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Abstract. Since hundreds of certificate authorities (CAs) can issue
browser-trusted certificates, it can be difficult for domain owners to detect
certificates that have been fraudulently issued for their domain. Certificate
Transparency (CT) is a recent standard by the Internet Engineering Task
Force (IETF) that aims to construct public logs of all certificates issued
by CAs, making it easier for domain owners to monitor for fraudulently
issued certificates. To avoid relying on trusted log servers, CT includes
mechanisms by which monitors and auditors can check whether logs
are behaving honestly or not; these mechanisms are primarily based on
Merkle tree hashing and authentication proofs. Given that CT is now
being deployed, it is important to verify that it achieves its security goals.
In this work, we define four security properties of logging schemes such
as CT that can be assured via cryptographic means, and show that CT
does achieve these security properties. We consider two classes of security
goals: those involving security against a malicious logger attempting to
present different views of the log to different parties or at different points
in time, and those involving security against malicious monitors who
attempt to frame an honest log for failing to include a certificate in
the log. We show that Certificate Transparency satisfies these security
properties under various assumptions on Merkle trees all of which reduce
to collision resistance of the underlying hash function (and in one case
with the additional assumption of unforgeable signatures).

1 Introduction

The security of web communication via the Transport Layer Security (TLS)
protocol relies on safe distribution of public keys in the form of X.509 certificates.
Certificate authorities (CAs) are trusted third parties that endorse the public
keys of subjects by performing checks and issuing certificates. Web browsers
can accept certificates from hundreds of CAs, and relying parties are unable
to determine whether certificates were issued at the request of the subject or
fraudulently issued by the CAs, whether by mistake or due to compromise.

In recent years there have been high-profile cases of misissued certificates
being used to spoof legitimate websites. For example, in 2011 an intruder managed
to issue itself a valid certificate for the domain google.com and its subdomains
from the prominent Dutch Certificate Authority DigiNotar [11]. This certificate
was issued in July 2011 and may have been used maliciously for weeks before the



detection on August 28, 2011, of large-scale man-in-the-middle (MITM) attacks
on multiple users in Iran. In another instance, the Comodo Group suffered from
an attack which resulted in the issuance of nine fraudulent certificates for domains
owned by Google, Yahoo!, Skype, and others [5].

Certificate Transparency (CT) [18,17] is an experimental protocol originally
proposed by Google and standardized by the Internet Engineering Task Force
(IETF) Public Notary Transparency working group to mitigate the threat of
fraudulently issued certificates by publicly logging certificates. CT provides an
open auditing and monitoring system which allows domain owners to verify that
no fraudulent certificates have been issued for their domains. The end goal of
Certificate Transparency is that web clients should only accept certificates that
are publicly logged and that it should be impossible for a CA to issue a certificate
for a domain without it being publicly visible. Recent incidents demonstrated
the effectiveness of CT logs: Google employees detected unrequested certificates
for two of their subdomains issued by a Symantec sub-CA Thawte [30]. The
certificates were issued on September 14, 2015 and detected by September 17, 2015;
the certificates were revoked immediately, limiting the exposure of the certificates
to just three days. In another case, the Facebook security team discovered an
issuance of two certificates on multiple subdomains violating Facebook’s internal
security policies [14]. The incident was investigated and both certificates revoked
within hours, even before they were deployed to production systems.

1.1 The Web PKI and Certificate Transparency

The basic web public key infrastructure (PKI) includes several types of entities
which perform different tasks: web servers, certificate authorities, browser vendors
and web browsers. The Certificate Transparency framework adds several new
entities which help maintain and monitor public logs:

– Loggers or log servers maintain publicly accessible append-only logs of certifi-
cates. These certificates are received from submitters. As a new entry might
not be published immediately for operational reasoning, the logger provides
each submitter with a promise to log the certificate within a certain amount
of time; the promise is called a signed certificate timestamp (SCT).

– Submitters, submit certificates (or partially completed pre-certificates) to a
log server and receive a signed certificate timestamp from the log.

– Monitors are public or private services that watch for misbehaving logs or
suspicious certificates by periodically contacting and downloading information
from log servers. They inspect every new entry in a log, keep copies of the
entire log, and verify the consistency between published revisions of the log.

– Auditors verify the correct behaviour of a log, checking that certificates that
a logger has promised to include are present in the log. Auditors may be
standalone entities or integrated into monitors or web clients.

In CT, the original entities from the web PKI also have some additional tasks:

– CAs should act as submitters above.
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Fig. 1: Overview over the interaction between entities in Certificate Transparency;
see Section 1.1 for details. Solid-line interactions and solid-line, orange entities are
captured by the model in our work while dashed-line interactions and dashed-line,
gray entities are not captured. Dotted line–connected entities (monitors and
auditors or auditors and web clients) might be the same physical entity.

– Web servers should include their SCT along with the certificate when com-
municating with clients. Web servers may choose to submit their certificate
to a log server if their CA does not do so for them.

– Web clients, upon receiving an SCT from a web server, may choose to verify
that the log named in the SCT actually has publicly logged the certificate
(thereby taking on the role of an auditor as above).

– Browser vendors may push updates that remove CAs or revoke certificates
based on claims from monitors and web servers about misbehaving CAs.

Figure 1 provides an overview of the involved parties and their interactions
in CT.4 At the submission of a new certificate entry (step A), the logger returns
a signed certificate timestamp (SCT) (step B), which is a promise to include the
entry in the log. Every log has a published parameter called a maximum merge
delay (MMD) which indicates the maximum period between issuing a timestamp
and the inclusion of the certificate into the log.

In CT, the logger stores the entries of the log in an append-only Merkle
hash tree [24,25], a form of a tamper-evident history tree [7,6]. Recall for Merkle
trees, data is placed at the leaves of a binary tree and each intermediate node is
the hash of its two child nodes; the root of the trees acts as a fingerprint of all
included data. In CT, the root of the tree is signed and published by the logger,
and is called the signed tree head (STH). The observed fingerprints are exchanged
by all parties in the system through a so-called “gossiping” protocol [27].

Gossiping allows monitors, auditors, and web clients to share information
they receive from log servers, with the goal of collectively detecting misbehavior

4 Note that the labeling of interactions is simply for reference and does not indicate a
particular order of the displayed requests.
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of log servers while limiting the damage to user privacy. The parties who hold the
same fingerprints of a log are (cryptographically) assured that they have the same
view of the log at the point in time represented by the fingerprint. Gossiping can
be implemented through SCT feedback (where web clients send SCTs through
HTTPS servers), STH pollination (where web clients and CT auditors/monitors
use HTTPS servers as STH pools) and trusted auditor streams (where web clients
directly communicate with trusted CT auditors/monitors).

To convince other parties that promised certificates are included in a log, and
that subsequent published fingerprints are consistent, the logger employs two
types of cryptographic proofs: audit proofs and consistency proofs.

An audit proof allows an auditor to verify that a particular certificate/SCT
that a logger has promised to include is actually included in the log represented
by a fingerprint, shown in steps C and D. In CT, an audit proof is essentially an
authentication path in the Merkle tree from the leaf containing the certificate in
question to the root hash/fingerprint contained in the signed tree hash.

A consistency proof allows an auditor or monitor to verify that the log is
append-only, in particular that the log represented by a fingerprint at one point
in time t0 is a prefix of the log represented by a fingerprint at a later point in
time t1 > t0, shown in steps G and H. In CT, a consistency proof is a subset of
intermediate nodes in the Merkle tree needed to connect the two root hashes.

Monitors can also request that a logger provides them with the full set of
entries represented by a fingerprint (steps E and F). In CT, this can be verified
by recomputing the Merkle tree hash of the entries.

As a starting point for a threat model, the informational IETF draft “Attack
Model for Certificate Transparency” [15] describes potential attack scenarios when
Certificate Transparency is used in the context of web public-key infrastructure.

1.2 Our Contribution

Given the practical significance of Certificate Transparency, it is important to
have a formal understanding of the security goals of CT and analyse whether
CT achieves those goals. The objective of our work is to define security goals of
logging schemes using the formalism of provable security, and attempt to prove
that CT satisfies these security goals under suitable cryptographic assumptions.
Our model of logging schemes does not assume a PKI context, so we do not
assume that log entries must have a particular syntax, and thus we leave the
threats involving validity or syntax of log entries to existing analyses on certificate
validity. Similarly, we omit consideration of threats where an entity fails to act.

As noted above, we will focus on two particular threats in the CT threat
model: whether a misbehaving log server can present different views of the log and
whether a misbehaving monitor can frame an honest log server for bad behaviour.
Thus, our model will focus on two entities: the logger and the monitor/auditor.

Definition of logging schemes. In Section 3 we formally define logging schemes,
naming operations that each entity can perform. This model does not attach any
semantic meaning to the entries being logged; in particular, we do not assume that
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log entries are certificates. Subsequently, we describe the operations of Certificate
Transparency as a specific instantiation of the logging scheme framework.

Security definitions. Next, we introduce cryptographic security properties for
logging schemes in Section 4 that are inspired by the CT threat model but reflect
the corresponding ideas in general terms. More specifically, we treat two types of
properties. First, we define security notions which concern a malicious logger:

– entry-coll: can a malicious logger present two different sets of entries corre-
sponding to the same fingerprint?

– proof-coll: can a malicious logger present an audit proof that claims a single
fingerprint represents both a particular entry as well as a set of entries such
that the particular entry is not actually in the list of entries?

– entry-cons: can a malicious logger present two fingerprints connected by a valid
consistency proof and two sets of entries such that the entries corresponding
to the first fingerprint are not a prefix of the entries corresponding to the
second fingerprint?

Second, we define a security notion concerning a malicious monitor:

– promise-incl: can a malicious monitor frame an honest logger for not including
a promised entry when it actually has?

Security of Certificate Transparency. Finally, we analyze the security of Certificate
Transparency in Section 5 and show that CT both prevents logger misbehaviour
(i.e., CT satisfies the entry-coll, proof-coll, and entry-cons security properties) as
well as protection from framing of honest loggers by misbehaving monitors (i.e.,
CT satisfies the promise-incl property.) All of these proofs are based on properties
of Merkle tree hashing and audit/consistency proofs, all of which ultimately derive
from the collision resistance of the hash function. The last property, promise-incl,
also depends on the unforgeability of the signature scheme used by loggers.

Generality of Definitions. Our definition of a logging scheme and its security
properties are not specific to CT, and have the potential to be applied to other
constructions. In Section 3.3, we discuss the applicability of our definitions to
CONIKS [23], a logging scheme aimed at transparency of user keys: our logging
scheme definitions capture some aspects of CONIKS, but also highlights important
differences between the functionality and goals of CT versus CONIKS.

1.3 Related Work

New PKI technologies. Recent certificate mis-issuances and security breaches
in CAs have motivated research in alternatives to having a trusted third party
vouching for the binding between domain name and its private key. Public key
pinning [10] and DANE [13] are such proposals that allow domain owners to
proactively and directly state their trusted public keys for the domain. Certificate
Transparency takes a reactive rather than a proactive approach: instead of
preventing mis-issuance in the first place, it aims to detect mis-issuance by
making certificates visible through a public authenticated log.
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History trees. The data structures in CT are similar to the history trees of Crosby
and Wallach [7,6]. Two of their results [6] connect with our security notions:
their Corollary 1 shows that “reconstructed hashes” that are equal imply the
entry sets from which they were constructed are equal, where “reconstructed
hashes” can mean reconstructed from the leaves directly (like in a full hash tree
computation) or from membership proofs. Their Theorem 1 shows that, given a
consistency proof between two roots and a membership proof for the same index
to each root (two membership proofs total), the leaves at that index must be the
same in both trees; this is similar to our entry-cons property, though we focus on
entry sets rather than membership proofs. A limitation of Crosby’s results is that
they assume that each root was computed from an underlying entry set, but one
cannot be sure when the adversary generates roots (as in CT); our definitions
make no such assumption. We furthermore capture several extensions that CT
makes, including delays for entry inclusion and protection of honest loggers from
framing (our promise-incl property). Finally, our presentation is notably different:
Crosby’s descriptions of the history tree operations and the proofs [6, §3] are
generally descriptive rather than algorithmic, whereas we state the operations
fully algorithmically and provide complete algorithmic reductions for all proofs.

In recent years a few more approaches have emerged around the concept
of transparency logs, including revocation [19,29] (which we omit in this work
as they are not under consideration by the IETF Public Notary Transparency
working group) or limitations on certificate issuance, validation, and update [1,16].
The Electronic Frontier Foundation’s Sovereign Keys Project [9] combines trans-
parency logs with cross-signing of keys. Melara et al. [23] present CONIKS, a
system focusing on key transparency in end-to-end encryption/secure messaging
scenarios. CONIKS eliminates the need for global third party monitors and
aims at additional privacy properties for identity–key bindings, however without
providing a formal security model or cryptographic proofs.

Merkle trees. Introduced by Merkle [24], Merkle trees have been used in many
areas of cryptography and computer science, including in the construction of
public key signatures from hash functions [25]. Most uses of Merkle trees concern
a static dataset, but in CT we are concerned with a dynamic dataset, and in
particular the append-only nature of the dataset.

There has been some work on authentication trees and more generally signa-
tures on dynamic data sets. Bellare et al. [2,3] introduced the notion of incremental
cryptography. Naor and Nissim [26] use dynamic Merkle trees in the context
of certificate revocation and updates, Li et al. [20] apply them to authenticate
index structures in outsourced databases. Villemson [31] and Ogawa et al. [28]
investigated the characteristics of (generalizations of) incremental Merkle trees.

Cryptographic PKI analyses. Maurer [22] introduced a formal model for public key
infrastructures (PKIs) which subsequently was further extended [21,4]. This line
of work approaches the dynamic nature of PKI issuance through an event-based
system that captures the view of potential users at a certain point in time, using
a combination of events that have happened and logical rules that infer certain
conclusions from events. Our work differs from this approach by following a
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Fig. 2: Merkle tree consistency proof
#–

C = (
#–

C [0], . . . ,
#–

C [3]) between roots H0 (for
a tree of size 3) and H1 (for a tree of size 6). denotes leaf nodes, denotes
inner nodes, denotes nodes corresponding to consistency proof values.

game-based approach focusing on the interaction between the parties involved.
Our approach also conceptually distinguishes between values generated by honest
parties, claims by dishonest parties, and conclusions drawn from events.

2 Cryptographic Building Blocks

Notation. We denote by
#–

E an ordered list of entries, where () denotes the empty

list. Indexing is 0-based:
#–

E = (e0, . . . , en−1), and we write
#–

E[i] to denote ei
and

#–

E[i : j] to denote the sublist (ei, . . . , ej−1). We adopt the convention that
#–

E[−1] = (). We write e ∈ #–

E to indicate that an entry e is contained in the list
#–

E.

We let
#–

E‖ #–

E ′ denote the concatenation of two entry lists and write
#–

E ≺ #–

E ′ if
#–

E is a prefix of
#–

E ′. If we define P ← (t, e, σ), then we can later access fields

of P using “object-oriented” notation: P.t, P.e, P.σ. Moreover, if
#–

P is a list
(P0, . . . , Pn−1), then the notation

#–

P .e means the list (P0.e, . . . , Pn−1.e). The
expression k ← 2dlog2(n/2)e corresponds to setting k to be the largest power of
two less than n, i.e., n

2 ≤ k = 2i < n.
We rely on the standard notion of signature schemes and existential un-

forgeability under chosen-message attacks [12], and the corresponding advantage
Adveuf-cma

SIG (A) of an adversary A breaking this notion for a scheme SIG.

Definition 1 (Hash collision finding). Let M be a set, let H :M→ {0, 1}λ
be an unkeyed hash function, and let A be an algorithm. We say that A finds a
collision in H if A outputs a pair (m,m′) such that m 6= m′ and H(m) = H(m′).

2.1 Merkle Trees

The use of hash trees for authenticating large amounts of data was first proposed
by Merkle [24,25]. Let H : {0, 1}∗ → {0, 1}λ be a hash function. In a Merkle

hash tree for
#–

E, the values of
#–

E are placed at the leaves of a binary tree and
each intermediate node is the hash of its two child nodes; the root of the trees
acts as a fingerprint of all the data contained in the tree; this is the output of
the algorithm MTHH(

#–

E) in Figure 3. Note the use of prefixes 0 and 1 in hash
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function calculations provides “domain separation” between hash calculations
for leaves (H(0‖ . . . )) and intermediate nodes (H(1‖ . . . )); preventing an attacker
from gluing part of a tree into a leaf or vice versa.

A common technique is the use of an authentication path to demonstrate
that a piece of data is in a leaf of a tree corresponding to a particular root. The
authentication path generation algorithm PathH(m,

#–

E) and verification algorithm

CheckPathH(e,H, n,
#–

A,m) are shown in Figure 3.
A lesser-known technique is the use of a consistency proof to demonstrate that

the data corresponding to one root is a subset (prefix) of the data corresponding
to another root, used, for example, in the context of tamper-evident history
trees [7,6]. In Figure 2, the consistency proof

#–

C shows that the data corresponding
to root H0 is a prefix of the data corresponding to root H1. Consistency proofs
reconstruct each of the two roots from relevant parts of the proof and compare
them against the actual roots; the size of the two trees is essential in verifying a
consistency proof. Consistency proofs may be viewed as an authentication path
from the inner node immediately above the last leaf node in the first tree (i.e., an

authentication path from H(e2) =
#–

C [0] to root H1 in the right side of Figure 2).

The consistency proof generation algorithm ConsProofH(m,n,
#–

E) and verification

algorithm CheckConsProofH(n0, H0, n1, H1,
#–

C) are shown in Figure 3. We have
reformulated these from how they appear in the RFC [17]: ours use a top-down
recursive approach, whereas the RFC versions are bottom-up looping algorithms;
the two are equivalent, but our versions are more helpful in proving our theorems.

2.2 Merkle Tree Security Properties

We now note some well-known facts about the collision resistance of Merkle tree
hashing and the security of authentication paths in Merkle trees [24,25]. For
completeness, full proofs are given in the full version [8].

Lemma 1 (Collision Resistance of Merkle Trees). If H is collision-resistant,
then Merkle-tree hashing using H is also collision-resistant. More precisely, if A
finds a collision in MTHH, then there exists algorithm BA1 that finds a collision
in H. Moreover, the runtime of BA1 consists of the runtime of A, plus at most a
quadratic (in the size of the larger list) number of hash evaluations.

Lemma 2 (Authentication Paths Consistency). If H is collision-resistant,

then no CheckPathH authentication path
#–

A can be generated with respect to
Merkle-tree hashing MTHH for an entry e not contained in the Merkle tree. More
precisely, if A outputs (e,

#–

E,
#–

A,m) such that CheckPathH(e, MTHH(
#–

E), | #–E|, #–

A,m) =

1 and e /∈ #–

E, then there exists algorithm BA2 that finds a collision in H. Moreover,
the runtime of BA2 consists of the runtime of A, plus at most a quadratic (in | #–E|)
number of hash evaluations.

3 Logging Schemes

In this section we specify the algorithms that comprise a logging scheme and
formulate CT as a logging scheme.
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MTHH(
#–
E)→ H:

1: n← | #–E|
2: if n = 1, return H(0‖ #–

E[0])
3: else (n > 1)
4: k ← 2dlog2(n/2)e

5: return H(1‖MTHH(
#–
E[0 : k])

6: ‖MTHH(
#–
E[k : n])

PathH(m,
#–
E)→ #–

A:

1: n← | #–E|
2: if n = 1, return ()
3: else (n > 1)
4: k ← 2dlog2(n/2)e

5: if m < k
6: return PathH(m,

#–
E[0 : k])

7: ‖MTHH(
#–
E[k : n])

8: else (m ≥ k)
9: return PathH(m− k, #–

E[k : n])
10: ‖MTHH(

#–
E[0 : k])

CheckPathH(e,H, n,
#–
A,m)→ {0, 1}:

1: H ′ ← RootFromPathH(e, n,
#–
A,m)

2: return (H = H ′)

RootFromPathH(e, n,
#–
A,m)→ H:

1: if n = 1, return H(0‖e)
2: k ← 2dlog2(n/2)e

3: if m < k
4: `← RootFromPathH(e, k,

#–
A[0 : | #–A| − 1],m)

5: r ← #–
A[| #–A| − 1]

6: else (m ≥ k)
7: `← #–

A[| #–A| − 1]
8: r ← RootFromPathH(e, n− k,
9:

#–
A[0 : | #–A| − 1],m− k)

10: return H(1‖`‖r)

ConsProofH(m,n,
#–
E)→ #–

C :

1: // require: 0 ≤ m ≤ n ≤ | #–E|
2: if m = n
3: return ()
4: else (m < n)
5: return ConsProofSubH(m,

#–
E[0 : n], true)

ConsProofSubH(m,
#–
E, b)→ #–

C :

1: n← | #–E|
2: if (m = n) ∧ (b = false)
3: return MTHH(

#–
E[0 : m])

4: else
5: k ← 2dlog2(n)/2e

6: if m ≤ k
7: return ConsProofSubH(m,

#–
E[0 : k], b)

8: ‖MTHH(
#–
E[k : n])

9: else (m > k)
10: return ConsProofSubH(m− k, #–

E[k : n], false)
11: ‖MTHH(

#–
E[0 : k])

CheckConsProofH(n0, H0, n1, H1,
#–
C)→ b:

1: if n0 is a power of two,
#–
C ← H0‖

#–
C

2: H ′
0 ← Root0FromConsProofH(

#–
C, n0, n1)

3: H ′
1 ← Root1FromConsProofH(

#–
C, n0, n1)

4: return ((H0 = H ′
0) ∧ (H1 = H ′

1))

Root0FromConsProofH(
#–
C, n0, n1)→ H:

1: k ← 2dlog2(n1)/2e

2: if n0 < k
3: return Root0FromConsProofH(

#–
C [0 : | #–C | − 1], n0, k)

4: elsif n0 = k, return
#–
C [| #–C | − 2]

5: else
6: `← #–

C [| #–C | − 1]
7: r ← Root0FromConsProofH(

#–
C [0 : | #–C | − 1],

8: n0 − k, n1 − k)
9: return H(1‖`‖r)

Root1FromConsProofH(
#–
C, n0, n1)→ H:

1: if | #–C | = 2, return H(1‖ #–
C [0]‖ #–

C [1])
2: k ← 2dlog2(n1)/2e

3: if n0 < k
4: `← Root1FromConsProofH(

#–
C [0 : | #–C | − 1], n0, k)

5: r ← #–
C [| #–C | − 1]

6: else
7: `← #–

C [| #–C | − 1]
8: r ← Root1FromConsProofH(

#–
C [0 : | #–C | − 1],

9: n0 − k, n1 − k)
10: return H(1‖`‖r)

Fig. 3: Merkle tree algorithms

3.1 Definition of Logging Schemes

Our definition of a logging scheme is based around the certificate transparency
functionality, but is designed to be potentially more general. We use non-CT
specific language (such as “fingerprint” instead of the CT-specific “signed tree
head”), and our logging scheme is not actually about certificates—any type of
object can be logged.

Definition 2 (Logging Scheme). A logging scheme LS consists of the follow-
ing algorithms, some of which are run by a logger and some of which are run by
a monitor/auditor.

The following algorithm is used by a logger to initialize its log:

9



– KeyGen()
$→ (st, pk, sk): A probabilistic algorithm that returns a state st and

a public key/secret key pair (pk, sk).

The following algorithms are used by a logger to add entries to its log, using a
two-step process of promising to add an entry to the log and then a batch update
actually adding the entries:

– PromiseEntry(e, t, sk)
$→ P : A probabilistic algorithm that takes as input a

log entry e, a time t, and the secret key sk and outputs a promise P ; the
promise contains the entry and time as subfields P.e and P.t.

– UpdateLog(st,
#–

P , t, sk)
$→ (st′, F ): A probabilistic algorithm that takes as

input a state st, a potentially empty ordered list of promises
#–

P to add to the
log, a time t and the secret key sk and returns an updated state st′ and a
fingerprint F (where the latter includes the indicated time, denoted as F.t)

The following algorithms are used by a logger to demonstrate various properties
to monitors/auditors:

– PresentEntries(st, F ) → #–

E or ⊥: A deterministic algorithm that takes as

input a state st and a fingerprint F and outputs an ordered list of log entries
#–

E,
or an error symbol ⊥.

– ProveMembership(st, e, F )
$→ # –

M or ⊥: A probabilistic algorithm5 that takes
as input a state st, a log entry e, and a fingerprint F and outputs a membership
proof

# –

M , or an error symbol ⊥.

– ProveConsistency(st, F0, F1)
$→ #–

C or ⊥: A probabilistic algorithm5 that takes
as input a state st and two fingerprints F0 and F1 and outputs a consistency
proof

#–

C , or an error symbol ⊥.

The following algorithms are used by monitors/auditors to check a log:

– CheckPromise(P, pk)→ {0, 1}: A deterministic algorithm that takes as input
a promise P (which includes an entry P.e) and a public key pk and outputs
a bit b ∈ {0, 1}.

– CheckFingerprint(F, pk) → {0, 1}: A deterministic algorithm that takes as
input a fingerprint F and a public key pk and outputs a bit b ∈ {0, 1}.

– CheckEntries(
#–

E,F, pk) → {0, 1}: A deterministic algorithm that takes as

input an ordered list of log entries
#–

E, a fingerprint F , and a public key pk
and outputs a bit b ∈ {0, 1}.

– CheckMembership(F, e,
# –

M,pk) → {0, 1}: A deterministic algorithm that

takes as input a fingerprint F , an entry e, a membership proof
# –

M , and
a public key pk and outputs a bit b ∈ {0, 1}.

– CheckConsistency(F0, F1,
#–

C, pk) → {0, 1}: A deterministic algorithm that

takes as input two fingerprints F0 and F1, a consistency proof
#–

C , and a
public key pk and outputs a bit b ∈ {0, 1}.

Correctness of a logging scheme is defined in the natural way and is omitted
due to space constraints; see the full version [8].

5 In CT, ProveMembership and ProveConsistency are deterministic, though in principle
these could be probabilistic in a logging scheme.
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CTH,SIG.KeyGen()→ (st, pk, sk):

1:
#–
E ← ()

2: st = (
#–
E)

3: (pk, sk)
$← SIG.KeyGen()

4: return (st, pk, sk)

CTH,SIG.PromiseEntry(e, t, sk)→ P :
1: σ ← SIG.Signsk(t‖e)
2: return P ← (t, e, σ)

CTH,SIG.UpdateLog(st,
#–
P , t, sk)→ (st′, F ):

1: for each P ∈ #–
P do

2: if CheckPromise(P, pk) = 0, return (st,⊥)
3: st.

#–
E ← st.

#–
E‖ #–

P .e
4: n← |st. #–

E|
5: H ← MTHH(st.

#–
E)

6: σ ← SIG.Signsk(t, n,H)
7: return F ← (t, n,H, σ)

CTH,SIG.PresentEntries(st, F )→ #–
E:

1: if CheckFingerprint(F, pk) = 0, return ⊥
2: return st.

#–
E[0 : F.n]

CTH,SIG.ProveMembership(st, e, F )→ # –
M :

1: if CheckFingerprint(F, pk) = 0, return ⊥
2: find m < F.n such that e = st.

#–
E[m]

3: if no such m exists, return ⊥
4:

#–
A ← PathH(m,

#–
E[0 : F.n])

5: return
# –
M ← (

#–
A,m)

CTH,SIG.ProveConsistency(st, F0, F1)→ C:
1: if CheckFingerprint(F0, pk) = 0, return ⊥
2: if CheckFingerprint(F1, pk) = 0, return ⊥
3: return

#–
C ← ConsProofH(F0.n, F1.n, st.

#–
E)

Fig. 4: Certificate Transparency: algorithms run by loggers.

CTH,SIG.CheckPromise(P, pk)→ b:
1: return SIG.Vfypk(P.t‖P.e, P.σ)

CTH,SIG.CheckFingerprint(F, pk)→ b:
1: return SIG.Vfypk(F.t‖F.n‖F.H, F.σ)

CTH,SIG.CheckEntries(
#–
E,F, pk)→ b:

1: if CheckFingerprint(F, pk) = 0, return 0
2: H ′ ← MTHH(

#–
E)

3: return (| #–E| = F.n) ∧ (H ′ = F.H)

CTH,SIG.CheckMembership(F, e,
# –
M,pk)→ b:

1: if CheckFingerprint(F, pk) = 0, return 0
2: return CheckPathH(e, F.H, F.n,

# –
M.

#–
A,

# –
M.m)

CTH,SIG.CheckConsistency(F0, F1,
#–
C, pk)→ b:

1: if CheckFingerprint(F0, pk) = 0, return 0
2: if CheckFingerprint(F1, pk) = 0, return 0
3: return CheckConsProof(F0.n, F0.H, F1.n, F1.H,

#–
C)

Fig. 5: Certificate Transparency: algorithms run by monitors/auditors.

3.2 Instantiation of Certificate Transparency as a Logging Scheme

Figures 4 and 5 formulate Certificate Transparency using H and SIG as a logging
scheme CTH,SIG (i.e., following Definition 2). A log entry in CT is a chain of X.509
certificates: the certificate (or partially completed pre-certificate) itself, and each
intermediate CA’s certificate leading to the root CA’s cert. We treat entries in
our formalization of logging schemes as opaque bit strings: our fomulation hence
omits any syntactical checks for the entries it manages; adding these checks is
independent of the logging properties. The promise P is called a signed certificate
timestamp (SCT). The fingerprint F is called the signed tree head (STH).

3.3 CONIKS as a Logging Scheme

CONIKS [23] is a recent transparency log scheme that aims to enable privacy-
preserving transparency logging for end-user keys, for applications such as secure
messaging. Our definition of logging scheme can capture several aspects of
CONIKS’ functionality and security, but also serves to highlight some significant
differences between CT and CONIKS.

CONIKS also uses a Merkle tree structure, but in contrast to CT uses a
Merkle prefix tree in which some attribute of an entry (e.g., the user’s identity)
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determines its position. The tree root is computed both from present entries and
placeholder values for empty subtrees, allowing efficient calculation over very
large but mostly empty trees. It is signed and published by the logger as the
signed tree root (STR). Membership proofs can be performed in the standard
way using Merkle authentication paths. Signed tree roots are linked over time
using a hash chain, including the previous signed tree root. However, this does
not enable consistency proofs as in CT: verification that a key that was present
in STRi is also present in STRj requires fresh membership proof of that key’s
presence in STRj . Two core security properties of CONIKS are non-equivocation
(a provider cannot present diverging views) and privacy-preserving consistency
proofs (privacy here meaning with respect to other entries’ information).

CONIKS can be mapped onto the following notions in our definition of a
logging scheme. The KeyGen algorithm is run by the logger. CONIKS has no sep-
arate notion of promise and log entry, combining PromiseEntry and UpdateLog.
CheckFingerprint will verify a signed tree root similarly. Aiming at privacy,
CONIKS does not include PresentEntries and CheckEntries. ProveMembership
and CheckMembership are supported. ProveConsistency and CheckConsistency
are not directly supported; as noted above, an auditor would need to use
ProveMembership and CheckMembership for each entry.

In terms of security properties, none of ours directly map onto CONIKS’
notions, primarily because of including CheckEntries. However, some notions
are similar. Non-equivocation is similar to proof-coll, except that it involves
two CheckMembership computations, rather than one CheckMembership and
one CheckEntries computation (our entry-coll and proof-coll together imply this
new notion). Our promise-incl property matches with a similar change from
CheckEntries to CheckMembership, and ignoring maximum merge delays. Con-
sistency of STRs in CONIKS is quite a bit different from our entry-cons property,
as CONIKS’ involves probabilistic spot-checks using membership proofs.

4 Security goals

For the security properties of logging schemes that can be proved cryptographi-
cally, our security definitions follow a provable security game-based approach. We
consider three properties involving security against a malicious logger, in which
the experiment acts as an honest monitor/auditor which the logger is trying to
fool. We also consider one security property involving security against a malicious
monitor/auditor, in which the experiment acts as an honest logger which the
monitor/auditor is trying to frame for bad behaviour.

Security Against a Malicious Logger. Since the fingerprint (signed tree
hash in CT) is used to concisely represent the contents of the log, the first two
cryptographic security properties against a malicious logger, shown in Figure 6,
concern the ability of the logger to make the fingerprint represent different,
conflicting information. Collision resistance of entries, defined in the experiment
entry-coll, requires that it is hard for a malicious logger to come up with a single
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Expentry-coll
LS (A):

1: (
#–
E0,

#–
E1, F, pk)

$← A()
2: return 1 iff (CheckEntries(

#–
E0, F, pk) = 1) ∧ (CheckEntries(

#–
E1, F, pk) = 1) ∧ (

#–
E0 6=

#–
E1)

Expproof-coll
LS (A):

1: (e,
#–
E,F,

# –
M,pk)

$← A()
2: return 1 iff (CheckEntries(

#–
E,F, pk) = 1) ∧ (CheckMembership(e, F,

# –
M,pk) = 1) ∧ (e /∈ #–

E)

Expentry-cons
LS (A):

1: (
#–
E0,

#–
E1, F0, F1,

#–
C, pk)

$← A()
2: return 1 iff (CheckConsistency(F0, F1,

#–
C, pk) = 1) ∧ (CheckEntries(

#–
E0, F0, pk) = 1)

∧ (CheckEntries(
#–
E1, F1, pk) = 1) ∧ (

#–
E0 6≺

#–
E1)

Fig. 6: Security properties of a logging scheme LS against a malicious logger.

fingerprint representing two different sets of entries. Collision resistance of proofs,
formalized in the experiment proof-coll, is about the difficulty for a malicious
logger to create a proof that an entry is represented by a fingerprint while
simultaneously claiming that the set of entries represented by that fingerprint
does not include that particular entry. A scheme that satisfies both of these
ensures that a malicious logger cannot make parties who use the same fingerprint
believe different things about the log entries represented by that fingerprint.

Logs are updated over time, but are meant to be append-only. However, since
logs are only represented by fingerprints, consistency proofs are used to connect
two fingerprints and are meant to prove that the set of entries represented by one
fingerprint is a subset of the set of entries represented by a second fingerprint—
in other words, that the fingerprints are representative of an append-only log.
The final security property in Figure 6 captures the consistency of entries, i.e.,
the difficulty for a malicious logger to remove an entry from a log: experiment
entry-cons is concerned with two fingerprints connected by a single consistency
proof. A “multi-hop” version, concerned with a chain of fingerprints connected
by consistency proofs, can easily be formulated and shown to follow directly from
the “single-hop” version.

Security Against a Malicious Monitor/Auditor. The security properties
described above are cryptographic, meaning that (under some computational
assumptions) it is not possible for a malicious logger to perform certain actions.
However, there are some security goals of CT that are not cryptographic. For
example, a log could choose to omit an entry that it has promised to log, and
no amount of cryptography can prevent it from doing so. Should a log issue a
fingerprint after the time by which it has promised to log an entry but the log
does not contain an entry, that constitutes evidence of the log’s misbehaviour.

However, to protect honest loggers, it should not be possible to frame an
honest logger for misbehaviour that did not actually happen, which is the security
guarantee formalized as inclusion of promises in experiment promise-incl in
Figure 7. Here the experiment plays the role of an honest logger against a malicious
monitor/auditor, so we allow the adversary (the malicious monitor/logger) to
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Exppromise-incl
LS,MMD (A):

1: T ← 0
2:

#–
Epromised ← ()

3: (st, pk, sk)
$← KeyGen()

4: (F, P,
#–
E)

$← AOTick,OPromiseEntry,OUpdateLog,OProveConsistency,OProveMembership(pk)
5: return 1 iff (CheckFingerprint(F, pk) = 1) ∧ (CheckPromise(P.e, P, pk) = 1)

∧ (CheckEntries(
#–
E,F, pk) = 1) ∧ (P.e /∈ #–

E) ∧ (P.t+ MMD ≤ F.t)

OTick():
1: T ← T + 1
2:

#–
P ← {P ∈ #–

Epromised : P.t+ MMD ≤ T}
3: if

#–
P 6= (),

4: F
$← OUpdateLog(

#–
P )

5:
#–
Epromised ←

#–
Epromised \

#–
P

6: return (T, F )
7: else return T

OPromiseEntry(e):

1: (st, P )
$← PromiseEntry(st, e, T, sk)

2:
#–
Epromised ←

#–
Epromised || {P}

3: return P

OUpdateLog(
#–
P ):

1: (st, F )
$← UpdateLog(st,

#–
P , T, sk)

2: return F

OProveConsistency(F0, F1):

1: (st,
#–
C)

$← ProveConsistency(st, F0, F1)
2: return

#–
C

OProveMembership(e, F ):

1: (st,
# –
M)

$← ProveMembership(st, e, F )
2: return

# –
M

Fig. 7: Security properties of a logging scheme LS against a malicious moni-
tor/auditor framing a log for failing to include a promised entry.

interact with experiment oracles that carry out the actions of an honest log, such
as adding entries or proving membership. The experiment includes a global time
which advances at the adversary’s command, and is parameterized by a maximum
merge delay MMD > 0, within which an honest log is expected to include a
promised entry. The list

#–

Epromised tracks entries that the log has promised to
include; in calls to OTick the experiment (acting as the honest log) automatically
adds the list of promised entries by the end of the maximum merge delay window.

5 Security of Certificate Transparency

We are now ready to prove the security results on Certificate Transparency,
namely that its instantiation CTH,SIG within our logging scheme frameworks
guarantees collision resistance of entities and proofs, consistency of entries, and
inclusion of promises.

Theorems 1 and 2 below connect rather immediately with the security prop-
erties of the underlying Merkle tree hash, so we omit the arguments due to space
constraints; they appear in the full version [8]. Lemmas 1 and 2 then connect the
Merkle tree hash properties to finding a collision in H, which is infeasible if H is
collision-resistant. For Theorem 3 we also provide the proof in the full version
due to space restrictions; the proof for Theorem 4 is given in Appendix A.

Theorem 1 (Collision resistance of entries). If hash function H is collision-
resistant, then, in Certificate Transparency (with hash function H), no malicious
logger can present different log entries for the same fingerprint. More precisely, if
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A wins Expentry-coll
CTH,SIG

, then algorithm BA, which runs A and then returns the first
two components of A’s output, finds a collision in MTHH. Moreover, the runtime
of BA is the same as that of A.

Theorem 2 (Collision resistance of proofs). If hash function H is collision-
resistant then, in Certificate Transparency (with hash function H) no malicious
logger can present a list of log entries under some fingerprint and a membership
proof under the same fingerprint for an entry not contained in this list. More
precisely, if A wins Expproof-coll

CTH,SIG
by outputting (e,

#–

E,F,
# –

M,pk), then algorithm BA,

which runs A and then returns (e,
#–

E,
# –

M.
#–

A,
# –

M.m), breaks authentication path
consistency in the sense of Lemma 2. Moreover, the runtime of BA is the same
as that of A.

Theorem 3 (Consistency of entries). If hash function H is collision-resistant,
then, in Certificate Transparency (with hash function H), no malicious logger can
present two lists of entries, two fingerprints, and a consistency proof such that
each list corresponds to the fingerprint, and the fingerprints are connected via the
consistency proof, but the first list of entries is not a prefix of the second list of
entries. More precisely, if A wins Expentry-cons

CTH,SIG
, then algorithm BA3 given in the

full version [8] finds a collision in H. Moreover, the runtime of BA3 consists of
the runtime of A, plus at most a quadratic (in the size of the second list) number
of hash evaluations.

Theorem 4 (Inclusion of promises). If hash function H is collision-resistant
and signature scheme SIG is existentially unforgeable under chosen-message
attacks, then, in Certificate Transparency (with hash function H and signature
scheme SIG), no malicious monitor/auditor can frame an honest logger of not
including a promised entry within the maximum merge delay. More precisely, if
algorithm A wins Exppromise-incl

CTH,SIG
, then there exist algorithms BA and CA, described

in the proof, that find a collision in MTHH or a forgery in SIG, respectively.
Moreover, the runtimes of BA and CA are approximately the same as that of A.

6 Conclusion and Future Work

Certificate Transparency is a promising approach for providing assurances in the
web PKI by using untrusted auditable public logs to detect fraudulently issued
certificates. We introduced a generic model for logging schemes and captured
Certificate Transparency as one specific instance of our model. Based on the
security notions we formalized, we were able to analyze the cryptographic aspects
of CT and show how its cryptographic mechanisms prevent both undetected
misbehaviour of log servers as well as false accusations of honest loggers.

Although cryptography plays an essential role to establish the trust necessary
in a public and auditable logging scheme like Certificate Transparency, there
are other components involved that are difficult or even impossible to capture
in a cryptographic model. For example, under various conditions on adversary
control of the network and with various patterns of honest entity behaviour, how
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long does it take for the CT gossiping protocol to propagate SCTs and STHs
to ensure detection of dishonest log behaviour? Once misbehaviour is detected,
what organizational measures should be taken to ensure an appropriate response?
Analyzing these components in general as well as their specific relevance in the
CT framework is an important task for future work.
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A Proof of Theorem 4 (Inclusion of promises)

Proof. By definition of OTick (cf. Figure 7), the simulated honest logger will
keep track of any promise P issued through OPromiseEntry and will include the
P through OUpdateLog by time T = P.t + MMD. As in particular MMD > 0,
this ensures that any fingerprint issued by the honest logger at time T ′ ≥ T will
include the promised entry P.e.

Assume A wins by outputting (F, P,
#–

E), i.e., F is a valid fingerprint represent-

ing entries
#–

E and P is a promise for an entry e /∈ #–

E although P.t+ MMD ≤ F.t.
This means either one of the promise P or the fingerprint F (or both) were not
issued by the simulated honest logger through an invocation of OPromiseEntry
or OUpdateLog, or that A repeated an honest F that matches an entry list

#–

E
different from the entry list

#–

E ′ hold by the honest logger when creating the
fingerprint.

The second case constitutes a Merkle-tree hash collision (as MTHH(
#–

E) =

MTHH(
#–

E ′), but
#–

E 6= #–

E ′). Hence A’s advantage in winning through this case can
be bound by the advantage of an algorithm B (that simulates the oracles and

simply outputs the colliding
#–

E and
#–

E ′) against the collision resistance of MTHH.
(Applying Lemma 1 leads to a collision in H.)

For the first case, we show how this allows constructing a signature forgery
attacker C against the euf-cma security of SIG, which works as follows. First
of all, C creates an initial state with empty list of entries. It then simulates
experiment Exppromise-incl

CTH,SIG,MMD for A, providing the public key pk from its euf-cma
game as input for A. It furthermore uses its euf-cma signing oracle OSign when
required to generate a signature in the simulations of the OPromiseEntry and
OUpdateLog oracles and keeps a list of all the values queried to the signing oracle.

If A halts (outputting (F, P,
#–

E)) and wins, as argued above, at least one of P
or F was not output through C’s simulation of OPromiseEntry and OUpdateLog
(as we excluded the case of a Merkle-tree hash collision). Hence, in particular,
the according value was not queried to the euf-cma signing oracle, so C checks
which of the two values is not contained in its list of queries and outputs this as
its valid signature forgery. ut
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