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Abstract—The interoperable and loosely-coupled web ser-
vices architecture, while beneficial, can be resource-intensive,
and is thus susceptible to denial of service (DoS) attacks in
which an attacker can use a relatively insignificant amount of
resources to exhaust the computational resources of a web
service. We investigate the effectiveness of defending web
services from DoS attacks using client puzzles, a cryptographic
countermeasure which provides a form of gradual authenti-
cation by requiring the client to solve some computationally
difficult problems before access is granted. In particular, we
describe a mechanism for integrating a hash-based puzzle into
existing web services frameworks and analyze the effectiveness
of the countermeasure using a variety of scenarios on a network
testbed. Client puzzles are an effective defence against flooding
attacks. They can also mitigate certain types of semantic-based
attacks, although they may not be the optimal solution.

Keywords-web services; denial of service attacks; client
puzzles

I. INTRODUCTION

The loosely-coupled architecture of web services tech-
nologies allows seamless integration and composition of
separate applications (including legacy applications) built
on various platforms. Unfortunately, these benefits come
with technological complexities that can be vulnerable to
denial of service (DoS) attacks. This vulnerability extends
to not only XML-related processing but also many web
services standards (such as WS-Security [1], WS-Policy [2],
and others) which have been widely implemented by major
industrial players. The problem of DoS in web services is
not new and has been widely studied and validated in many
academic and industry-based works [3]–[8].

DoS attacks have been used as tools to make political
statements [9] and extortions [10]. The latest high-profile
DoS attacks against MasterCard, Visa, and other organi-
zations linked to the late-2010 WikiLeaks incident [11]
only highlight the vulnerability and susceptibility of many
organizations to DoS attacks. The increased use of web
services technologies to deliver major governmental services
(such as the Australian Standard Business Reporting (SBR)
system1) and to enable cloud computing (including Amazon
clouds2) only highlights the urgency of addressing the DoS
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problem in web services.
Recent work [5] shows that flooding attacks are still an

effective way to exhaust a web service provider’s CPU
resources. Unfortunately, as discussed in Section VI, most
existing work has not addressed the resource imbalance is-
sue that is the key to successful flooding-based DoS attacks.
Furthermore, most of the previously proposed mitigation
strategies require additional separate components (outside
of the web services realm) to be deployed in the runtime
environment for their solutions to be effective.

The work presented in this paper attempts to (1) rectify
this resource imbalance by requiring clients to perform
some work to arrive at a puzzle solution to prove their
legitimate intention in requesting services, and (2) provide
a DoS mitigation capability that can be integrated into
any existing web services applications without the need for
additional components or infrastructure outside of the web
services application’s realm, similar to how the WS-Security
standard provides an integrated confidentiality, integrity, and
some authenticity protection in web services applications
themselves. We do not claim that the proposed solution can
be used to mitigate all types of DoS attacks; rather, the
proposed solution can mitigate some DoS attacks and can be
integrated seamlessly with existing web services platforms.

Contributions: The main contribution of this paper is the
study of the effectiveness of client-puzzles as an integrated
built-in DoS defence mechanism for two main types of DoS
attacks: flooding attacks and semantic attacks. While client
puzzles should theoretically be an effective DoS defence
mechanism, the complexities of existing web services plat-
forms may introduce overheads which could render the client
puzzles protection ineffective. Therefore, it is important that
we validate the theoretical effectiveness of client puzzles
through experiments. To our knowledge, this is the first
time that client puzzles have been used as a DoS defence
mechanism in web services.

We implemented a hash-based cryptographic client puzzle
in both .NET WCF- and Java Metro-based web services.
We conducted several experiments which show that, despite
the complexities often associated with web services tech-
nologies, the minimal overhead needed to verify a client’s
puzzle solution enables this technique to be an effective
defence mechanism against flooding attacks. In particular,
it is useful to protect web services applications whose



invocation triggers one or more resource-intensive actions,
such as a series of web services operations orchestrated
using the Business Process Execution Language (BPEL) or
complex mathematical operations.

We have also performed experiments to study the effec-
tiveness of client puzzles in mitigating a type of semantic-
based DoS attack which attempts to force a server to
perform heavy cryptographic processing according to the
WS-Security standard [1]. Our preliminary results show that
while client puzzles offer some protection against this type
of attack, they are not an ideal mitigation technique.

This paper is structured as follows: Section II provides
an explanation of the client puzzle technique that we have
integrated into existing web services platforms, followed
by a brief description of the two DoS attacks used in the
experiments in this paper. Section III explains how we
have integrated the client puzzle technique into our test
environment and Section IV describes the experiments we
have conducted and the results. Section V discusses the
effectiveness and limitations of the client puzzle technique
in mitigating the DoS problem in web services. We discuss
related work in Section VI and conclude in Section VII.

II. BACKGROUND

We provide a description of the implemented client puzzle
technique and a summary of the DoS attacks which the client
puzzles are supposed to mitigate in our experiments.

A. Client Puzzles

Client puzzles, also called proofs of work, can be used to
counter resource-depletion denial of service attacks: before a
server is willing to perform some computationally expensive
operation, it requires that the client commit some of its own
resources and solve some moderately hard puzzle. Client
puzzles were first proposed by Dwork and Naor [12] to
control junk email by having recipients only accept emails
if they were accompanied by a correct puzzle solution, and
have since been extended to protect cryptographic protocols
such as authentication [13], [14] and key exchange [15],
[16] protocols, as well as network protocols such as TCP
[17] and TLS [18], [19].

The most commonly proposed type of client puzzle is a
hash-based computation-bound puzzle, in which a client is
required to find a partial preimage in a cryptographic hash
function. For example, in the puzzle of difficulty d proposed
by Aura et al. [14], the client C and server S supply nonces
NC and NS , respectively, and the client must find a solution
X such that

H(C,NS , NC , X) = 0 . . . 0︸ ︷︷ ︸
d

‖Y , (1)

where H is a cryptographic hash function, such as SHA-1,
and the output starts with at least d 0 bits followed by any
string Y . If H is a preimage-resistant hash function, then, it

should take a client approximately 2d−1 calls to H to find
a valid solution. However, the verification cost for a server
is very low, as it only takes a single hash function call to
check equation (1).

Client puzzles can be analyzed in interactive or non-
interactive attack scenarios [20]. In the interactive case, the
server nonce NS is updated for every puzzle and thus an
attacker cannot replay the same solutions or prepare many
solutions and flood the server all at once. This comes at the
cost of requiring online interaction for every request, so non-
interactive puzzles can be more suitable for asynchronous
or scenarios with fixed message flows. We have employed
non-interactive puzzles in our experiments by providing the
server nonce in an infrequently updated WSDL file.

B. DoS attacks on web services

We have tested the effectiveness of client puzzles for
mitigating two types of DoS attack: a generic flooding
attack, and a heavy cryptographic processing attack. The
latter is a type of semantic attack which aims to exhaust
server resources through a few specially crafted requests that
require extraordinary processing (rather than the relying on
the delivery of requests at a high rate).

1) Flooding Attack: This attack attempts to exhaust a
server’s resources by sending a large amount of legitimate
requests. The request messages in this case are well-formed
and valid without any malicious XML structure or content.
Consequently, such an attack cannot be detected by relying
on a signature-based XML firewall. Normally, such an attack
is mitigated through some forms of lower network layer
packet analysis, such as IP address analysis. In this paper,
we study the effectiveness of integrated client puzzles for
mitigating such attacks.

2) Semantic Attack: Heavy Cryptographic Processing At-
tack: A well-known type of a web services semantic attack
is the heavy cryptographic processing attack in which an
attacker sends a payload with an oversized WS-Security
header containing many cryptographic elements (such as
nested encryption [3], or a large number of digital signa-
tures). The goal is to overload the server’s resources, either
through parsing a large security header or by forcing the
server to process the numerous cryptographic directives.

III. INTEGRATING CLIENT PUZZLES IN WEB SERVICES

Although client puzzles can be implemented at the net-
work or transport layer [17], [18], we aim to provide a
solution that can be integrated into any web service with-
out relying on additional components. Also, similar to the
reasons that WS-Security protections are needed even when
HTTPS is already widely used, transport layer protection
only applies point-to-point, not end-to-end as required by
web services. Thus, we chose to implement the client
puzzles at the message layer as part of the SOAP header.



This paper examines the effectiveness of client puzzles
in mitigating some DoS vulnerabilities at the server’s side.
To simplify the experimental setup, we implemented non-
interactive client puzzles; this suffices for our purposes since
non-interactive client puzzles already allow us to study the
resources being consumed at the server side in verifying
clients’ solutions. More importantly, it allows us to study
the ability of a server to fulfil honest clients’ requests when
the server is under DoS attacks.

Our implementation focuses on the integration of the
client puzzle processing logic on the server side using ex-
isting web services development platforms, namely the Mi-
crosoft .NET Windows Communication Foundation (WCF)
framework and the Java Metro framework. The server’s use
of client puzzles is communicated to the client as part of the
server’s policy in its WSDL file (as a custom WS-Policy
assertion); a snippet of the generated WSDL advertising
the client puzzle requirements (including difficulty level and
server nonce) is given in Figure 1 (lines 4-5).

1 <wsdl:definitions ...>
2 <wsp:Policy wsu:Id="clientPuzzlePolicy">
3 <wsp:ExactlyOne> <wsp:All>
4 <wsp:clientPuzzle a:difficulty="8" xmlns:a="...">
5 abcdef</wsp:clientPuzzle>
6 ...</wsp:All></wsp:ExactlyOne></wsp:Policy>
7 <wsdl:types...>...</wsp:types>...
8 </wsdl>

Figure 1. Custom WS-Policy assertion for client puzzles in a WSDL.

We subsequently configured a client to understand the
custom client-puzzle policy assertion and act accordingly
by solving the puzzle and including the solution in the
SOAP header of a request message. A sample SOAP request
payload containing a client puzzle solution in the SOAP
header is provided in Figure 2 (lines 2-6).

1 <s:Envelope...><s:Header...>
2 <ClientPuzzleSolution xmlns="..." ...>
3 <timestamp>634243948044717802</timestamp>
4 <clientNonce>LMBfqB</clientNonce>
5 <puzzleSolution>abcdef..</puzzleSolution>
6 </ClientPuzzleSolution> ......
7 </s:Header><s:Body>...</s:Body></s:Envelope>

Figure 2. Inclusion of client puzzle solution in a SOAP request.

To prevent clients from re-using a solution to launch
replay attacks, we also require clients to include both a client
nonce NC and timestamp T (represented as the number of
ticks (10−7) since 1 Jan 0001): the client must provide a
client puzzle solution X such that H(NS , NC , T,X) starts
with d zeros.

A. Java Metro Implementation

We implemented the client puzzles using the exten-
sible Tube interface in Java Metro version 2.0. The

Tube interface allows developers to modify (add, re-
move, or re-order) the sequence of modules to be called
when processing web services messages at both the
client’s and the server’s side. The client puzzle process-
ing logic is implemented through the creation of a new
Metro Tube module called the ClientPuzzleTube
(which extends the AbstractFilterTubeImpl class)
in which the client puzzle solution verification logic (at
the server’s side) is encoded. Then, we create a factory
class called ClientPuzzleTubeFactory which im-
plements the TubeFactory interface to instantiate the
ClientPuzzleTube during the pipeline creation.

The order of tube (or module) processing is configured
in the metro.xml file. This file is then bundled together
with the other two Java classes as a jar file before
being deployed on the server. In our configuration, the
ClientPuzzleTube is placed near the beginning of the
tube at the server’s (endpoint’s) side to ensure the processing
of the puzzle solution occurs before other more resource-
intensive tubes (such as security tubes).

B. .NET WCF Implementation

We also integrated client puzzles into a .NET
(version 3.0) WCF-based web service. The inclusion
and processing of a custom WS-Policy assertion
(along with the ensuing processing to comply with a
custom assertion at both the client’s and server’s side)
are supported by the implementation and subsequent
configuration of the IPolicyExportExtension,
IPolicyImportExtension, and other related
interfaces and classes. The web service is deployed
on an Internet Information Services (IIS) server (version 7).

IV. EXPERIMENTS AND RESULTS

Our testbed consists of a variety of clients and servers.
The servers run web services applications with client puzzles
integrated as described above. The servers and clients are
connected via a switch.

The server for Java Metro-based web services runs on
a laptop with an Intel Core 2 Duo 2.4 GHz processor and
4 GB RAM. These web services are deployed on a Glassfish
server version 2.1.1 using its default configuration.

The server for .NET WCF web services runs on a desktop
with an Intel Core 2 Duo 3 GHz processor and 4 GB RAM.
These web services are deployed on an IIS server (version
7) using its default configuration as well.

In all experiments, the target/victim of our DoS attacks
is a web services server. Client requests (both honest and
malicious requests) are launched using the wget utility that
is included with most Linux distributions.

To assess the effectiveness of the client puzzles, we con-
ducted each experiment twice, first against a web service that
does not employ client puzzles, and then against the same
web service with client puzzles in use. We ran experiments
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Figure 3. Java Metro flooding attacks – CPU usage.

for the two types of attacks described above: a generic
flooding attack (Experiment 1) and a heavy cryptographic
attack (Experiment 2). For each experiment, a variety of
traffic scenarios were used.

A. Experiment 1: Flooding Attack

In this experiment, we set up a web service with one
operation: performing a substantial complex mathematical
operation (consisting of several thousand 64-bit floating-
point exponentiations). The operation takes on average
around 84 ms to complete when executed independent of
the web services wrapping. Using this server as the victim,
we ran several scenarios to assess the effectiveness of client
puzzles in mitigating flooding attacks.

1) Scenario 1.1: Java Metro – Baseline Behaviour: We
started this experiment by obtaining the baseline behaviour
of the victim under ‘normal’ operation to show that the
use of client puzzles does not incur significant processing
overhead. Our baseline traffic generator sent 20 batches of
(roughly) 25 simultaneous requests with a 1 second gap
between batches. By comparing the CPU usage of the Java
Metro-based web service without and with client puzzles,
we can determine if any significant processing overhead is
introduced in processing clients’ puzzle solutions.

The results of this experiment, depicted in Figure 3,
show that the CPU usage is quite similar, regardless of
whether a client puzzle is used or not, so we can conclude
that the processing of client puzzle solutions introduces no
significant CPU usage overhead.

2) Scenario 1.2: Java Metro – Flooding Attack – Mali-
cious Traffic Only: This scenario simulates a flooding attack
by doubling the intensity of traffic compared with Scenario
1.1. A key difference between ‘normal’ and ‘flooding’ traffic
is the (significantly) higher request rate in the latter case.
We sent 10 batches of traffic (each with 50 simultaneous
requests) with a one second gap between batches. The re-
quests sent to the server without client puzzles do not contain
any client puzzle solution, while those requests sent to
the server implementing client puzzles contain an incorrect

Profile Total Type Rate Successful Server
Batches (req/s) Requests Status

1a 20 Honest 25 498 Alive10 Malicious 50 (99.6%)

1b 20 Honest 15 300 Alive10 Malicious 60 (100%)

1c 20 Honest 5 99 Alive10 Malicious 70 (99%)

Table I
SCENARIO 1.3 - PROFILE 1 TRAFFIC DETAILS AND RESULTS.

puzzle solution (we assume that the attacker simply sends
random solutions to maintain the flooding attack intensity).
Comparing the results from these two experiments allows us
to learn if client puzzles allow the victim to protects itself
from excessive CPU usage.

The results of this attack scenario, shown in Figure 3,
indicate that client puzzles significantly reduce the amount
of CPU consumption in a flooding attack: whereas CPU
usage remained at 100% for the duration of the flooding
attack when no client puzzle was used, the CPU usage never
exceeded 60% when false requests could be dropped easily
through the use of client puzzles. The shorter duration of the
experiment in this Scenario 1.2 (due to only 10 batches of
traffic) as opposed to the previous Scenario 1.1 (25 batches
of traffic) explains the shorter curves for Scenario 1.2 CPU
usage in Figure 3.

3) Scenario 1.3: Java Metro – Flooding Attack – Mixed
Traffic: In this scenario, we mixed both honest traffic and
malicious flooding traffic. The main goal is to observe if
honest clients’ requests are still being served when the server
is under flooding attacks of various intensity. Several mixed
traffic profiles are considered:

Profile 1: Constant Traffic Rate, Varying Honest and
Malicious Requests: In this experiment, we mixed honest
traffic (with correct puzzle solutions) and malicious traffic
(with incorrect, random puzzle solutions) in three different
ratios. In each combination, we progressively increased the
malicious traffic and lowered the honest traffic. Because the
payload size for both honest and malicious request is roughly
the same (the only difference is that the malicious packets
contain incorrect puzzle solutions), a total of roughly 75
requests per second is maintained. There was a 1 second
break in between batches of traffic. The three different traffic
combinations are given in Table I.

The rationale for our traffic profile is to show that the
relatively high CPU usage in traffic profile 1a is due to
processing honest requests, not due to puzzle solution pro-
cessing. The results of our experiments are shown in Fig-
ure 4. As expected, given the roughly equivalent traffic rate,
the CPU usage decreases as the number of honest requests
decreases and the number of malicious requests increases.
Table I also shows that a very high percentage of honest
requests are served successfully without noticeable delay.
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Figure 4. Scenario 1.3, Profile 1 – CPU usage.

These results demonstrate the effectiveness and efficiency
of client puzzles in weeding out malicious traffic while still
maintaining acceptable service performance to honest users.

Profile 2: Stress Testing: In this experiment, we wanted
to know how far we can push the server to maintain
acceptable service performance to users in the presence
of varying flooding attack intensity. We flooded a server
with six different attack profiles as detailed in Table II.
With the exception of profile 2f (further detailed below), all
traffic profiles maintain the same honest request rate: roughly
25 requests per second per batch with 1 second pause in
between batches of traffic. Shorter traffic profiles were used
in profile 2a and 2b (only 10 batches), while longer ones
were used in profiles 2c to 2f.

The results of our experiments are also shown in Ta-
ble II. Obviously, given the same flooding attack rate, the
client puzzles improve the success response rate significantly
compared to when no client puzzles are used (compare
results for profiles 2a and 2b). Furthermore, acceptable
service performance to honest clients is maintained when
the flooding rate increases to at least around 150 malicious
requests per second. When the flooding rate reached 180
requests per second with 25 honest requests per second as
well (profile 2e), less than half of the honest requests were
served.

In practice, when the flooding rate increases, the server
may increase its puzzle difficulty to lower the request rate.
This is the scenario we depict in profile 2f in which it
is assumed that server has increased its puzzle difficulty
resulting in a reduction of the honest traffic rate to 15
requests per second. In this scenario, almost all honest
requests were served successfully. We note that for most
client puzzles, increasing puzzle difficulty does not increase
the cost of solution verification.

4) Scenario 1.4: .NET WCF : We have experimented with
the same client puzzles on a web service built on the .NET
WCF platform. Experimental parameters vary from those
used in Scenarios 1.1 to 1.3, however, the results clearly
point to the same conclusions.

Profile Total Type Rate Success Server
Batches (req/s) Requests Status

2a 10 Honest 25 111 Stall(no puzzle) 10 Malicious 100 (44.4%)
2b 10 Honest 25 250 Alive(w/puzzle) 10 Malicious 100 (100%)
2c 30 Honest 25 750 Alive(w/puzzle) 30 Malicious 100 (100%)
2d 30 Honest 25 748 Alive(w/puzzle) 30 Malicious 150 (99.7%)
2e 30 Honest 25 299 Stall(w/puzzle) 30 Malicious 180 (39.8%)
2f 30 Honest 15 449 Alive(w/puzzle) 30 Malicious 180 (99.7%)

Table II
SCENARIO 1.3, PROFILE 2 – TRAFFIC DETAILS AND RESULTS.

We first compared the CPU usage of the server when
10,000 requests are sent to a simple web service without
client puzzles and the same service with client puzzles. The
results indicated that, similar to Java Metro, no significant
processing overhead is introduced when client puzzle is used
(graph not shown due to space limitations).

Next, we investigated the extent to which CPU resources
can be conserved when an attacker sends 10,000 malicious
requests (manifested by the inclusion of random puzzle
solution). Our results show that the .NET platform is able to
reject requests with invalid puzzle solutions very efficiently
resulting in a significantly lower CPU usage (<5%) in
comparison to when no client puzzles is used (around 90%).

Finally, we ran a mixed traffic experiment in which 1,000
honest requests (with valid puzzle solutions) were sent to the
server along with 10,000 malicious requests (with incorrect
puzzle solutions). Similar to Scenario 1.3, our goal was to
assess the ability of the server to serve honest client requests
when it is under a flooding attack. In our experiment, a very
high percentage of honest requests (about 94%) were served
successfully in this mixed traffic scenario.

B. Experiment 2: Semantic Attack – Heavy Cryptography

This experiment aims to determine if client puzzles are
an effective countermeasure against semantic web services
attacks. For this experiment, we developed a Java Metro-
based web service as the victim (similar experiment with
the .NET platform is yet to be completed). The web service
performs a simple service (adding two integers) but requires
clients to use X.509 certificate-based mutual authentication
with signature and encryption protections. We used the
wget utility to send the attack traffic.

1) Scenario 2.1: Baseline Behaviour: Similar to Scenario
1.1, Scenario 2.1 attempts to show that the use of client
puzzles does not introduce any significant overhead. 10
batches of 50 simultaneous honest requests (with a 1 second
gap between batches) were sent to the Java web service
(both without and with client puzzles enabled). The server’s
observed CPU usage, as expected, showed no significant



processing overhead introduced by the use of client puzzles
(graph not shown due to space limitations).

2) Scenario 2.2: Heavy Cryptography – Attack Traffic
Only: The attack payload used in this scenario consisted of a
very large WS-Security SOAP header with several thousand
digital signatures (approximately 20 MB payload). Because
this is a semantic attack, we only send one request per
second, just enough to sustain the effect of the attack on
the server over an extended period of time.

In total, 50 requests with malicious payloads were sent
(with a 1 second interval between requests) to a web service
without client puzzles and one with client puzzles. Each
request received a ‘500 Internal Server Error’ response.

The results of our experiments show that when no client
puzzle was used, our attack caused the server to spend over
30 minutes before returning the last ‘500’ error. When the
same attack traffic (but with an incorrect puzzle solution)
was sent to the same server, the server detected the incorrect
puzzle solution and returns an error with a much quicker
response time: the 50 requests were all processed in about
10 minutes, a significant improvement compared to when no
client puzzle was used.

3) Scenario 2.3: Heavy Cryptography – Mixed Traffic: In
this scenario, we sent a mix of honest and malicious traffic
to the web service, either without or with client puzzles. The
honest requests consisted of 100 requests, each sent with a
1 second interval. The malicious request payload was the
same as the one used for Scenario 2.2. The effects of the
mixed traffic on the server were observed over a 15-minute
period.

When client puzzles were not used, only about 25 honest
requests were successfully served (out of 100 total honest
requests, plus the 50 malicious requests per second).

In contrast, when the same mix was sent to the server
with client puzzles in use, all 100 honest requests were
successfully served in around 14-15 minutes. Note that in
this latter case (with client puzzles), we in fact needed to
increase the number of malicious requests so that the effect
of the malicious requests would be sustained throughout the
whole 15-minute duration of the experiment.

The distribution of inter-arrival time of the response
payloads depicted in Figure 5 (calculated from each response
payload timestamp), shows the reduction of the inter-arrival
response time when client puzzles were used.

V. OBSERVATIONS AND LIMITATIONS

From the experiments detailed in Section IV-A and Sec-
tion IV-B, we can conclude that the integration of client
puzzles in existing web services applications can provide
some protection against DoS attacks.

The results obtained from our flooding attack experiments
strongly suggest the effectiveness of the client puzzles
in mitigating such an attack. Our experiments show that
client puzzles can conserve CPU resources by discarding

!"#

$!"#

%!"#

&!"#

'!"#

(!"#

)!"#

*!"#

$+(# )+$!# $$+%!# %$+&!# &$+'!# '$+(!# ($+)!# )$+,!# ,$+$%!#

!"
#$
"%

&'
()
'#"

*+
(%

*"
*'
,
-&
.'
/-
0"
%'
#"
*+
(%

*"
'1
2
"'

3"+(%*"'12"'4*"$(%5*6'

-.#/01123#

4567#/01123#

Figure 5. Scenario 2.3 – Response inter-arrival time distribution.

malicious traffic early in the process, sparing the server
from exhausting its CPU resources to serve malicious or
illegitimate requests. Consequently, a web service employing
client puzzles can maintain an acceptable performance level
for honest clients even when it is under attack.

However, an obvious condition for this technique to
be an efficient solution is that the amount of resources
needed to process the puzzle solution should be less than
the resources needed to fully serve the request. While our
experiments have shown that the overhead is low, there is
still an overhead incurred, namely parsing the SOAP header
and verifying the client puzzle solution. For a very simple
web service (such as echoing a message or adding two
integers), this client puzzle overhead may consume more
resources than the actual web service. Thus, client puzzles
becomes increasingly effective as the resources required to
fully execute a web service operation increase.

Our experiments show that client puzzles can reduce the
response time for an honest client request in the semantic
attack scenario (Section IV-B). However, this is possible
because the attacker in our experiment sent requests with
incorrect puzzle solutions. In practice, it is possible for an
attacker to spend some time to solve a puzzle correctly and
still be able to send low-rate requests with correct puzzle
solutions. This will force the server to accept the requests
and to process the heavy cryptographic directives, resulting
in the overwhelming of the server’s resources (similar to
the Scenario 2.2 experiment when no client puzzles were
used). The server could increase the puzzle difficulty until
the attacker cannot generate the rate of puzzle solutions
required to sustain the attack. This will have the unfortunate
effect of increasing the burden for honest clients, although
honest clients will be served eventually. A signature-based
XML firewall may be a more effective mitigation strategy
for this type of semantic-based attack.

Finally, we have not fully addressed the issue of freshness
of client puzzle solutions in our implementation. While the
timestamp can be used as a method to check a solution’s
freshness, it does not prevent an attacker from pre-computing



a set of solutions with future timestamps. The standard
way to address this problem is by periodically changing
the value of the server’s nonce NS to restrict the window
of opportunity for an attacker to pre-compute solutions.
The use of interactive client puzzles can also guarantee
the freshness of a solution and prevent pre-computation of
puzzle solutions by an attacker since the server nonce is
provided on a per-request basis. Further research is needed
to assess how we can efficiently integrate interactive client
puzzles into web services applications, and how well this
technique can protect a server from DoS attacks. Con-
siderations include the performance impact on the server
and the correct mechanism for providing per-request client
nonces, either through dynamic WSDL or through some
other interactions.

VI. RELATED WORK

There have been several works published in the area of
DoS mitigation in web services. One proposed approach
is to use a form of XML firewall to filter out malicious
packets with the logic being that most web services DoS
attacks stem from the vulnerability in the XML structure
itself. For example, Gruschka et al. [21] proposed the use of
tight XML schemas to prevent certain types of DoS attacks
which exploit vulnerabilities in XML parsing. Bebawy et al.
[22], and Loh et al. [23] proposed the use of an XML/Web
Services firewall to perform some form of source-based
filtering and SOAP/XML message inspection (based on
some rules and policies) to filter out malicious packets. To
address the potentially performance-taxing issues of source
and content-based filtering approaches, Padmanabhuni et al.
[4] proposed the use of a Patricie Trie data structure to create
efficient representations of XML messages for analysis. It
should be noted that XML/SOAP firewalls to counter various
types of XML-based DoS attacks have already been widely
supported in the industry, such as the IBM DataPower3 and
Vordell Gateway4 products. Other work, such as Pinzón et
al. [24] and Yee et al. [25], introduced novel heuristics into
DoS mitigation by incorporating neural networks, clustering
techniques, association and sequential rules, and fuzzy logic.
The main goal of these approaches is to enable the reasoning,
classification, and anomaly detection of various types of
SOAP messages so that malicious SOAP messages can be
rejected. A slightly different approach by Ye [26] was an
architecture for web services that is resilient to DoS attacks
by offloading the verification of message authenticity and
validity to other agents, allowing web service providers
to process only those requests that have been successfully
authenticated and validated.

The main difference between the work described so far
and our work is that most existing work focuses on analyzing

3http://www-01.ibm.com/software/integration/datapower/
4http://www.vordel.com/products/gateway/index.html

the structure of the SOAP/web services messages to differ-
entiate between ‘good’ and ‘bad’ requests. In other words,
they address semantic DoS attacks which are assumed to be
detectable by analyzing the structure of the messages. These
works have not addressed the problem of flooding attacks
in which requests often do conform to the definition of a
‘good’ SOAP message.

More importantly, most existing work does not address
the resource imbalance issue that is critical in executing
a successful flooding attack. In fact, distinguishing ‘good’
requests from ‘bad’ ones results in even more work by
the web service provider, potentially aggravating the DoS
problem. Our work aims precisely at addressing this resource
imbalance issue. By doing so, we allow a server to focus its
limited resources on legitimate client requests.

We do not claim that the related work mentioned above
and our work are mutually exclusive. In fact, they are
complementary: given the diversity DoS attacks, it only
makes sense that one should use a variety of defensive
techniques. It is possible, for example, for a server to first
use client puzzles to mitigate flooding-style attacks, and
then pass the requests to an XML firewall (or other SOAP
analysis tool) to filter out semantic DoS attacks.

VII. CONCLUSIONS

We have examined the effectiveness of integrating non-
interactive client puzzles into existing web services plat-
forms to mitigate some DoS attacks. Based on our experi-
ments, we conclude that client puzzles are effective in miti-
gating flooding attacks against web services. Client puzzles
can also improve the response time for honest clients in
some semantic attacks, but will work best against semantic
attacks in combination with existing filtering techniques.

Future work includes expanding our experiments with
other types of DoS attack and extending our server to
interactively refresh its puzzle nonce value NS to analyze
the performance impact on both servers and honest clients.
Comparing our results with transport-layer client-puzzle
implementation is also another interesting future work.
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