et al. [BFGJ17].

For our analysis of TLS 1.3, we will deploy only the snPRF-ODH assumption providing limited
oracle access to only a single related value PRF(Su, x), as well as its dual variant, dual-snPRF-ODH.
Both have been established by Brendel et al. [BFGJ17] to hold for HMAC in the random oracle
model under the strong Diffie–Hellman assumption.
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Definition 2.3 (snPRF-ODH and dual-snPRF-ODH assumptions). Let λ ∈ N, G be a cyclic group
of prime order q with generator g, and PRF : G× {0, 1}∗ → {0, 1}λ be a pseudorandom function.

We define the snPRF-ODH security game as follows.

1. The challenger samples b←$ {0, 1}, u, v←$ Zq, and provides G, g, gu, and gv to A, who
responds with a challenge label x⋆.

2. The challenger computes y⋆
0 = PRF(guv, x⋆) and samples y⋆

1 ←$ {0, 1}λ uniformly at random,
providing y⋆

b to A.

3. A may query a pair (S, x), on which the challenger first ensures that S /∈ G or (S, x) = (gv, x⋆)
and, if so, returns y ← PRF(Su, x).

4. Eventually, A stops and outputs a guess b′ ∈ {0, 1}.

We define the snPRF-ODH advantage function as

AdvsnPRF-ODH
PRF,G,A := 2 · Pr[b′ = b]− 1.

We define the dual variant of the assumption, dual-snPRF-ODH, as the snPRF-ODH assumption
for a function PRF : {0, 1}∗ ×G→ {0, 1}λ with swapped inputs, keyed with a group element in the
second input and taking the label as first input.

3 The TLS 1.3 Handshake Protocol
In this section we describe the TLS 1.3 handshake protocol modes, specifically the full one round-
trip time (1-RTT) handshake, depicted on the left-hand side of Figure 1, and the combined zero
round-trip time (0-RTT) and pre-shared key handshake, depicted on the right-hand side of in
Figure 1. Our focus in Figure 1 and throughout the paper is on the cryptographic aspects of the
TLS 1.3 handshake. As such, we omit many other components of the protocol, including most hello
extensions, aspects of version and algorithm negotiation, post-handshake messages, the record layer
protocol, and the alert protocol.

In TLS 1.3, the 1-RTT and PSK handshakes are divided into two distinct phases: a key exchange
phase, where the client and the server exchange Hello messages to indicate support for different
cryptographic options and use the selected parameters to generate key exchange material; and an
authentication phase, where the client and the server exchange CertificateVerify and Finished
messages, authenticating each other using long-term asymmetric (or symmetric) values. Figure 2
illustrates the key schedule of TLS 1.3, Table 1 lists abbreviations for messages and keys used
throughout the paper, and Table 2 details some of the computations and inputs.

3.1 Key-Exchange Phase

The key exchange phase consists of the exchange of ClientHello (CH) and ServerHello (SH)
messages, during which parameters are negotiated and the core key exchange is performed, using
either Diffie–Hellman key exchange or based on a pre-shared symmetric key.

ClientHello. The client begins by sending the ClientHello message, which contains rc (a
randomly-sampled 256-bit nonce value), as well as version and algorithm negotiation information.
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Client Server

ClientHello: rC ←$ {0, 1}256

+ ClientKeyShare: X ← gx

ES← HKDF.Extract(0, 0)
dES← HKDF.Expand(ES, Label3∥H0)

ServerHello: rS ←$ {0, 1}256

+ ServerKeyShare: Y ← gy

DHE← Y x DHE← Xy

HS← HKDF.Extract(dES, DHE)
CHTS← HKDF.Expand(HS, Label4∥H2)
SHTS← HKDF.Expand(HS, Label5∥H2)
dHS← HKDF.Expand(HS, Label3∥H0)

accept tkchs ← DeriveTK(CHTS) stage 1
accept tkshs ← DeriveTK(SHTS) stage 2

{EncryptedExtensions}: e⃗xtS

{CertificateRequest}∗
{ServerCertificate}: pkS

{ServerCertVfy}: SCV← SIG.Sign(skS , Label11∥H6)
fkS ← HKDF.Expand(SHTS, Label6∥Hε)
{ServerFinished}: SF← HMAC(fkS , H7)

abort if SIG.Vfy(pkS , Label11∥H6, SCV) ̸= 1
abort if SF ̸= HMAC(fkS , H7)

MS← HKDF.Extract(dHS, 0)
accept CATS← HKDF.Expand(MS, Label7∥H3) stage 3
accept SATS← HKDF.Expand(MS, Label8∥H3) stage 4
accept EMS← HKDF.Expand(MS, Label9∥H3) stage 5

record layer, AEAD-encrypted with key tksapp (optional)

{ClientCertificate}∗: pkC

{ClientCertVfy}∗: CCV← SIG.Sign(skC , Label12∥H8)
fkC ← HKDF.Expand(CHTS, Label6∥Hε)

{ClientFinished}: CF← HMAC(fkC , H9)

abort if SIG.Vfy(pkC , Label12∥H8, CCV) ̸= 1
abort if CF ̸= HMAC(fkC , H9)

accept RMS← HKDF.Expand(MS, Label10∥H4) stage 6
record layer, AEAD-encrypted with key tkcapp

record layer, AEAD-encrypted with key tksapp

Client Server

ClientHello: rC ←$ {0, 1}256

[+ ClientKeyShare]†: X ← gx

ES← HKDF.Extract(0, PSK)
dES← HKDF.Expand(ES, Label3∥H0)
BK← HKDF.Expand(ES, Label0∥H0)
fkB ← HKDF.Expand(BK, Label6∥Hε)

binder← HMAC(fkB, H5)
+ ClientPreSharedKey: pskid, binder

abort if binder ̸= HMAC(fkB, H5)
accept ETS← HKDF.Expand(ES, Label1∥H1) stage 1

accept EEMS← HKDF.Expand(ES, Label2∥H1) stage 2
record layer, AEAD-encrypted with key tkeapp

ServerHello: rS ←$ {0, 1}256

[+ ServerKeyShare]†: Y ← gy

+ ServerPreSharedKey: pskid

[DHE← Y x]† [DHE← Xy]†[DHE← 0]⋄
HS← HKDF.Extract(dES, DHE)

CHTS← HKDF.Expand(HS, Label4∥H2)
SHTS← HKDF.Expand(HS, Label5∥H2)
dHS← HKDF.Expand(HS, Label3∥H0)

accept tkchs ← DeriveTK(CHTS) stage 3
accept tkshs ← DeriveTK(SHTS) stage 4

{EncryptedExtensions}: e⃗xtS

fkS ← HKDF.Expand(SHTS, Label6∥Hε)
{ServerFinished}: SF← HMAC(fkS , H7)

abort if SF ̸= HMAC(fkS , H7)
MS← HKDF.Extract(dHS, 0)

accept CATS← HKDF.Expand(MS, Label7∥H3) stage 5
accept SATS← HKDF.Expand(MS, Label8∥H3) stage 6
accept EMS← HKDF.Expand(MS, Label9∥H3) stage 7

record layer, AEAD-encrypted with key tksapp (optional)

fkC ← HKDF.Expand(CHTS, Label6∥Hε)
{ClientFinished}: CF← HMAC(fkC , H9)

abort if CF ̸= HMAC(fkC , H9)
accept RMS← HKDF.Expand(MS, Label10∥H4) stage 8
record layer, AEAD-encrypted with key tkcapp

record layer, AEAD-encrypted with key tksapp

Protocol flow legend
MSG: Y message MSG sent, containing Y
+ MSG message sent as extension within previous message
{MSG} message sent AEAD-encrypted with tkshs/tkchs
MSG∗ message only sent for intended client authentication

[. . . ]† message/computation only in PSK-(EC)DHE
[. . . ]⋄ message/computation only in PSK

Figure 1: The TLS 1.3 full 1-RTT handshake protocol (left) and the PSK/PSK-(EC)DHE handshake protocol with
optional 0-RTT (right). Shorthands are explained in Table 1; the values of context and label inputs (H∗, resp. Label∗)
and details on the calculation of traffic keys (tk∗) can found in Table 2.
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Attached to the ClientHello is the KeyShare (CKS) extension which contains public key shares
for the key exchange. Other extensions are present for further algorithm and parameter negotia-
tion.1

If a preshared secret has been established between the client and the server (either in a previous
handshake or via some out-of-band mechanism) the client may include the PreSharedKey (CPSK)
extension, which indicates handshake modes (such as PSK or PSK-(EC)DHE) that the client
supports, and a list of preshared symmetric identities that map to these PSKs.2 If CPSK is included,
the client computes a binder key value BK for each preshared key PSK in the list, from that a
key fkB, and a value binder ← HMAC(fkB, H(CH†)) that binds the current CH message (truncated
to exclude the binder value itself) to each PSK, also included in the CPSK message and checked by
the server. This is captured on the right-hand side of Figure 1.

Finally, if the client wishes to use the preshared secret to send zero-round-trip time (0-RTT)
data, the client can indicate this by sending a EarlyDataIndication extension. This will indicate
to the server that the client will use the first preshared secret indicated in the CPSK list to derive an
early traffic secret (ETS), and early exporter master secret (EEMS), and begin sending encrypted
data to the server without first requiring the client to receive ServerHello response.

ServerHello. The next message in the key-exchange phase is the ServerHello (SH) message.
As in CH, the server will randomly sample a 256-bit nonce value rs. The server picks among the
various algorithms and parameters offered by the client and responds with its selections. If CPSK
was sent, the server decides whether to accept a PSK-based handshake. If so, then the preshared
key identifier pskid associated with the selected PSK is sent in the PreSharedKey (SPSK) extension.
If the server has chosen PSK-(EC)DHE mode (or has rejected the use of PSKs), the server will
generate its own (EC)DHE key share Y ← gy, sending Y in the KeyShare (SKS) extension attached
to SH.

At this point, the server has enough information to compute the client handshake traffic secret
(CHTS) and server handshake traffic secret (SHTS) values, and uses these to derive client and
server handshake traffic keys (tkchs and tkshs, respectively). The first part of Figure 2 shows the
key schedule for deriving these keys. Note that we consider tkchs and tkshs being derived at the
same point in time (namely when the handshake secret HS becomes available), although tkchs is in
principle only needed a bit later.

The server now begins to encrypt all handshake messages under tkshs, and any extensions that
are not required to establish the server handshake traffic key are sent (and encrypted) in the
EncryptedExtensions (EE) messages.

3.2 Authentication Phase

The authentication phase now begins. All handshake messages in this phase are encrypted under
tkshs or tkchs. In the full 1-RTT handshake, authentication is based on public key certificates; see
the left-hand side of Figure 1. In pre-shared key handshakes (both PSK and PSK-(EC)DHE), the
server and client will authenticate each other by relying on a message authentication code applied
to the transcript; see the right-hand side of Figure 1.

1Note that our analysis in Sections 5 and 6 does not consider the negotiation of cryptographic values (such as
preshared keys or (EC)DHE groups) or handshake modes, but instead our analysis considers each handshake mode
and ciphersuite combination in isolation. This can be seen in Figure 1, e.g., the CKS message contains only a single
(EC)DHE key share.

2As for the KeyShare extension, we do not consider negotiation here and only capture the single PSK entry that
client and server agree upon.
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= HKDF.Expand(k, Labelj∥H)

Figure 2: The TLS 1.3 key schedule. The values of context and label inputs (H∗, resp. Label∗) and details on the
calculation of traffic keys (Exp∗) can found in Table 2.

Authentication in full 1-RTT handshake. The server can request public-key-based client
authentication by sending a CertificateRequest (CR) message. The server will authenticate to
the client by using the server’s long-term public keys. Here, the server begins by sending its
certificate (carrying its public key) in the ServerCertificate (SCRT) message. The server then
computes ServerCertificateVerify authentication value by signing the session hash (which is a
continuously updating hash of all messages up to this point in the protocol), then sends it to the
client as the ServerCertificateVerify message.

Server key confirmation and key derivation. In all handshake modes, the final message that
the server sends to the client is the ServerFinished (SF) message. The server first derives a server
finished key fkS from SHTS and then computes a MAC tag SF over the session hash. This value
is also encrypted under tkshs, sending the output ciphertext to the client. At this point, the server
is able to compute the client application traffic secret (CATS), the server application traffic secret
(SATS), and the exporter master secret (EMS). Figure 2 shows the key schedule for deriving these
keys and all other keys in the authentication phase. Now that the server has computed the server
application traffic key tksapp, it can begin sending encrypted application data to the client without
waiting for the final flight of messages from the client, thus achieving a 0.5-RTT handshake.

Client verification, authentication, key confirmation, and key derivation. The client,
upon receiving these messages, checks that the signature SCV (if in full 1-RTT mode) and the
MAC SF verify correctly. If the server has requested client authentication, the client will begin by
sending its digital certificate (carrying its public-key) in the ClientCertificate (CCRT) message,
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Message Derived key or value

CH ClientHello BK Binder Key
CKS ClientKeyShare CHTS/SHTS Client/Server Handshake Traffic Secret
CPSK ClientPreSharedKey CATS/SATS Client/Server Application Traffic Secret
SH ServerHello dES/dHS Derived Early/Handshake Secret
SKS ServerKeyShare ES/HS/MS Early/Handshake/Master Secret
SPSK ServerPreSharedKey ETS Early Traffic Secret
EE EncryptedExtensions EEMS/EMS (Early) Exporter Master Secret
CR CertificateRequest fkB/fkC/fkS Binder/Client/Server Finished Key
SCRT ServerCertificate RMS Resumption Master Secret
SCV ServerCertificateVerify tkeapp Early Application Traffic Key
SF ServerFinished tkchs/tkshs Client/Server Handshake Traffic Key
CCRT ClientCertificate tkcapp/tksapp Client/Server Application Traffic Key
CCV ClientCertificateVerify
CF ClientFinished

Table 1: Shorthands for TLS 1.3 messages (in protocol order) and derived keys/values (alphabetical).

after which the client will compute its own certificate verify value CCV by signing the session hash,
then send it to the server as the CCV message. The client finally derives the client finished key fkC

from CHTS and uses fkC to compute a MAC tag CF over the session hash.

Server verification. The server will verify the final MAC (SF) and optional signature (SCV)
messages of the client.

Handshake completion. At this point both parties can compute the resumption master secret
(RMS) value that can be used as a pre-shared key for session resumption in the future. Both parties
can now derive the client application traffic key (tkcapp), and use the record layer for encrypted
communication of application data with the resulting keys.

3.3 NewSessionTicket

The NewSessionTicket message is a post-handshake message in TLS 1.3 which refers to values
from the handshake protocol. The NewSessionTicket message can be sent by a server to the
client (encrypted under a server application traffic key tksapp) to allow the client to compute
values associated with resumption handshakes, including the PSK used in resumption as well as
an identifier to indicate to the server which pre-shared key is being used. The NewSessionTicket
message contains two fields that are interesting for this purpose:

• ticket_nonce, which is used by the client as the salt value to derive the pre-shared key to
be used in future handshake for resumption: PSK ← HKDF.Expand(RMS, “resumption”∥
ticket_nonce).

• ticket, which is an opaque label used to publicly refer to the associated preshared key in
future PreSharedKey messages. In our notation used in Figure 1, the preshared key identifier
pskid = ticket.

In our analysis, we do not capture this NewSessionTicket message, nor the derivation of PSK
from RMS, and instead assume that the mapping between PSK and pskid is established in some
out-of-band way. In particular, we do not capture transmission of NewSessionTicket under a
server application traffic key tksapp, as it would impact how we consider the usage of SATS. In
our analysis, we currently consider SATS an “external key” used in an arbitrary symmetric-key
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Secret Context Input Label Input

BK H0 = H(“") Label0 = “ext binder” / “res binder”
fkB Hε = “" Label6 = “finished”
ETS H1 = H(ClientHello) Label1 = “c e traffic”
EEMS H1 = H(ClientHello) Label2 = “e exp master”
dES H0 = H(“") Label3 = “derived”
CHTS H2 = H(ClientHello∥ServerHello) Label4 = “c hs traffic”
SHTS H2 = H(ClientHello∥ServerHello) Label5 = “s hs traffic”
fkS Hε = “" Label6 = “finished”
dHS H0 = H(“") Label3 = “derived”
CATS H3 = H(ClientHello∥ . . . ∥ServerFinished) Label7 = “c ap traffic”
SATS H3 = H(ClientHello∥ . . . ∥ServerFinished) Label8 = “s ap traffic”
EMS H3 = H(ClientHello∥ . . . ∥ServerFinished) Label9 = “exp master”
fkC Hε = “" Label6 = “finished”
RMS H4 = H(ClientHello∥ . . . ∥ClientFinished) Label10 = “res master”

Auth. Value Context Input Context String (for signatures only)

binder H5 = H(ClientHello†)
SCV H6 = H(ClientHello∥ . . . ∥ServerCert) Label11 =

“TLS 1.3, server CertificateVerify”
SF H7 = H(ClientHello∥ . . . ∥ServerCertVfy)
CCV H8 = H(ClientHello∥ . . . ∥ClientCert) Label12 =

“TLS 1.3, client CertificateVerify”
CF H9 = H(ClientHello∥ . . . ∥ClientCertVfy∗)

Traffic Key Calculation

tkeapp/tkchs/tkshs/tkcapp/tksapp = (key, iv) = DeriveTK(ETS/CHTS/SHTS/CATS/SATS)
where DeriveTK(Secret) = (HKDF.Expand(Secret, “key”, Lk), HKDF.Expand(Secret, “iv”, Liv))
with Lk/Liv indicating the key/iv length of the negotiated AEAD scheme

Table 2: Secret, context, and label inputs to the HKDF.Expand resp. authentication functions as well as traffic key
calculation in the TLS 1.3 handshake (Figure 1) and key schedule (Figure 2). The actual label input to HKDF.Expand
is the concatenation of the output length (in bytes), the string “tls13 ”, Label, and the given context value.
HKDF.Expand is then called on the corresponding secret, this augmented label, and the desired output length.
ClientCertVfy∗ is only included in case of client authentication. ClientHello† indicates a truncated version of
ClientHello which excludes the binder value itself. Signatures in SCV and CCV are computed over the concatenation
of a constant (0x20 repeated 64 times), the label as context information, a separating 0 byte, and the context value.

protocol. To capture the transmission of NewSessionTicket, we would need to capture the use of
SATS in deriving tksapp and then establishing PSK. We choose to simplify the analysis by omitting
this mechanism, and leave this as future work.

4 Multi-Stage Key Exchange Security Model
In order to capture the security of all variants of the TLS 1.3 handshake within a single com-
prehensive security model, we adopt the multi-stage key exchange model in the version by Gün-
ther [Gün18] which combines the original model by Fischlin and Günther [FG14] with follow-up
extensions [DFGS15, DFGS16, FG17]. We refer to Günther [Gün18] for an extensive discussion of
the model, but recap its core concepts and definitions as well as adaptations for our analysis in the
following.

The model follows the classical paradigm for key exchange models of Bellare and Rogaway [BR94]
in the formalism of Brzuska et al. [BFWW11, Brz13]. This paradigm captures a strong adversary
that controls the network and is able to both passively eavesdrop and to actively modify the com-
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munication across multiple sessions of the key exchange protocol (spawning them via a NewSession
oracle and directing communication via a Send oracle). The adversary is further allowed to expose
the long-term secrets of interacting honest parties (via a Corrupt oracle) as well as the session keys
in some protocol runs (through a Reveal oracle). Basic security then demands that such adversary
cannot distinguish the real established session key in some uncompromised (“fresh”) session from
a random one (through a Test oracle).

The multi-stage key exchange model now extends the basic key exchange setting by capturing
protocols that derive a series of session keys in multiple stages. Each stage is associated with
particular security properties, steering admissibility of certain adversarial actions for that stage
and under which conditions the key of this stage is considered fresh. These security properties
model the following aspects:

Authentication. Our model distinguishes between unauthenticated stages, unilaterally authenti-
cated stages where only the responder (the server in TLS 1.3) authenticates, and mutually
authenticated stages where both peers authenticate. We treat the authentication of each
stage individually and consider concurrent executions of different authentication modes of
the same protocol. The identities of communication partners may be learned only during the
execution of the protocol (e.g., through exchanged certificates), which we implement through
post-specified peers following Canetti and Krawczyk [CK02]. Our model demands a strong
notion of security for sessions with unauthenticated peers, namely that such sessions achieve
key secrecy when receiving their messages from an honest session (identified via a contributive
identifier), independent of whether that honest peer session later becomes partnered.
Moreover, the authentication level of some stage may be raised with acceptance of a later
stage, e.g. from unauthenticated to unilaterally or even mutually authenticated. This may
happen for instance if a party later signs previously transmitted data, as in case of TLS 1.3.
We capture this by allowing a protocol to specify the authentication level for each acceptance
stage, as well as at which later stage(s) that level increases.
Note that we capture authentication implicitly through key secrecy (i.e., keys are only known
to the indended peer session) but do not prove explicit authentication (i.e., the existence of
a partnered session). The SIGMA design [Kra03], on which the main TLS 1.3 handshake
is based, ensures explicit authentication. de Saint Guilhem et al. [dFW19] give a generic
argument that explicit authentication follows from implicit key secrecy (which is shown for
TLS 1.3 in this article) and key confirmation [FGSW16].

Forward secrecy. We capture the usual notion of forward secrecy, which ensures that accepted
session keys remain secure after a long-term secret compromise. In a multi-stage key exchange
protocol, forward secrecy may however be reached only from a certain stage on (e.g., due
to mixing-in forward-secret key material). The model hence treats stage-j forward secrecy,
indicating that keys from stage j on are forward secret.

Key usage. Some stage keys might be used internally in the key exchange protocol, e.g., in the
case of TLS 1.3 the handshake key is used to encrypt part of the key exchange communication.
We distinguish the usage of keys as internal when used within the key exchange, and external
when exclusively used outside of the key exchange (e.g., to encrypt application data). In
the former case, our model ensures that tested real-or-random keys are accordingly used in
subsequent key exchange steps, and pauses the protocol execution to enable testing of those
keys. We note that the declaration of whether a key is internal or external is a parameter to
the model, and becomes a part of the protocol description and its security guarantees.
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Public or pre-shared keys. Our multi-stage model comes in two flavors that capture both the
regular, public-key case (abbreviated as pMSKE) of long-term keys being public/secret key
pairs (as in the TLS 1.3 full handshake) as well as the pre-shared–secret case (abbreviated
sMSKE) case where pre-shared symmetric keys act as long-term secrets (as in the TLS 1.3
resumption handshake).

Replayability. For 0-RTT key establishment, key exchange protocols (including TLS 1.3) regu-
larly give up strong replay protection guarantees, in the sense that client (initiator) messages
can be replayed to several server (responder) sessions. We capture this in our model by dis-
tinguishing between replayable (0-RTT) and regular non-replayable stages, taking potential
replays into account for the former while still requiring key secrecy. Determining the replay
type of a stage is again a parameter to the model and must be specified as part of the protocol
description resp. the security claim.

We note that former variants of multi-stage key exchange models including [Gün18] further
differentiated whether the compromise of some stage’s key affects the security of other stages’ keys
under the notion of key (in)dependence. Here, we always demand such compromise never affects
other stages’ keys as the desirable goal, i.e., we postulate key independence and reduce the model’s
complexity by incorporating this property straight into the model. As we will see, TLS 1.3 always
achieves this property due to clean key separation in the key scheduling, and already did so in
earlier draft versions [DFGS15, DFGS16, FG17].

Secret compromise paradigm. We follow the paradigm of the Bellare–Rogaway model [BR94],
focusing on the leakage of long-term secret inputs and session key outputs of the key exchange, but
not on internal values within the execution of a session. This contrasts to some extent with the
model by Canetti and Krawczyk [CK01] resp. LaMacchia et al. [LLM07] which include a “session
state reveal” resp. “ephemeral secret reveal” query that allows accessing internal variables of the
session execution.

In the context of TLS 1.3, this means we consider the leakage of:

• Long-term keys (such as the signing keys of the server or client, but also their pre-shared
keys), since long-term values have the potential to be compromised, and this is necessary to
model forward secrecy; it is captured in our model by the Corrupt query.

• Session keys (such as the various traffic encryption keys or the derived resumption or exporter
secrets), since these are outputs of the key exchange and are used beyond this protocol for
encryption, later resumption, or exporting of keying material; this is modeled by the Reveal
query.

We do not permit the leakage of:

• Ephemeral secrets / randomness (such as the randomness in a signature algorithm or ephemeral
Diffie–Hellman exponents); this is disallowed since TLS 1.3 is not designed to be secure if
these values are compromised.

• Internal values / session state (e.g., internally computed master secrets or MAC keys); this
is disallowed since TLS 1.3 is not designed to be secure if these values are compromised.
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Comparison with previous multi-stage key exchange models. Compared to the original
MSKE model of Fischlin and Günther [FG14], the most notable changes in our model are the
addition which models upgradeable authentication and accommodating both public and pre-shared
symmetric keys for authentication. We also do not track whether keys are independent or not, as
all keys established in TLS 1.3 satisfy key independence (unlike in the analysis of QUIC in [FG14]).
Key usage (internal versus external) and replayability were introduced to MSKE by [FG17].

4.1 Syntax

In our model, we explicitly separate some protocol-specific properties (as, e.g., various authentication
flavours) from session-specific properties (as, e.g., the state of a running session). We represent
protocol-specific properties as a vector (M, AUTH, FS, USE, REPLAY) that captures the following:

• M ∈ N: the number of stages (i.e., the number of keys derived).3

• AUTH ⊆ {((u1, m1), . . . , (uM, mM)) | uj , mj ∈ {1, . . . , M,∞}}: a set of vectors of pairs,
each vector encoding a supported scheme for authentication and authentication upgrades,
for each stage. For example, the i-th entry (ui, mi) in a vector says that the session key
in stage i initially has the default unauthenticated level, i.e., provides no authentication for
either communication partner, then at stage ui becomes unilaterally authenticated and thus
authenticates only the responder (server), and becomes mutually authenticated to authenticate
both communication partners at stage mj . Note that we allow for example ui = i (or
even ui = mi = i) such that the session key is immediately unilaterally (resp. mutually)
authenticated when derived.
Entries in each pair must be non-decreasing, and ui =∞ or mi =∞ denotes that unilateral,
resp. mutual, authentication is never reached for stage i.

• FS ∈ {1, . . . , M,∞}: the stage j = FS from which on keys are forward secret (or ∞ in case of
no forward secrecy).4

• USE ∈ {internal, external}M: the usage indicator for each stage, where USEi indicates the
usage of the stage-i key. Here, an internal key is used within the key exchange protocol
(but possibly also externally), whereas an external key must not be used within the protocol,
making the latter potentially amenable to generic composition (cf. Section 7.3). As shorthand
notation, we, e.g., write USE = (internal : {1, 4}, external : {2, 3, 5}) to indicate that usage of
keys in stage 1 and 4 is internal, and external for the other stages.

• REPLAY ∈ {replayable, nonreplayable}M: the replayability indicator for each stage, where
REPLAYi indicates whether the i-th stage is replayable in the sense that an adversary can
easily force identical communication and thus identical session identifiers and keys in this
stage (e.g., by re-sending the same data in 0-RTT stages). Note that the adversary, however,
should still not be able to distinguish such a replayed key from a random one. We remark
that, from a security viewpoint, the usage of replayable stages should ideally be limited,
although such stages usually come with an efficiency benefit. We use the same shorthand

3We fix a maximum stage M only for ease of notation. Note that M can be arbitrarily large in order to cover
protocols where the number of stages is not bounded a-priori. Also note that stages and session key derivations may
be “back to back,” without further protocol interactions between parties.

4A more general multi-stage key exchange model could have a vector tracking specifically which subset of stage
keys have forward secrecy. We do not need such generality since forward secrecy is monotonic in TLS 1.3.
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notation as for USE; e.g., REPLAY = (nonreplayable : {1, 2, 3}) indicates that all three stages
are non-replayable.

We denote by U the set of identities (or users) used to model the participants in the system,
each identified by some U ∈ U . Sessions of a protocol are uniquely identified (on the administrative
level of the model) using a label label ∈ LABELS = U ×U ×N, where label = (U, V, n) indicates the
n-th local session of identity U (the session owner) with V as the intended communication partner.

In the public-key variant of the model (pMSKE), each identity U is associated with a certified
long-term public key pkU and secret key skU . In the pre-shared secret setting (sMSKE), a session
instead holds an identifier pssid ∈ {0, 1}∗ for the pre-shared secret pss ∈ P (from some pre-shared
secret space P) used. The challenger maintains maps pssU,V : {0, 1}∗ → P mapping an identifier to
the corresponding secret shared by parties U and V , where U uses that secret (only) in the initiator
role and V (only) in the responder role5, and for any user U , a pre-shared secret identifier pssid
uniquely identifies the peer identity V it is shared with.

For each session, a tuple with the following information is maintained as an entry in the session
list ListS, where values in square brackets [ ] indicate the default initial value. Some variables have
values for each stage i ∈ {1, . . . , M}.

• label ∈ LABELS: the unique (administrative) session label

• id ∈ U : the identity of the session owner

• pid ∈ U∪{∗}: the identity of the intended communication partner, where the distinct wildcard
symbol ‘∗’ stands for “currently unknown identity” but can be later set to a specific identity
in U once by the protocol

• role ∈ {initiator, responder}: the session owner’s role in this session

• auth ∈ AUTH: the intended authentication type vector from the set of supported authenti-
cation properties AUTH, where authi indicates the authentication level pair for stage i, and
authi,j its j-th entry

• pssid ∈ {0, 1}∗ ∪ {⊥}: In the pre-shared secret (sMSKE) variant the identifier for the pre-
shared secret (i.e., pssid,pid if role = initiator, else psspid,id) to be used in the session; can be
initialized with ⊥ if pid = ∗ is unknown and then must be set (once) when pid is set

• stexec ∈ (RUNNING ∪ ACCEPTED ∪ REJECTED): the state of execution [running0], where
RUNNING = {runningi | i ∈ N ∪ {0}}, ACCEPTED = {acceptedi | i ∈ N}, REJECTED =
{rejectedi | i ∈ N}; set to acceptedi in the moment a session accepts the i-th key, to rejectedi

when the session rejects that key (a session may continue after rejecting in a stage6), and to
runningi when a session continues after accepting the i-th key

• stage ∈ {0, . . . , M}: the current stage [0], where stage is incremented to i when stexec reaches
acceptedi resp. rejectedi

• sid ∈ ({0, 1}∗ ∪ {⊥})M: sidi [⊥] indicates the session identifier in stage i, set once (and only)
upon acceptance in that stage

5Requiring a fixed role in which a pre-shared key can be used by either peer avoids the Selfie attack [DG21b,
AASS19].

6This models, e.g., servers rejecting 0-RTT data from a client, but continuing with the remaining handshake.
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• cid ∈ ({0, 1}∗ ∪ {⊥})M: cidi [⊥] indicates the contributive identifier in stage i, may be set
several times until acceptance in that stage

• key ∈ ({0, 1}∗∪{⊥})M: keyi [⊥] indicates the established session key in stage i, set once upon
acceptance in that stage

• stkey ∈ {fresh, revealed}M: stkey,i [fresh] indicates the state of the session key in stage i

• tested ∈ {true, false}M: test indicator testedi [false], where true means that keyi has been
tested

• corrupted ∈ {0, . . . , M,∞}: corruption indicator [∞] holding the stage the session was in when
a Corrupt was issued to its owner or intended partner, including the value 0 if the corruption
had taken place before the session started, and ∞ if none of the parties is corrupted

By convention, adding a not fully specified tuple (label, id, pid, role, auth) resp. (label, id, pid, role,
auth, pssid) to ListS sets all other entries to their default value. As shorthands, for some tuple
with (unique) label label in ListS we furthermore write label.X for that tuple’s element X and
label.(X, Y, Z) for the vector (X, Y, Z) of that tuple’s elements X, Y , and Z.

We define two distinct sessions label and label′ to be partnered in stage i if both sessions hold the
same session identifier in that stage, i.e., label.sidi = label′.sidi ̸= ⊥, and require for correctness that
two sessions having a non-tampered joint execution are partnered in all stages upon acceptance.

Our security model treats corruption of long-term secrets (secret keys for pMSKE, pre-shared
secrets for sMSKE). While the affects of such compromises on sessions may differ in each setting,
we broadly consider the derived keys of some session to be revealed if, in the public-key setting
(pMSKE), the owner or peer secret key is compromised, or in the pre-shared secret setting (sMSKE),
if the pre-shared secret used for that session is compromised. Forward secrecy comes into play when
determining if keys derived prior to the long-term secret corruption are affected, too. In more precise
notation, we say a session label is corrupted if

• for pMSKE, the session’s owner label.id or intended communication partner label.pid is cor-
rupted (i.e., {label.id, label.pid} ∩ C ≠ ∅), resp.

• for sMSKE, the used pre-shared secret is corrupted (i.e., (label.id, label.pid, label.pssid) ∈ C,
the set of corrupted users) if label.role = initiator, resp. (label.pid, label.id, label.pssid) ∈ C if
label.role = responder.

Upgradable authentication. We capture that the authentication level of some stage may in-
crease, possibly twice, with acceptance of a later stage through a per-stage vector in the authen-
tication level matrix. When capturing security, our model however needs to carefully consider the
interaction of authentication and corruptions (somewhat similar to what one might be used to for
forward secrecy). More precisely, the authentication guarantee of some stage i after its acceptance
can only step up (in some later stage j > i) if the involved parties are not corrupted by the time
stage j accepts. Otherwise, the adversary may have impersonated the party up to the unauthen-
ticated stage i and now post-authenticates as the party after corruption in stage j. This would
effectively mean that the adversary has been in full control of the session and may thus know the
session key of stage i.

We capture the upgrade by defining the rectified authentication level rect_authi of some stage i
in a session with intended authentication vector auth, consisting of pairs (authi,1, authi,2) describing
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the stage in which the i-th session key gets unilaterally and mutually authenticated, with corruption
indicator corrupted, and with current execution stage stage as follows:

rect_authi :=


mutual if stage ≥ authi,2 and corrupted ≥ authi,2

unilateral if stage ≥ authi,1 and corrupted ≥ authi,1

unauth otherwise

This encodes that authentication level of stage i is upgraded (to unilateral or mutual) when reaching
stage authi,1, resp. authi,2, only if no corruption affected this session prior to these stages (authi,1,
resp. authi,2).

4.2 Adversary Model

We consider a probabilistic polynomial-time (PPT) adversary A which controls the communication
between all parties, enabling interception, injection, and dropping of messages. Our adversary
model further reflects the advanced security aspects in multi-stage key exchange as outlined above.
We conveniently capture admissibility of adversarial interactions and conditions where the adversary
trivially loses (such as both revealing and testing the session key in partnered sessions) via a flag lost
(initialized to false).

The adversary interacts with the protocol via the following queries.

• NewSecret(U, V, pssid): This query is only available in the pre-shared secret (sMSKE) variant.
Generates a fresh secret with identifier pssid shared between parties U and V , to be used
by U in the initiator role and by V in the responder role. If pssU,V (pssid) is already set,
return⊥ to ensure uniqueness of pssid identifiers between two parties in these roles. Otherwise,
sample pss←$ P uniformly at random from the protocol’s pre-shared secret space P and define
pssU,V (pssid) := pss.

• NewSession(U, V, role, auth[, pssid]): Creates a new session with a (unique) new label label
for owner identity id = U with role role, having pid = V as intended partner (potentially
unspecified, indicated by V = ∗) and aiming at authentication type auth.
In the pre-shared secret (sMSKE) variant, the additional parameter pssid identifies the pre-
shared secret to be used, namely pssU,V (pssid) if role = initiator, resp. pssV,U (pssid) if role =
responder. The identifier might be unspecified at this point (indicated by pssid = ⊥) and may
then be set later by the protocol once.
Add (label, U, V, role, auth), resp. (label, U, V, role, auth, pssid), to ListS. If label is corrupted,
set label.corrupted ← 0. This encodes the information that the session is corrupt right from
the beginning. Return label.

• Send(label, m): Sends a message m to the session with label label.
If there is no tuple with label label in ListS, return ⊥. Otherwise, run the protocol on behalf
of U on message m and return the response and the updated state of execution label.stexec.
As a special case, if label.role = initiator and m = init, the protocol is initiated (without any
input message).
If, during the protocol execution, the state of execution changes to acceptedi, the protocol
execution is immediately suspended and acceptedi is returned as result to the adversary. The
adversary can later trigger the resumption of the protocol execution by issuing a special
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Send(label, continue) query. For such a query, the protocol continues as specified, with the
party creating the next protocol message and handing it over to the adversary together with
the resulting state of execution stexec. We note that this is necessary to allow the adversary
to test an internal key, before it may be used immediately in the response and thus cannot be
tested anymore to prevent trivial distinguishing attacks. It furthermore allows the adversary
to corrupt long-term keys in a fine-grained manner after any acceptance of a key.
If the state of execution changes to label.stexec = acceptedi for some i and there is a part-
nered session label′ ̸= label in ListS (i.e., label.sidi = label′.sidi) with label′.testedi = true, then
set label.testedi ← true and (only if USEi = internal) label.keyi ← label′.keyi. This ensures
that, if the partnered session has been tested before, subsequent Test queries for the ses-
sion are answered accordingly and, in case it is used internally, this session’s key keyi is set
consistently.7

If the state of execution changes to label.stexec = acceptedi for some i and the session label is
corrupted, then set label.stkey,i ← revealed.

• Reveal(label, i): Reveals the session key label.keyi of stage i in the session with label label.
If there is no session with label label in ListS or label.stage < i, then return ⊥. Otherwise, set
label.stkey,i to revealed and provide the adversary with label.keyi.

• Corrupt(U) or Corrupt(U, V, pssid): The first query is only used in the public-key (pMSKE)
variant, the second query only in the pre-shared secret (sMSKE) variant. Provide the adver-
sary with the corresponding long-term secret, i.e., skU (pMSKE), resp. pssU,V (pssid) (sMSKE).
Add to the set of corrupted entities C the user U (for pMSKE), resp. (for sMSKE) the global
pre-shared secret identifier (U, V, pssid).
Record the time of corruption in each session label with label.id = U or label.pid = U
(pMSKE), resp. with label.(role, id, pid, pssid) ∈ {(initiator, U, V, pssid), (responder, V, U, pssid)}
(sMSKE), by setting label.corrupted ← label.stage (unless label.corrupted ̸= ∞ already, in
which case corruption had taken place earlier such that we leave the value unchanged).
In the non-forward-secret case, for each such session label and for all i ∈ {1, . . . , M}, set
label.stkey,i to revealed. I.e., all (previous and future) session keys are considered to be dis-
closed.
In the case of stage-j forward secrecy, stkey,i of each such session label is instead set to revealed
only if i < j or if i > stage. This means that session keys before the j-th stage (where forward
secrecy kicks in) as well as keys that have not yet been established are potentially disclosed.

• Test(label, i): Tests the session key of stage i in the session with label label. In the security
game this oracle is given a uniformly random test bit btest as state which is fixed throughout
the game.
If there is no session with label label in ListS or if label.stexec ̸= acceptedi or label.testedi = true,
return ⊥. If stage i is internal (i.e., USEi = internal) and there is a partnered session label′
in ListS (i.e., label.sidi = label′.sidi) with label′.stexec ̸= acceptedi, set the ‘lost’ flag to
lost ← true. This ensures that keys can only be tested once and, in case of internal keys,
if they have just been accepted but not used yet, ensuring also that any partnered session
that may have already established this key has not used it. If label.rect_authi = unauth, or

7Note that for internal keys this implicitly assumes the following property of the later-defined Match security:
Whenever two partnered sessions both accept a key in some stage, these keys will be equal.
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if label.rect_authi = unilateral and label.role = responder, but there is no session label′ (for
label ̸= label′) in ListS with label.cidi = label′.cidi, then set lost← true. This ensures that hav-
ing an honest contributive partner is a prerequisite for testing unauthenticated stages, resp.
the responder sessions in a unilaterally authenticated stage.8 The check is based on the un-
corrupted authentication level rect_authi in order to take corruptions between authentication
upgrades into account.
Otherwise, set label.testedi to true. If the test bit btest is 0, sample a key K←$D at random
from the session key distribution D. If btest = 1, let K ← label.keyi be the real session
key. If USEi = internal (i.e., the tested i-th key is indicated as being used internally), set
label.keyi ← K; in other words, when btest = 0, we replace an internally used session key
by the random and independent test key K which is also used for consistent future usage
within the key exchange protocol. In contrast, externally used session keys are not replaced
by random ones, the adversary only receives the real (in case btest = 1) or random (in case
btest = 0) key. This distinction between internal and external keys for Test queries emphasizes
that external keys are not supposed to be used within the key exchange (and hence there is no
need to register the tested random key in the protocol’s session key field) while internal keys
will be used (and hence the tested random key must be deployed in the remaining protocol
steps for consistency).
Moreover, if there exists a partnered session label′ which has also just accepted the i-th
key (i.e., label.sidi = label′.sidi and label.stexec = label′.stexec = acceptedi), then also set
label′.testedi ← true and (only if USEi = internal) label′.keyi ← label.keyi to ensure consistency
(of later tests and (internal) key usage) in the special case that both label and label′ are in
state acceptedi and, hence, either of them can be tested first.
Return K.

4.3 Security of Multi-Stage Key Exchange Protocols

As in the formalization of the Bellare–Rogaway key exchange model by Brzuska et al. [BFWW11,
Brz13], we model security according to two games, one for key indistinguishability, and one for
session matching. The former is the classical notion of random-looking keys, refined under the
term Multi-Stage security according to the advanced security aspects for multi-stage key exchange:
(stage-j) forward secrecy, different authentication modes, and replayability. The Match property
complements this notion by guaranteeing that the specified session identifiers sid effectively match
the partnered sessions, and is likewise adapted to the multi-stage setting.

4.3.1 Match Security

The notion of Match security ensures soundness of the session identifiers sid, i.e., that they properly
identify partnered sessions in the sense that

1. sessions with the same session identifier for some stage hold the same key at that stage,

2. sessions with the same session identifier for some stage have opposite roles, except for potential
multiple responders in replayable stages,

3. sessions with the same session identifier for some stage agree on that stage’s authentication
level,

8Note that ListS entries are only created for honest sessions, i.e., sessions generated by NewSession queries.
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4. sessions with the same session identifier for some stage share the same contributive identifier
at that stage,

5. sessions are partnered with the intended (authenticated) participant and, for mutual authen-
tication based on pre-shared secrets, share the same key identifier,

6. session identifiers do not match across different stages, and

7. at most two sessions have the same session identifier at any non-replayable stage.

The Match security game GMatch
KE,A thus is defined as follows.

Definition 4.1 (Match security). Let KE be a multi-stage key exchange protocol with properties (M,
AUTH, FS, USE, REPLAY) and A be a PPT adversary interacting with KE via the queries defined
in Section 4.2 in the following game GMatch

KE,A :

Setup. In the public-key variant (pMSKE), the challenger generates long-term public/private-key
pairs for each participant U ∈ U .

Query. The adversary A receives the generated public keys (pMSKE) and has access to the queries
NewSecret, NewSession, Send, Reveal, Corrupt, and Test.

Stop. At some point, the adversary stops with no output.

We say that A wins the game, denoted by GMatch
KE,A = 1, if at least one of the following conditions

holds:

1. There exist two distinct labels label, label′ such that label.sidi = label′.sidi ̸= ⊥ for some
stage i ∈ {1, . . . , M}, but label.keyi ̸= label′.keyi. (Different session keys in some stage of
partnered sessions.)

2. There exist two distinct labels label, label′ such that label.sidi = label′.sidi ̸= ⊥ for some
stage i ∈ {1, . . . , M}, but label.role = label′.role and REPLAYi = nonreplayable, or label.role =
label′.role = initiator and REPLAYi = replayable. (Non-opposite roles of partnered sessions in
non-replayable stage.)

3. There exist two distinct labels label, label′ such that label.sidi = label′.sidi ̸= ⊥ for some
stage i ∈ {1, . . . , M}, but label.authi ̸= label′.authi. (Different authentication types in some
stage of partnered sessions.)9

4. There exist two distinct labels label, label′ such that label.sidi = label′.sidi ̸= ⊥ for some
stage i ∈ {1, . . . , M}, but label.cidi ̸= label′.cidi or label.cidi = label′.cidi = ⊥. (Different or
unset contributive identifiers in some stage of partnered sessions.)

5. There exist two distinct labels label, label′ such that label.sidi = label′.sidi ̸= ⊥ and label.sidj =
label′.sidj ̸= ⊥ for stages i, j ∈ {1, . . . , M} where j ≤ i, with label.role = initiator and
label′.role = responder such that

• label.authj,1 ≤ i (unilateral authentication), but label.pid ̸= label′.id, or
9Observe that Match security ensures agreement on the intended authentication levels (including potential up-

grades); the rectified authentication level in contrast is a technical element of the security model capturing the actual
level achieved in light of early corruptions when evaluating Test queries.
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• label.authj,2 ≤ i (mutual authentication), but label.id ̸= label′.pid or (only for sMSKE)
label.pssid ̸= label′.pssid.

(Different intended authenticated partner or (only sMSKE) different key identifiers in mutual
authentication.)

6. There exist two (not necessarily distinct) labels label, label′ such that label.sidi = label′.sidj ̸=
⊥ for some stages i, j ∈ {1, . . . , M} with i ̸= j. (Different stages share the same session
identifier.)

7. There exist three pairwise distinct labels label, label′, label′′ such that label.sidi = label′.sidi =
label′′.sidi ̸= ⊥ for some stage i ∈ {1, . . . , M} with REPLAYi = nonreplayable. (More than two
sessions share the same session identifier in a non-replayable stage.)

We say KE is Match-secure if for all PPT adversaries A the following advantage function is negli-
gible in the security parameter:

AdvMatch
KE,A := Pr

[
GMatch

KE,A = 1
]

.

4.3.2 Multi-Stage Security

The second and core notion, Multi-Stage security, captures Bellare–Rogaway-like key secrecy in the
multi-stage setting as follows.

Definition 4.2 (Multi-Stage security). Let KE be a multi-stage key exchange protocol with prop-
erties (M, AUTH, FS, USE, REPLAY) and key distribution D, and A a PPT adversary interacting
with KE via the queries defined in Section 4.2 in the following game GMulti-Stage,D

KE,A :

Setup. The challenger chooses the test bit btest←$ {0, 1} at random and sets lost ← false. In the
public-key variant (pMSKE), it furthermore generates long-term public/private-key pairs for
each participant U ∈ U .

Query. The adversary A receives the generated public keys (pMSKE) and has access to the queries
NewSecret, NewSession, Send, Reveal, Corrupt, and Test. Recall that such queries may set lost
to true.

Guess. At some point, A stops and outputs a guess b.

Finalize. The challenger sets the ‘lost’ flag to lost← true if there exist two (not necessarily distinct)
labels label, label′ and some stage i ∈ {1, . . . , M} such that label.sidi = label′.sidi, label.stkey,i =
revealed, and label′.testedi = true. (Adversary has tested and revealed the key of some stage
in a single session or in two partnered sessions.)

We say that A wins the game, denoted by GMulti-Stage,D
KE,A = 1, if b = btest and lost = false. Note that

the winning condition is independent of forward secrecy and authentication properties of KE, as
those are directly integrated in the affected (Reveal and Corrupt) queries and the finalization step of
the game; for example, Corrupt is defined differently for non-forward-secrecy versus stage-j forward
secrecy.

We say KE is Multi-Stage-secure with properties (M, AUTH, FS, USE, REPLAY) if KE is Match-
secure and for all PPT adversaries A the following advantage function is negligible in the security
parameter:

AdvMulti-Stage,D
KE,A := Pr

[
GMulti-Stage,D

KE,A = 1
]
− 1

2 .
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5 Security Analysis of the TLS 1.3 Full 1-RTT Handshake
We now come to analyzing the TLS 1.3 full 1-RTT handshake in the public-key multi-stage key
exchange (pMSKE) model.

Protocol properties. The full handshake targets the following protocol-specific properties (M,
AUTH, FS, USE, REPLAY):

• M = 6: The full 1-RTT handshake consists of six stages deriving, in order: the client and
server handshake traffic keys tkchs and tkshs, the client and server application traffic se-
crets CATS and SATS, the exporter master secret EMS, and the resumption master se-
cret RMS. As shown in Figure 1, we consider all stages’ keys being derived on either side as
soon as the relevant main secret (ES, HS, MS) becomes available, despite client/server keys
derived in parallel might become active with some delay based on the flow direction.

• AUTH =
{
((3, m), (3, m), (3, m), (4, m), (5, m), (6, m)) | m ∈ {6,∞}

}
: The handshake traffic

keys tkchs/tkshs are initially unauthenticated and all keys are unilaterally authenticated af-
ter stage 3 is reached. With (optional) client authentication, all keys furthermore become
mutually authenticated with stage m = 6; otherwise they never reach this level, m =∞.

• FS = 1: The full 1-RTT handshake ensures forward secrecy for all keys derived.

• USE = (internal : {1, 2}, external : {3, 4, 5, 6}): The handshake traffic keys are used internally
to encrypt the second part of the handshake; all other keys are external.

• REPLAY = (nonreplayable : {1, 2, 3, 4, 5, 6}): The keys of all stages are non-replayable in the
full 1-RTT handshake.

Session and contributive identifiers. As part of the analysis in the pMSKE model, we need
to define how session and contributive identifiers are set for each stage during execution of the
TLS 1.3 full 1-RTT handshake.

Session identifiers are set upon acceptance of each stage and include a label and all handshake
messages up to this point (entering the key derivation):

sid1 = (“CHTS”, CH, CKS, SH, SKS),
sid2 = (“SHTS”, CH, CKS, SH, SKS),
sid3 = (“CATS”, CH, CKS, SH, SKS, EE, CR∗, SCRT, SCV, SF),
sid4 = (“SATS”, CH, CKS, SH, SKS, EE, CR∗, SCRT, SCV, SF),
sid5 = (“EMS”, CH, CKS, SH, SKS, EE, CR∗, SCRT, SCV, SF),
sid6 = (“RMS”, CH, CKS, SH, SKS, EE, CR∗, SCRT, SCV, SF, CCRT∗, CCV∗, CF).

Here, starred (∗) components are present only in mutual authentication mode. Note that we define
session identifiers over the unencrypted handshake messages.

For the contributive identifiers in stages 1 and 2, client (resp. server) upon sending (resp.
receiving) the ClientHello and ClientKeyShare messages set cid1 = (“CHTS”, CH, CKS), cid2 =
(“SHTS”, CH, CKS) and later, upon receiving (resp. sending) the ServerHello and ServerKeyShare
messages, extend it to cid1 = (“CHTS”, CH, CKS, SH, SKS), cid2 = (“SHTS”, CH, CKS, SH, SKS). All
other contributive identifiers are set to cidi = sidi (for stages i ∈ {3, 4, 5, 6}) when the respective
session identifier is set.

25



5.1 Match Security

We are now ready to give our formal security results for the TLS 1.3 full 1-RTT handshake,
beginning with Match security.

Theorem 5.1 (Match security of TLS1.3-full-1RTT). The TLS 1.3 full 1-RTT handshake is Match-
secure with properties (M, AUTH, FS, USE, REPLAY) given above. For any efficient adversary A we
have

AdvMatch
TLS1.3-full-1RTT,A ≤ n2

s ·
1
q
· 2−|nonce|,

where ns is the maximum number of sessions, q is the group order, and |nonce| = 256 is the
bit-length of the nonces.

Recall that Match security is a soundness property of the session identifiers. From our definition
of session identifiers above, it follows immediately that partnered sessions agree on the derived key,
opposite roles, authentication properties, contributive identifiers, and the respective stages. The
security bound arises as the birthday bound for two honest sessions choosing the same nonce and
group element; this not happening ensures at most two partners share the same session identifier.

Proof. We need to show the seven properties of Match security (cf. Definition 4.1).

1. Sessions with the same session identifier for some stage hold the same key at that stage.
The session identifiers in each stage include the Diffie–Hellman shares gx and gy (through
the CKS and SKS messages, fixing the only key input DHE = gxy to all derived stage keys
(recall that PSK = 0 in the TLS 1.3 full 1-RTT handshake). Furthermore, for each stage, the
session identifier includes all handshake messages that enter the key derivation: for stages 1
and 2 messages up to SKS, for stages 3–5 messages up to SF, and for stage 6 all messages (up
to CF). In each stage, the session identifier hence determines all inputs to the key derivation,
and agreement on it thus ensures agreement on the stage key.

2. Sessions with the same session identifier for some stage have opposite roles, except for poten-
tial multiple responders in replayable stages.
Assuming at most two sessions share the same session identifier (which we show below), two
initiator (client) or responder (server) sessions never hold the same session identifier as they
never accept wrong-role incoming messages, and the initial Hello messages are typed with
the sender’s role. There are no replayable stages in the TLS 1.3 full 1-RTT handshake.

3. Sessions with the same session identifier for some stage agree on that stage’s authentication
level.
By definition, the authentication for stages 1–2 and 3–5 are fixed to unauth and unilateral
(from stage 3 on), respectively, hence agreed upon by all sessions. For the last stage, the
presence of CR, CCRT, and CCV in sid6 unambiguously determines if, from stage 6 on, keys are
mutually authenticated (and unilaterally otherwise).

4. Sessions with the same session identifier for some stage share the same contributive identifier.
This holds due to, for each stage i, the contributive identifier cidi being final and equal to sidi

once the session identifier is set.

5. Sessions are partnered with the intended (authenticated) participant.
This case only applies to unilaterally or mutually authenticated stages, which is achieved,
possibly retroactively, when reaching stages 3, resp. stage 6 (only if the client authenticates).
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In the TLS 1.3 full 1-RTT handshake, peer identities are learned through the Certificate
messages. As we are only concerned with honest client and server sessions for Match security,
which will only send certificates attesting their own identity, agreement on SCRT ensures
agreeing on the server (responder) identity, and vice versa for CCRT and the client (initiator)
identity. Such agreement is ensured through including SCRT in the session identifier for stage 3
for unilateral authentication, and SCRT and CCRT for mutual authentication in sid6: once two
sessions reach these stages and agree on sid3, resp. sid6, they (retroactively) also agree on the
intended (responder, resp. initiator) peer.

6. Session identifiers are distinct for different stages.
This holds trivially as as each stage’s session identifier has a unique label.

7. At most two sessions have the same session identifier at any non-replayable stage.
Recall that all session identifiers held by some session include that session’s random nonce
and Diffie–Hellman share. Therefore, for a threefold collision among session identifiers of
honest parties, some session would need to pick the same group element and nonce as one
other session (which then may be partnered through a regular protocol run to some third
session). The probability for such collision to happen can be bounded from above by the
birthday bound n2

s · 1/q · 2−|nonce|, where ns is the maximum number of sessions, q is the
group order, and |nonce| = 256 the nonces’ bit-length.

5.2 Multi-Stage Security

We now come to the core multi-stage security result for the TLS 1.3 full 1-RTT handshake.

Theorem 5.2 (Multi-Stage security of TLS1.3-full-1RTT). The TLS 1.3 full 1-RTT handshake
is Multi-Stage-secure with properties (M, AUTH, FS, USE, REPLAY) given above. Formally, for any
efficient adversary A against the Multi-Stage security there exist efficient algorithms B1, . . . , B7
such that

AdvMulti-Stage,D
TLS1.3-full-1RTT,A ≤ 6ns


AdvCOLL

H,B1 + nu · AdvEUF-CMA
SIG,B2

+ ns


Advdual-snPRF-ODH

HKDF.Extract,G,B3 + AdvPRF-sec
HKDF.Expand,B4

+ 2 · AdvPRF-sec
HKDF.Expand,B5 + AdvPRF-sec

HKDF.Extract,B6

+ AdvPRF-sec
HKDF.Expand,B7




where ns is the maximum number of sessions and nu is the maximum number of users.

For the TLS 1.3 full 1-RTT handshake, Multi-Stage security essentially follows from two lines of
reasoning. First, the (unforgeable) signatures covering (a collision-resistant hash of) the full Hello
messages ensure that session stages with an authenticated peer share exchanged Diffie–Hellman
values originating from an honest partner session. Then, all keys are derived in a way ensuring that
(a) from a Diffie–Hellman secret unknown to the adversary sessions derive keys indistinguishable
from random (under PRF-ODH and PRF assumptions on the HKDF.Extract and HKDF.Expand steps)
which (b) are independent, allowing revealing and testing of session keys across different stages.

Proof. In the following, we proceed via a sequence of games. Starting from the Multi-Stage game,
we bound the advantage difference of adversary A between any two games by complexity-theoretic
assumptions until we reach a game where the adversary A cannot win, i.e., its advantage is at
most 0.
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Game 0. This is the original Multi-Stage game, i.e.,

AdvMulti-Stage,D
TLS1.3-full-1RTT,A = AdvG0

TLS1.3-full-1RTT,A.

Game 1. In a first step, we restrict the adversary A in the Multi-Stage game to make only a
single Test query. That is we can formally turn any multi-query adversary A into an adversary
A1 which makes only a single Test query. This reduces its advantage, based on a careful hybrid
argument, by a factor at most 1/6ns for the six stages in each of the ns sessions. Note that in
the hybrid argument A1 randomly guesses one of the sessions in advance and only performs the
single Test query for this session. The other Test queries of a multi-query attacker are gradually
substituted by carefully crafted Reveal queries, where the single-query attacker A1 needs to know
the correct partnering of sessions via session identifiers sid for a correct simulation, e.g., to avoid
losses due to bad Reveal-Test combinations on session partners due to the new Reveal queries. The
session identifiers sid1 and sid2 only contain public information such that partnering is easy to
check for them. But then handshake encryption is turned on such that sid3, . . . , sid6 are based on
encrypted data. Fortunately, if the single Test query concerns a (client or server) handshake traffic
secret then partnering is easy to decide based on sid1 resp. sid2. If the Test query refers to a later
key we can reveal the handshake traffic keys of earlier stages, use them to decrypt the subsequent
communication, and hence determine sid3, . . . , sid6 as well. We provide the full details of this hybrid
argument in Appendix A.

Incorporating the transformation of A into A1 into the game, i.e., by having the challenger
guess the right session and making the adaptations, we get

AdvG0
TLS1.3-full-1RTT,A ≤ 6ns · AdvG1

TLS1.3-full-1RTT,A.

From now on, we can refer to the session label tested at stage i, and we can assume that we know
this session number (according to the order of initiated sessions) at the outset of the experiment.

Game 2. In this game, the challenger aborts if any two honest sessions compute the same hash
value for different inputs in any evaluation of the hash function H. We can break the collision-
resistance of H in case of this event by letting a reduction B1 output the two distinct input values
to H. Thus:

AdvG1
TLS1.3-full-1RTT,A ≤ AdvG2

TLS1.3-full-1RTT,A + AdvCOLL
H,B1 .

From here on, our security analysis separately considers the two (disjoint) cases that

A. the tested session label has no honest contributive partner in the first stage (i.e., there exists
no label′ ̸= label with label.cid1 = label′.cid1), and

B. the tested session label has an honest contributive partner in the first stage (i.e., there exists
label′ with label.cid1 = label′.cid1).

This allows us to consider the adversary’s advantage separately for these two cases A (denoted “test
w/o partner”) and B (“test w/ partner”):

AdvG2
TLS1.3-full-1RTT,A ≤ AdvG2, test w/o partner

TLS1.3-full-1RTT,A + AdvG2, test w/ partner
TLS1.3-full-1RTT,A .
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Case A. Test without Partner

We first consider the case that the tested session label has no stage-1 contributive partner, which
implies it does not have a contributive partner in any stage. By definition, an adversary cannot
win if the Test query issued to such session is in a stage that, at the time of the test query, has
an unauthenticated peer. Here, authentication refers to the rectified level, because the Test oracle
checks against this refined property. Hence, for a tested client session, Test (for any stage) cannot
be issued before stage 3 is reached and later only if corruption of the client or the partnered server
has not taken place before stage 3. Else the adversary loses the game. For a server session, Test
can only be issued when stage 6 is reached and client authentication is performed. Here, again, the
client cannot be corrupted earlier, else the rectified authentication level would be unauthenticated.

Game A.0. Equals G2 with adversary restricted to test a session without honest contributive
partner in the first stage.

AdvG2, test w/o partner
TLS1.3-full-1RTT,A = AdvGA.0

TLS1.3-full-1RTT,A.

Game A.1. In this game, we let the challenger guess the peer identity U ∈ U of the tested
session label (observe that one must be set in order for Test to be admissible, as discussed above),
and abort if that guess was incorrect (i.e., label.pid ̸= U). This can reduce A’s advantage by a
factor at most the number of users nu:

AdvGA.0
TLS1.3-full-1RTT,A ≤ nu · AdvGA.1

TLS1.3-full-1RTT,A.

Game A.2. We now let the challenger abort the game if the tested session label receives, within
the CertificateVerify message from its peer label.pid = U , a valid signature on some (hash value
of a) message that has not been computed by any honest session of user U . Note that this message
must include the transcript data ClientHello∥ . . . ∥ClientCert resp. ClientHello∥ . . . ∥ServerCert
(cf. Table 2). Observe that, as discussed above, when the Test query is issued to label, such a mes-
sage must have been received, in the case of a client, prior to accepting stage 3 and with no previous
corruption of the server; or, in the case of a server, prior to stage 6 when the server is talking to
an authenticating client which is not corrupted yet.

We can bound the probability of Game GA.2 aborting for this reason by the advantage of an
adversary B2 against the EUF-CMA security of the signature scheme SIG. In the reduction B2
receives a public key pkU of a signature scheme, computes the long-term keys of all parties U ′ ∈
U \ {U} except U and simulates GA.1 for A1. Whenever in that simulation B2 has to compute a
signature under skU , it does so via its signing oracle. When label receives a valid signature σ on
the (hash value of the) message m, adversary B2 outputs (H(m), σ) as its forgery. Note that at this
point the partnered session cannot be corrupted such that the signature forger does not need to
reveal the secret signing key before outputting the forgery.

It remains to argue that the pair (H(m), σ) constitutes a successful forgery. To see this note that
the tested session label computes the hash value H(m) of the message m to verify correctness, but
such that no other honest session has computed a signature for this message. According to Game G2,
this also means that no other honest session has derived the same hash value H(m′) = H(m) for
some other message m′. We conclude that the hash value H(m) has not been signed by user U
before.

AdvGA.1
TLS1.3-full-1RTT,A ≤ AdvGA.2

TLS1.3-full-1RTT,A + AdvEUF-CMA
SIG,B2
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It follows for Case A that the adversary cannot make a legitimate Test query at all, unless it
forges signatures. Either the sessions do not have a contributive partner, or the sessions in later
stages have rejected because of invalid signatures. If the adversary cannot test any session without
a contributive partner, it clearly has no advantage in predicting the secret challenge bit b:

AdvGA.2
TLS1.3-full-1RTT,A = 0.

Case B. Test with Partner

Game B.0. This is G2 where the adversary is restricted to issuing a Test query to a session with
an honest contributive partner in the first stage.

AdvG2, test w/ partner
TLS1.3-full-1RTT,A = AdvGB.0

TLS1.3-full-1RTT,A.

Game B.1. In this game, we guess a session label′ ̸= label (from at most ns sessions in the game)
and abort the game if label.cid1 ̸= label′.cid1 i.e. that label′ is not the honest contributive partner
in stage 1 of the tested session (recall that we assume such partner exists in this proof case). This
reduces the adversary’s advantage by a factor of at most 1/ns.

AdvGB.0
TLS1.3-full-1RTT,A ≤ ns · AdvGB.1

TLS1.3-full-1RTT,A.

Game B.2. In this game, we replace the handshake secret HS derived in the tested session and its
contributive partner session with a uniformly random and independent string H̃S←$ {0, 1}λ. We
employ the dual-snPRF-ODH assumption (Definition 2.3) in order to be able to simulate the compu-
tation of HS in a partnered client session for a modified ServerKeyShare message. More precisely,
we can turn any adversary capable of distinguishing this change into an adversary B3 against the
dual-snPRF-ODH security of the HKDF.Extract function (taking dES as first and DHE as second
input). For this B3 asks for a PRF challenge on dES computed in the test session and its honest
contributive partner. It uses the obtained Diffie-Hellman shares gx, gy within ClientKeyShare
and ServerKeyShare of the tested and contributive sessions, and the PRF challenge value as HS
in the tested session. If necessary, B3 uses its PRF-ODH queries to derive HS in the partnered
session on differing gy′ ̸= gy. Providing a sound simulation of either GB.1 (if the bit sampled by
the dual-snPRF-ODH challenger was 0 and thus H̃S = HKDF.Extract(dES, gxy)), or GB.2 (if the
bit sampled by the dual-snPRF-ODH challenger was 1 and thus H̃S←$ {0, 1}λ), this bounds the
advantage difference of A as:

AdvGB.1
TLS1.3-full-1RTT,A ≤ AdvGB.2

TLS1.3-full-1RTT,A + Advdual-snPRF-ODH
HKDF.Extract,G,B3 .

Game B.3. In this game, we replace the pseudorandom function HKDF.Expand in all evaluations
using the value H̃S replaced in GB.2. This affects the derivation of the client handshake traffic
secret CHTS, the server handshake traffic secret SHTS and the derived handshake secret dHS in
the target session and its matching partner, and the derived handshake secret dHS in all sessions
using the same handshake secret H̃S. Note that for CHTS and SHTS, these values are distinct
from any other session using the same handshake secret value H̃S, as the evaluation also takes
as input the hash value H2 = H(CH∥SH), (where CH and SH contain the client and server random
values rc, rs respectively) and by Game G2 we exclude hash collisions. We replace the derivation
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of CHTS, SHTS and dHS in such sessions with random values C̃HTS, S̃HTS, d̃HS←$ {0, 1}λ. To
ensure consistency, we replace derivations of dHS with the replaced d̃HS sampled by the first session
to evaluate HKDF.Expand using H̃S. We can bound the difference that this step introduces in the
advantage of A by the security of the pseudorandom function HKDF.Expand. Note that by the
previous game, H̃S is a uniformly random value, and the replacement is sound. Thus:

AdvGB.2
TLS1.3-full-1RTT,A ≤ AdvGB.3

TLS1.3-full-1RTT,A + AdvPRF-sec
HKDF.Expand,B4 .

At this point, C̃HTS and S̃HTS are independent of any values computed in any session non-
partnered (in stage 1 or 2) with the tested session: distinct session identifiers and no hash collisions
(as of Game G2) ensure that the PRF label inputs for deriving C̃HTS and S̃HTS are unique.

Game B.4. In this game, we replace the pseudorandom function HKDF.Expand in all evaluations
using the values C̃HTS, S̃HTS replaced in GB.3. This affects the derivation of the client handshake
traffic key tkchs, and the server handshake traffic key tkshs in the target session and its contributive
partner. We replace the derivation of tkchs and tkshs with random values t̃kchs←$ {0, 1}L and
t̃kshs←$ {0, 1}L, where L indicates the sum of key length and iv length for the negotiated AEAD
scheme. We can bound the difference that this step introduces in the advantage of A by the security
of two evaluations of the pseudorandom functions HKDF.Expand. Note that by the previous game
C̃HTS and S̃HTS are uniformly random values, and these replacements are sound. Thus:

AdvGB.3
TLS1.3-full-1RTT,A ≤ AdvGB.4

TLS1.3-full-1RTT,A + 2 · AdvPRF-sec
HKDF.Expand,B5 .

Game B.5. In this game, we replace the pseudorandom function HKDF.Extract in all evaluations
of the value d̃HS replaced in GB.3. This affects the derivation of the master secret MS in any session
using the same derived handshake secret d̃HS. We replace the derivation of MS in such sessions
with the random value M̃S←$ {0, 1}λ. We can bound the difference that this step introduces in the
advantage of A by the security of the pseudorandom function HKDF.Extract. Note that by GB.3,
d̃HS is a uniformly random value and this replacement is sound. Thus:

AdvGB.4
TLS1.3-full-1RTT,A ≤ AdvGB.5

TLS1.3-full-1RTT,A + AdvPRF-sec
HKDF.Extract,B6 .

Game B.6. In this game, we replace the pseudorandom function HKDF.Expand in all evaluations
of the value M̃S replaced in GB.5 in the targeted session and its matching session. This affects the
derivation of the client application traffic secret CATS, the server application traffic secret SATS
the exporter master secret EMS and the resumption master secret RMS. For CATS, SATS and
EMS, these evaluations are distinct from any session non-partnered with the tested session, as the
evaluation of HKDF.Expand also takes as input H4 = H(CH∥ . . . ∥SF) (where CH and SH contain the
client and server random values rc and rs respectively), and by Game G2 we exclude hash collisions.
For RMS, this evaluation is distinct from any session non-partnered with the tested session, as the
evaluation of HKDF.Expand also takes as input H5 = H(CH∥ . . . ∥CF). We replace the derivation
of CATS, SATS, EMS and RMS with random values C̃ATS, S̃ATS, ẼMS, R̃MS←$ {0, 1}λ. We
can bound the difference that this step introduces in the advantage of A by the secret of the
pseudorandom function HKDF.Expand. Note that by the previous game M̃S is a uniformly random
and independent value, and these replacements are sound. Thus:

AdvGB.5
TLS1.3-full-1RTT,A ≤ AdvGB.6

TLS1.3-full-1RTT,A + AdvPRF-sec
HKDF.Expand,B7 .
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We note that in this game we have now replaced all stages’ keys in the tested session with
uniformly random values which, in the protocol execution, are independent of values in any non-
partnered session to the tested session. Thus:

AdvGB.6
TLS1.3-full-1RTT,A = 0.

Combining the given single bounds yields the security statement below:

AdvG2, test w/ partner
TLS1.3-full-1RTT,A ≤ ns

(
Advdual-snPRF-ODH

HKDF.Extract,G,B3 + AdvPRF-sec
HKDF.Expand,B4 + 2 · AdvPRF-sec

HKDF.Expand,B5

+ AdvPRF-sec
HKDF.Extract,B6 + AdvPRF-sec

HKDF.Expand,B7

)

6 Security Analysis of the TLS 1.3 PSK/PSK-(EC)DHE (with
Optional 0-RTT) Handshakes

We now turn to analyzing the TLS 1.3 pre-shared key handshakes, with and without Diffie–Hellman
key exchange (PSK-(EC)DHE, resp. PSK) and with optional 0-RTT keys, in the pre-shared–secret
multi-stage key exchange (sMSKE) model.

Protocol properties. The PSK/PSK-(EC)DHE (0-RTT) handshakes targets the following protocol-
specific properties (M, AUTH, FS, USE, REPLAY):

• M = 8: The PSK handshakes with optional 0-RTT consist of eight stages deriving, in or-
der: the early traffic secret ETS and early exporter master secret EEMS (both only in 0-RTT
mode), the client and server handshake traffic keys tkchs and tkshs, the client and server appli-
cation traffic secrets CATS and SATS, the exporter master secret EMS, and the resumption
master secret RMS.

• The authentication properties AUTH differ between the PSK(-only) and the PSK-(EC)DHE
(0-RTT) handshakes:

– for PSK (0-RTT), AUTH =
{
((1, 1), (2, 2), . . . , (8, 8))

}
: All keys are immediately mutu-

ally authenticated (from the preshared key).
– for PSK-(EC)DHE (0-RTT), AUTH =

{
((1, 1), (2, 2), (5, 8), (5, 8), (5, 8), (6, 8), (7, 8), (8, 8))

}
:

The 0-RTT keys ETS/EEMS are always mutually authenticated, the handshake traf-
fic keys tkchs/tkshs are initially unauthenticated, all non–0-RTT keys reach unilateral
authentication with stage 5 and mutual authentication with stage 8.10

• Forward secrecy of the PSK handshake depends on whether an ephemeral Diffie–Hellman key
exchange is performed:

– for PSK-only, FS =∞: The PSK-only handshake does not provide any forward secrecy.
– for PSK-(EC)DHE, FS = 3: The PSK-(EC)DHE handshake provides forward secrecy

for all non–0-RTT keys.
10It is not straightforward to see why some PSK-(EC)DHE keys are not considered to be immediately mutually

authenticated, in contrast to keys from the PSK-only handshake. Consider the handshake traffic keys in the PSK-
(EC)DHE handshake: in the model, the adversary A could send its own gx share to a server session; the server will
derive the handshake traffic keys from PSK and DHE. Those keys should now be considered forward secret (due to
the ephemeral DH shares), however when A corrupts PSK, it can compute the handshake traffic keys. Hence, these
keys cannot be treated as forward secret and mutually authenticated at the same time.
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• USE = (internal : {3, 4}, external : {1, 2, 5, 6, 7, 8}): The handshake traffic keys are used inter-
nally to encrypt the second part of the handshake; all other keys are external.

• REPLAY = (replayable : {1, 2}, nonreplayable : {3, 4, 5, 6, 7, 8}): The 0-RTT keys ETS and EEMS
are replayable, all other stages’ keys are not.

Session and contributive identifiers. As for the full 1-RTT handshake (cf. Section 5), we define
the session identifiers over the unencrypted handshake messages; each stage’s identifier includes a
label and all handshake messages up to when that stage accepts:

sid1 = (“ETS”, CH, CKS†, CPSK),
sid2 = (“EEMS”, CH, CKS†, CPSK),
sid3 = (“CHTS”, CH, CKS†, CPSK, SH, SKS†, SPSK),
sid4 = (“SHTS”, CH, CKS†, CPSK, SH, SKS†, SPSK),
sid5 = (“CATS”, CH, CKS†, CPSK, SH, SKS†, SPSK, EE, SF),
sid6 = (“SATS”, CH, CKS†, CPSK, SH, SKS†, SPSK, EE, SF),
sid7 = (“EMS”, CH, CKS†, CPSK, SH, SKS†, SPSK, EE, SF),
sid8 = (“RMS”, CH, CKS†, CPSK, SH, SKS†, SPSK, EE, SF, CF).

Components indicated with † are present only in the PSK-(EC)DHE variant.
For the contributive identifiers in stages 3 and 4, as for the full handshake we want to en-

sure server sessions with honest client contribution can be tested, even if the server’s response
never reaches the client. Therefore, we let client (resp. server) upon sending (resp. receiving)
the ClientHello, ClientKeyShare† and ClientPreSharedKey messages set cid3 = (“CHTS”,
CH, CKS†, CPSK), cid4 = (“SHTS”, CH, CKS†, CPSK) and later, upon receiving (resp. sending) the
ServerHello, ServerKeyShare† and ServerPreSharedKey messages, extend it to cid3 = (“CHTS”,
CH, CKS†, CPSK, SH, SKS†, SPSK), cid4 = (“SHTS”, CH, CKS†, CPSK, SH, SKS†, SPSK). All other contribu-
tive identifiers are set to cidi = sidi (for stages i ∈ {1, 2, 5, 6, 7, 8}) when the respective session
identifier is set.

6.1 TLS 1.3 PSK-only (0-RTT optional)

We can begin to give our security results for the TLS 1.3 PSK-only 0-RTT handshake. We start
with Match security.

6.1.1 Match Security

Theorem 6.1 (Match security of TLS1.3-PSK-0RTT). The TLS 1.3 PSK-only 0-RTT handshake is
Match-secure with properties (M, AUTH, FS, USE, REPLAY) given above. For any efficient adver-
sary A there exists an efficient algorithm B such that

AdvMatch
TLS1.3-PSK-0RTT,A ≤ AdvCOLL

HMAC,B +
n2

p

|P|
+ n2

s · 2−|nonce|,

where ns is the maximum number of sessions, np is the maximum number of preshared secrets, |P|
is the size of the preshared secret space, and |nonce| = 256 is the bit-length of the nonces.
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Recall that Match security is a soundness property of the session identifiers. From our definition
of session identifiers above, it follows immediately that partnered sessions agree on the derived key,
opposite roles, authentication properties, contributive identifiers, and the respective stages. As in
the proof of Match security for TLS1.3-full-1RTT, the security bound arises as the birthday bound
for two honest sessions choosing the same nonce; this not happening ensures at most two partners
share the same session identifier.

Proof. We need to show the seven properties of Match security (cf. Definition 4.1).

1. Sessions with the same session identifier for some stage hold the same key at that stage.
The session identifiers in each stage include the preshared identifier pssid = pskid (through
the CPSK and SPSK messages, fixing the only key input PSK (as both parties agree upon a
mapping pssU,V (pssid) = pss = PSK to all derived stage keys (recall that DHE = 0 in the
TLS 1.3 PSK-only 0-RTT handshake). Furthermore, for each stage, the session identifier
includes all handshake messages that enter the key derivation: for stages 1 and 2 messages
up to CPSK for stages 3 and 4 messages up to SPSK, for stages 5, 6, 7 messages up to SF, and
for stage 8 all messages (up to CF). In each stage, the session identifier hence determines all
inputs to the key derivation, and agreement on it thus ensures agreement on the stage key.

2. Sessions with the same session identifier for some stage have opposite roles, except for poten-
tial multiple responders in replayable stages.
Assuming at most two sessions share the same session identifier (which we show below), two
initiator (client) or responder (server) sessions never hold the same session identifier as they
never accept wrong-role incoming messages, and the initial Hello messages are typed with
the sender’s role. This is excluding stages 1 and 2, which are replayable stages in the TLS 1.3
PSK-only 0-RTT handshake.

3. Sessions with the same session identifier for some stage agree on that stage’s authentication
level.
All stages in the TLS 1.3 PSK-only 0-RTT handshake are mutually authenticated, so this is
trivially true.

4. Sessions with the same session identifier for some stage share the same contributive identifier.
This holds due to, for each stage i, the contributive identifier cidi being final and equal to sidi

once the session identifier is set.

5. Sessions are partnered with the intended (authenticated) participant and share the same key
identifier.
All session identifiers include the pssid and binder values sent as part of the ClientHello.
The pssid thus is trivially agreed upon. The binder value is derived from that PSK through a
sequence of HKDF/HMAC computations. If we treat HMAC as an unkeyed collision-resistant
hash function over both inputs, the key and the message space, agreement on binder implies
agreement on PSK. This step is necessary, as A can set multiple PSK values to share the
same pssid, and thus a pssid does not necessarily uniquely determine a pre-shared secret PSK
from each peer’s perspective. Instead, we use binder to uniquely determine agreement upon
PSK between peers. As all PSK values are chosen uniformly at random within the NewSecret
query, they collide only with negligible probability, bounded by the birthday bound n2

p/|P|,
where P is the pre-shared secret space and np the maximum number of pre-shared secrets.
Therefore, agreement on binder and PSK finally implies that pssid, as interpreted by the
partnered client and server session, originates from the same NewSecret call. This, from the
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perspective of both client and server, uniquely identifies the respective peer’s identity and
hence ensures agreement on the intended peers.

6. Session identifiers are distinct for different stages.
This holds trivially as as each stage’s session identifier has a unique label.

7. At most two sessions have the same session identifier at any non-replayable stage.
Recall that stages 1 and 2 are replayable, so we only need to consider stages i ∈ {3, 4, 5, 6, 7, 8}.
Observe that all session identifiers from these stages include a client and server random nonce
(rc and rs respectively), through the ClientHello and ServerHello messages. Therefore,
for a threefold collision among session identifiers of honest parties, some session would need
to pick the same nonce as one other session (which then may be partnered through a regular
protocol run to some third session). The probability for such collision to happen can be
bounded from above by the birthday bound n2

s · 2−|nonce|, where ns is the maximum number
of sessions, and |nonce| = 256 the nonces’ bit-length.

6.1.2 Multi-Stage Security

Theorem 6.2 (Multi-Stage security of TLS1.3-PSK-0RTT). The TLS 1.3 PSK 0-RTT handshake
is Multi-Stage-secure with properties (M, AUTH, FS, USE, REPLAY) given above. Formally, for any
efficient adversary A against the Multi-Stage security there exist efficient algorithms B1, . . . , B8
such that

AdvMulti-Stage,D
TLS1.3-PSK-0RTT,A ≤ 8ns

 AdvCOLL
H,B1 + np


Advdual-PRF-sec

HKDF.Extract,B2 + AdvPRF-sec
HKDF.Expand,B3

+ AdvPRF-sec
HKDF.Extract,B4 + AdvPRF-sec

HKDF.Expand,B5

+ 2 · AdvPRF-sec
HKDF.Expand,B6 + AdvPRF-sec

HKDF.Extract,B7

+ AdvPRF-sec
HKDF.Expand,B8




where ns is the maximum number of sessions, nu is the maximum number of users, and np is the
maximum number of preshared secrets.

For the TLS 1.3 PSK 0-RTT handshake, Multi-Stage security follows from the security of the
preshared key: all keys are derived from a preshared secret PSK unknown to the adversary (since
the PSK mode is not forward secret, PSK may not be corrupted in the tested session) As such,
derived keys are indistinguishable from random (under PRF assumptions on the HKDF.Extract and
HKDF.Expand steps) which are independent, allowing revealing and testing of session keys across
different stages.

Proof. As before, we proceed via a sequence of games, bounding the differences between games via
a series of assumptions until we demonstrate that A’s advantage in winning the final game is 0.

Game 0. This is the original Multi-Stage game, i.e.,

AdvMulti-Stage,D
TLS1.3-PSK-0RTT,A = AdvG0

TLS1.3-PSK-0RTT,A.

Game 1. We restrict A to a single Test query, reducing its advantage by a factor of at most 1/8ns.
Formally, we construct an adversary from A making only a single Test query via a hybrid argument,
analogously to the proof of Theorem 5.2 on page 27, detailed in Appendix A.

AdvG0
TLS1.3-PSK-0RTT,A ≤ 8ns · AdvG1

TLS1.3-PSK-0RTT,A.
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From now on, we can refer to the session label tested at stage i, and assume that we know this
session in advance.

Game 2. In this game, the challenger aborts if any two honest sessions compute the same hash
value for different inputs in any evaluation of the hash function H. If this event occurs, this can be
used to break the collision-resistance of H by letting a reduction B1 (with approximately the same
running time as A) output the two distinct input values to H. Thus:

AdvG1
TLS1.3-PSK-0RTT,A ≤ AdvG2

TLS1.3-PSK-0RTT,A + AdvCOLL
H,B1 .

Game 3. In this game, the challenger guesses the preshared secret PSK used in the tested session,
and aborts the game if that guess was incorrect. This reduces A’s advantage by a factor of at most
1/np for np being the maximum number of registered pre-shared secrets, thus:

AdvG2
TLS1.3-PSK-0RTT,A ≤ np · AdvG3

TLS1.3-PSK-0RTT,A.

Game 4. In this game, we replace the outputs of the pseudorandom function HKDF.Extract in
all evaluations using the tested session’s guessed preshared secret PSK as a key by random values.
This affects the derivation of the early secret ES in any session using the same shared PSK. We
replace the derivation of ES in such sessions with a random value ẼS←$ {0, 1}λ. We can bound the
difference this step introduces in the advantage of A by the dual PRF security of HKDF.Extract.
Note that any successful adversary cannot issue a Corrupt query to reveal the PSK used in the
tested session, and thus the preshared secret is an unknown and uniformly random value, and the
simulation is sound. Thus:

AdvG3
TLS1.3-PSK-0RTT,A ≤ AdvG4

TLS1.3-PSK-0RTT,A + Advdual-PRF-sec
HKDF.Extract,B2 .

Game 5. In this game, we replace the pseudorandom function HKDF.Expand in all evaluations
using the value ẼS replaced in G4. This affects the derivation of the derived early secret dES,
the binder key BK, the early traffic secret ETS, and the early exporter master secret EEMS in
any session using the same early secret value ẼS due to the stage being replayable. We replace
the derivation of dES, BK, ETS and EEMS in such sessions with random values d̃ES, B̃K, ẼTS,
ẼEMS←$ {0, 1}λ. We can bound the difference that this step introduces in the advantage of A
by the security of the pseudorandom function HKDF.Expand. Note that by Game G4, ẼS is an
unknown and uniformly random value, and this replacement is sound. Thus:

AdvG4
TLS1.3-PSK-0RTT,A ≤ AdvG5

TLS1.3-PSK-0RTT,A + AdvPRF-sec
HKDF.Expand,B3 .

At this point, we have replaced the stage 1 and stage 2 keys (ẼTS and ẼEMS, respectively).
We note that if A issues a Reveal(label, i) query to a session label′ such that the tested session
label.sidi = label′.sidi, then A would lose the game. Since these stages are replayable, there may be
multiple such sessions such that label.sidi = label′.sidi, however if any of these stages is revealed, A
loses the game.

Game 6. In this game, we replace the pseudorandom function HKDF.Extract in all evaluations
using the value d̃ES replaced in G5. This affects the derivation of the handshake secret HS in any
session using the same derived early secret value d̃ES, as the derivation of HS includes no additional
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entropy. We replace the derivation of HS in such sessions with a random value H̃S←$ {0, 1}λ. We
can bound the difference that this step introduces in the advantage of A by the security of the
pseudorandom function HKDF.Extract. Note that by the previous game, d̃ES is a uniformly random
value, and the simulation is sound. Thus:

AdvG5
TLS1.3-PSK-0RTT,A ≤ AdvG6

TLS1.3-PSK-0RTT,A + AdvPRF-sec
HKDF.Extract,B4 .

Game 7. In this game, we replace the pseudorandom function HKDF.Expand in all evaluations
using the value H̃S replaced in G6. This affects the derivation of the client handshake traffic se-
cret CHTS, the server handshake traffic secret SHTS in the target session and (if it exists) its
matching partner, and the derived handshake secret dHS in all sessions using the same handshake
secret H̃S. Note that for CHTS and SHTS, these values are distinct from any other session us-
ing the same handshake secret value H̃S, as the evaluation also takes as input the hash value
H2 = H(CH∥CPSK∥SH∥SPSK), where CH and SH contain the client and server random values rc, rs

respectively, and by Game G2 we exclude hash collisions. However, dHS may be derived in mul-
tiple sessions, as it includes no additional entropy in its computation. We replace the derivation
of CHTS, SHTS and dHS in such sessions with random values C̃HTS, S̃HTS, d̃HS←$ {0, 1}λ. To
ensure consistency, we replace derivations of dHS with the replaced d̃HS sampled by the first session
to evaluate HKDF.Expand using H̃S. We can bound the difference that this step introduces in the
advantage of A by the security of the pseudorandom function HKDF.Expand. Note that by the
previous game, H̃S is a uniformly random value, and the replacement is sound. Thus:

AdvG6
TLS1.3-PSK-0RTT,A ≤ AdvG7

TLS1.3-PSK-0RTT,A + AdvPRF-sec
HKDF.Expand,B5 .

Game 8. In this game, we replace the pseudorandom function HKDF.Expand in all evaluations
using the values C̃HTS, S̃HTS replaced in G7. This affects the derivation of the client handshake
traffic key tkchs, and the server handshake traffic key tkshs in the target session and its matching
partner. We replace the derivation of tkchs and tkshs with random values t̃kchs←$ {0, 1}L and
t̃kshs←$ {0, 1}L, where L indicates the sum of key length and iv length for the negotiated AEAD
scheme. We can bound the difference that this step introduces in the advantage of A by the security
of two evaluations of the pseudorandom functions HKDF.Expand. Note that by the previous game
C̃HTS and S̃HTS are uniformly random values, and these replacements are sound. Thus:

AdvG7
TLS1.3-PSK-0RTT,A ≤ AdvG8

TLS1.3-PSK-0RTT,A + 2 · AdvPRF-sec
HKDF.Expand,B6 .

Game 9. In this game, we replace the pseudorandom function HKDF.Extract in all evaluations
of the value d̃HS replaced in G8. This affects the derivation of the master secret MS in any session
using the same derived handshake secret dHS. We replace the derivation of MS in such sessions
with the random value M̃S←$ {0, 1}λ. MS may be derived in multiple sessions, as it includes no
additional entropy in its computation. We can bound the difference that this step introduces in
the advantage of A by the security of the pseudorandom function HKDF.Extract. Note that by
Game G7, dHS is a uniformly random value and this replacement is sound. Thus:

AdvG8
TLS1.3-PSK-0RTT,A ≤ AdvG9

TLS1.3-PSK-0RTT,A + AdvPRF-sec
HKDF.Extract,B7 .
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Game 10. In this game, we replace the pseudorandom function HKDF.Expand in all evaluations
of the value M̃S replaced in G9 in the targeted session and its matching session. This affects the
derivation of the client application traffic secret CATS, the server application traffic secret SATS
the exporter master secret EMS and the resumption master secret RMS. For CATS, SATS and
EMS, these evaluations are distinct from any other session, as the evaluation of HKDF.Expand
also takes as input H4 = H(CH∥CPSK∥SH∥SPSK∥SF), where CH and SH contain the client and server
random values rc and rs respectively, and by Game G2 we exclude hash collisions. For RMS, this
evaluation is distinct from any other session, as the evaluation of HKDF.Expand also takes as input
H5 = H(CH∥CPSK∥SH∥SPSK∥SF∥CF). We replace the derivation of CATS, SATS, EMS and RMS
with random values C̃ATS, S̃ATS, ẼMS, R̃MS←$ {0, 1}λ. We can bound the difference that this
step introduces in the advantage of A by the secret of the pseudorandom function HKDF.Expand.
Note that by the previous game M̃S is a uniformly random and independent value, and these
replacements are sound. Thus:

AdvG9
TLS1.3-PSK-0RTT,A ≤ AdvG10

TLS1.3-PSK-0RTT,A + AdvPRF-sec
HKDF.Expand,B8 .

In Game G10 we have now replaced all stages’ keys in the tested session with uniformly random
values independent from the protocol execution, and thus:

AdvG10
TLS1.3-PSK-0RTT,A = 0.

Combining the given single bounds yields the overall security statement.

6.2 TLS 1.3 PSK-(EC)DHE (0-RTT optional)

We can now turn to the security results for the TLS 1.3 PSK-(EC)DHE 0-RTT handshake, starting
again with Match security.

6.2.1 Match Security

Theorem 6.3 (Match security of TLS1.3-PSK-(EC)DHE-0RTT). The TLS 1.3 PSK-(EC)DHE 0-RTT
handshake is Match-secure with properties (M, AUTH, FS, USE, REPLAY) given above. For any effi-
cient adversary A there exists an efficient algorithm B such that

AdvMatch
TLS1.3-PSK-(EC)DHE-0RTT,A ≤ AdvCOLL

HMAC,B +
n2

p

|P|
+ n2

s ·
1
q
· 2−|nonce|,

where ns is the maximum number of sessions, q is the group order, np is the maximum number of
preshared secrets, |P| is the size of the preshared secret space, and |nonce| = 256 is the bit-length
of the nonces.

As before, the soundness properties of Match security follow immediately from our definition
of session identifiers, with the security bound arising as the birthday bound for two honest ses-
sions choosing the same nonce and group element. The proof hence closely follows the one for
Theorem 6.1.

Proof. We need to show the seven properties of Match security (cf. Definition 4.1).

1. Sessions with the same session identifier for some stage hold the same key at that stage.
The session identifiers in each stage include both the preshared identifier pskid and the Diffie–
Hellman shares gx and gy (through the CPSK and SPSK, and CKS, SKS messages respectively),
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fixing both the preshared key input PSK and the Diffie–Hellman key input DHE = gxy for all
derived stage keys. Furthermore, for each stage, the session identifier includes all handshake
messages that enter the key derivation: for stages 1 and 2 messages up to CPSK, for stages 3
and 4 messages up to SPSK, for stages 5, 6, 7 messages up to SF, and for stage 8 all messages (up
to CF). In each stage, the session identifier hence determines all inputs to the key derivation,
and agreement on it thus ensures agreement on the stage key.

2. Sessions with the same session identifier for some stage have opposite roles, except for poten-
tial multiple responders in replayable stages.
Assuming at most two sessions share the same session identifier (which we show below), two
initiator (client) or responder (server) sessions never hold the same session identifier as they
never accept wrong-role incoming messages, and the initial Hello messages are typed with
the sender’s role. This is excluding stages 1 and 2, which are replayable stages in the TLS 1.3
PSK-(EC)DHE 0-RTT handshake.

3. Sessions with the same session identifier for some stage agree on that stage’s authentication
level.
By definition, the vector determining (upgradable) authentication is fixed to ((1, 1), (2, 2),
(5, 8), (5, 8), (5, 8), (6, 8), (7, 8), (8, 8)), to which hence trivially all sessions agree.

4. Sessions with the same session identifier for some stage share the same contributive identifier.
This holds due to, for each stage i, the contributive identifier cidi being final and equal to sidi

once the session identifier is set.

5. Sessions are partnered with the intended (authenticated) participant and share the same key
identifier.
All session identifiers include the pssid and binder values sent as part of the ClientHello.
The pssid thus is trivially agreed upon and uniquely determining a pre-shared secret PSK
from each peer’s perspective. The binder value is derived from that PSK through a sequence
of HKDF/HMAC computations. If we treat HMAC as an unkeyed collision-resistant hash
function over both inputs, the key and the message space, agreement on binder implies
agreement on PSK. This step is necessary, as A can set multiple PSK values to share the
same pssid, and thus a pssid does not necessarily uniquely determine a pre-shared secret PSK
from each peer’s perspective. Instead, we use binder to uniquely determine agreement upon
PSK between peers. As all PSK values are chosen uniformly at random within the NewSecret
query, they collide only with negligible probability, bounded by the birthday bound n2

p/|P|,
where P is the pre-shared secret space and np the maximum number of pre-shared secrets.
Therefore, agreement on binder and PSK finally implies that pssid, as interpreted by the
partnered client and server session, originates from the same NewSecret call. This, from the
perspective of both client and server, uniquely identifies the respective peer’s identity and
hence ensures agreement on the intended peers.

6. Session identifiers are distinct for different stages.
This holds trivially as as each stage’s session identifier has a unique label.

7. At most two sessions have the same session identifier at any non-replayable stage.
Recall that stages 1 and 2 are replayable, so we consider only stages i ∈ {3, 4, 5, 6, 7, 8}.
Recall that all session identifiers from these stages held by some session include a client and
server random nonce and Diffie–Hellman share, as all session identifiers contain both the
ClientHello and ServerHello messages. Therefore, for a threefold collision among session
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identifiers of honest parties, some session would need to pick the same nonce and group
element as one other session (which then may be partnered through a regular protocol run to
some third session). The probability for such collision to happen can be bounded from above
by the birthday bound n2

s · 1/q · 2−|nonce|, where ns is the maximum number of sessions, q is
the group order, and |nonce| = 256 the nonces’ bit-length.

6.2.2 Multi-Stage Security

Theorem 6.4 (Multi-Stage security of TLS1.3-PSK-(EC)DHE-0RTT). The TLS 1.3 PSK-(EC)DHE
0-RTT handshake is Multi-Stage-secure with properties (M, AUTH, FS, USE, REPLAY) given above.
Formally, for any efficient adversary A against the Multi-Stage security there exist efficient algo-
rithms B1, . . . , B16 such that

AdvMulti-Stage,D
TLS1.3-PSK-(EC)DHE-0RTT,A ≤ 8ns



AdvCOLL
H,B1 + npns



Advdual-PRF-sec
HKDF.Extract,B2 + AdvPRF-sec

HKDF.Expand,B3

+ AdvPRF-sec
HKDF.Extract,B4 + AdvPRF-sec

HKDF.Expand,B5

+ AdvPRF-sec
HKDF.Expand,B6 + AdvEUF-CMA

HMAC,B7

+ AdvPRF-sec
HKDF.Expand,B8 + AdvEUF-CMA

HMAC,B9

+ Advdual-PRF-sec
HKDF.Extract,B10 + AdvPRF-sec

HKDF.Expand,B11



+ns


Advdual-snPRF-ODH

HKDF.Extract,G,B12 + AdvPRF-sec
HKDF.Expand,B13

+ 2 · AdvPRF-sec
HKDF.Expand,B14 + AdvPRF-sec

HKDF.Extract,B15

+ AdvPRF-sec
HKDF.Expand,B16




where ns is the maximum number of sessions, np the maximum number of preshared secrets estab-
lished between any two parties, and nu is the maximum number of users.

For the TLS 1.3 PSK-(EC)DHE 0-RTT handshake, Multi-Stage security essentially follows from
two lines of reasoning. First, the (unforgeable) MAC tags covering (a collision-resistant hash
of) the full Hello messages ensure that session stages with an authenticated peer share hold ex-
changed Diffie–Hellman shares originating from an honest partner session. Then, all keys are
derived in a way ensuring that (a) for forward-secret stages, the keys are derived from a Diffie–
Hellman secret unknown to the adversary are indistinguishable from random (under PRF-ODH
and dual-PRF-sec/PRF-sec assumptions on the HKDF.Extract and HKDF.Expand steps), and for
non-forward-secret stages the keys are derived from a preshared secret unknown to the adver-
sary, and are also indistinguishable from random (under PRF assumptions on the HKDF.Expand
and HKDF.Extract steps) which (b) are independent, allowing revealing and testing of session keys
across different stages.

Proof. Again, we proceed via a sequence of games starting from the Multi-Stage game and bounding
the advantage (differences) of adversary A.

Game 0. This is the original Multi-Stage game, i.e.,

AdvMulti-Stage,D
TLS1.3-PSK-(EC)DHE-0RTT,A = AdvG0

TLS1.3-PSK-(EC)DHE-0RTT,A.

Game 1. We again restrict A to a single Test query, reducing its advantage by a factor of at
most 1/8ns via a hybrid argument analogous to the one in the proof of Theorem 5.2 on page 27,
detailed in Appendix A.

AdvG0
TLS1.3-PSK-(EC)DHE-0RTT,A ≤ 8ns · AdvG1

TLS1.3-PSK-(EC)DHE-0RTT,A.
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From now on, we can refer to the session label tested at stage i, and assume to know the session in
advance.

Game 2. In this game, the challenger aborts if any two honest sessions compute the same hash
value for different inputs in any evaluation of the hash function H. We can break the collision-
resistance of H in case of this event by letting a reduction B1 output the two distinct input values
to H. Thus:

AdvG1
TLS1.3-PSK-(EC)DHE-0RTT,A ≤ AdvG2

TLS1.3-PSK-(EC)DHE-0RTT,A + AdvCOLL
H,B1 .

From this point, our analysis separately considers the following three (disjoint) cases:

A. that the tested session label has no honest contributive partner in the third stage (i.e., there
exists no label′ ̸= label with label.cid3 = label′.cid3), and,

B. the tested session label has an honest contributive partner in the third stage (i.e., there exists
label′ with label.cid3 = label′.cid3) and A issues a Test query to the non-forward-secret stages
(i.e. A issues Test(label, i) where i ∈ {1, 2}.

C. the tested session label has an honest contributive partner in the third stage (i.e., there exists
label′ with label.cid3 = label′.cid3) and A issues a Test query to the forward-secret stages (i.e.
A issues Test(label, i) where i ∈ {3, . . . , 8}.

This allows us to consider the adversary’s advantage separately for cases A (denoted “test w/o
partner”), B (denoted “NFS test w/ partner”) and C (“FS test w/ partner”):

AdvG2
TLS1.3-PSK-(EC)DHE-0RTT,A

≤ AdvG2, test w/o partner
TLS1.3-PSK-(EC)DHE-0RTT,A + AdvG2, NFS test w/ partner

TLS1.3-PSK-(EC)DHE-0RTT,A + AdvG2, FS test w/ partner
TLS1.3-PSK-(EC)DHE-0RTT,A.

Case A. Test without Partner

As before, we first consider the case that the tested session label has no stage 3 contributive partner.
For tested initiator sessions, this means that there exists no honest session that has output the
received SH, SKS, and SPSK messages. For tested responder session, this means that there exists
no honest initiator session that has output the received CH, CKS, or CPSK messages. Since these
messages are included in all subsequent stage session identifiers, this implies the tested session does
not have a contributive partner in any stage. By definition, an adversary cannot win if the Test
query issued to such a session is in a stage that, at the time of the test query, has an unauthenticated
peer (where authentication refers to the rectified notion). For a tested responder session without
an honest contributive partner in stage 3, a Test query can only be issued to the session when it
reaches stage 8. For a tested initiator session without an honest contributive partner in stage 3, a
Test query can only be issued to the session when it reaches stage 5.

Game A.0. This is identical to Game G2 with adversary restricted to testing a session without
an honest contributive partner in the third stage.

AdvG2, test w/o partner
TLS1.3-PSK-(EC)DHE-0RTT,A = AdvGA.0

TLS1.3-PSK-(EC)DHE-0RTT,A.

Game A.1. In this game, the challenger guesses the pre-shared secret PSK used in the tested
session, and aborts the game if that guess was incorrect. This reduces A’s advantage by a factor
of at most 1/np (for np the maximum number of pre-shared secrets), thus:

AdvGA.0
TLS1.3-PSK-(EC)DHE-0RTT,A ≤ np · AdvGA.1

TLS1.3-PSK-(EC)DHE-0RTT,A.
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Game A.2. In this game, the challenger aborts immediately if the initiator (resp. responder)
session with label label accepts in the fifth (resp. eighth) stage without an honest contributive
partner in stage 3. Let abortGA.2,A

acc denote the event this occurs in GA.2. Thus:∣∣∣AdvGA.1
TLS1.3-PSK-(EC)DHE-0RTT,A − AdvGA.2

TLS1.3-PSK-(EC)DHE-0RTT,A

∣∣∣ ≤ Pr[abortGA.2,A
acc ]

Note that Case A restricts A to issuing a Test query to a session without an honest contributive
partner in stage 3. Because of the authentication type of TLS1.3-PSK-(EC)DHE-0RTT, this Test query
can only be issued to the initiator (resp. responder) session after it reaches stage 5 (resp. 8). Since
GA.2 is aborted when the session reaches those stages, a successful adversary cannot issue such a
query, and thus:

AdvGA.2
TLS1.3-PSK-(EC)DHE-0RTT,A = 0.

We now turn to bounding the probability that abortGA.2,A
acc occurs.

Game A.3. In this game, the challenger guesses a session (from at most ns sessions in the game)
and aborts if the guessed session is not the first initiator (resp. responder) session which accepts
in the fifth (resp. eighth) stage without an honest contributive partner in stage 3. If the challenger
guesses correctly (which happens with probability at least 1/ns), then this game aborts at exactly
the same time as the previous game, and thus:

Pr[abortGA.2,A
acc ] ≤ ns · Pr[abortGA.3,A

acc ].

We restrict A from making a Corrupt(U, V, k) query such that label.id = U , label.pid = V ,
label.pssid = k, and show that this does not impact A’s advantage in winning this case. By the
definition of the case, there does not exist a session label′ such that label′.cid3 = label.cid3 where A’s
Test query is issued to label. Since PSK-(EC)DHE mode is unilaterally authenticated in stage 5 and
mutually authenticated in stage 8, if the adversary issues a Corrupt(U, V, k) query before the tested
session label (without an honest contributive partner in stage 3) reaches accept in its partner’s
authenticating stage, when A issues a Test(label, i) query (where i ∈ {1, . . . , 8}) the lost flag is set
and A will lose the game. By the previous games, we abort when the initiator session label (resp.
responder session) reaches stage 5 (resp. stage 8) without an honest contributive partner, and thus
A will never issue a Corrupt(U, V, k) query. In the following games, this will allow us to replace the
preshared secret pss in the tested session (and all sessions with the same pss value) without being
inconsistent or detectable with regards to the Corrupt query. In what follows, let pssU,V,k be the
guessed preshared secret.

Game A.4. In this game, we replace the outputs of the pseudorandom function HKDF.Extract
in all evaluations using the tested session’s guessed preshared secret pssU,V,k as a key by random
values. This affects the derivation of the early secret ES in any session using the same shared
PSK. We replace the derivation of ES in such sessions with a random value ẼS←$ {0, 1}λ. We
can bound the difference this step introduces in the advantage of A by the (dual) security of the
pseudorandom function HKDF.Extract. Note that any successful adversary cannot issue a Corrupt
query to reveal pssU,V,k used in the tested session, and thus the preshared secret is an unknown and
uniformly random value, and the simulation is sound. Thus:

Pr[abortGA.3,A
acc ] ≤ Pr[abortGA.4,A

acc ] + Advdual-PRF-sec
HKDF.Extract,B2 .
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Game A.5. In this game, we replace the pseudorandom function HKDF.Expand in all evaluations
using the value ẼS replaced in GA.4. This affects the derivation of the derived early secret dES,
the binder key BK, the early traffic secret ETS, and the early exporter master secret EEMS in
any session using the same early secret value ẼS due to the stage being replayable. We replace
the derivation of dES, BK, ETS and EEMS in such sessions with random values d̃ES, B̃K, ẼTS,
ẼEMS←$ {0, 1}λ. We can bound the difference that this step introduces in the advantage of A
by the security of the pseudorandom function HKDF.Expand. Note that by Game GA.4, ẼS is an
unknown and uniformly random value, and this replacement is sound. Thus:

Pr[abortGA.4,A
acc ] ≤ Pr[abortGA.5,A

acc ] + AdvPRF-sec
HKDF.Expand,B3 .

Game A.6. In this game, we replace the pseudorandom function HKDF.Extract in all evaluations
using the value d̃ES replaced in GA.5. This affects the derivation of the handshake secret HS in
any session using the same derived early secret value d̃ES, due to the stage being replayable. We
replace the derivation of HS in such sessions with a random value H̃S←$ {0, 1}λ. We can bound
the difference that this step introduces in the advantage of A by the security of the pseudorandom
function HKDF.Extract. Note that by the previous game, d̃ES is a uniformly random value, and
the simulation is sound. Thus:

Pr[abortGA.5,A
acc ] ≤ Pr[abortGA.6,A

acc ] + AdvPRF-sec
HKDF.Extract,B4 .

Game A.7. In this game, we replace the pseudorandom function HKDF.Expand in all evaluations
using the value H̃S replaced in GA.6. This affects the derivation of the client handshake traffic secret
CHTS, the server handshake traffic secret SHTS in the target session and its matching partner, and
the derived handshake secret dHS in all sessions using the same handshake secret H̃S. Note that
for CHTS and SHTS, these values are distinct from any other session using the same handshake
secret value H̃S, as the evaluation also takes as input the hash value H2 = H(CH∥SH), (where CH
and SH contain the client and server random values rc, rs respectively) and by Game G2 we exclude
hash collisions. We replace the derivation of CHTS, SHTS and dHS in such sessions with random
values C̃HTS, S̃HTS, d̃HS←$ {0, 1}λ. To ensure consistency, we replace derivations of dHS with
the replaced d̃HS sampled by the first session to evaluate HKDF.Expand using H̃S. We can bound
the difference that this step introduces in the advantage of A by the security of the pseudorandom
function HKDF.Expand. Note that by the previous game, H̃S is a uniformly random value, and the
replacement is sound. Thus:

Pr[abortGA.6,A
acc ] ≤ Pr[abortGA.7,A

acc ] + AdvPRF-sec
HKDF.Expand,B5 .

Game A.8. In this game, we replace the pseudorandom function HKDF.Expand in all evaluations
using the client handshake traffic secret C̃HTS replaced in GA.7. This affects the derivation of
the client handshake traffic key tkchs, and the client finished key fkC in the target session. We
replace the derivation of tkchs and fkC with random values t̃kchs←$ {0, 1}L, f̃kC ←$ {0, 1}λ, where
L indicates the sum of key length and iv length for the negotiated AEAD scheme. We can bound
the difference that this step introduces in the advantage of A by the security of the pseudorandom
function HKDF.Expand. Note that by the previous game C̃HTS is a uniformly random value, and
these replacements are sound. Thus:

Pr[abortGA.7,A
acc ] ≤ Pr[abortGA.8,A

acc ] + AdvPRF-sec
HKDF.Expand,B6 .
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Game A.9. In this game, we show how any adversary that manages to trigger abortGA.9,A
acc (where

the tested session has a responder role) can be used to build an adversary B7 that breaks the
existential unforgeability of the HMAC scheme. We let B7 simulate GA.8 for A as specified, but
when the guessed session requires a MAC computation using f̃kC , B7 instead invokes a MAC oracle
to generate that value. Since f̃kC is a uniformly random and independent value, this simulation
is sound. When A triggers abortGA.9,A

acc (for responder test sessions), the accepting session must
have received a ClientFinished message that is a valid MAC tag over the hash value H4 =
H(CH∥ . . . ∥SF). Since all other sessions hold different session identifiers (as there exists no honest
contributive partner in the third stage of the accepting session), no honest party will have requested
a MAC tag over that session hash. In addition, by Game G2 there exist no hash collisions, so the
MAC input is distinct to all other MAC inputs for any honest party. Thus, this message was never
queried to the MAC oracle and is a forgery. This allows us to bound the probability of A triggering
abortGA.9,A

acc due to a stage-8 accepting responder session without a stage-3 contributive partner by:

Pr[abortGA.8,A
acc ] ≤ Pr[abortGA.9,A

acc ] + AdvEUF-CMA
HMAC,B7

Note that for the rest of this case, we bound the probability of an adversary triggering abortGA.9,A
acc

when the tested session has an initiator role.

Game A.10. In this game, we replace the pseudorandom function HKDF.Expand in all evaluations
using the server handshake traffic secret S̃HTS replaced in GA.9. This affects the derivation of
the server handshake traffic key tkshs, and the server finished key fkS in the target session. We
replace the derivation of tkshs and fkS with random values t̃kshs, f̃kS ←$ {0, 1}λ. We can bound
the difference that this step introduces in the advantage of A by the security of the pseudorandom
function HKDF.Expand. Note that by a previous game S̃HTS is a uniformly random value, and
these replacements are sound. Thus:

Pr[abortGA.9,A
acc ] ≤ Pr[abortGA.10,A

acc ] + AdvPRF-sec
HKDF.Expand,B8 .

Game A.11. In this game, we show how any adversary that manages to trigger abortGA.11,A
acc

(where the test session is an initiator session) can be used to build an adversary B9 that breaks the
existential unforgeability of the HMAC scheme. We let B9 simulate GA.10 for A as specified, but
when the guessed session or its partner session requires a MAC computation using f̃kS , B9 instead
invokes a MAC oracle to generate that value. Since f̃kS is a uniformly random and independent
value, this simulation is sound. When A triggers abortGA.11,A

acc (for initiator test sessions), the
accepting session must have received a ServerFinished message that is a valid MAC tag over
the hash value H7 = H(CH∥ . . . ∥SPSK). Since all other sessions hold different session identifiers (as
there exists no honest contributive partner in the third stage of the accepting session), no honest
party will have requested a MAC tag over that session hash. In addition, by Game G2 there exist
no hash collisions, so the MAC input is distinct to all other MAC inputs for any honest party.
Thus, this message was never queried to the MAC oracle and is a forgery. This allows us to bound
the probability of A triggering abortGA.11,A

acc due to a stage-5 accepting initiator session without a
stage-3 contributive identifier by:

Pr[abortGA.11,A
acc ] ≤ AdvEUF-CMA

HMAC,B9
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Combining the given single bounds yield the security statement below:

AdvG2, test. w/o partner
TLS1.3-PSK-(EC)DHE-0RTT,A ≤ npns


Advdual-PRF-sec

HKDF.Extract,B2 + AdvPRF-sec
HKDF.Expand,B3 + AdvPRF-sec

HKDF.Extract,B4

+ AdvPRF-sec
HKDF.Expand,B5 + AdvPRF-sec

HKDF.Expand,B6 + AdvEUF-CMA
HMAC,B7

+ AdvPRF-sec
HKDF.Expand,B8 + AdvEUF-CMA

HMAC,B9


Case B. NFS Test with Partner

We now turn to the case where the tested session has an honest contributive partner in the third
stage, and A issues a Test(label, i) query such that i ∈ {1, 2}.

Game B.0. This is identical to Game G2 with the adversary testing a session with an honest
contributive partner in the third stage.

AdvG2,NFS test with partner
TLS1.3-PSK-(EC)DHE-0RTT,A = AdvGB.0

TLS1.3-PSK-(EC)DHE-0RTT,A.

Game B.1. In this game, we guess the preshared secret PSK used in the tested session and abort
on a wrong guess. This reduces A’s advantage by a factor of at most 1/np, thus:

AdvGB.0
TLS1.3-PSK-(EC)DHE-0RTT,A ≤ np · AdvGB.1

TLS1.3-PSK-(EC)DHE-0RTT,A.

Game B.2. In this game, we let the challenger guess a session (from at most ns in the game) and
abort if the session guessed is not the honest contributive partner in stage 3 of the tested session.
This reduces A’s advantage by a factor of at most 1/ns, and thus:

AdvGB.1
TLS1.3-PSK-(EC)DHE-0RTT,A ≤ ns · AdvGB.2

TLS1.3-PSK-(EC)DHE-0RTT,A.

Game B.3. In this game, we replace the outputs of the pseudorandom function HKDF.Extract
in all evaluations using the tested session’s guessed preshared secret pssU,V,k as a key by random
values. This affects the derivation of the early secret ES in any session using the same shared
PSK. We replace the derivation of ES in such sessions with a random value ẼS←$ {0, 1}λ. We can
bound the difference this step introduces in the advantage of A by the security of the pseudorandom
function HKDF.Extract. Note that any successful adversary cannot issue a Corrupt query to reveal
pssU,V,k used in the tested session (as A will issue a query Test(label, i) such that i ∈ {1, 2} by the
definition of this case, and A will cause the lost flag to be set if Corrupt(U, V, k) is issued), and
thus the preshared secret is an unknown and uniformly random value, and the simulation is sound.
Thus:

AdvGB.2
TLS1.3-PSK-(EC)DHE-0RTT,A ≤ AdvGB.3

TLS1.3-PSK-(EC)DHE-0RTT,A + Advdual-PRF-sec
HKDF.Extract,B10 .

Game B.4. In this game, we replace the pseudorandom function HKDF.Expand in all evaluations
using the value ẼS replaced in GB.3. This affects the derivation of the derived early secret dES,
the binder key BK, the early traffic secret ETS, and the early exporter master secret EEMS in
any session using the same early secret value ẼS due to the stage being replayable. We replace
the derivation of dES, BK, ETS and EEMS in such sessions with random values d̃ES, B̃K, ẼTS,
ẼEMS←$ {0, 1}λ. We can bound the difference that this step introduces in the advantage of A
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by the security of the pseudorandom function HKDF.Expand. Note that by Game GB.3, ẼS is an
unknown and uniformly random value, and this replacement is sound. Thus:

AdvGB.3
TLS1.3-PSK-(EC)DHE-0RTT,A ≤ AdvGB.4

TLS1.3-PSK-(EC)DHE-0RTT,A + AdvPRF-sec
HKDF.Expand,B11 .

We note that at this point, we have replaced the stage 1 and stage 2 keys (ẼTS and ẼEMS,
respectively). We note that if A issues a Reveal(label, i) query to a session label′ such that the
tested session label.sidi = label′.sidi, then A would lose the game. Since these stages are replayable,
then there may be multiple such sessions such that label.sidi = label′.sidi. Since ẼTS and ẼEMS
are now uniformly random values independent of the protocol execution, we have:

AdvGB.4
TLS1.3-PSK-(EC)DHE-0RTT,A = 0.

Combining the given single bounds yields the security statement below:

AdvG2,NFS test with partner
TLS1.3-PSK-(EC)DHE-0RTT,A ≤ nsnp

(
Advdual-PRF-sec

HKDF.Extract,B10 + AdvPRF-sec
HKDF.Expand,B11

)
Case C. FS Test with Partner

We now turn to the third case, “FS Test with Partner”, where the tested session has an honest
contributive partner in the third stage, and A issues a Test(label, i) query such that i ∈ {3, . . . , 8}.

Game C.0. This is identical to Game G2 with the adversary testing a session with an honest
contributive partner in the third stage.

AdvG2,FS test with partner
TLS1.3-PSK-(EC)DHE-0RTT,A = AdvGC.0

TLS1.3-PSK-(EC)DHE-0RTT,A.

Game C.1. In this game, we let the challenger guess a session (from at most ns in the game) and
abort if the session guessed is not the honest contributive partner in stage 3 of the tested session.
This reduces A’s advantage by a factor of at most 1/ns and thus:

AdvGC.0
TLS1.3-PSK-(EC)DHE-0RTT,A ≤ ns · AdvGC.1

TLS1.3-PSK-(EC)DHE-0RTT,A.

Game C.2. In this game, we replace the handshake secret HS derived in the tested session and its
contributive partner session with a uniformly random and independent string H̃S←$ {0, 1}λ. We
employ the dual-snPRF-ODH assumption in order to be able to simulate the computation of HS in a
partnered client session for a modified ServerKeyShare message. More precisely, we can turn any
adversary capable of distinguishing this change into an adversary B12 against the dual-snPRF-ODH
security of the HKDF.Extract function (taking dES as first and DHE as second input). For this,
B12 asks for a PRF challenge on dES. It uses the obtained Diffie-Hellman shares gx, gy within
ClientKeyShare and ServerKeyShare of the tested session and its contributive partner session,
and the PRF challenge value as HS in the test session. If necessary, B12 uses its PRF-ODH queries
to derive HS in the partnered session on differing gy′ ̸= gy. Providing a sound simulation of either
GC.1 (if the bit sampled by the dual-snPRF-ODH challenger was 0 and thus H̃S = PRF(dES, gxy))
or GC.2 (if the bit sampled by the dual-snPRF-ODH challenger was 1 and thus H̃S←$ {0, 1}λ), this
bounds the advantage difference of A as:

AdvGC.1
TLS1.3-PSK-(EC)DHE-0RTT,A ≤ AdvGC.2

TLS1.3-PSK-(EC)DHE-0RTT,A + Advdual-snPRF-ODH
HKDF.Extract,G,B12 .
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Game C.3. In this game, we replace the pseudorandom function HKDF.Expand in all evaluations
using the value H̃S replaced in GC.2. This affects the derivation of the client handshake traffic secret
CHTS, the server handshake traffic secret SHTS in the target session and its matching partner, and
the derived handshake secret dHS in all sessions using the same handshake secret H̃S. Note that
for CHTS and SHTS, these values are distinct from any other session using the same handshake
secret value H̃S, as the evaluation also takes as input the hash value H2 = H(CH∥SH), (where CH
and SH contain the client and server random values rc, rs respectively) and by Game G2 we exclude
hash collisions. We replace the derivation of CHTS, SHTS and dHS in such sessions with random
values C̃HTS, S̃HTS, d̃HS←$ {0, 1}λ. To ensure consistency, we replace derivations of dHS with
the replaced d̃HS sampled by the first session to evaluate HKDF.Expand using H̃S. We can bound
the difference that this step introduces in the advantage of A by the security of the pseudorandom
function HKDF.Expand. Note that by the previous game, H̃S is a uniformly random value, and the
replacement is sound. Thus:

AdvGC.2
TLS1.3-PSK-(EC)DHE-0RTT,A ≤ AdvGC.3

TLS1.3-PSK-(EC)DHE-0RTT,A + AdvPRF-sec
HKDF.Expand,B13 .

At this point, C̃HTS and S̃HTS are independent of any values computed in any session non-
partnered (in stage 1 or 2) with the tested session: distinct session identifiers and no hash collisions
(as of Game G2) ensure that the PRF label inputs for deriving C̃HTS and S̃HTS are unique.

Game C.4. In this game, we replace the pseudorandom function HKDF.Expand in all evaluations
using the values C̃HTS, S̃HTS replaced in GC.3. This affects the derivation of the client handshake
traffic key tkchs, and the server handshake traffic key tkshs in the target session and its matching
partner. In the derivation, we replace tkchs and tkshs with random values t̃kchs←$ {0, 1}L and
t̃kshs←$ {0, 1}L, where L indicates the sum of key length and iv length for the negotiated AEAD
scheme. We can bound the difference that this step introduces in the advantage of A by the security
of two evaluations of the pseudorandom functions HKDF.Expand. Note that by the previous game
C̃HTS and S̃HTS are uniformly random values, and these replacements are sound. Thus:

AdvGC.3
TLS1.3-PSK-(EC)DHE-0RTT,A ≤ AdvGC.4

TLS1.3-PSK-(EC)DHE-0RTT,A + 2 · AdvPRF-sec
HKDF.Expand,B14 .

Game C.5. In this game, we replace the pseudorandom function HKDF.Extract in all evaluations
of the value d̃HS replaced in Game GC.4. This affects the derivation of the master secret MS in
any session using the same derived handshake secret dHS. We replace the derivation of MS in
such sessions with the random value M̃S←$ {0, 1}λ. We can bound the difference that this step
introduces in the advantage of A by the security of the pseudorandom function HKDF.Extract. Note
that by Game GC.3, d̃HS is a uniformly random value and this replacement is sound. Thus:

AdvGC.4
TLS1.3-PSK-(EC)DHE-0RTT,A ≤ AdvGC.5

TLS1.3-PSK-(EC)DHE-0RTT,A + AdvPRF-sec
HKDF.Extract,B15 .

Game C.6. In this game, we replace the pseudorandom function HKDF.Expand in all evaluations
of the value M̃S replaced in GC.5 in the targeted session and its matching session. This affects the
derivation of the client application traffic secret CATS, the server application traffic secret SATS the
exporter master secret EMS and the resumption master secret RMS. For CATS, SATS and EMS,
these evaluations are distinct from any other session, as the evaluation of HKDF.Expand also takes
as input H4 = H(CH∥SH∥SF) (where CH and SH contain the client and server random values rc and rs
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respectively), and by Game G2 we exclude hash collisions. For RMS, this evaluation is distinct from
any other session, as the evaluation of HKDF.Expand also takes as input H5 = H(CH∥SH∥SF∥CF). We
replace the derivation of CATS, SATS, EMS, and RMS with random values C̃ATS, S̃ATS, ẼMS,
R̃MS←$ {0, 1}λ. We can bound the difference that this step introduces in the advantage of A by
the secret of the pseudorandom function HKDF.Expand. Note that by the previous game M̃S is a
uniformly random and independent value, and these replacements are sound. Thus:

AdvGC.5
TLS1.3-PSK-(EC)DHE-0RTT,A ≤ AdvGC.6

TLS1.3-PSK-(EC)DHE-0RTT,A + AdvPRF-sec
HKDF.Expand,B16 .

We note that in this game we have now replaced all stages’ keys (with the restriction that the
tested stage is from stages 3-8) in the tested session with uniformly random values independent of
the protocol execution and thus

AdvGC.6
TLS1.3-PSK-0RTT,A = 0.

Combining the given single bounds yields the security statement below:

AdvG2,FS test with partner
TLS1.3-PSK-(EC)DHE-0RTT,A ≤ ns


Advdual-snPRF-ODH

HKDF.Extract,G,B12 + AdvPRF-sec
HKDF.Expand,B13

+ 2 · AdvPRF-sec
HKDF.Expand,B14 + AdvPRF-sec

HKDF.Extract,B15

+ AdvPRF-sec
HKDF.Expand,B16


7 Discussion and Conclusions
Our analysis provides several insights into the design and properties of the TLS 1.3 handshake and
indicates potential avenues for future research.

7.1 Technical Differences from Our Earlier Work

As noted in the introduction, this paper is a successor to earlier versions of our work [DFGS15,
DFGS16, FG17, Dow17, Gün18]. Here we briefly comment on the technical differences of the
analyses of draft-05 in [DFGS15], draft-10 and draft-dh in [DFGS16], and draft-14 in [FG17],
compared to the final version of TLS 1.3 analyzed in this paper. We focus on three main aspects:
the stages identified for the multi-stage analysis, the session identifiers of those stages, and the
assumptions used in the security proofs. For the stages and session identifiers, the changes across
our series of works are directly related to how the protocol flows and key schedule evolved.

Stages – main handshake. draft-05-(EC)DHE had 3 stages: handshake traffic key, application
traffic key, and the resumption master secret RMS. draft-dh and draft-10-(EC)DHE added the
exporter master secret EMS. In this paper we have 6 stages capturing the final RFC’s main
handshake: handshake traffic keys tkchs and tkshs; application traffic secrets CATS and SATS; and
EMS and RMS. The main reason this paper has 2 stages for the handshake traffic keys and 2 stages
for the application traffic secrets is a change to the key schedule: the earlier drafts had 4 secrets
(client write key, client write IV, server write key, server write IV) derived from each of two secrets
(handshake traffic key and application traffic key), whereas TLS 1.3 has 2 secrets (write key, write
IV) derived from each of four secrets (tkchs, tkshs, CATS, SATS).

Stages – PSK handshake. draft-05-SR had 2 stages: handshake traffic key and application
traffic key. draft-10-PSK added EMS. draft-14-PSK-0RTT added an early handshake secret and
an early application data secret. In this paper we have 8 stages capturing the final RFC’s PSK
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handshake: early traffic secret ETS; early exporter master secret EEMS; handshake traffic keys
tkchs and tkshs; application traffic secrets CATS and SATS; and EMS and RMS. Again the main
reason for the additional stages in this paper is the aforementioned change to the key schedule.

Session identifiers. In the main handshake, session identifiers for the handshake traffic keys are
the same across [DFGS15, DFGS16] and this paper. For the application keys, session identifiers
changed based on changes in the message flow which caused changes to the transcript included in
the session hash used for key derivation. In particular, draft-05-(EC)DHE and draft-10-(EC)DHE
included ClientCertificate in the application key session identifiers but not ServerFinished,
whereas TLS 1.3 analyzed in this paper does not include CCRT but does include SF. Similarly,
session identifiers for the PSK handshakes changed across the papers due to changes in message
ordering and what messages were available to be included in the session hash.

Cryptographic assumptions – main handshake. The cryptographic assumptions used in the
proofs for draft-05-(EC)DHE, draft-dh, draft-10-(EC)DHE, and this paper remain the same. (In
early papers we used the notation PRF-ODH rather than the newer notation snPRF-ODH introduced
by [BFGJ17], but the actual assumption was the same.)

Cryptographic assumptions – PSK handshake. In draft-05, no (EC)DHE variant of the
PSK handshake was present (then called “session resumption handshake”), so the proof of draft-05-SR
relied solely on symmetric-key assumptions. draft-10-PSK relied on the same assumptions as
draft-05-SR, whereas draft-10-PSK-(EC)DHE added an EUF-CMA assumption on HMAC as well
as the PRF-ODH assumption. draft-14-PSK-0RTT and draft-14-PSK-(EC)DHE-0RTT added a ran-
domness assumption on HMAC, which in the analysis of the final RFC’s TLS1.3-PSK-0RTT and
TLS1.3-PSK-(EC)DHE-0RTT in this paper is superseded by a dual-PRF-sec assumption on HKDF.Extract
in the multi-stage security bounds. The latter more explicitly indicates those places where HKDF.Extract
is keyed through the second argument, which were treated more implicitly in the theorem state-
ments of earlier versions.

Match-security of TLS1.3-PSK-0RTT and TLS1.3-PSK-(EC)DHE-0RTT in this paper adds a collision
resistance assumption on HMAC due to the introduction of the PSK binder.

7.2 Comments on the TLS 1.3 Design

Value of key separation. Earlier versions of TLS used the same session key to encrypt the
application data as well as the Finished messages at the end of the handshake. This made it
impossible to show that the TLS session key satisfied standard Bellare–Rogaway-style key indis-
tinguishability security [BR94] as noted in [JK02, MSW08, Gaj08], which motivated the combined
handshake+record layer analysis in the authenticated and confidential channel establishment model
of [JKSS12]. We confirm that the change in keys for encryption of handshake messages allows keys
established during the TLS 1.3 handshake to achieve standard key indistinguishability security.

Key independence. All forms of the TLS 1.3 handshake achieve key independence for all stage
keys: one can reveal one stage’s session key without endangering the security of later-stage keys.
This follows from the fact that every key exported or used for encryption is a leaf node in the
directed graph representing the key schedule in Figure 2. Beyond making it amenable to generic
composition, key independence safeguards the usage of derived keys against inter-protocol effects of
security breakdowns. (Some early drafts had less key independence: for example, in draft-05, each
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exported key was derived directly from the master secret MS. Since MS was also used to derive
other keys, it could not be considered as an output stage key, so every exported key had to be
included directly in the main analysis. Contrast this with the final approach in which an exporter
master secret EMS is derived from MS, and then all exported keys are derived from EMS: we can
treat EMS as an output stage key, and consider the derivation of exported keys as a symmetric
protocol using EMS that is composed with the TLS 1.3 handshake protocol.)

A “dent” in the key schedule. In terms of key derivation, we remark that there is a note-
worthy “dent” in the TLS 1.3 key schedule (cf. Figure 2): all second-level secrets derived from the
main (early/handshake/master) secrets are used solely to derive traffic encryption keys (in case
of traffic secrets) or further purposes (resumption and exporting), except for the handshake traffic
secrets CHTS/SHTS which, beyond deriving the handshake traffic keys, are also used to compute
the finished keys. This allowed us to define all but the handshake traffic secrets as output session
keys in the multi-stage key exchange sense, while requiring to descend one level further to capture
the handshake traffic keys.

A more uniform key schedule could have derived the finished keys in a separate branch from the
handshake secret HS, enabling CHTS/SHTS to become first-order session keys on the same level
as all others. This in turn would allow a more uniform interface for composition with arbitrary
symmetric-key protocol and possibly better support the treatment of key updates (cf. [GM17]).
While this is only a minor issue for the TLS 1.3 analysis, it turned out to complicate a modular
analysis of the TLS 1.3 handshake integration into the QUIC protocol [TT20] as remarked by
Delignat-Lavaud et al. [DFP+20].

Including the session hash in signatures and key derivation. In the TLS 1.3 full handshake,
authenticating parties (the server, and sometimes the client) sign (the hash of) all handshake
messages up to when the signature is issued (the “session hash”). This is different from TLS 1.2
and earlier, where the server’s signature is only over the client and server random nonces and the
server’s ephemeral public key.

As for key derivation, every stage key is derived using a PRF application that includes the hash
of all messages exchange up to the point when the stage key is derived.

In our analysis, the session identifier for each stage is set to be the transcript of messages up
to that point. Thus, assuming collision resistance of the hash function, different session identifiers
result in different keys. (This was the goal of the session hash which was introduced in response to
the triple handshake attack [BDF+14] on TLS 1.2 and earlier.) The server signing the transcript
also facilitates our proofs of the authentication properties in the full handshake.

Furthermore, if output keys are meant to be used as a channel identifier or for channel binding
(with the purpose of leveraging the session protection and authentication properties established
by TLS in an application-layer protocol), including the session hash is appropriate. While the
standardized tls-unique [AWZ10] and proposed tls-unique-prf [Jos15] TLS channel binding
methods do not use keys directly for binding, the low cost of including the session hash seems
worth it in case an application developer decides to use keying material directly for binding.

In the PSK handshake without (EC)DHE, there is no ephemeral shared secret and the master
secret is computed as a series of HKDF.Extract computations over a 0-string using the pre-shared
key as the key. All sessions sharing the same pre-shared secret then compute the same master
secret. However, since derivation of output keys still uses the session hash as context, output
keys are unique assuming uniqueness of protocol messages (which is assured for example by unique
nonces).
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Encryption of handshake messages. A major design goal of TLS 1.3 was to enhance privacy
(against passive adversaries) by encrypting the second part of the handshake (which contains iden-
tity certificates) using the initial handshake traffic keys tkchs and tkshs. Our analysis shows that
the handshake traffic keys do indeed have security against passive adversaries (and even active
adversaries by the time the client handshake traffic key tkchs is used) and hence this feature of
TLS 1.3 does increase the handshake’s privacy. The secrecy of the remaining stage keys however
do not rely on the handshake being encrypted and would remain secure even if the handshake was
done in clear.

Finished messages. The Finished messages sent by both client and server at the end of the
TLS 1.3 handshake are MAC values computed by applying HMAC to the (hash of the) handshake
transcript, keyed by dedicated client/server finished secrets fkC/fkS .

Interestingly, according to our proofs, the Finished messages do not contribute to the implicit
authentication and secrecy of the output keys in the full handshake or the PSK-only handshake, in
the sense that the key exchange would achieve the same security notion without these messages.
This is mainly because, in the full handshake, the signatures already authenticate the transcripts,
and, in the PSK-only handshake, all keys are derived from the PSK which provides implicit authen-
tication. While Finished messages are not needed to provide implicit authentication in PSK-only
handshakes, they would play a role in providing explicit authentication, but our model does not
include an explicit authentication property. In the PSK-(EC)DHE handshake, the Finished mes-
sages do contribute authentication of the ephemeral Diffie–Hellman public keys under (a key derived
from) the PSK. The Finished messages can still generally be interpreted as providing some form
of (explicit) session key confirmation and authentication [FGSW16, Gün18, dFW19].

Compare these with the case of RSA key transport in the TLS 1.2 full handshake: the analyses
of both Krawczyk et al. [KPW13] and Bhargavan et al. [BFK+14] note potential weaknesses or
require stronger security assumptions if Finished messages are omitted.

Upstream hashing in signatures, MACs, and key derivation. In signing (resp. MAC-ing)
the transcript for authentication as well as in deriving keys via HKDF, TLS 1.3 uses the hash of the
current transcript as input; if, e.g., the signature algorithm is a hash-then-sign algorithm, it will then
perform an additional hash. From a cryptographic point of view, it would be preferable to insert
the full (unhashed) transcript and let the respective signature, MAC, or KDF algorithms opaquely
take care of processing this message. For engineering purposes, however, it may be desirable to
hash the transcript iteratively, only storing the intermediate values instead of the entire transcript.
In our security proof, this upstream hashing introduces the collision-resistance assumption for the
hash function (and hence a potential additional source of weaknesses, cf. [BFG19a]), which would
otherwise be taken care of by the signature, MAC, resp. KDF scheme.

0-RTT replays and forward secrecy. Through our analysis, we capture the effects of replays
in the cryptographic security sense, most importantly confirming that the replayability of 0-RTT
keys has no negative effects on the cryptographic security of subsequently derived keys. From a
practical, application-layer perspective, the potential for 0-RTT replays however remains a critical
design choice in TLS 1.3 and has been subject of controversial discussion (see, e.g., [Mac17]). The
TLS 1.3 standard [Res18, Section 8] acknowledges that “TLS does not provide inherent replay
protections for 0-RTT data,” and at the same time urges implementations to at least implement a
certain basic level of anti-replay protection (like single-use session tickets, ClientHello recording,
or freshness checks). The 0-RTT modes of Google’s QUIC protocol and TLS 1.3 spawned a series
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of academic treatments of 0-RTT key exchange [FG14, LJBN15, HJLS17] and new designs of
forward-secure encryption [CHK03, GM15] to achieve forward-secret and non-replayable 0-RTT
key exchange [GHJL17, DJSS18] and TLS session resumption [AGJ21].

Also, from a cryptographic perspective, the Diffie–Hellman-based 0-RTT mode variant offered
a higher level of (forward) security as it did not require the client to keep secret state for re-
sumption and hence only server compromises would affect the secrecy of 0-RTT communica-
tion [Kra16a, FG17]. This handshake variant was abandoned with draft-13 in favor of performance
and structural simplification.

7.3 Open Research Questions

Composition. Key exchange protocols would be of limited use if applied in isolation; generally,
the derived keys are meant to be deployed in a follow-up (or overall) protocol. Encryption (and
authentication) of application data via a (cryptographic) channel protocol is of course a common
approach, with the TLS record protocol being a prime example, but other usage in the TLS setting
includes exporting of key material or resumption handshakes (via the exporter resp. resumption
master secret).

Key exchange protocols secure in the sense of Bellare–Rogaway [BR94] are indeed amenable
to generic secure composition with arbitrary follow-up symmetric protocols as shown by Brzuska
et al. [BFWW11, Brz13]. Earlier versions of our work [DFGS15, Gün18] included adaptations
of these composition results to the multi-stage setting, demonstrating that stage keys could be
safely used in symmetric key protocols. Those results still apply to our current model, when
restricted to stage keys that are marked for external use, are non-replayable, and when treating
the authentication characteristic as fixed at acceptance time, not upgradable. However, it is not
obvious how to translate the notions of upgradable authentication or replayability generically to
a symmetric key protocol. Given that our focus is on the TLS 1.3 handshake protocol as an
authenticated key exchange protocol, we leave a composition result translating replayability and
upgradable authentication to future work.

As part of a composed treatment of the overall TLS 1.3 protocol (i.e., handshake and record
layer), a conceptual alternative to our treatment of the handshake could be to consider all keys—
including handshake traffic keys—to be external (from the handshake’s perspective), and rely on the
record protocol for handshake encryption. This viewpoint is taken especially in analyses based on
verified implementations [DFK+17] and would, in the computational setting, require an appropriate
amalgamation of channel models capturing the bidirectional, multi-key, multiplexed, and streaming
nature of the TLS 1.3 record protocol [FGMP15, MP17, BH19, GM17, PS18].

Post-quantum key exchange. While our theorems are mostly generic in terms of cryptographic
assumptions, they do directly rely on a Diffie–Hellman assumption in a group. Post-quantum key
exchange, however, is usually formulated generically as a key encapsulation mechanism (KEM). If
TLS 1.3 is to be extended to support post-quantum or hybrid (i.e., traditional plus post-quantum)
key exchange [CPS19], our results on the full 1-RTT and PSK-(EC)DHE modes will need to be
revisited in the context of specific post-quantum KEMs or generic properties of KEMs. As we rely
on the PRF-ODH assumption [BFGJ17], an interactive assumption which provides some notion of
“active security”, it may be the case that translating our proofs to the KEM setting requires use
of an IND-CCA KEM. Brendel et al. [BFG+19b] discuss challenges arising when moving Diffie–
Hellman-style key exchanges to the post-quantum setting and Schwabe et al. [SSW20] present a
KEM-based alternative to the TLS 1.3 handshake with modified message flow.

52



7.4 Conclusions

In this work, we have updated our prior analyses of the cryptographic security of several draft
TLS 1.3 handshakes to the final, standardized version of TLS 1.3 in RFC 8446 [Res18]. We
analyzed the full 1-RTT handshake mode as well as the PSK-based resumption handshake modes,
with optional 0-RTT keys, in the reductionist framework of an enhanced multi-stage key exchange
security model that captures the various security properties of the several keys derived in TLS 1.3.
Our analysis confirmed that the TLS 1.3 handshake follows sound cryptographic design principles
and establishes session keys with their desired security properties under standard cryptographic
assumptions.

The IETF TLS working group developed TLS 1.3 through a novel, proactively transparent
standardization process (cf. [PvdM16]) that actively solicited industry and academia alike. In our
opinion, this has led to an unprecedented success in having wide-ranging security analyses for a
major Internet security protocol prior to its standardization and deployment. While security models
or formal method tools can never capture the entirety of real-world threats to such protocols, we
believe that, through this process, the boundaries of formal understanding have been pushed to
an extent that significantly strengthens confidence in the soundness of TLS 1.3’s design. As such,
the TLS 1.3 standardization process exemplifies a commendable paradigm which rightfully is being
adopted for standardization processes of other major Internet security protocols, and which we
encourage other standards bodies to adopt.
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A Reducing Multiple to Single Test Queries
In this section we give more details on the hybrid argument to reduce adversaries Amulti which make mul-
tiple Test queries in the Multi-Stage game for the TLS 1.3 handshakes to adversaries Asingle which restrict
themselves to a single Test query. Note that any multi-query adversary cannot make more (reasonable) Test
queries than the number ns of overall sessions times the maximum number M of stages. Any adversary
making more queries needs to repeat queries for some keys, yielding the reply ⊥, and such queries can be
easily sorted out.

The main step is the hybrid argument where adversary Asingle simulates Amulti’s attack, making only a
single Test query. To do so, for a randomly chosen index n between 1 and the maximum number ns of Test
queries, adversary Asingle returns the genuine keys in the first n− 1 queries of Amulti, poses the Test query
for the n-th query as its own query, and returns random keys from query n + 1 on. To get the genuine keys
for the first queries, Asingle instead calls the Reveal oracle.

The above works along the common argument in hybrid games if we can ensure that Asingle does not lose
because of the additional Reveal queries it makes, i.e., if it reveals a key for the partner of the (only) Test
session. One option to ensure this is to demand that Amulti never tests a session and its partner. Luckily,
the multi-stage security model in Section 4 supports this smoothly. Namely, testing a session in stage i for
which the testedi flag has been already set to true will immediately return ⊥. This setting of the flag happens
in one of the following cases:

• When the session itself is tested for the first time in this stage, or

• if the session accepts at this stage after a Send call and there is already a partner with testedi = true
(triggered in the Send execution for which the session accepts), or

• if it is partnered to a tested session and has just accepted at the same stage (triggered through the
testing of the partner in the Test oracle execution).

Furthermore, a Test call to a session stage i for which the session has already passed, i.e., stexec ̸= acceptedi,
also returns ⊥. In other words, any Test query of Amulti to a partner of a previous Test query returns ⊥.
We can therefore avoid such queries and let Asingle answer ⊥ for such queries directly. In this case the
remaining Reveal queries, substituting the first Test queries in the hybrid argument, cannot cause Asingle to
lose, because now they are for sure not partnered with the (only) Test query of Asingle.

There are two caveats in the above reasoning. First, adversary Asingle needs to know if two session stages
are partnered in order to correctly respond ⊥ for some Test queries. While this is trivial to deduce from
the public communication data for sid1 and sid2, the session identifiers sid3, . . . , sid6 contain confidentially
transmitted messages, protected through the handshake traffic keys derived in stages 1 and 2 in the TLS 1.3
handshake. But if we let Asingle know these two internal keys via carefully selected Reveal queries when
testing for a stage i ≥ 3 then it can decrypt the communication and decide partnering with other sessions
for this stage. Since these further Reveal queries are for earlier stages, they essentially cannot interfere with
the stage of the Test session.

It is convenient to store the information about tested sessions in an internal array simTestedi[label] which
is set to true if session label would have been marked as testedi in the game, if Amulti would have actually
made that query. We write this as an array in order to distinguish this internal list to Asingle from entries in
sessions label. At any point in time, the array simTested in Asingle’s simulation will hold the same information
as the entries tested if Amulti had actually made all Test queries.

The second issues arises from the fact that internal keys (i.e., keys in stages i with USEi = internal) are
overwritten in partners to tested sessions. This can happen in the Send(label, m) command if a partner label
of a tested session stage for label′ (with label′.testedi = true) goes to acceptedi. Then the security game sets
label.keyi ← label′.keyi. The other case can occur in the Test(label, i) query itself if a partnered session label′
to the tested session is already in state label′.stexec = acceptedi. Then the internal key of that session label′
is replaced by the answer for the tested session. But our adversary Asingle with a single Test query of course
only sets one session stage to be tested, influencing at most one further session, whereas Amulti’s multiple
Test queries may overwrite several keys.

Since there is no other mechanism to modify keys in the security model, we need to take care of the issue
manually in the simulation of Amulti through Asingle. Fortunately, the internal keys in TLS 1.3 handshake are
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only used for protecting the data in transport, wrapping and unwrapping the data immediately when sending
or receiving. We thus let Asingle keep internal arrays actualKeyi[label] and simKeyi[label] for the internal keys
(in the actual attack of Asingle, resp. in the simulation of Amulti) at stage i ∈ {1, 2} and let Asingle adapt
authenticated encryptions with respect to such keys when relaying them between the simulation Amulti
and Send.

Lemma A.1. Let Amulti be an adversary making at most nTest ≤ M · ns calls to Test attacking TLS 1.3
full 1-RTT handshake in the Multi-Stage game. Then there exists an adversary Asingle which makes only a
single Test query such that

AdvMulti-Stage,D
TLS1.3-full-1RTT,Amulti

≤ nTest · AdvMulti-Stage,D
TLS1.3-full-1RTT,Asingle

.

In addition, Asingle initiates the same maximum number ns of sessions as Amulti.

The lemma holds analogously for the other handshake variants of TLS 1.3 since the argument uses only
specifics which are shared by all variants.

Proof. We build our adversary Asingle from Amulti via a black-box simulation. Adversary Asingle proceeds
as follows. Initially it picks n ∈ {1, 2, . . . , nTest} at random and initializes empty arrays actualKeyi[ ] ← ⊥,
simKeyi[ ] ← ⊥ for i = 1, 2 and simTestedi[ ] ← false for i ∈ {1, 2, . . . , M}. Algorithm Asingle then invokes
Amulti, relaying all oracle queries except for the Send and Test queries.

Simulating Send queries. A Send(label, m) query is answered by possibly switching encryptions, if the
session has been marked as a (virtually) tested session such that keys need to be adapted. Let i = label.stage
denote the current stage, meaning that the session has already accepted at stage i:

• If i ≤ 1 or m = init or m = continue then pass the command to the own Send oracle. Such messages
are not encrypted and we do not need to re-encrypt the communication data.

• If i ≥ 2 and simTestedi[label] = true, i.e., the data is encrypted under a key which has potentially
changed due to the (virtual) test, then re-encrypt with the client resp. server handshake traffic key in
the experiment of Asingle. Note that session identifiers (esp. for stages i ≥ 3) are not affected by this
re-encryption as they are defined over the cleartexts:

– If label.role = initiator, i.e., we expect the client to receive a message protected under the server’s
traffic handshake secret (the stage-2 key), then decrypt m with key simKey2[label] and re-encrypt
the result with actualKey2[label] to m′ before passing (label, m′) to the own Send oracle. Here,
and in the following, we assume that encryption always succeeds for messages different from ⊥,
and that ⊥ is encrypted to something which again decrypts to ⊥.

– If label.role = responder, i.e., we expect the server to receive a message protected under the client’s
traffic handshake secret (the stage-1 key), then decrypt m with key simKey1[label] and re-encrypt
the result with actualKey1[label] to m′ before passing (label, m′) to the own Send oracle.

• In any other case just forward (label, m) to the own Send oracle.

For the response m from the Send oracle do the following:

• If i ≤ 1 then hand back the response unchanged.

• If i ≥ 2 and simTestedi[label] = true, then adapt encryption to the keys expected by Amulti:

– If label.role = initiator then decrypt m with key actualKey1[label] and re-encrypt the result with
simKey1[label] to m′ before returning m′.

– If label.role = responder then decrypt m with key actualKey2[label] and re-encrypt the result with
simKey2[label] to m′ before returning m′.

• In any other case return m.

In addition, check if one needs to set the status of simTested. If the Send call changes the status to acceptedi+1
—about which the adversary Asingle is informed— then do the following:
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• For i+1 ≤ 2, if there is a session label′ ̸= label with label′.sidi+1 = label.sidi+1 and simTestedi+1[label′] =
true, then set the test status for the session here, simTestedi+1[label] ← true. Note that since the
session identifiers in the first two stages consists of the cleartext messages, this is easy to check in this
case. Also copy the internal keys, actualKeyi+1[label] ← actualKeyi+1[label′] and simKeyi+1[label] ←
simKeyi+1[label′].

• For i + 1 ≥ 3, if simTested1[label] = true then fetch the key actualKey1[label], else make a Reveal query
(label, 1), and analogously for the key for stage 2. Since the session under consideration has already
accepted in stage i + 1 ≥ 3 at this point, our adversary Asingle obtains the two handshake traffic
keys and uses these keys to decrypt the communication (in its attack) to recover sidi+1 in session
label. Compare this value to the session identifiers in all sessions label′ with simTestedi+1[label′] = true
for the same stage i + 1. Note that a session label′ can only be partnered in stage i + 1 ≥ 3 if it
is already partnered in the first two stages, because sidi+1 contains the identifiers sid1 and sid2 as
prefix (except for the label). This also implies that such sessions can only derive the same handshake
traffic keys. Thus, we can use the same handshake keys as for label to decrypt for label′. If there
is a match then update simTestedi+1[label] ← true and copy the keys from session label′ as before,
actualKeyi+1[label]← actualKeyi+1[label′] and simKeyi+1[label]← simKeyi+1[label′].

Except for the copying of the actual key this now corresponds exactly to the update step in the Send query.

Simulating Test queries. The t-th Test query (label, i) is answered as follows:

• If there is no session label, or the session label has not accepted in stage i yet—which is known to
the adversary because it gets to learn label.stexec upon successful completion of the i-th stage— or
simTestedi[label] = true, then immediately return ⊥.

• Otherwise proceed as follows:

– If t < n then make a Reveal(label, i) call to get the key K and return it to Amulti. Set
simTestedi[label] ← true and, if i ≤ 2 and the key is internal, also set actualKeyi[label] ← K
and simKeyi[label]← K.

– If t = n then make a Test(label, i) call and return the answer K to Amulti. Set simTestedi[label]←
true and, if i ≤ 2, also set actualKeyi[label]← K and simKeyi[label]← K.

– If t > n then pick a key K←$D randomly and return it to Amulti. Set simTestedi[label]← true
and, if i ≤ 2, this time define actualKeyi[label]← Reveal(label, i) and simKeyi[label]← K.

• Finally, we need to check as in the original Test query if there is already a partnered session in
accepted state for the same stage, and, if so, modify its status. If there exists a session label′ ̸= label
which is partnered, label′.sidi = label.sidi, and where label′.stexec = label.stexec = acceptedi, then set
simTestedi[label′] ← true. If i ≤ 2 then also copy the keys, actualKeyi[label′] ← actualKeyi[label]
and simKeyi[label′] ← simKeyi[label]. We note that the checking against a match to label′ is done
analogously to the Send query.

We remark that we do not alter the simulated Reveal oracle but let queries through without modifications.
There are cases now where the multi-query adverary Amulti may thus obtain a different internal key than
expected. But this can only happen for sessions which have been (virtually) tested, such that any Reveal
query or such a partnered session where the key has been changed would make Amulti lose. We thus ignore
these cases and simply continue with the misaligned answer.

Analysis. Note that the additional Reveal queries, which Asingle makes for internal keys in the simulation
of Send and Test above, cannot interfere with its only Test query. Recall that Asingle may make Reveal(label, 1)
and Reveal(label, 2) queries when simulating the Send and Test queries.

In the simulated Send query we need to check that the potential Reveal(label, 1) and Reveal(label, 2)
queries for the internal keys in stages 1 and 2 do not conflict with the (only) Test query for session labeltested
which Asingle makes for stage i. Note that these queries would only be made if the session label has accepted
at a stage ≥ 3. Assume that indeed i ∈ {1, 2} and that labeltested is partnered with label in that stage i. For
this distinguish the point in time when the Test call to labeltested is made:
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• If the Test call for labeltested is made later, after session label has continued after accepting in stage
i ≤ 2 , then the adversary Amulti loses. The reason is that in this case there is a partnered session
label which has continued beyond stage i ∈ {1, 2} and has used the internal key already. Such a Test
call sets lost← true according to the model.

• If the Test call for labeltested has already been made for stage i ∈ {1, 2} before session label has continued
after accepting in that stage, then the session (label, i) partnered to (labeltested, i) for i ∈ {1, 2} must
have been marked as tested, simTestedi[label] = true, in a simulation of Test or Send (without using
Reveal queries for this stage with cleartext session identifiers). In this case, however, our algorithm
Asingle does not make a Reveal query for this stage but reads off the key from the array actualKeyi[label].

Hence, in the first case we can only increase the success probability and in the second case we avoid a
conflicting Reveal query straight away. Note that the same is true for the final check in the simulation of
Test.

It remains to argue the compatibility of the other potential Reveal queries in the simulated Test query. If
the n-th query for session labeltested and stage i (which Asingle forwards to its Test oracle) would be partnered
with the t-th query (label, i), then the call of Amulti to its (simulated) Test oracle for labeltested later

• would either make Amulti lose if the session labeltested was at the point of the query already past the
state acceptedi for the internal key (according to the description of the Test oracle), or

• the session labeltested is already in state acceptedi when the test query here is made, in which case
the (simulated) Test oracle would mark that session labeltested as tested, simTestedi[labeltested] = true,
because it is partnered to the now (virtually) tested session label, or

• the session labeltested is not yet in state acceptedi when the test query here is made, in which case later
the (simulated) Send oracle would mark that session labeltested as tested when it eventually accepts in
stage i, simTestedi[labeltested] = true, because it is then partnered to the (virtually) tested session label
here.

We ignore the first case because it cannot contribute to Amulti’s success probability. For the latter two cases
it follows that the n-th query of Amulti will actually not be forwarded to Asingle’s oracle Test, because for
such marked sessions with simTestedi[labeltested] = true the simulated Test oracle immediately returns ⊥.
Hence, Asingle does not make any Test query in these cases at all, and in particular cannot lose because of a
Reveal query for a session partnered to the one in the Test query.

By the above it follows that Asingle only sets lost in its attack if Amulti does so in the simulation. For
the final step in the analysis of the hybrid argument observe that if n = 1 and btest = 0 (for the challenge bit
in Asingle’s game) then our adversary Asingle only returns random keys to A′

multi (or error messages ⊥) in
simulated Test queries. Furthermore, unless A′

multi loses the game, the simulation is perfectly sound in the
sense that it has the same distribution as in an actual attack; in particular this argument is not violated by
the re-encryption. Hence, in this case we have that Asingle predicts its value btest with the same probability
as A′

multi when receiving only random keys in all (valid) Test queries. Analogously, if n = nTest and btest = 1
then Asingle always returns genuine keys (or errors) to A′

multi, again, in a sound simulation unless A′
multi

loses. This therefore corresponds to the case that A′
multi only receives genuine keys in all (valid) Test queries.

For the analysis, let b be the output of Asingle and btest be its challenge bit. Similarly, let b′ be the output
of Amulti in an actual attack for test bit b′

test. We denote by b = btest resp. b′ = b′
test the events that the bit
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is correct and the lost flag is not set. Then,

Pr [b = btest] =
nTest∑

n0=1
Pr [b = btest ∧ n = n0]

= 1
nTest
·

nTest∑
n0=1

Pr [b = btest |n = n0]

= 1
nTest
·

nTest∑
n0=1

(
1
2 · Pr [b = 0 | btest = 0 ∧ n = n0] + 1

2 ·
(
1− Pr [b = 0 | btest = 1 ∧ n = n0]

))
= 1

2 + 1
nTest
·

nTest∑
n0=1

1
2 ·
(
Pr [b = 0 | btest = 0 ∧ n = n0]− Pr [b = 0 | btest = 1 ∧ n = n0]

)
and noting that the simulation conditioned on btest = 1 and n = n0 is equivalent to the simulation for btest = 0
and n = n0 + 1, the telescope sum simplifies to

= 1
2 + 1

nTest
· 1

2
(
Pr [b = 0 | btest = 0 ∧ n = 1]− Pr [b = 0 | btest = 1 ∧ n = nTest]

)
= 1

2 + 1
nTest
· 1

2
(
Pr [b = 0 | btest = 0 ∧ n = 1]− 1 + Pr [b = 1 | btest = 1 ∧ n = nTest]

)
≥ 1

2 + 1
nTest
·
(
Pr [b′ = b′

test]− 1
2
)

where we used in the last step that the simulation is perfectly sound (if Amulti does not lose) and thus at
least the probability in an actual attack. We remark that our adversary Asingle may trigger lost ← true
less often than Amulti, e.g., because of the omitted Test queries and potential conflicts with Reveal queries.
Hence, we obtain

AdvMulti-Stage,D
TLS1.3-full-1RTT,A′

multi
≤ nTest · AdvMulti-Stage,D

TLS1.3-full-1RTT,Asingle
,

proving the claim of the lemma.
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