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Abstract. Digital signatures are often used by trusted authorities to
make unique bindings between a subject and a digital object; for example,
certificate authorities certify a public key belongs to a domain name,
and time-stamping authorities certify that a certain piece of information
existed at a certain time. Traditional digital signature schemes however
impose no uniqueness conditions, so a trusted authority could make
multiple certifications for the same subject but different objects, be it
intentionally, by accident, or following a (legal or illegal) coercion. We
propose the notion of a double-authentication-preventing signature, in
which a value to be signed is split into two parts: a subject and a mes-
sage. If a signer ever signs two different messages for the same subject,
enough information is revealed to allow anyone to compute valid signa-
tures on behalf of the signer. This double-signature forgeability property
discourages signers from misbehaving—a form of self-enforcement—and
would give binding authorities like CAs some cryptographic arguments to
resist legal coercion. We give a generic construction using a new type of
trapdoor functions with extractability properties, which we show can be
instantiated using the group of sign-agnostic quadratic residues modulo
a Blum integer.
Keywords: digital signatures, double signatures, dishonest signer, coer-
cion, compelled certificate creation attack, self-enforcement, two-to-one
trapdoor functions

1 Introduction

Digital signatures are used in several contexts by authorities who are trusted to
behave appropriately. For instance, certificate authorities (CAs) in public key
infrastructures, who assert that a certain public key belongs to a party with a
certain identifier, are trusted to not issue fraudulent certificates for a domain
name; time-stamping services, who assert that certain information existed at a
certain point in time, are trusted to not retroactively certify information (they
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should not “change the past”). In both of these cases, the authority is trusted
to make a unique binding between a subject—a domain name or time—and a
digital object—a public key or piece of information. However, traditional digital
signatures provide no assurance of the uniqueness of this binding. As a result, an
authority could make multiple bindings per subject.

Multiple bindings per subject can happen due to several reasons: poor man-
agement practices, a security breach, or coercion by external parties. Although
there have been a few highly publicized certificate authority failures due to either
poor management practices or security breaches, the vast majority of certificate
authorities seem to successfully apply technological measures—including audited
key generation ceremonies, secret sharing of signing keys, and use of hardware
security modules—to securely and correctly carry out their role.

However, CAs have few tools to resist coercion, especially in the form of legal
demands from governments. This was identified by Soghoian and Stamm [1]
as the compelled certificate creation attack. For example, a certificate authority
may receive a national security letter compelling it to assist in an investigation
by issuing a second certificate for a specified domain name but containing the
public key of the government agency, allowing the agency to impersonate Internet
services to the target of the investigation. Regardless of one’s opinions on the
merits of these legal actions, they are a violation of the trust promised by
certificate authorities: to never issue a certificate to anyone but the correct party.
The extent to which legal coercion of CAs occurs is unknown, however there are
indications that the technique is of interest to governments. A networking device
company named Packet Forensics sells a device for eavesdropping on encrypted
web traffic in which, reportedly, “users have the ability to import a copy of any
legitimate key they obtain (potentially by court order)”.3 Various documents
released by NSA contractor Edward Snowden in June–September 2013 indicate
government interest in executing man-in-the-middle attacks on SSL users.4

Two certificates for the same domain signed by a single CA indeed constitute
a cryptographic proof of fraud. However, in practice, it is currently up to the
“market” to decide how to respond: the nature of the response depends on the
scope and nature of the infraction and the CA’s handling of the issue. The
consequences that have been observed from real-world CA incidents range from
minimal, such as the CA revoking the extra certificates amid a period of bad
publicity (as in the 2011 Comodo incident5), up to the ultimate punishment
for a CA on the web: removal of its root certificate from web browsers’ lists of
trusted CAs (as in the 2011 DigiNotar incident [2], which was found to have
issued fraudulent certificates that were used against Iranian Internet users [3],
and which lead to the bankruptcy of DigiNotar).

For a CA making business decisions on management and security practices,
such consequences may be enough to convince it to invest in better systems. For
a CA trying to resist a lawful order compelling it to issue a fraudulent certificate,

3 http://www.wired.com/threatlevel/2010/03/packet-forensics/
4 https://www.schneier.com/blog/archives/2013/09/new_nsa_leak_sh.html
5 https://www.comodo.com/Comodo-Fraud-Incident-2011-03-23.html
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such consequences may not be enough to convince a judge that it should not be
compelled to violate the fundamental duty with which it was entrusted.

1.1 Contributions

We propose a new type of digital signature scheme for which the consequences
of certain signer behaviours are unambiguous: any double signing, for any rea-
son, leads to an immediate, irreversible, incontrovertible loss of confidence in
the signature system. This “fragility” provides no room for mistakes, thereby
encouraging “self-enforcement” of correct behaviour and allows a signer to make
a more compelling argument resisting lawful coercion. If a CA fulfills a request
to issue a double signature even to a lawful agency, the agency, by using the
certificate, enables the attacked party to issue arbitrary certificates as well.

In a double-authentication-preventing signature (DAPS), the data that is
to be signed is split into two parts: a subject and a message. If a signer ever
signs two messages for the same subject, then enough information is revealed
for anyone to be able to forge signatures on arbitrary messages, rendering the
signer immediately and irrevocably untrustworthy. More precisely, in addition
to unforgeability we require a new security property for DAPS, double-signature
extractability : from any two signatures on the same subject the signing key can
be fully recovered. Depending on the nature of the subjects, an honest signer
may need to track the list of subjects signed to avoid signing the same subject
twice.

We give a generic construction for DAPS based on a new primitive called
extractable two-to-one trapdoor function which allows anyone, given two preimages
of the same value, to recover the trapdoor required for inverting the function. We
show how to construct these functions using the group of sign-agnostic quadratic
residues modulo a Blum integer (RSA modulus), an algebraic reformulation of a
mathematical construction that has been used in several cryptographic primitives.
The resulting DAPS scheme is efficient; with 1024-bit signing and verification
keys, the signature size is about 20 KiB, and the runtime of our implementation
using libgcrypt is about 0.3 s for signing and 0.1 s for verifying.

1.2 Related work

Certificate auditing and other techniques. Mechanisms such as Certificate Trans-
parency6 and others aim to identify malicious or incorrect CA behaviour by
collecting and auditing public certificates. Incorrect behaviour, such as a CA
issuing two certificates for the same domain name, can be identified and then
presented as evidence possibly leading to a loss of trust. DAPS differs in that
it provides an immediate and irrevocable loss of confidence and, importantly,
provides a completely non-interactive solution.

Self-enforcement and traitor tracing. Dwork et al. [4] introduced the notion of
self-enforcement in cryptography, in which the cryptosystem is designed to force

6 http://www.certificate-transparency.org/
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the user to keep the functionality private, that is, to not delegate or transfer
the functionality to another user. There are a variety of techniques for ensuring
self-enforcement: tradeoffs in efficiency [4] or by allowing recovering of some
associated secret value with any delegated version of the secret information [5–7].
Broadcast encryption schemes often aim for a related notion, traitor tracing [8],
in which the broadcaster aims to detect which of several receivers have used their
private key to construct and distribute a pirate device; typically the broadcaster
can identify which private key was leaked. DAPS differs from this line of research
in that it does not aim to deter delegation or transferring of keys, rather it aims
to deter a single party from performing a certain local operation (double signing).

Accountable IBE. Goyal [9] aimed to reduce trust in the key generation centre
(KGC) in identity-based encryption.In accountable IBE, the key generation
protocol between the user and the KGC results in one of a large number of
possible keys being generated, and which one is generated is unknown to the
KGC. Thus if the KGC issues a second key, it will with high probability be
different, and the two different keys for the same identity serve as a proof that
the KGC misbehaved. This effectively allows IBE to achieve the same level of
detection as normal public key infrastructures: two certificates for the same
subject serve as a proof that the CA misbehaved. However, neither approach has
the stronger level of deterrence of DAPS: double signing leads to an immediate
loss of confidence, rather than just proof of misbehaving for consideration of
prosecution.

Digital cash. Digital cash schemes [10] often aim to detect double spending:
a party who uses a token once maintains anonymity, but a party who uses a
token twice reveals enough information for her identity to be recovered and
traced. DAPS has some conceptual similarities, in that a party who signs two
messages with the same subject reveals enough information for her secret key to
be recovered. In both settings, double operations leak information, but double
spending in digital cash typically leaks only an identity, whereas double signing
in DAPS leaks the signer’s private key. It is interesting to note that the number-
theoretic structures our DAPS scheme builds on are similar to those used in early
digital cash to provide double spending traceability [10]: both schemes use RSA
moduli that can be factored if signers/spenders misbehave. However, there does
not seem to be a direct connection between the primitives.

One-time signatures. One-time signatures, first proposed by Lamport using
a construction based on hash functions [11], allow at most one message to be
signed. Many instances can be combined using Merkle trees [12] to allow multiple
signatures with just a single verification key, but key generation time becomes
a function of the total number of signatures allowed. DAPS differs in that the
number of messages to be signed need not be fixed a priori, and our construction
relies on number-theoretic trapdoor functions, rather than solely hash functions.

Fail-stop signatures. Fail-stop signatures [13–17] allow a signer to prove to
a judge that a forgery has occurred; a signer is protected against cryptanalytic
attacks by even an unbounded adversary. Verifiers too are protected against
computationally bounded signers who try to claim a signature is a forgery
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when it is not. When a forgery is detected, generally the security of the scheme
collapses, because some secret information can be recovered, and so the security
of previous signatures is left in doubt. Forgery-resilient signatures [18] aim to
have similar properties to fail-stop signatures—the ability for a signer to prove a
cryptanalytic forgery—but discovery of a forgery does not immediately render
previous signatures insecure. Both focus on an honest signer proving someone
else has constructed a forgery, whereas DAPS is about what happens when a
dishonest or coerced signer signs two messages for the same subject.

Chameleon hash functions. Chameleon hash functions [19] are trapdoor-
based and randomized. Hashing is collision-resistant as long as only the public
parameters are known. However, given the trapdoor and the message-randomness
pair used to create a specific hash value, a collision for that value can be
efficiently found. Some constructions allow the extraction of the trapdoor from
any collision [20,21]. However, it remains open how DAPS could be constructed
from Chameleon hash functions.

2 Definitions

We now present our main definitions: a double-authentication-preventing signature
and its security requirements: the standard (though slightly adapted) notion of
existential unforgeability, as well as the new property of signing key extractability
given two signatures on the same subject.

Notation. If S is a finite set, let U(S) denote the uniform distribution on S
and x←

R
S denote sampling x uniformly from S. If A and B are two probability

distributions, then notation A ≈ B denotes that the statistical distance between
A and B is negligible. If A is a (probabilistic) algorithm, then x ←

R
AO(y)

denotes running A with input y on uniformly random coins with oracle access
to O, and setting x to be the output. We use A(y; r) to explicitly identify the
random coins r on which the otherwise deterministic algorithm A is run.

Definition 1 (Double-authentication-preventing signature). A double-
authentication-preventing signature (DAPS) is a tuple of efficient algorithms
(KGen,Sign,Ver) as follows:

– KGen(1λ): On input security parameter 1λ, this algorithm outputs a signing
key sk and a verification key vk.

– Sign(sk, subj,msg): On input signing key sk and subject/message pair subj,
msg ∈ {0, 1}∗, this algorithm outputs a signature σ.

– Ver(vk, subj,msg, σ): On input verification key vk, subject/message pair subj,
msg ∈ {0, 1}∗, and candidate signature σ, this algorithm outputs 0 or 1.

Definition 2 (Correctness). A DAPS scheme is correct if, for all λ ∈ N,
for all key pairs (sk, vk) ←

R
KGen(1λ), for all subj,msg ∈ {0, 1}∗, and for all

signatures σ ←
R
Sign(sk, subj,msg), we have that Ver(vk, subj,msg, σ) = 1.

Our unforgeability notion largely coincides with the standard unforgeability
notion for digital signature schemes [22]; the main difference is that, for DAPS,
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Exp EUF
DAPS,A(λ):

1. SignedList← ∅
2. (sk, vk)←R KGen(1λ)
3. (subj∗,msg∗, σ∗)←R A

OSign(vk)
If A queries OSign(subj,msg):

(a) Append (subj,msg) to SignedList
(b) σ ←R Sign(sk, subj,msg)
(c) Return σ to A

4. Return 1 iff all the following hold:

– Ver(vk, subj∗,msg∗, σ∗) = 1
– (subj∗,msg∗) 6∈ SignedList
– ∀ subj,msg0,msg1:

if (subj,msg0), (subj,msg1) ∈ SignedList
then msg0 = msg1

ExpDSE
DAPS,A(λ):

1. (vk, (S1, S2))←R A(1λ)
2. sk′ ←R Extract(vk, (S1, S2))
3. Return 1 iff all the following hold:

– (S1, S2) is compromising
– sk′ is not the signing key cor-

responding to vk

ExpDSE∗
DAPS,A(λ):

1. (sk, vk)←R KGen(1λ)
2. (S1, S2)←R A(sk, vk)
3. sk′ ←R Extract(vk, (S1, S2))
4. Return 1 iff all the following hold:

– (S1, S2) is compromising
– sk′ 6= sk

Fig. 1. Security experiments for DAPS: unforgeability and double signature
extractability (without and with trusted setup).

forgeries crafted by the adversary are not considered valid if the adversary has
requested forgeries on different messages for the same subject.

Definition 3 (Existential unforgeability). A DAPS scheme is existentially
unforgeable under adaptive chosen message attacks if, for all efficient adver-
saries A, the success probability Succ EUF

DAPS,A(λ) := Pr[Exp EUF
DAPS,A(λ) = 1] in the

EUF experiment of Figure 1 is a negligible function.

Although Definition 3 ensures that signatures of DAPS are generally unforge-
able, we do want signatures to be forgeable in certain circumstances. In fact we
aim at an even higher goal: when two different messages have been signed for the
same subject, the signing key should leak from the two signatures. The notion of
compromising pairs of signatures makes this condition precise.

Definition 4 (Compromising pair of signatures). For a fixed verification
key vk, a pair (S1, S2) of subject/message/signature triples S1 = (subj1,msg1, σ1)
and S2 = (subj2,msg2, σ2) is compromising if σ1, σ2 are valid signatures on
different messages for the same subject; that is, if Ver(vk, subj1,msg1, σ1) = 1,
Ver(vk, subj2,msg2, σ2) = 1, subj1 = subj2, and msg1 6= msg2.

We now define the double-signature extractability requirement. Here, the
adversary takes the role of a malicious signer that aims to generate compromising
pairs of signatures that do not lead to successful signing key extraction. We
consider two scenarios: the trusted setup model, where key generation is assumed
to proceed honestly, and the untrusted setup model, where the adversary has full
control over key generation as well.

Definition 5 (Double-signature extractability). A double-authentication-
preventing signature DAPS is double-signature extractable (resp. with trusted
setup) if an efficient algorithm
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– Extract(vk, (S1, S2)): On input verification key vk and compromising pair
(S1, S2), this algorithm outputs a signing key sk′.

is known such that, for all efficient adversaries A, the probability SuccDSE(∗)

DAPS,A(λ)

:= Pr[ExpDSE(∗)

DAPS,A(λ) = 1] of success in the DSE (resp. DSE∗) experiment of
Figure 1 is a negligible function in λ.

The DSE experiment assumes existence of an efficient predicate that verifies
that a candidate sk′ is the signing key corresponding to a verification key. In some
schemes, there may be several signing keys that correspond to a verification key
or it may be inefficient to check. However, for the scheme presented in Section 5,
when instantiated with the factoring-based primitive of Section 4, it is easy to
check that a signing key (p, q) corresponds to a verification key n; note that there
is a canonical representation of such signing keys (take p < q).

3 2:1 trapdoor functions and extractability

We introduce the concept of 2:1 trapdoor functions (2:1-TDF). At a high level,
such functions are trapdoor one-way functions, meaning that they should be hard
to invert except with knowledge of a trapdoor. They are two-to-one, meaning
that the domain is exactly twice the size of the range, and every element of
the range has precisely two preimages. We also describe an additional property,
extractability, which means that given two distinct preimages of an element of
the range, the trapdoor can be computed.

Consider two finite sets, A and B, such that A is twice the size of B. Let
f : A→ B be a surjective function such that, for any element b ∈ B, there are
exactly two preimages in A; f is not injective, so the inverse function does not
exist. Define instead f−1 : B × {0, 1} → A such that for each b ∈ B the two
preimages under f are given by f−1(b, 0) and f−1(b, 1). This partitions set A
into two subsets A0 = f−1(B, 0) and A1 = f−1(B, 1) of the same size.

A

A0

A1

B

Fig. 2. Illustration of a 2:1 trapdoor
function f : A → B. Each element of
B has exactly two preimages, one in A0

and one in A1.

Function f is a 2:1-TDF if the fol-
lowing additional properties hold: sets
A0, A1, and B are efficiently sam-
plable, function f is efficiently com-
putable, and inverse function f−1 is
hard to compute unless some specific
trapdoor information is known. We fi-
nally require an extraction capability:
there should be an efficient way to re-
cover the trapdoor for the computation
of f−1 from any two elements a0 6= a1
with f(a0) = f(a1) (we will also write
a0

x∼ a1 for such configurations). The
setting of 2:1-TDFs is illustrated in Fig-
ure 2. We will formalize the function-
ality and security properties below.
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3.1 Definition

We give a formal definition of 2:1-TDF and its correctness, and establish after-
wards that it implements the intuition developed above.

Definition 6 (2:1 trapdoor function). A 2:1 trapdoor function (2:1-TDF) is
a tuple of efficient algorithms (TdGen,Apply,Reverse,Decide) as follows:

– TdGen(1λ): On input security parameter 1λ, this randomized algorithm out-
puts a pair (td, pub), where td is a trapdoor and pub is some associated
public information. Each possible outcome pub implicitly defines finite sets
A = A(pub) and B = B(pub).

– Apply(pub, a): On input public information pub and element a ∈ A(pub), this
deterministic algorithm outputs an element b ∈ B(pub).

– Reverse(td, b, d): On input trapdoor td, element b ∈ B(pub), and bit d ∈ {0, 1},
this deterministic algorithm outputs an element a ∈ A(pub).

– Decide(pub, a): On input public information pub and element a ∈ A(pub),
this deterministic algorithm outputs a bit d ∈ {0, 1}.

Definition 7 (Correctness of 2:1-TDF). A 2:1-TDF is correct if, for all
(td, pub)←

R
TdGen, all d ∈ {0, 1}, all a ∈ A(pub), and all b ∈ B(pub), we have

that (1) a ∈ Reverse(td,Apply(pub, a), {0, 1}), (2) Apply(pub,Reverse(td, b, d)) =
b, and (3) Decide(pub,Reverse(td, b, d)) = d.

Let (td, pub) be output by TdGen. Consider partition A(pub) = A0(pub)
.
∪

A1(pub) obtained by setting Ad(pub) = {a ∈ A(pub) : Decide(pub, a) = d},
for d ∈ {0, 1}. It follows from correctness requirement (3) that function ψd :=
Reverse(td, ·, d) is a mapping B(pub) → Ad(pub). Note that ψd is surjective by
condition (1), and injective by condition (2). Hence, we have bijections ψ0 :
B(pub)→ A0(pub) and ψ1 : B(pub)→ A1(pub). Thus, |A0(pub)| = |A1(pub)| =
|B(pub)| = |A(pub)|/2.

Define now relation x∼ ⊆ A(pub)×A(pub) such that

a x∼ a′ ⇐⇒ Apply(pub, a) = Apply(pub, a′) ∧ Decide(pub, a) 6= Decide(pub, a′).

Note that for each a ∈ A(pub) there exists exactly one a′ ∈ A(pub) such that
a x∼ a′; indeed, if a ∈ Ad(pub), then a′ = ψ1−d(ψ

−1
d (a)) ∈ A1−d(pub). Observe

how algorithms Apply and Reverse correspond to functions f : A → B and
f−1 : B × {0, 1} → A discussed at the beginning of Section 3.

We next extend the functionality of 2:1-TDFs to include extraction of the
trapdoor: knowledge of any two elements a0, a1 ∈ A with a0 6= a1∧ f(a0) = f(a1)
shall immediately reveal the system’s inversion trapdoor.

Definition 8 (Extractable 2:1-TDF). A 2:1-TDF is extractable if an effi-
cient algorithm

– Extract(pub, a, a′): On input public information pub and a, a′ ∈ A(pub), this
algorithm outputs a trapdoor td∗.

is known such that, for all (td, pub) output by TdGen and all a, a′ ∈ A(pub) with
a x∼ a′, we have Extract(pub, a, a′) = td.

8



Exp INV-1
X,A (λ):

1. (td, pub)←R TdGen(1λ)
2. b←R B(pub)
3. a←R A(pub, b)
4. Return 1 iff Apply(pub, a) = b

Exp INV-2
X,B (λ):

1. (td, pub)←R TdGen(1λ)
2. a←R A(pub)
3. a′ ←R B(pub, a)
4. Return 1 iff a x∼ a′

Fig. 3. Security experiments for (second) preimage resistance of 2:1-TDF X.

3.2 Security notions

We proceed with the specification of the principal security property of 2:1-TDFs:
one-wayness. Intuitively, it should be infeasible to find preimages and second
preimages of the Apply algorithm without knowing the corresponding trapdoor.

Definition 9 (Preimage resistance of 2:1-TDF). A 2:1-TDF X is preimage
resistant if Succ INV-1

X,A (λ) := Pr[Exp INV-1
X,A (λ) = 1] and second preimage resistant

if Succ INV-2
X,B (λ) := Pr[Exp INV-2

X,B (λ) = 1] are respectively negligible functions

in λ, for all efficient adversaries A and B, where Exp INV-1
X,A and Exp INV-2

X,B are
as in Figure 3.

As expected, second preimage resistance implies preimage resistance. Perhaps
more surprising is that notions INV-1 and INV-2 are equivalent for extractable
2:1-TDFs. The proofs of the following lemmas appear in the full version [23].

Lemma 1 (INV-2 ⇒ INV-1). Let X be a 2:1-TDF and let A be an efficient
algorithm for the INV-1 experiment. Then there exist an efficient algorithm B
for the INV-2 experiment such that Succ INV-1

X,A (λ) ≤ 2 · Succ INV-2
X,B (λ).

Lemma 2 (INV-1 ⇒ INV-2 for extractable 2:1-TDF). Let X be an ex-
tractable 2:1-TDF and let B be an efficient algorithm for the INV-2 experiment.
Then there exists an efficient algorithm A for the INV-1 experiment such that
Succ INV-2

X,B (λ) = Succ INV-1
X,A (λ).

4 Constructing extractable 2:1 trapdoor functions

Having introduced 2:1-TDFs and extractable 2:1-TDFs, we now show how to
construct these primitives: we propose an efficient extractable 2:1-TDF and prove
it secure, assuming hardness of the integer factorization problem.

Our construction builds on a specific structure from number theory, the group
of sign-agnostic quadratic residues. This group was introduced to cryptography
by Goldwasser, Micali, and Rivest in [22], and rediscovered 20 years later by
Hofheinz and Kiltz [24]. We first reproduce the results of [22,24] and then extend
them towards our requirements.7

7 Goldwasser et al. gave no name to this group; Hofheinz and Kiltz called it the group
of signed quadratic residues, but this seems to be a misnomer as the whole point is
to ignore the sign, taking absolute values and forcing the elements to be between 0
and (n− 1)/2; hence our use of the term sign-agnostic.
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In our exposition, we assume that the reader is familiar with properties of
Z×n (the mutiplicative group of integers modulo n), Jn (the subgroup of Z×n with
Jacobi symbol equal to 1), and QRn (quadratic residues modulo n), for Blum
integers n. If we additionally define Jn = Z×n \ Jn and QRn = Jn \QRn, these
five sets are related to each other as visualized in Figure 4 (left). Also illustrated
is the action of the squaring operation: it is 4:1 from Z×n to QRn, 2:1 from Jn to
QRn, and 1:1 (i.e., bijective) from QRn to QRn. For reference, we reproduce all
number-theoretic details relevant to this paper in the full version [23].

4.1 Sign-agnostic quadratic residues

For an RSA modulus n, it is widely believed that efficiently distinguishing
elements in QRn from elements in QRn is a hard problem. It also seems to
be infeasible to sample elements from QRn without knowing a square root of
the samples, or to construct hash functions that map to QRn and could be
modeled as random oracles. However, such properties are a prerequisite in certain
applications in cryptography [24], which renders group QRn unsuitable for such
cases. As we see next, by switching from the group of quadratic residues modulo
n to the related group of sign-agnostic quadratic residues modulo n, sampling
and hashing becomes feasible.

The use of sign-agnostic quadratic residues in cryptography is explicitly
proposed in [22,24]. However, some aspects of the algebraical structure of this
group are concealed in both works by the fact that the group operation is defined
to act directly on specific representations of elements. In the following paragraphs
we use a new and more consistent notation that aims at making the algebraical
structure more readily apparent.

Let (H, ·) be an arbitrary finite abelian group that contains an element
T ∈ H \ {1} such that T 2 = 1. Then {1, T} is a (normal) subgroup in H, that
is, quotient group H/{1,T} is well-defined, ψ : H → H/{1,T} : x 7→ {x, Tx} is a
group homomorphism, and |ψ(H)| = |H/{1,T}| = |H|/2 holds. Further, for all
subgroups G ≤ H we have that ψ(G) ≤ ψ(H) = H/{1,T}. In such cases, if G is
such that T ∈ G, then |ψ(G)| = |G/{1,T}| = |G|/2 as above; otherwise, if T 6∈ G,
then |ψ(G)| = |G| and thus ψ(G) ∼= G.

Consider now the specific group H = Z×n , for a Blum integer n. Then T = −1
has order 2 in Z×n and above observations apply, with mapping ψ : x 7→ {x,−x}.
For any subgroup G ≤ Z×n , let G/±1 := ψ(G). For subgroup QRn ≤ Z×n , as
−1 6∈ QRn, we have QRn/±1 ∼= QRn and thus |QRn/±1| = ϕ(n)/4. Moreover,
as Jn ≤ Z×n and −1 ∈ Jn, we have |Jn/±1| = |Jn|/2 = ϕ(n)/4. Similarly we
see |Z×n /±1| = ϕ(n)/2. After setting QRn/±1 := (Z×n /±1) \ (QRn/±1) we finally
obtain |QRn/±1| = ϕ(n)/4.

Note that we just observed QRn/±1 ≤ Jn/±1 ≤ Z×n /±1 and |QRn/±1| =
ϕ(n)/4 = |Jn/±1|. The overall structure is hence QRn/±1 = Jn/±1 � Z×n /±1, as
illustrated in Figure 4 (right). After agreeing on notations {±x} = {x,−x} and
{±x}2 = {±(x2)} we obtain the following (proven in the full version [23]):

Lemma 3. Let n be a Blum integer, then QRn/±1 =
{
{±x}2 : {±x} ∈ Z×n /±1

}
.
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Z×n

Jn

QRn

QRn

Jn

Z×n /±1

QRn/±1

= Jn/±1
QRn/±1

Fig. 4. Illustration of Z×n and Z×n /±1 (for Blum integers n), and subgroups QRn,
Jn, and Jn/±1 = QRn/±1. Also visualized is the action of the squaring operation.

Moreover, by exploiting identity QRn/±1 = Jn/±1, we directly get the fol-
lowing characterizations of QRn/±1 and QRn/±1. Observe that the sets are
well-defined since

(
x
n

)
=

(−x
n

)
for all x ∈ Z×n .

QRn/±1 =
{
{±x} ∈ Z×n /±1 :

(
x
n

)
= +1

}
(1)

QRn/±1 =
{
{±x} ∈ Z×n /±1 :

(
x
n

)
= −1

}
. (2)

Many facts on the structure of Z×n can be lifted to Z×n /±1. This holds in
particular for the following five lemmas and corollaries, which we prove in the
full version [23]. We stress that the following results do not appear in [22,24].

Lemma 4 (Square roots in Z×n /±1). Let n be a Blum integer. Every element
{±y} ∈ QRn/±1 has exactly two square roots in Z×n /±1. More precisely, there
exist unique {±x0} ∈ QRn/±1 and {±x1} ∈ QRn/±1 such that {±x0}2 =
{±y} = {±x1}2. The factorization of n can readily be recovered from such
pairs {±x0}, {±x1}: non-trivial divisors of n are given by gcd(n, x0 − x1) and
gcd(n, x0 + x1). Square roots in Z×n /±1 can be efficiently computed if the factors
of n = pq are known.

Corollary 1 (Squaring in Z×n /±1, QRn/±1, QRn/±1). Let n be a Blum in-
teger. The squaring operation Z×n /±1 → QRn/±1 : {±x} 7→ {±x}2 is a 2:1
mapping. Moreover, squaring is a 1:1 function from QRn/±1 to QRn/±1 and
from QRn/±1 to QRn/±1. These relations are illustrated in Figure 4 (right).

Lemma 5 (Computing square roots in Z×n /±1 is hard). Let n be a Blum
integer. Computing square roots in Z×n /±1 is as hard as factoring n.

Lemma 6 (Samplability and decidability). Let n be a Blum integer and
t ∈ Z×n be fixed with

(
t
n

)
= −1. The algorithm that samples a←

R
Zn and returns

{±a} generates a distribution that is statistically indistinguishable from uniform
on Z×n /±1. If the algorithm is modified such that it returns {±a} if

(
a
n

)
= +1

and {±ta} if
(
a
n

)
= −1, then the output is statistically indistinguishable from
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uniform on QRn/±1. QRn/±1 can be sampled correspondingly. Sets QRn/±1 and
QRn/±1 are efficiently decidable (within Z×n /±1) by equations (1) and (2).

Lemma 7 (Indifferentiable hashing into QRn/±1). Let H ′ : {0, 1}∗ → Jn
denote a hash function that is indifferentiable from a random oracle (see the full
version [23] on how to construct one). Consider auxiliary function G : Jn →
QRn/±1 : y 7→ {±y} and let H = G ◦ H ′. Then H : {0, 1}∗ → QRn/±1 is
indifferentiable as well.

Remark 1 (Representation of elements). An efficient and compact way to repre-
sent elements {±x} ∈ Z×n /±1 is by the binary encoding of x = min{x, n− x} ∈
[1, (n− 1)/2], as proposed by [22]. The decoding procedure is x 7→ {x,−x}.

4.2 Constructing a 2:1-TDF from sign-agnostic quadratic residues

We use the tools from Section 4.1 to construct a factoring-based extractable 2:1-
TDF, which will map Z×n /±1 → QRn/±1. While the Apply algorithm corresponds
to squaring, extractability is possible given distinct square roots of an element.

Construction 1 (Blum-2:1-TDF) Define algorithms Blum-2:1-TDF = (TdGen,
Apply,Reverse,Decide,Extract) as follows:

– TdGen(1λ): Pick random Blum integer n = pq of length λ such that p < q.
Pick t ∈ Z×n with

(
t
n

)
= −1. Return pub ← (n, t) and td ← (p, q). We will

use sets A0(pub) := QRn/±1, A1(pub) := QRn/±1, A(pub) := Z×n /±1, and
B(pub) := QRn/±1.

– Apply(pub, {±a}): Return {±b} ← {±a}2.
– Reverse(td, {±b}, d): By Lemma 4, element {±b} ∈ QRn/±1 has exactly two

square roots: {±a0} ∈ QRn/±1 and {±a1} ∈ QRn/±1. Return {±ad}.
– Decide(pub, {±a}): Return 0 if {±a} ∈ QRn/±1; otherwise return 1.
– Extract(pub, {±a0}, {±a1}): Both gcd(n, a0 − a1) and gcd(n, a0 + a1) are

non-trivial factors of n = pq. Return td∗ ← (p, q) such that p < q.

These algorithms are all efficient. Correctness of Blum-2:1-TDF and the security
properties follow straightforwardly from the number-theoretic facts established
in Sections 4.1; a formal proof appears in the full version [23]. Observe that the
samplability of sets A,A0, A1, B is warranted by Lemma 6.

Theorem 1 (Security and extractability of Blum-2:1-TDF). Blum-2:1-TDF
is (second) preimage resistant (Def. 9) under the assumption that factoring is
hard, and extractable (Def. 8).

Remark 2 (Choice of element t). In Construction 1, public element t can be any
quadratic non-residue; small values likely exist and might be favorable for storage
efficiency. Observe that, if p ≡ 3 mod 8 and q ≡ 7 mod 8, for t = 2 we always
have

(
t
n

)
= −1, so there is not need to store t at all.
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KGen(1λ) : Return (sk, vk) = (td, pub) where (td, pub)←R TdGen(1λ2)

Sign(sk, subj,msg) :

1. s← Reverse(td, Hpub(subj), 0)
2. (d1, . . . , dλh)← H#(subj, s,msg)
3. For 1 ≤ i ≤ λh :

(a) bi ← Hpub(subj, s, i)
(b) ai ← Reverse(td, bi, di)

4. Return σ ← (s, a1, . . . , aλh)

Ver(vk, subj,msg, σ) :

1. Parse (s, a1, . . . , aλh)← σ
2. If Decide(pub, s) 6= 0, return 0
3. If Apply(pub, s) 6= Hpub(subj), return 0
4. (d1, . . . , dλh)← H#(subj, s,msg)
5. For 1 ≤ i ≤ λh :

(a) If Apply(pub, ai) 6= Hpub(subj, s, i), return 0
(b) If Decide(pub, ai) 6= di, return 0

6. Return 1

Fig. 5. Double-authentication-preventing signature scheme 2:1-DAPS

5 DAPS construction based on extractable 2:1-TDF

We now come to the central result of this paper, a DAPS scheme generically
constructed from any extractable 2:1 trapdoor function, such as the factoring-
based Blum-2:1-TDF from the previous section.

Construction 2 (DAPS from extractable 2:1-TDF) Let λ denote a secu-
rity parameter, and let λ2 and λh be parameters polynomially dependent on λ. Let
X = (TdGen,Apply,Reverse,Decide) be an extractable 2:1 trapdoor function and
let H# : {0, 1}∗ → {0, 1}λh be a hash function. For each pub output by TdGen,
let Hpub : {0, 1}∗ → B(pub) be a hash function. Double-authentication-preventing
signature scheme 2:1-DAPS consists of the algorithms specified in Figure 5.

The basic idea of the signing algorithm is as follows. From any given subject,
the signer derives message-independent signing elements b1, . . . , bλh

∈ B.8 The
signer also hashes subject and message to a bit string d1 . . . dλh

; for each bit di,
she finds the preimage ai of the signing element bi which is in the di partition of
A; either in A0 or A1. The signature σ is basically the vector of these preimages.
Intuitively, the scheme is unforgeable because it is hard to find preimages of signing
elements bi without knowing the trapdoor. The scheme is extractable because
the signing elements bi are only dependent on the subject, so the signatures of
two different messages for the same subject use the same bi; if H# is collision
resistance, at least one different di is used in the two signatures, so two distinct
preimages of bi are used, allowing recovery of the trapdoor.

5.1 Security of our construction

We next establish existential unforgeability of 2:1-DAPS (cf. Definition 3). The
proof proceeds by changing the EUF simulation so that it performs all operations
without using the signing key and without (noticeably) changing the distribution
of verification key and answers to A’s oracle queries. From any forgery crafted by
adversary A, either a preimage or second preimage of X, or a collision of H# can

8 For rationale on why the subj-dependent value s is required see the full version [23].
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be extracted. Observe that, by Lemma 1, it suffices to require second preimage
resistance of X in Theorem 2. The proof appears in the full version [23].

Theorem 2 (2:1-DAPS is EUF). In the setting of Construction 2, if X is second
preimage resistant, H# is collision-resistant, and Hpub is a random oracle, then
double-authentication-preventing signature 2:1-DAPS is existentially unforgeable
under adaptive chosen message attacks. More precisely, for any efficient EUF
algorithm A making at most q1 queries to Hpub(·) and qS queries to OSign oracle,
there exist efficient algorithms B1, B2, and C such that

Succ EUF
2:1-DAPS,A(λ) ≤ q1Succ INV-1

X,B1
(λ2) + 2qSλh Succ INV-2

X,B2
(λ2) + SuccCR

H#,C(λh),

where SuccCR
H#,C(λh) is the success probability of algorithm C in finding collisions

of hash function H#.

Assuming collision resistance of H#, two signatures for different messages but
the same subject result in some index i where the hashes H#(subj, s,msg1) and
H#(subj, s,msg2) differ. The corresponding ith values ai in the two signatures
can be used to extract the signing key. This is the intuition behind Theorem 3;
the proof appears in the full version [23].

Theorem 3 (2:1-DAPS is DSE∗). In the setting of Construction 2, if X is
extractable and H# is collision-resistant, then double-authentication-preventing
signature 2:1-DAPS is double-signature extractable with trusted setup.9

5.2 Efficiency of our construction

Table 1 shows the size of verification keys, signing keys, and signatures, and
the cost of signature generation and verification for the 2:1-DAPS based on
Blum-2:1-TDF, with abstract results as well as for 1024- and 2048-bit keys.
We assume the element representation from Remark 1, the verification key
optimization from Remark 2, and an implementation of Hpub as in Lemma 7.

We also report the results of our implementation of DAPS using the libgcrypt
cryptographic library.10 As libgcrypt does not have routines for square roots or
Jacobi symbols, we implemented our own, and we expect that there may be space
for improvement with optimized implementations of these operations. Timings
reported are an average of 50 iterations, performed on a 2.6 GHz Intel Core i7
(3720QM) CPU, using libgcrypt 1.5.2, compiled in x86 64 mode using LLVM 3.3
and compiler flag -O3. Source code for our implementation is available online at
http://eprints.qut.edu.au/73005/.

With 1024-bit signing and verification keys, a signature is about 20 KiB in
size, and takes about 0.341 s to generate and 0.105 s to verify. While less efficient
than a regular signature scheme, we believe these timings are still tolerable; this
holds in particular if our scheme is used to implement CA functionality where
signature generation happens rarely and verification results can be cached.

9 See the full version [23] for how to achieve double-signature extractability without
trusted setup using zero-knowledge proofs.

10 http://www.gnu.org/software/libgcrypt/
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Table 1. Efficiency of 2:1-DAPS based on sign-agnostic quadratic residues.

General analysis libgcrypt implementation

λh — 160 160
λ2 (size of n in bits) — 1024 2048

Key generation time — 0.097 s 0.759 s
Signing key size (bits) log2 n 1024 2048
Verification key size (bits) log2 n 1024 2048

Signature generation cost (λh + 1) · Jac, (λh + 1) · sqrt 0.341 s 1.457 s
Signature size (bits) (λh + 1) log2 n 164 864 = 20 KiB 329 728 = 40 KiB

Signature verification cost (2λh + 1) · Jac, (λh + 1) · sqr 0.105 s 0.276 s

Legend: Jac: computation of Jacobi symbol modulo n; sqrt: square root modulo n;
sqr: squaring modulo n.

6 Applications

DAPS allows applications that employ digital signatures for establishing unique
bindings between digital objects to provide self-enforcement for correct signer
behaviour, and resistance by signers to coercion. Whenever the verifier places high
value on the uniqueness of the binding, it may be worthwhile to employ DAPS
instead of traditional digital signatures, despite potential increased damage when
signers make mistakes.

It should be noted that use of DAPS may impose an additional burden on
honest signers: they need to maintain a list of previously signed subjects to
avoid double signing. Some signers may already do so, but the importance of
the correctness of this list is increased with DAPS. As noted below, signers may
wish to use additional protections to maintain their list of signed subjects, for
example by cryptographically authenticating it using a message authentication
code with a key in the same hardware security module as the main signing key.

In this section, we examine a few cryptographic applications involving unique
bindings and discuss the potential applicability of DAPS.

Certificate authorities. DAPS could be used to ensure that certification authori-
ties in the web PKI behave as expected. For example, by having the subject consist
of the domain name and the year, and the message consist of the public key and
other certificate details, a CA who signs one certificate for “www.example.com”
using DAPS cannot sign another for the same domain and time period without
invalidating its own key. A CA using DAPS must then be stateful, carefully track-
ing the previous subjects signed and refusing to sign duplicates. In commercial
CAs, where signing is done on a hardware security module (HSM), the list of
subjects signed should be kept under authenticated control of the HSM.

A DAPS-based PKI would need to adopt an appropriate convention on
validity periods to accommodate expiry of certificates without permitting double-
signing. For example, a DAPS PKI may use a subject with a low-granularity non-
overlapping validity period (“www.example.com‖2014”) since high-granularity
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overlapping validity periods in the subject give a malicious CA a vector for issuing
two certificates without signing the exact same subject twice (“www.example
.com‖20140501-20150430” versus “www.example.com‖20140502-20150501”).

Furthermore, a DAPS-based PKI could support revocation using standard
mechanisms such as certificate revocation lists. Reissuing could be achieved by
including a counter in the DAPS subject (e.g., “www.example.com‖2014‖0”)
and using DAPS-based revocation to provide an unambiguous and unalterable
auditable chain from the initial certificate to the current one.

One of the major problems with multi-CA PKIs such as the web PKI is
that clients trust many CAs, any one of which can issue a certificate for a
particular subject. A DAPS-based PKI would prevent one CA from signing
multiple certificates for a subject, but not other CAs from also signing certificates
for that subject. It remains a very interesting open question to find cryptographic
constructions that solve the multi-CA PKI problem.

Time-stamping. A standard approach to preventing time-stamping authorities
from “changing the past” is to require that, when asserting that certain pieces of
information x exist at a particular time t, the actual message being signed must
also include the (hash of) messages authenticated in the previous time periods.
The authority is prevented from trying to change the past and assert that x′ 6= x
existed at time t because the signatures issued at time periods t+ 1, t+ 2, . . .
chain back to the original message x.

DAPS could be used to alternatively discourage time-stamping authority
fraud by having the subject consist of the time period t and the message consist
of whatever information x is to be signed at that time period. A time-stamping
authority who signs an assertion for a given time period using DAPS cannot sign
another for the same time period without invalidating its own key. Assuming an
honest authority’s system is designed to only sign once per time period, the signer
need not track all signed subjects, since time periods automatically increment.

Hybrid DAPS + standard signatures. DAPS could be combined with a standard
signature scheme to provide more robustness in the case of an accidental error,
but also provide a clear and quantifiable decrease in security due to a double
signing, giving users a window of time in which to migrate away from the signer.

We can achieve this goal by augmenting a generic standard signature scheme
with our factoring-based DAPS as follows. The signer publishes a public key
consisting of the standard signature’s verification key, the 2:1-DAPS verification
key n, and a verifiable Rabin encryption under key n of, say, the first half of
the bits of the standard scheme’s signing key. The hybrid DAPS signature for a
subject/message pair would consist of the standard scheme’s signature on subject
and message concatenated, and the DAPS signature on separated subject and
message. If two messages are ever signed for the same subject, then the signer’s
DAPS secret key can be recovered, which can then be used to decrypt the Rabin
ciphertext containing the first half of the standard scheme’s signing key. This is
not quite enough to readily forge signatures, but it substantially and quantifiably
weakens trust in this signer’s signatures, making it clear that migration to a new
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signer must occur but still providing a window of time in which to migrate. As the
sketched combination of primitives exhibits non-standard dependencies between
different secret keys, a thorough cryptographic analysis would be required.

7 Conclusions

We have introduced a new type of signatures, double-authentication-preventing
signatures, in which a subject/message pair is signed. In certain situations, DAPS
can provide greater assurance to verifiers that signers behave honestly since
there is a great disincentive for signers who misbehave: if a signer ever signs
two different messages for the same subject, then enough information is revealed
to allow anyone to fully recover the signer’s secret key. Although this leads to
less robustness in the face of accidental errors, it also provides a mechanism for
self-enforcement of correct behaviour and gives trusted signers such as CAs an
argument to resist coercion and the compelled certificate creation attack.

Our construction is based on a new primitive called extractable 2:1 trapdoor
functions. We have shown how to instantiate this using an algebraic reformulation
of sign-agnostic quadratic residues modulo Blum integers; the resulting DAPS
is unforgeable assuming factoring is hard, with reasonable signature sizes and
computation times.

We believe DAPS can be useful in scenarios where trusted authorities are
meant to make unique bindings between identifiers and digital objects, such
as certificate authorities in PKIs who are supposed to make unique bindings
between domain names and public keys, and time-stamping authorities who are
supposed to make unique bindings between time periods and pieces of data.

Besides the practical applications of DAPS, several interesting theoretical
questions arise from our work. Are there more efficient constructions of DAPS?
How else can extractable 2:1 trapdoor functions be instantiated? Given that
DAPS and double-spending-resistant digital cash use similar number-theoretic
primitives, can DAPS be used to generically construct untraceable digital cash?
Can these techniques be applied to key generation in the identity-based setting?
Can DAPS be adapted to provide assurance in a multi-CA setting?
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