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Abstract

Since hundreds of certificate authorities (CAs) can issue browser-trusted certificates, it
can be difficult for domain owners to detect certificates that have been fraudulently issued for
their domain. Certificate Transparency (CT) is a recent standard by the Internet Engineering
Task Force (IETF) that aims to construct public logs of all certificates issued by CAs, making
it easier for domain owners to monitor for fraudulently issued certificates. To avoid relying
on trusted log servers, CT includes mechanisms by which monitors and auditors can check
whether logs are behaving honestly or not; these mechanisms are primarily based on Merkle
tree hashing and authentication proofs. Given that CT is now being deployed, it is important
to verify that it achieves its security goals.

In this work, we define four security properties of logging schemes such as CT that can
be assured via cryptographic means, and show that CT does achieve these security properties.
We consider two classes of security goals: those involving security against a malicious logger
attempting to present different views of the log to different parties or at different points in
time, and those involving security against malicious monitors who attempt to frame an honest
log for failing to include a certificate in the log. We show that Certificate Transparency
satisfies these security properties under various assumptions on Merkle trees all of which
reduce to collision resistance of the underlying hash function (and in one case with the
additional assumption of unforgeable signatures).
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1 Introduction

The security of web communication via the Transport Layer Security (TLS) protocol relies on
safe distribution of public keys in the form of X.509 certificates. Certificate authorities (CAs) are
trusted third parties that endorse the public keys of subjects by performing checks and issuing
certificates. Web browsers can accept certificates from hundreds of CAs, and relying parties are
unable to determine whether certificates were issued at the request of the subject or fraudulently
issued by the CAs, whether by mistake or due to compromise.

In recent years there have been high-profile cases of misissued certificates being used to spoof
legitimate websites. For example, in 2011 an intruder managed to issue itself a valid certificate
for the domain google.com and its subdomains from the prominent Dutch Certificate Authority
DigiNotar [Fox12]. This certificate was issued in July 2011 and may have been used maliciously
for weeks before the detection on August 28, 2011, of large-scale man-in-the-middle (MITM)
attacks on multiple users in Iran. In another instance, the Comodo Group suffered from an
attack which resulted in the issuance of nine fraudulent certificates for domains owned by Google,
Yahoo!, Skype, and others [Com11].

Certificate Transparency (CT) [Lau14, LLK13] is an experimental protocol originally proposed
by Google and standardized by the Internet Engineering Task Force (IETF) Public Notary
Transparency working group to mitigate the threat of fraudulently issued certificates by publicly
logging certificates. CT provides an open auditing and monitoring system which allows domain
owners to verify that no fraudulent certificates have been issued for their domains. The end goal
of Certificate Transparency is that web clients should only accept certificates that are publicly
logged and that it should be impossible for a CA to issue a certificate for a domain without
it being publicly visible. Recent incidents demonstrated the effectiveness of CT logs: Google
employees detected unrequested certificates for two of their subdomains issued by a Symantec
sub-CA Thawte [SE15]. The certificates were issued on September 14, 2015 and detected by
September 17, 2015; the certificates were revoked immediately, limiting the exposure of the
certificates to just three days. In another case, the Facebook security team discovered an issuance
of two certificates on multiple subdomains violating Facebook’s internal security policies [Hua16].
The incident was investigated and both certificates revoked within hours, even before they were
deployed to production systems.

1.1 The Web PKI and Certificate Transparency

The basic web public key infrastructure (PKI) includes several types of entities which perform
different tasks: web servers, certificate authorities, browser vendors and web browsers. The
Certificate Transparency framework adds several new entities which help maintain and monitor
public logs:

• Loggers or log servers maintain publicly accessible append-only logs of certificates. These
certificates are received from submitters. As a new entry might not be published immedi-
ately for operational reasoning, the logger provides each submitter with a promise to log
the certificate within a certain amount of time; the promise is called a signed certificate
timestamp (SCT).
• Submitters, submit certificates (or partially completed pre-certificates) to a log server and

receive a signed certificate timestamp from the log.
• Monitors are public or private services that watch for misbehaving logs or suspicious

certificates by periodically contacting and downloading information from log servers. They
inspect every new entry in a log, keep copies of the entire log, and verify the consistency
between published revisions of the log.
• Auditors verify the correct behaviour of a log, checking that certificates that a logger

has promised to include are present in the log. Auditors may be standalone entities or
integrated into monitors or web clients.
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Figure 1: Overview over the interaction between entities in Certificate Transparency; see
Section 1.1 for details. Solid-line interactions and solid-line, orange entities are captured by the
model in our work while dashed-line interactions and dashed-line, gray entities are not captured.
Dotted line–connected entities (monitors and auditors or auditors and web clients) might be the
same physical entity.

In CT, the original entities from the web PKI also have some additional tasks:

• CAs should act as submitters above.
• Web servers should include their SCT along with the certificate when communicating with

clients. Web servers may choose to submit their certificate to a log server if their CA does
not do so for them.
• Web clients, upon receiving an SCT from a web server, may choose to verify that the log

named in the SCT actually has publicly logged the certificate (thereby taking on the role
of an auditor as above).
• Browser vendors may push updates that remove CAs or revoke certificates based on claims

from monitors and web servers about misbehaving CAs.

Figure 1 provides an overview of the involved parties and their interactions in CT.1 At
the submission of a new certificate entry (step A), the logger returns a signed certificate
timestamp (SCT) (step B), which is a promise to include the entry in the log. Every log has
a published parameter called a maximum merge delay (MMD) which indicates the maximum
period between issuing a timestamp and the inclusion of the certificate into the log.

In CT, the logger stores the entries of the log in an append-only Merkle hash tree [Mer79,
Mer90], a form of a tamper-evident history tree [CW09, Cro09]. Recall for Merkle trees, data is
placed at the leaves of a binary tree and each intermediate node is the hash of its two child nodes;
the root of the trees acts as a fingerprint of all included data. In CT, the root of the tree is signed
and published by the logger, and is called the signed tree head (STH). The observed fingerprints
are exchanged by all parties in the system through a so-called “gossiping” protocol [NGR15].

Gossiping allows monitors, auditors, and web clients to share information they receive from
log servers, with the goal of collectively detecting misbehavior of log servers while limiting the
damage to user privacy. The parties who hold the same fingerprints of a log are (cryptographically)
assured that they have the same view of the log at the point in time represented by the fingerprint.
Gossiping can be implemented through SCT feedback (where web clients send SCTs through

1Note that the labeling of interactions is simply for reference and does not indicate a particular order of the
displayed requests.
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HTTPS servers), STH pollination (where web clients and CT auditors/monitors use HTTPS
servers as STH pools) and trusted auditor streams (where web clients directly communicate
with trusted CT auditors/monitors).

To convince other parties that promised certificates are included in a log, and that subsequent
published fingerprints are consistent, the logger employs two types of cryptographic proofs: audit
proofs and consistency proofs.

An audit proof allows an auditor to verify that a particular certificate/SCT that a logger
has promised to include is actually included in the log represented by a fingerprint, shown in
steps C and D. In CT, an audit proof is essentially an authentication path in the Merkle tree
from the leaf containing the certificate in question to the root hash/fingerprint contained in the
signed tree hash.

A consistency proof allows an auditor or monitor to verify that the log is append-only, in
particular that the log represented by a fingerprint at one point in time t0 is a prefix of the log
represented by a fingerprint at a later point in time t1 > t0, shown in steps G and H. In CT, a
consistency proof is a subset of intermediate nodes in the Merkle tree needed to connect the two
root hashes.

Monitors can also request that a logger provides them with the full set of entries represented
by a fingerprint (steps E and F). In CT, this can be verified by recomputing the Merkle tree
hash of the entries.

1.2 Threat Model

To achieve the goal of allowing domain owners to learn when fraudulent certificates are issued
for their domain, one might initially expect that the log servers must be trusted and that CAs
must submit all their certificates to the log servers. A large part of the CT framework aims
to achieve this goal without relying on trusted log servers or honest CAs. Instead, trust is
decentralized among the loggers, monitors, and auditors, who collectively watch each other.
While this approach eliminates the requirement of a single trusted third party, one must now
deal with the threat that one or more of these entities is malicious.

The informational IETF draft “Attack Model for Certificate Transparency” [Ken15] described
potential attack scenarios when Certificate Transparency is used in the context of web public-key
infrastructure. Here we associate the threats named in the draft with the various interacting
parties in CT:

1. Misbehaving log server

(L1) Creating an entry for a fake certificate
(L2) Presenting different log entry views for entities
(L3) Not performing syntactic checks on certificate entries
(L4) Issuing SCTs for fake certificates
(L5) Reporting syntactic errors for a syntactically valid certificate

2. Misbehaving monitor

(M1) Not notifying the lack of SCT in the certificate received from CA
(M2) Not informing the targeted domain owner about fake certificates
(M3) Issuing false warnings to a targeted domain owner
(M4) Not reporting syntactic errors of certificates when noted
(M5) Reporting syntactic errors for a syntactically valid certificate

3. Malicious submitter/certificate authority

(S1) Failing to log a certificate
(S2) Issuing an erroneous certificate and causing the log to not perform checks
(S3) Refusing to revoke/delay revoking once mis-issuance is detected and reported

4. Web client
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(C1) Not rejecting certificates that do not have SCTs2

In this paper, we will view CT as an instantiation of logging schemes in general and model
the security properties that can be cryptographically assured in such logging schemes. We will
not require log entries to be certificates nor assume a PKI. Thus, some of the threats above will
not be considered. For example, some threats (L3, L5, M4, M5, and S2) relate to the validity or
syntax of certificates, which we will exclude from our model of general-purpose logging schemes.

Threats L1, L2, and L4 concern a logger that misbehaves by logging a fake entry and try to
cover up their misbehaviour by presenting different views to different entities. Of these threats,
we capture L2 directly as a collection of cryptographic security notions which prevent loggers
from splitting the view presented to different parties, removing certificates, or falsely claiming
the inclusion of entries. Indirectly, this also protects against threats L1 and L4 as any fake
certificate included or promised for inclusion in Certificate Transparency will become known to
the monitoring parties.

Threat M3 involves a malicious monitor framing an honest log for bad behaviour. We capture
this in our model by showing how CT cryptographically prevents a monitor from falsely framing
a logger for not including a promised certificate.

Threats M1 and M2 concern the failure of a monitor in notifying affected parties of misbe-
haviour. While an important threat, this is best captured via contractual obligations between
monitors and other entities, rather than cryptographic means. S3 is similar.

Threats S1 and C1 go hand-in-hand with each other and with the gossiping protocol. No
theoretical measure can force a CA to log a certificate or force a client to reject something.
However, if clients do reject certificates that lack an SCT, then submitters who violate S1 will
find their certificates rejected by clients.

From this categorization of the threats against CT, we see that the primary threats that can
be analyzed cryptographically are L2 and M3, and thus our model of general-purpose logging
schemes will focus on these threats and the parties involved in them, specifically loggers and
monitors/auditors. (We will generally refrain from separating monitors and auditors in our
model, as they collectively work together via gossiping to verify log behaviour.)

1.3 Our Contribution

Given the practical significance of Certificate Transparency, it is important to have a formal
understanding of the security goals of CT and analyse whether CT achieves those goals. The
objective of our work is to define security goals of logging schemes using the formalism of
provable security, and attempt to prove that CT satisfies these security goals under suitable
cryptographic assumptions. Our model of logging schemes does not assume a PKI context, so
we do not assume that log entries must have a particular syntax, and thus we leave the threats
involving validity or syntax of log entries to existing analyses on certificate validity. Similarly,
we omit consideration of threats where an entity fails to act.

As noted above, we will focus on two particular threats in the CT threat model: whether a
misbehaving log server can present different views of the log and whether a misbehaving monitor
can frame an honest log server for bad behaviour. Thus, our model will focus on two entities:
the logger and the monitor/auditor.

Definition of logging schemes. In Section 3 we formally define logging schemes, naming
operations that each entity can perform. This model does not attach any semantic meaning
to the entries being logged; in particular, we do not assume that log entries are certificates.
Subsequently, we describe the operations of Certificate Transparency as a specific instantiation
of the logging scheme framework.

2The draft does not expect clients to be strict on rejection in this case, as CT might not (yet) be deployed for
the certificate received.
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Security definitions. Next, we introduce cryptographic security properties for logging schemes
in Section 4 that are inspired by the CT threat model but reflect the corresponding ideas in
general terms. More specifically, we treat two types of properties. First, we define security
notions which concern a malicious logger:

• entry-coll: can a malicious logger present two different sets of entries corresponding to the
same fingerprint?
• proof-coll: can a malicious logger present an audit proof that claims a single fingerprint

represents both a particular entry as well as a set of entries such that the particular entry
is not actually in the list of entries?
• entry-cons: can a malicious logger present two fingerprints connected by a valid consistency

proof and two sets of entries such that the entries corresponding to the first fingerprint are
not a prefix of the entries corresponding to the second fingerprint?

Second, we define a security notion concerning a malicious monitor:

• promise-incl: can a malicious monitor frame an honest logger for not including a promised
entry when it actually has?

Security of Certificate Transparency. Finally, we analyze the security of Certificate Trans-
parency in Section 5 and show that CT both prevents logger misbehaviour (i.e., CT satisfies
the entry-coll, proof-coll, and entry-cons security properties) as well as protection from framing
of honest loggers by misbehaving monitors (i.e., CT satisfies the promise-incl property.) All of
these proofs are based on properties of Merkle tree hashing and audit/consistency proofs, all of
which ultimately derive from the collision resistance of the hash function. The last property,
promise-incl, also depends on the unforgeability of the signature scheme used by loggers.

Generality of Definitions. Our definition of a logging scheme and its security properties are
not specific to CT, and have the potential to be applied to other constructions. In Section 3.4,
we discuss the applicability of our definitions to CONIKS [MBB+15], a logging scheme aimed at
transparency of user keys: our logging scheme definitions capture some aspects of CONIKS, but
also highlights important differences between the functionality and goals of CT versus CONIKS.

1.4 Related Work

New PKI technologies. Recent certificate mis-issuances and security breaches in CAs have
motivated research in alternatives to having a trusted third party vouching for the binding
between domain name and its private key. Public key pinning [EPS15] and DANE [HS12] are
such proposals that allow domain owners to proactively and directly state their trusted public
keys for the domain. Certificate Transparency takes a reactive rather than a proactive approach:
instead of preventing mis-issuance in the first place, it aims to detect mis-issuance by making
certificates visible through a public authenticated log.

History trees. The data structures in CT are similar to the history trees of Crosby and
Wallach [CW09, Cro09]. Two of their results [Cro09] connect with our security notions: their
Corollary 1 shows that “reconstructed hashes” that are equal imply the entry sets from which
they were constructed are equal, where “reconstructed hashes” can mean reconstructed from
the leaves directly (like in a full hash tree computation) or from membership proofs. Their
Theorem 1 shows that, given a consistency proof between two roots and a membership proof for
the same index to each root (two membership proofs total), the leaves at that index must be
the same in both trees; this is similar to our entry-cons property, though we focus on entry sets
rather than membership proofs. A limitation of Crosby’s results is that they assume that each
root was computed from an underlying entry set, but one cannot be sure when the adversary
generates roots (as in CT); our definitions make no such assumption. We furthermore capture
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several extensions that CT makes, including delays for entry inclusion and protection of honest
loggers from framing (our promise-incl property). Finally, our presentation is notably different:
Crosby’s descriptions of the history tree operations and the proofs [Cro09, §3] are generally
descriptive rather than algorithmic, whereas we state the operations fully algorithmically and
provide complete algorithmic reductions for all proofs.

Transparency logs. In recent years a few more approaches have emerged around the concept
of transparency logs. Because CT itself does not cover revocation of certificates, Laurie and
Kasper [LK12] propose Revocation Transparency as a mechanism to handle these aspects.
Ryan [Rya14] introduces Enhanced Certificate Transparency which is an alternative mechanism
for handling revocation and has applied it specifically to end-to-end encrypted email. To date,
however, neither of these proposals nor any other is under consideration by the IETF Public
Notary Transparency working group, so we omit the study of revocation from this work. Apart
from revocation, more advanced features such as limitations on certificate issuance, validation,
and update have been incorporated in some proposals [BCK+14, KHP+13].

The Electronic Frontier Foundation’s Sovereign Keys Project [Ele] constitutes a system
where certificates are cross-signed by sovereign keys to be considered valid. Sovereigns keys
are then published in a semi-centralized, append-only data structure called “timeline servers”
which differ from Certificate Transparency in particular by not using Merkle trees. Melara et
al. [MBB+15] present CONIKS, a system that builds on transparency logs using Merkle trees
similar to Certificate Transparency, but in contrast focuses on transparency of user keys in
end-to-end encryption/secure messaging scenarios. CONIKS eliminates the need for global third
party monitors and aims at additional privacy properties for identity–key bindings, however
without providing a formal security model or cryptographic proofs.

Other fields beyond PKI have also embraced notions of transparency logs. Secure Untrusted
Data Repository SUNDR was introduced by Li et al. [LKMS04], which considers securing data
against unauthorized user modification. Like CT, SUNDR is concerned with detection (in this
case, ensuring users have the same view of the modification history when the data is stored on
an untrusted server), opposed to prevention of attacks. In addition, SUNDR achieves so-called
fork consistency against untrusted servers, a similar property to our notions of entry-coll, which
allow users to detect differences in user views of modification history if they can communicate
between themselves. These examples provide evidence of the potential of our security model to
be used in analysis of protocols other than CT.

Merkle trees. Introduced by Merkle [Mer79], Merkle trees have been used in many areas of
cryptography and computer science, including in the construction of public key signatures from
hash functions [Mer90]. Most uses of Merkle trees concern a static dataset, but in CT we are
concerned with a dynamic dataset, and in particular the append-only nature of the dataset. (We
note the distinction between dynamic updating of datasets and work on amortizing the cost of
generating various authentication paths from trees over a static dataset (e.g., [Szy04]).)

There has been some work on authentication trees and more generally signatures on dynamic
data sets. Bellare et al. [BGG94, BM97] introduced the notion of incremental cryptography :
for example, after signing a message, the signer can produce a signature on a closely related
(“incremental”) message more efficiently. Bellare et al. immediately dismiss Merkle trees for
their application due to the size requirements of storing the internal state, but this is not a
problem in CT.

Naor and Nissim [NN98] use dynamic Merkle trees (although specifically 2-3 trees rather
than binary Merkle trees) in the context of certificate revocation and updates: this allows a CA
and directory to synchronize on their view of revoked, new, and updated certificates by sending
only the list of updated nodes and the new root of the tree. This differs from the consistency
proofs in CT which focus only on appending nodes and only send the (logarithmically-many)
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intermediate nodes required to connect two tree roots. Li et al. [LHKR06] use dynamic Merkle
B-trees to authenticate index structures in outsourced databases, but allow arbitrary updates
(insertions/deletions).

Villemson [Vil02] investigated the characteristics of incremental authentication graphs, which
are a generalization of Merkle trees to arbitrary graph structures. Villemson focuses on in-
cremental graphs where previous graphs are subgraphs of later graphs. Similarly, Ogawa et
al. [OHO05] investigate incremental Merkle trees, but where each incremental tree is a subgraph
of a single overall tree. In CT consistency proofs, by contrast, while the leaves of an earlier tree
are a subset of the leaves of a later tree, the earlier tree is not itself a subgraph of the later tree
since the intermediate nodes will “rebalance” as more leaves are added.

Cryptographic PKI analyses. Maurer [Mau96] introduced a formal model for public key
infrastructures (PKIs) which subsequently was further extended [MS05, BKH13]. This line
of work approaches the dynamic nature of PKI issuance through an event-based system that
captures the view of potential users at a certain point in time, using a combination of events
that have happened and logical rules that infer certain conclusions from events. Our work differs
from this approach by following a game-based approach focusing on the interaction between
the parties involved. Our approach also conceptually distinguishes between values generated by
honest parties, claims by dishonest parties, and conclusions drawn from events.

2 Cryptographic Building Blocks

In this section we review cryptographic building blocks involved in Certificate Transparency.

Notation. We denote by
#–

E an ordered list of entries, where () denotes the empty list. Indexing
is 0-based:

#–

E = (e0, . . . , en−1), and we write
#–

E[i] to denote ei and
#–

E[i : j] to denote the sublist
(ei, . . . , ej−1). We adopt the convention that

#–

E[−1] = (). We write e ∈ #–

E to indicate that an

entry e is contained in the list
#–

E. We let
#–

E‖ #–

E ′ denote the concatenation of two entry lists and
write

#–

E ≺ #–

E ′ if
#–

E is a prefix of
#–

E ′. If we define P ← (t, e, σ), then we can later access fields of
P using “object-oriented” notation: P.t, P.e, P.σ. Moreover, if

#–

P is a list (P0, . . . , Pn−1), then
the notation

#–

P .e means the list (P0.e, . . . , Pn−1.e). The expression k ← 2dlog2(n/2)e corresponds
to setting k to be the largest power of two less than n, i.e., n

2 ≤ k = 2i < n.

Definition 1 (Signature scheme unforgeability). Let M be a set. A digital signature scheme is
defined as a tuple of algorithms SIG = (KeyGen, Sign,Vfy):

• KeyGen()
$→ (pk, sk): A probabilistic key generation algorithm that outputs a public key

pk and secret key sk.

• Signsk(m)
$→ σ: A probabilistic signing algorithm that takes as input a secret key sk a

message m ∈M and outputs a signature σ.
• Vfypk(m,σ)→ {0, 1}: A deterministic signature verification algorithm that takes as input

a public key pk, message m, and signature σ, and outputs either 0 or 1.

The security experiment Expeuf-cma
SIG for existential unforgeability under chosen-message attacks

is given in Figure 2. If A is an algorithm, we define Adveuf-cma
SIG (A) = Pr

[
Expeuf-cma

SIG (A) = 1
]
.

Definition 2 (Hash collision finding). LetM be a set, let H :M→ {0, 1}λ be an unkeyed hash
function, and let A be an algorithm. We say that A finds a collision in H if A outputs a pair
(m,m′) such that m 6= m′ and H(m) = H(m′).

2.1 Merkle Trees

The use of hash trees for authenticating large amounts of data was first proposed by Merkle [Mer79,
Mer90]. Let H : {0, 1}∗ → {0, 1}λ be a hash function. In a Merkle hash tree for

#–

E, the values of
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Expeuf-cma
SIG (A):

1: (pk, sk)
$← KeyGen()

2: M ← {}
3: (m,σ)

$← AOSign(pk)
4: return Vfypk(m,σ) ∧ (m 6∈M)

OSign(m):
1: σ ← Signsk(m)
2: M ←M ∪ {m}
3: return (m,σ)

Figure 2: Security experiment for existential unforgeability under chosen message attack of a
signature scheme SIG = (KeyGen, Sign,Vfy).

H

h2

h0

e0

H(0‖e0) = h1

e1

= H(0‖e1)

H(1‖h0‖h1) = h3

e2

H(0‖e2) =

H(1‖h2‖h3) =

Figure 3: Merkle tree hash calculation of H = MTHH(
#–

E) where
#–

E = (e0, e1, e2). denotes leaf
nodes, denotes inner nodes.

H

#–

A[1]

e2

#–

A[0]

#–

A[2]

Figure 4: Merkle tree authentication path
#–

A from leaf e2 to root H. denotes nodes corre-
sponding to authentication path values.

#–

E are placed at the leaves of a binary tree and each intermediate node is the hash of its two
child nodes; the root of the trees acts as a fingerprint of all the data contained in the tree; this
is the output of the algorithm MTHH(

#–

E) in Figure 6. A sample Merkle tree hash calculation
is shown in Figure 3. Note the use of prefixes 0 and 1 in hash function calculations provides
“domain separation” between hash calculations for leaves (H(0‖ . . . )) and intermediate nodes
(H(1‖ . . . )); preventing an attacker from gluing part of a tree into a leaf or vice versa.

A common technique is the use of an authentication path to demonstrate that a piece of
data is in a leaf of a tree corresponding to a particular root. For example, in Figure 4, the
authentication path

#–

A = (
#–

A[0],
#–

A[1],
#–

A[2]) shows that e2 is the third leaf in the tree corresponding
to root H, and this can be verified by computing h0 = H(0‖e2), then h1 = H(1‖h0‖

#–

A[0]), then
h2 = H(1‖ #–

A[1]‖h1), then H ′ = H(1‖h2‖
#–

A[2]) and comparing H ′ with H. The index of the leaf
is an essential part of verifying an authentication path. The authentication path generation
algorithm PathH(m,

#–

E) and verification algorithm CheckPathH(e,H, n,
#–

A,m) are shown in
Figure 6.

A lesser-known technique is the use of a consistency proof to demonstrate that the data
corresponding to one root is a subset (prefix) of the data corresponding to another root, used,
for example, in the context of tamper-evident history trees [CW09, Cro09]. In Figure 5, the
consistency proof

#–

C shows that the data corresponding to root H0 is a prefix of the data
corresponding to root H1. Consistency proofs reconstruct each of the two roots from relevant
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H0

#–

C [2]
#–

C [0]

#–

E0

H1

#–

C [2]
#–

C [0]
#–

C [1]

#–

C [3]

#–

E1

Figure 5: Merkle tree consistency proof
#–

C = (
#–

C [0], . . . ,
#–

C [3]) between roots H0 (for a tree of
size 3) and H1 (for a tree of size 6). denotes nodes corresponding to consistency proof values.

parts of the proof and compare them against the actual roots; the size of the two trees is essential
in verifying a consistency proof. Consistency proofs may be viewed as an authentication path
from the inner node immediately above the last leaf node in the first tree (i.e., an authentication
path from H(e2) =

#–

C [0] to root H1 in the right side of Figure 5). The consistency proof generation
algorithm ConsProofH(m,n,

#–

E) and verification algorithm CheckConsProofH(n0, H0, n1, H1,
#–

C)
are shown in Figure 6. We have reformulated these from how they appear in the RFC [LLK13]:
ours use a top-down recursive approach, whereas the RFC versions are bottom-up looping
algorithms; the two are equivalent, but our versions are more helpful in proving our theorems.

Formally, a Merkle tree hash system is defined as follows.

Definition 3 (Merkle tree hash). Let H : {0, 1}∗ → {0, 1}λ be a hash function and let
#–

E be a
list of entries. The Merkle tree hash system consists of the following algorithms:

• MTHH(
#–

E)→ h: A deterministic tree hashing algorithm that takes as input a list of entries
#–

E each of which is in M and outputs a hash value h ∈ {0, 1}λ representing the complete
list of entries as defined in Figure 6.
• PathH(m,

#–

E)→ #–

A: A deterministic authentication path generation algorithm that takes as
input an index m ∈ {0, . . . , | #–E| − 1} and a list of entries

#–

E and outputs an authentication
path

#–

A as defined in Figure 6.
• CheckPathH(e,H, n,

#–

A,m) → {0, 1}: A deterministic authentication path verification
algorithm that takes as input an entry e ∈M, a hash H ∈ {0, 1}λ representing a list of n
entries, a claimed authentication path

#–

A, and an index m ∈ {0, . . . , n− 1}, and outputs 0
or 1 as defined in Figure 6. The goal is to output 1 if and only if

#–

A is an authentication
path demonstrating that e is the m-th leaf of the n-leaf tree represented by hash value H.
• ConsProofH(m,n,

#–

E)→ #–

C : A deterministic consistency proof generation algorithm that
takes as input a list of entries

#–

E, and two indices 0 ≤ m ≤ n ≤ | #–E|, and outputs a
consistency proof

#–

C as defined in Figure 6.
#–

C consists of intermediate nodes required to
simultaneously construct the roots of the trees

#–

E[0 : m] and
#–

E[0 : n].
• CheckConsProofH(n0, H0, n1, H1,

#–

C)→ {0, 1}: A deterministic consistency proof verifica-
tion algorithm that takes as input two indices 0 ≤ n0 ≤ n1, two hash valuesH0, H1 ∈ {0, 1}∗,
and a claimed consistency proof

#–

C , and outputs 0 or 1 as defined in Figure 6. The goal is
to output 1 if and only if the n0 entries represented by H0 are a prefix of the n1 entries
represented by H1.

2.2 Merkle Tree Security Properties

We now note some well-known facts about the collision resistance of Merkle tree hashing and
the security of authentication paths in Merkle trees [Mer79, Mer90]. For completeness, the facts
are proven in Appendix A.
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MTHH(
#–

E)→ H:

1: n← | #–E|
2: if n = 1, return H(0‖ #–

E[0])
3: else (n > 1)
4: k ← 2dlog2(n/2)e

5: return H(1‖MTHH(
#–

E[0 : k])
6: ‖MTHH(

#–

E[k : n])

PathH(m,
#–

E)→ #–

A:

1: n← | #–E|
2: if n = 1, return ()
3: else (n > 1)
4: k ← 2dlog2(n/2)e

5: if m < k
6: return PathH(m,

#–

E[0 : k])
7: ‖MTHH(

#–

E[k : n])
8: else (m ≥ k)
9: return PathH(m− k, #–

E[k : n])
10: ‖MTHH(

#–

E[0 : k])

CheckPathH(e,H, n,
#–

A,m)→ {0, 1}:
1: H ′ ← RootFromPathH(e, n,

#–

A,m)
2: return (H = H ′)

RootFromPathH(e, n,
#–

A,m)→ H:
1: if n = 1, return H(0‖e)
2: k ← 2dlog2(n/2)e

3: if m < k
4: `← RootFromPathH(e, k,

#–

A[0 : | #–A| − 1],m)
5: r ← #–

A[| #–A| − 1]
6: else (m ≥ k)
7: `← #–

A[| #–A| − 1]
8: r ← RootFromPathH(e, n− k,
9:

#–

A[0 : | #–A| − 1],m− k)
10: return H(1‖`‖r)

ConsProofH(m,n,
#–

E)→ #–

C :

1: // require: 0 ≤ m ≤ n ≤ | #–E|
2: if m = n
3: return ()
4: else (m < n)
5: return ConsProofSubH(m,

#–

E[0 : n], true)

ConsProofSubH(m,
#–

E, b)→ #–

C :

1: n← | #–E|
2: if (m = n) ∧ (b = false)
3: return MTHH(

#–

E[0 : m])
4: else
5: k ← 2dlog2(n)/2e

6: if m ≤ k
7: return ConsProofSubH(m,

#–

E[0 : k], b)
8: ‖MTHH(

#–

E[k : n])
9: else (m > k)

10: return ConsProofSubH(m− k, #–

E[k : n], false)
11: ‖MTHH(

#–

E[0 : k])

CheckConsProofH(n0, H0, n1, H1,
#–

C)→ b:

1: if n0 is a power of two,
#–

C ← H0‖
#–

C
2: H ′0 ← Root0FromConsProofH(

#–

C, n0, n1)
3: H ′1 ← Root1FromConsProofH(

#–

C, n0, n1)
4: return ((H0 = H ′0) ∧ (H1 = H ′1))

Root0FromConsProofH(
#–

C, n0, n1)→ H:

1: k ← 2dlog2(n1)/2e

2: if n0 < k
3: return Root0FromConsProofH(

#–

C [0 : | #–C | − 1], n0, k)
4: elsif n0 = k, return

#–

C [| #–C | − 2]
5: else
6: `← #–

C [| #–C | − 1]
7: r ← Root0FromConsProofH(

#–

C [0 : | #–C | − 1],
8: n0 − k, n1 − k)
9: return H(1‖`‖r)

Root1FromConsProofH(
#–

C, n0, n1)→ H:

1: if | #–C | = 2, return H(1‖ #–

C [0]‖ #–

C [1])
2: k ← 2dlog2(n1)/2e

3: if n0 < k
4: `← Root1FromConsProofH(

#–

C [0 : | #–C | − 1], n0, k)
5: r ← #–

C [| #–C | − 1]
6: else
7: `← #–

C [| #–C | − 1]
8: r ← Root1FromConsProofH(

#–

C [0 : | #–C | − 1],
9: n0 − k, n1 − k)

10: return H(1‖`‖r)

Figure 6: Merkle tree algorithms

Lemma 1 (Collision Resistance of Merkle Trees). If H is collision-resistant, then Merkle-tree
hashing using H is also collision-resistant. More precisely, if A finds a collision in MTHH, then
there exists algorithm BA1 given in Figure 13 in Appendix A that finds a collision in H. Moreover,
the runtime of BA1 consists of the runtime of A, plus at most a quadratic (in the size of the
larger list) number of hash evaluations.

Lemma 2 (Authentication Paths Consistency). If H is collision-resistant, then no CheckPathH
authentication path

#–

A can be generated with respect to Merkle-tree hashing MTHH for an en-
try e not contained in the Merkle tree. More precisely, if A outputs (e,

#–

E,
#–

A,m) such that
CheckPathH(e, MTHH(

#–

E), | #–E|, #–

A,m) = 1 and e /∈ #–

E, then there exists algorithm BA2 given in
Figure 14 in Appendix A that finds a collision in H. Moreover, the runtime of BA2 consists of
the runtime of A, plus at most a quadratic (in | #–E|) number of hash evaluations.
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3 Logging Schemes

In this section we specify the algorithms that comprise a logging scheme and formulate CT as a
logging scheme.

3.1 Definition of Logging Schemes

Our definition of a logging scheme is based around the certificate transparency functionality, but
is designed to be potentially more general. We use non-CT specific language (such as “fingerprint”
instead of the CT-specific “signed tree head”), and our logging scheme is not actually about
certificates—any type of object can be logged.

Definition 4 (Logging Scheme). A logging scheme LS consists of the following algorithms, some
of which are run by a logger and some of which are run by a monitor/auditor.

The following algorithm is used by a logger to initialize its log:

• KeyGen()
$→ (st, pk, sk): A probabilistic algorithm that returns a state st and a public

key/secret key pair (pk, sk).

The following algorithms are used by a logger to add entries to its log, using a two-step process
of promising to add an entry to the log and then a batch update actually adding the entries:

• PromiseEntry(e, t, sk)
$→ P : A probabilistic algorithm that takes as input a log entry e, a

time t, and the secret key sk and outputs a promise P ; the promise contains the entry and
time as subfields P.e and P.t.
• UpdateLog(st,

#–

P , t, sk)
$→ (st′, F ): A probabilistic algorithm that takes as input a state st,

a potentially empty ordered list of promises
#–

P to add to the log, a time t and the secret
key sk and returns an updated state st′ and a fingerprint F (where the latter includes the
indicated time, denoted as F.t)

The following algorithms are used by a logger to demonstrate various properties to moni-
tors/auditors:

• PresentEntries(st, F )→ #–

E or ⊥: A deterministic algorithm that takes as input a state st
and a fingerprint F and outputs an ordered list of log entries

#–

E, or an error symbol ⊥.

• ProveMembership(st, e, F )
$→ # –

M or ⊥: A probabilistic algorithm3 that takes as input a
state st, a log entry e, and a fingerprint F and outputs a membership proof

# –

M , or an error
symbol ⊥.

• ProveConsistency(st, F0, F1)
$→ #–

C or ⊥: A probabilistic algorithm3 that takes as input a
state st and two fingerprints F0 and F1 and outputs a consistency proof

#–

C , or an error
symbol ⊥.

The following algorithms are used by monitors/auditors to check a log:

• CheckPromise(P, pk)→ {0, 1}: A deterministic algorithm that takes as input a promise P
(which includes an entry P.e) and a public key pk and outputs a bit b ∈ {0, 1}.
• CheckFingerprint(F, pk)→ {0, 1}: A deterministic algorithm that takes as input a finger-

print F and a public key pk and outputs a bit b ∈ {0, 1}.
• CheckEntries(

#–

E,F, pk)→ {0, 1}: A deterministic algorithm that takes as input an ordered
list of log entries

#–

E, a fingerprint F , and a public key pk and outputs a bit b ∈ {0, 1}.
• CheckMembership(F, e,

# –

M,pk) → {0, 1}: A deterministic algorithm that takes as input
a fingerprint F , an entry e, a membership proof

# –

M , and a public key pk and outputs a
bit b ∈ {0, 1}.
• CheckConsistency(F0, F1,

#–

C, pk)→ {0, 1}: A deterministic algorithm that takes as input
two fingerprints F0 and F1, a consistency proof

#–

C , and a public key pk and outputs a
bit b ∈ {0, 1}.

3In CT, ProveMembership and ProveConsistency are deterministic, though in principle these could be proba-
bilistic in a logging scheme.
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CTH,SIG.KeyGen()→ (st, pk, sk):

1:
#–

E ← ()
2: st = (

#–

E)

3: (pk, sk)
$← SIG.KeyGen()

4: return (st, pk, sk)

CTH,SIG.PromiseEntry(e, t, sk)→ P :

1: σ ← SIG.Signsk(t‖e)
2: return P ← (t, e, σ)

CTH,SIG.UpdateLog(st,
#–

P , t, sk)→ (st′, F ):

1: for each P ∈ #–

P do
2: if CheckPromise(P, pk) = 0, return (st,⊥)
3: st.

#–

E ← st.
#–

E‖ #–

P .e
4: n← |st. #–

E|
5: H ← MTHH(st.

#–

E)
6: σ ← SIG.Signsk(t, n,H)
7: return F ← (t, n,H, σ)

CTH,SIG.PresentEntries(st, F )→ #–

E:

1: if CheckFingerprint(F, pk) = 0, return ⊥
2: return st.

#–

E[0 : F.n]

CTH,SIG.ProveMembership(st, e, F )→ # –

M :

1: if CheckFingerprint(F, pk) = 0, return ⊥
2: find m < F.n such that e = st.

#–

E[m]
3: if no such m exists, return ⊥
4:

#–

A ← PathH(m,
#–

E[0 : F.n])
5: return

# –

M ← (
#–

A,m)

CTH,SIG.ProveConsistency(st, F0, F1)→ C:

1: if CheckFingerprint(F0, pk) = 0, return ⊥
2: if CheckFingerprint(F1, pk) = 0, return ⊥
3: return

#–

C ← ConsProofH(F0.n, F1.n, st.
#–

E)

Figure 7: Certificate Transparency: algorithms run by loggers.

Definition 5 (Correctness of a Logging Scheme). We say that a logging scheme LS is correct

if for all (st0, pk, sk)
$← KeyGen(), all n ∈ N, all m1, . . . ,mn ∈ N, all ordered lists of entries

#–

E1 = (e1,1, . . . , e1,m1), . . . ,
#–

En = (en,1, . . . , en,mn), all ordered lists of promised entries
#–

P 1 =

(P1,1, . . . , P1,m1), . . . ,
#–

P n = (Pn,1, . . . , Pn,mn), all timestamps t1 ≤ · · · ≤ tn, all states st1, . . . , stn,

and all fingerprints F1, . . . , Fn such that Pi,j
$← PromiseEntry(ei,j , ti,j , sk) for i ∈ {1, . . . , n}, j ∈

{1, . . . ,mi}, and any timestamps ti,j and (st1, F1)
$← UpdateLog(st0,

#–

P 1, t1, sk), . . . , (stn, Fn)
$←

UpdateLog(stn−1,
#–

P n, tn, sk) the following holds:

1. PresentEntries(stn, Fn) =
#–

E1‖ . . . ‖
#–

En.
2. CheckEntries(

#–

E1‖ . . . ‖
#–

En, Fn, pk) = 1.
3. CheckFingerprint(Fi, pk) = 1 for all 1 ≤ i ≤ n.

4. CheckConsistency(Fi, Fj ,
#–

C, pk) = 1 for all 1 ≤ i < j ≤ n and
#–

C
$← ProveConsistency(stn,

Fi, Fj).

5. CheckMembership(Fn, e,
# –

M,pk) = 1 for all e ∈ #–

E1‖ . . . ‖
#–

En and
# –

M
$← ProveMembership(stn,

e, Fn).
6. CheckPromise(ei,j , Pi,j , pk) = 1 for all i ∈ {1, . . . , n} and j ∈ {1, . . . ,mi}.

3.2 Instantiation of Certificate Transparency as a Logging Scheme

Figures 7 and 8 formulate Certificate Transparency using H and SIG as a logging scheme CTH,SIG
(i.e., following Definition 4). A log entry in CT is a chain of X.509 certificates: the certificate
(or partially completed pre-certificate) itself, and each intermediate CA’s certificate leading
to the root CA’s cert. We treat entries in our formalization of logging schemes as opaque bit
strings: our fomulation hence omits any syntactical checks for the entries it manages; adding
these checks is independent of the logging properties. The promise P is called a signed certificate
timestamp (SCT). The fingerprint F is called the signed tree head (STH).

CTH,SIG employs a cryptographic hash function H : {0, 1}∗ → {0, 1}λ and a signature
scheme SIG (see Section 2 for a formal definition of these). The hash function H is used to
store the entries in a Merkle hash tree [Mer79, Mer90] as introduced in Section 2.1. Its root
node is used within the signed tree head, representing the entries contained at a certain time.
Certificate Transparency employs authentication paths to prove the existence of a certain entry
in the tree and consistency proofs to connect subsequently published root nodes; see Section 2.1
for a detailed description of these techniques.

A log entry in CT is a chain of X.509 certificates: the certificate itself, and each intermediate
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CTH,SIG.CheckPromise(P, pk)→ b:

1: return SIG.Vfypk(P.t‖P.e, P.σ)

CTH,SIG.CheckFingerprint(F, pk)→ b:

1: return SIG.Vfypk(F.t‖F.n‖F.H, F.σ)

CTH,SIG.CheckEntries(
#–

E,F, pk)→ b:

1: if CheckFingerprint(F, pk) = 0, return 0
2: H ′ ← MTHH(

#–

E)
3: return (| #–E| = F.n) ∧ (H ′ = F.H)

CTH,SIG.CheckMembership(F, e,
# –

M,pk)→ b:

1: if CheckFingerprint(F, pk) = 0, return 0
2: return CheckPathH(e, F.H, F.n,

# –

M.
#–

A,
# –

M.m)

CTH,SIG.CheckConsistency(F0, F1,
#–

C, pk)→ b:

1: if CheckFingerprint(F0, pk) = 0, return 0
2: if CheckFingerprint(F1, pk) = 0, return 0
3: return CheckConsProof(F0.n, F0.H, F1.n, F1.H,

#–

C)

Figure 8: Certificate Transparency: algorithms run by monitors/auditors.

CA’s certificate leading to the root CA’s cert. The initial certificate may be a pre-certificate,
which is a partial X.509 data structure which has not yet been signed. As already mentioned,
we treat entries in our formalization of logging schemes as opaque bit strings. In particular,
our CTH,SIG scheme hence omits any syntactical checks for the entries it manages; adding these
checks is independent of the logging properties.

KeyGen is used by a logger to initialize the scheme. In CT, the logger generates a signature

public/secret key pair (pk, sk) and initializes the state st with an empty list of entries
#–

E contained
in the log.

PromiseEntry is used by a logger to output a promise to log a particular certificate/pre-
certificate chain as requested by a submitter. In CT, the promise P is called a signed certificate
timestamp (SCT), and consists of the current timestamp t, the certificate/pre-certificate chain e,
and the logger’s signature σ over these values.

UpdateLog is used by a logger to incorporate previously promised entries into the log and
output a new fingerprint of the log. In CT, the fingerprint F is called the signed tree head (STH),
and consists of a timestamp t, the number of entries n currently in the log, the root H of the
Merkle hash tree of all the entries

#–

E in the log, and the logger’s signature σ over these values.
PresentEntries is used by a logger to output all entries associated with a given fingerprint.

In CT, the signed tree head (fingerprint) includes the number n of entries comprising that
fingerprint, so this algorithm simply outputs the first n entries of the log.

ProveMembership is used by a logger to prove that a particular entry is in the log. In CT,
the logger constructs an authentication path in the Merkle tree from the leaf node containing
the entry to the root of the tree as described in the signed tree head (note that the tree may
have subsequently grown since this particular STH was issued).

ProveConsistency is used by a logger to output a proof of consistency between two fingerprints.
In CT, this uses the algorithm ConsProof (cf. Section 2.1) to construct a consistency proof
between the roots in two signed tree heads: the proof consists of the intermediate nodes required
to construct both roots simultaneously.

CheckPromise is used by monitors/auditors to confirm that a promise was indeed issued by a
specific logger. In CT, this is done by verifying the signature of the signed certificate timestamp
using the logger’s public key.

CheckFingerprint is used by monitors/auditors to confirm that a fingerprint was indeed
issued by a specific logger. In CT, this is done by verifying the signature of the signed tree head
using the logger’s public key.

CheckEntries is used by monitors/auditors to confirm that a list of entries corresponds to a
given fingerprint. In CT, this is done by reconstructing the Merkle tree hash of the list of entries
and comparing that with the root in the signed tree head.

CheckMembership is used by monitors/auditors to confirm that a membership proof indeed
prove an entry is in the log. In CT, this is done by using the provided authentication path to
construct an alleged Merkle tree root, and comparing this with the root in the signed tree head.

CheckConsistency is used by monitors/auditors to confirm the “append-onlyness” of the log
has been adhered to – that the list of entries represented by one fingerprint is a prefix of the list

15



of entries represented by another fingerprint. In CT, this is done by using the CheckConsProof

algorithm to verify a consistency proof between the root values in two signed tree heads by
reconstructing both roots from intermediate nodes.

3.3 Gossiping Protocol in CT

Certificate Transparency includes an additional mechanism called gossiping [NGR15], which
allows monitors, auditors, and web clients to share information they receive from log servers,
with the goal of collectively detecting misbehaviour of log servers while limiting the damage to
user privacy. Gossiping can take the following three forms.

1) SCT feedback: Web clients record the signed certificate timestamp values they receive from
web servers, and replay those SCT values back to the web server on later visits. If the web client
was initially subject to a man-in-the-middle during which it received a fraudulent certificate/SCT,
the hope is that MITM attack will eventually cease, and the client will eventually communicate
with the real web server, at which point in time the real server will receive the past fraudulently
issued SCT from which it can then take action. This message flow is designed to preserve client
privacy, as it does not communicate SCT values to a third-party monitor, thereby not informing
third-parties of browsing habits.

2) STH pollination: Web clients, auditors, and monitors exchange signed tree hashes
(fingerprints) they have observed for loggers. To avoid privacy stripping attacks that attempt to
uniquely tag a particular client with a particular STH, logs are restricted from issuing STHs too
frequently.

3) Trusted auditor: Web clients may record SCTs, certificates, and STHs, and send them
directly to a trusted monitor/auditor. This is essentially a combination of the previous two
streams, but with the drawback that it does not keep the browsing habits of the end-user private
from the monitor, and thus end-users are advised to only set up a trusted auditor stream if it is
reasonable from a privacy perspective.

The overall goal of gossiping in CT is that interested parties such as monitors and auditors
will eventually agree on their view of a log’s behaviour. In our model, we will assume that
gossiping works as intended, and assume that monitors and auditors share all STH values among
them (even if this may take a while in practice).

3.4 CONIKS as a Logging Scheme

CONIKS [MBB+15] is a recent transparency log scheme that aims to enable privacy-preserving
transparency logging for end-user keys, for applications such as secure messaging. Our definition
of logging scheme can capture several aspects of CONIKS’ functionality and security, but also
serves to highlight some significant differences between CT and CONIKS.

CONIKS also uses a Merkle tree structure, but in contrast to CT uses a Merkle prefix tree
in which some attribute of an entry (e.g., the user’s identity) determines its position. The tree
root is computed both from present entries and placeholder values for empty subtrees, allowing
efficient calculation over very large but mostly empty trees. It is signed and published by the
logger as the signed tree root (STR). Membership proofs can be performed in the standard way
using Merkle authentication paths. Signed tree roots are linked over time using a hash chain,
including the previous signed tree root. However, this does not enable consistency proofs as
in CT: verification that a key that was present in STRi is also present in STRj requires fresh
membership proof of that key’s presence in STRj . Two core security properties of CONIKS are
non-equivocation (a provider cannot present diverging views) and privacy-preserving consistency
proofs (privacy here meaning with respect to other entries’ information).

CONIKS can be mapped onto the following notions in our definition of a logging scheme.
The KeyGen algorithm is run by the logger. CONIKS has no separate notion of promise and
log entry, combining PromiseEntry and UpdateLog. CheckFingerprint will verify a signed tree
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root similarly. Aiming at privacy, CONIKS does not include PresentEntries and CheckEntries.
ProveMembership and CheckMembership are supported. ProveConsistency and CheckConsistency
are not directly supported; as noted above, an auditor would need to use ProveMembership and
CheckMembership for each entry.

In terms of security properties, none of ours directly map onto CONIKS’ notions, primarily
because of including CheckEntries. However, some notions are similar. Non-equivocation
is similar to proof-coll, except that it involves two CheckMembership computations, rather
than one CheckMembership and one CheckEntries computation (our entry-coll and proof-coll
together imply this new notion). Our promise-incl property matches with a similar change
from CheckEntries to CheckMembership, and ignoring maximum merge delays. Consistency of
STRs in CONIKS is quite a bit different from our entry-cons property, as CONIKS’ involves
probabilistic spot-checks using membership proofs.

4 Security goals

In Section 1.2, we summarized the threats against CT in the context of the web PKI as
considered in the informational IETF draft [Ken15] which defines potential threats for Certificate
Transparency in web public-key infrastructure. Threats are considered regarding each of the
interacting entities: malicious log servers, malicious monitors, malicious CAs, and malicious web
clients. We then clustered the threats into three categories: those involving validity or syntax
of log entries, those involving failures to notify an affected party of misbehaviour, and those
involving attempts to present false information. Our model of logging schemes does not assume
a PKI context, so we do not assume that log entries must have a particular syntax, and thus
we leave the first class of threats to existing analyses on certificate validity. Similarly, we omit
consideration of threats where an entity fails to act.

Thus, in our model we focus on threats where an entity attempts to present false information.
There are two perspectives: threat (L2), which is that a malicious logger may attempt to present
different views of the log to different entities, and threat (M3), where a malicious monitor may
attempt to issue false warnings to a domain owner about fake certificates, thereby framing an
honest logger or certificate authority for dishonest behaviour.

For the security properties of logging schemes that can be proved cryptographically, our
security definitions follow a provable security game-based approach. We consider three properties
involving security against a malicious logger, in which the experiment acts as an honest moni-
tor/auditor which the logger is trying to fool. We also consider one security property involving
security against a malicious monitor/auditor, in which the experiment acts as an honest logger
which the monitor/auditor is trying to frame for bad behaviour.

4.1 Security Against a Malicious Logger

Since the fingerprint (signed tree hash in CT) is used to concisely represent the contents of
the log, the first two cryptographic security properties against a malicious logger, shown in
Figure 9, concern the ability of the logger to make the fingerprint represent different, conflicting
information. Collision resistance of entries, defined in the experiment entry-coll, requires that it
is hard for a malicious logger to come up with a single fingerprint representing two different sets
of entries. Collision resistance of proofs, formalized in the experiment proof-coll, is about the
difficulty for a malicious logger to create a proof that an entry is represented by a fingerprint
while simultaneously claiming that the set of entries represented by that fingerprint does not
include that particular entry. A scheme that satisfies both of these ensures that a malicious
logger cannot make parties who use the same fingerprint believe different things about the log
entries represented by that fingerprint.

Logs are updated over time, but are meant to be append-only. However, since logs are only
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Expentry-coll
LS (A):

1: (
#–

E0,
#–

E1, F, pk)
$← A()

2: return 1 iff (CheckEntries(
#–

E0, F, pk) = 1) ∧ (CheckEntries(
#–

E1, F, pk) = 1) ∧ (
#–

E0 6=
#–

E1)

Expproof-coll
LS (A):

1: (e,
#–

E,F,
# –

M,pk)
$← A()

2: return 1 iff (CheckEntries(
#–

E,F, pk) = 1) ∧ (CheckMembership(e, F,
# –

M,pk) = 1) ∧ (e /∈ #–

E)

Expentry-cons
LS (A):

1: (
#–

E0,
#–

E1, F0, F1,
#–

C, pk)
$← A()

2: return 1 iff (CheckConsistency(F0, F1,
#–

C, pk) = 1) ∧ (CheckEntries(
#–

E0, F0, pk) = 1)
∧ (CheckEntries(

#–

E1, F1, pk) = 1) ∧ (
#–

E0 6≺
#–

E1)

Figure 9: Security properties of a logging scheme LS against a malicious logger.

represented by fingerprints, consistency proofs are used to connect two fingerprints and are meant
to prove that the set of entries represented by one fingerprint is a subset of the set of entries
represented by a second fingerprint—in other words, that the fingerprints are representative of
an append-only log. The final security property in Figure 9 captures the consistency of entries,
i.e., the difficulty for a malicious logger to remove an entry from a log: experiment entry-cons is
concerned with two fingerprints connected by a single consistency proof. A “multi-hop” version,
concerned with a chain of fingerprints connected by consistency proofs, can easily be formulated
and shown to follow directly from the “single-hop” version.

4.2 Security Against a Malicious Monitor/Auditor

The security properties described above are cryptographic, meaning that (under some computa-
tional assumptions) it is not possible for a malicious logger to perform certain actions. However,
there are some security goals of CT that are not cryptographic. For example, a log could choose
to omit an entry that it has promised to log, and no amount of cryptography can prevent it
from doing so. Should a log issue a fingerprint after the time by which it has promised to log an
entry but the log does not contain an entry, that constitutes evidence of the log’s misbehaviour.

However, to protect honest loggers, it should not be possible to frame an honest logger
for misbehaviour that did not actually happen, which is the security guarantee formalized as
inclusion of promises in experiment promise-incl in Figure 10. Here the experiment plays the
role of an honest logger against a malicious monitor/auditor, so we allow the adversary (the
malicious monitor/logger) to interact with experiment oracles that carry out the actions of an
honest log, such as adding entries or proving membership. The experiment includes a global
time which advances at the adversary’s command, and is parameterized by a maximum merge
delay MMD > 0, within which an honest log is expected to include a promised entry. The list
#–

Epromised tracks entries that the log has promised to include; in calls to OTick the experiment
(acting as the honest log) automatically adds the list of promised entries by the end of the
maximum merge delay window.

5 Security of Certificate Transparency

We are now ready to prove the security results on Certificate Transparency, namely that its
instantiation CTH,SIG within our logging scheme frameworks guarantees collision resistance of
entities and proofs, consistency of entries, and inclusion of promises.

Theorem 1 (Collision resistance of entries). If hash function H is collision-resistant, then,
in Certificate Transparency (with hash function H), no malicious logger can present different

log entries for the same fingerprint. More precisely, if A wins Expentry-coll
CTH,SIG

, then algorithm BA,
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Exppromise-incl
LS,MMD (A):

1: T ← 0
2:

#–

Epromised ← ()

3: (st, pk, sk)
$← KeyGen()

4: (F, P,
#–

E)
$← AOTick,OPromiseEntry,OUpdateLog,OProveConsistency,OProveMembership(pk)

5: return 1 iff (CheckFingerprint(F, pk) = 1) ∧ (CheckPromise(P.e, P, pk) = 1)
∧ (CheckEntries(

#–

E,F, pk) = 1) ∧ (P.e /∈ #–

E) ∧ (P.t+ MMD ≤ F.t)

OTick():
1: T ← T + 1
2:

#–

P ← {P ∈ #–

Epromised : P.t+ MMD ≤ T}
3: if

#–

P 6= (),

4: F
$← OUpdateLog(

#–

P )
5:

#–

Epromised ←
#–

Epromised \
#–

P
6: return (T, F )
7: else return T

OPromiseEntry(e):

1: (st, P )
$← PromiseEntry(st, e, T, sk)

2:
#–

Epromised ←
#–

Epromised || {P}
3: return P

OUpdateLog(
#–

P ):

1: (st, F )
$← UpdateLog(st,

#–

P , T, sk)
2: return F

OProveConsistency(F0, F1):

1: (st,
#–

C)
$← ProveConsistency(st, F0, F1)

2: return
#–

C

OProveMembership(e, F ):

1: (st,
# –

M)
$← ProveMembership(st, e, F )

2: return
# –

M

Figure 10: Security properties of a logging scheme LS against a malicious monitor/auditor
framing a log for failing to include a promised entry.

which runs A and then returns the first two components of A’s output, finds a collision in MTHH.
Moreover, the runtime of BA is the same as that of A.

By Lemma 1, a collision in MTHH leads to a collision in H, which is infeasible if H is
collision-resistant.

Proof. We show that a successful adversary A effectively outputs two colliding entry sets under
the same root of the Merkle tree used in Certificate Transparency, which, by Lemma 1, leads to
a hash collision.

Suppose A wins Expentry-coll
CTH,SIG

. Then A will output (
#–

E0,
#–

E1, F, pk) such that

CheckEntries(
#–

E0, F, pk) = CheckEntries(
#–

E1, F, pk) = 1

but
#–

E0 6=
#–

E1. Based on the definition of CheckEntries for CTH,SIG (cf. Section 3.2), this implies

that MTHH(
#–

E0) = MTHH(
#–

E1) but
#–

E0 6=
#–

E1. This is immediately a collision in MTHH, which is
what B outputs.

Theorem 2 (Collision resistance of proofs). If hash function H is collision-resistant then, in
Certificate Transparency (with hash function H) no malicious logger can present a list of log
entries under some fingerprint and a membership proof under the same fingerprint for an entry
not contained in this list. More precisely, if A wins Expproof-coll

CTH,SIG
by outputting (e,

#–

E,F,
# –

M,pk),

then algorithm BA, which runs A and then returns (e,
#–

E,
# –

M.
#–

A,
# –

M.m), breaks authentication path
consistency in the sense of Lemma 2. Moreover, the runtime of BA is the same as that of A.

By Lemma 2, a break of authentication path consistency in MTHH leads to a collision in H,
which is infeasible if H is collision-resistant.

Proof. Suppose A wins Expproof-coll
CTH,SIG

by outputting (e,
#–

E,F,
# –

M,pk) such that CheckEntries(
#–

E,

F, pk) = 1 and CheckMembership(F, e,
# –

M,pk) = 1, but e /∈ #–

E. Based on the definition
of CheckEntries and CheckMembership for CTH,SIG (cf. Section 3.2), this implies that | #–E| =
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BA3 ():

1: (
#–

E0,
#–

E1, F0, F1,
#–

C, pk)← A()
2: if F0.n is a power of two,

#–

C ← F0.H‖
#–

C
3: // assume

#–
E0 6≺

#–
E1

and MTHH(
#–
E0) = Root0FromConsProofH(

#–
C,F0.n, F1.n)

and MTHH(
#–
E1) = Root1FromConsProofH(

#–
C,F0.n, F1.n)

4: return R3(
#–

E0,
#–

E1,
#–

C)

R3(
#–

D0,
#–

D1,
#–

C):

1: n0 ← |
#–

D0|
2: n1 ← |

#–

D1|
3: // require: Root0FromConsProofH(

#–
C, n0, n1) = MTHH(

#–
D0)

4: // require: Root1FromConsProofH(
#–
C, n0, n1) = MTHH(

#–
D1)

5: k ← 2dlog2(n1)/2e

6:
#–

C ′ ← #–

C [0 : | #–C | − 1]
7: if n0 < k
8: `1 ← MTHH(

#–

D1[0 : k])
9: `′1 ← Root1FromConsProofH(

#–

C ′, n0, k)
10: r1 ← MTHH(

#–

D1[k : n1])
11: r′1 ←

#–

C [| #–C | − 1]
12: if (`1 6= `′1) ∨ (r1 6= r′1)
13: return (1‖`1‖r1, 1‖`′1‖r′1)
14: else return R3(

#–

D0,
#–

D1[0 : k],
#–

C ′)
15: elsif n0 = k
16: `0 ← MTHH(

#–

D0)
17: `1 ← MTHH(

#–

D1[0 : k])
18: if `0 = `1 return R1(

#–

D0,
#–

D1[0 : k])
19: elsif `0 6=

#–

C [| #–C | − 2]
20: // will not occur due to line 2 of B3
21: else (`1 6= C[|C| − 2])
22: return (1‖`1‖MTHH(

#–

D1[k : n1],
1‖ #–

C [| #–C | − 2]‖ #–

C [| #–C | − 1]))

R3 continued:
23: else (n0 > k)
24: if

#–

D0[0 : k] =
#–

D1[0 : k]
25: `← MTHH(

#–

D0[0 : k])
26: if ` =

#–

C [| #–C | − 1]
27: r0 ← MTHH(

#–

D0[k : n0])
28: r′0 ← Root0FromConsProof(

#–

C ′, n0 − k, n1 − k)
29: if r0 6= r′0, return (1‖`‖r0, 1‖`‖r′0)
30: r1 ← MTHH(

#–

D1[k : n1])
31: r′1 ← Root1FromConsProof(

#–

C ′, n0 − k, n1 − k)
32: if r1 6= r′1, return (1‖`‖r1, 1‖`‖r′1)
33: return R3(

#–

D0[k : n0],
#–

D1[k : n1],
#–

C ′)
34: else (` 6= #–

C [| #–C | − 1])
35: return (1‖`‖MTHH(

#–

D0[k : n0]),
1‖ #–

C [| #–C | − 1]
‖Root0FromConsProofH(

#–
C ′, n0 − k, n1 − k))

36: else (
#–

D0[0 : k] 6= #–

D1[0 : k])
37: `0 ← MTHH(

#–

D0[0 : k])
38: `1 ← MTHH(

#–

D1[0 : k])
39: if `0 = `1, return R1(

#–

D0[0 : k],
#–

D1[0 : k])
40: else (`0 6= `1)
41: if `0 6=

#–

C [| #–C | − 1]
42: return (1‖`0‖MTHH(

#–

D0[k : n0]),
1‖ #–

C [| #–C | − 1]
‖Root0FromConsProofH(

#–
C ′, n0 − k, n1 − k))

43: else (`1 6=
#–

C [| #–C | − 1])
44: return (1‖`1‖MTHH(

#–

D1[k : n1]),
1‖ #–

C [| #–C | − 1]
‖Root1FromConsProofH(

#–
C ′, n0 − k, n1 − k))

Figure 11: Algorithm B3 for Theorem 3.

F.n, MTHH(
#–

E) = F.H, and CheckPathH(e, F.H, F.n,
# –

M.
#–

A,
# –

M.m) = 1. Outputting the values
(e,

#–

E,
# –

M.
#–

A,
# –

M.m) breaks authentication path consistency in the sense of Lemma 2.

Theorem 3 (Consistency of entries). If hash function H is collision-resistant, then, in Certificate
Transparency (with hash function H), no malicious logger can present two lists of entries, two
fingerprints, and a consistency proof such that each list corresponds to the fingerprint, and the
fingerprints are connected via the consistency proof, but the first list of entries is not a prefix of
the second list of entries. More precisely, if A wins Expentry-cons

CTH,SIG
, then algorithm BA3 given in

Figure 11 finds a collision in H. Moreover, the runtime of BA3 consists of the runtime of A, plus
at most a quadratic (in the size of the second list) number of hash evaluations.

Proof. Suppose R3 receives as input values
#–

D0,
#–

D1,
#–

C such that

Root0FromConsProofH(
#–

C, n0, n1) = MTHH(
#–

D0) (1)

Root1FromConsProofH(
#–

C, n0, n1) = MTHH(
#–

D1) (2)

(where n0 = | #–D0| and n1 = | #–D1|) but
#–

D0 6≺
#–

D1. (3)

We claim that R3 outputs a collision for H when run with values satisfying (1)–(3). The
proof of the claim proceeds by induction on the size of

#–

C . R3 will recursively descend through
the trees induced by

#–

D0 and
#–

D1, as well as the reconstructions of the two roots from the
consistency path. At some point, R3 will find a collision. The three main cases are represented
in Figures 12(a)–12(c).
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#–

C [0] = H0
#–

C [1]

#–

E0

#–

E1

(a) Case 1:

| #–C | = 2 (i.e., n0 = k).

#–

C [2] #–

C [0]
#–

C [1]

#–

C [3]

#–

E0

#–

E1

(b) Case 2(a):

| #–C | > 2, n0 < k.

#–

C [3]

#–

C [0]
#–

C [1]

#–

C [2]

#–

E0

#–

E1

(c) Case 2(b):

| #–C | > 2, n0 > k.

Figure 12: Tree and consistency path for cases in proof of Theorem 3. | #–E0| = n0, |
#–

E1| = n1,
k = 2dlog2(n1)/2e. denotes leaf nodes, denotes inner nodes, and denotes nodes corresponding
to consistency proof values.

Case 1. First suppose | #–C | = 2. Assume that n0 = 2dlog2(n1)/2e. (See Figure 12(a).) (This is
true in honestly constructed consistency proofs; if lengths mismatch in malicious proofs, the
algorithms in Figure 6 will access invalid memory addresses and are assumed to abort.)

Now,
Root1FromConsProofH(

#–

C, n0, n1) = H(1‖ #–

C [0]‖ #–

C [1])

by Root1FromConsProof line 1 in Figure 6. By definition, we have

MTHH(
#–

D1) = H(1‖MTHH(
#–

D1[0 : k])‖MTHH(
#–

D1[k : n1])) .

By (2),
Root1FromConsProofH(

#–

C, n0, n1) = MTHH(
#–

D1) .

If MTHH(
#–

D1[0 : k]) 6= #–

C [0] or MTHH(
#–

D1[k : n1]) 6= #–

C [1], then we have a collision in H: this is what
is output by R3 on line 22.

So we now assume that MTHH(
#–

D1[0 : k]) =
#–

C [0] and MTHH(
#–

D1[k : n1]) =
#–

C [1]. By line 4 of
Root0FromConsProof in Figure 6, we have that Root0FromConsProofH(

#–

C, n0, n1) =
#–

C [0]. By
(1), this is equal to MTHH(

#–

D0). Furthermore, by the assumption at the start of this paragraph this
is also equal to MTHH(

#–

D1[0 : k]). Since
#–

D0 6≺
#–

D1 and | #–D0| = k, we must have that
#–

D0 6=
#–

D1[0 : k].
Thus, (

#–

D0,
#–

D1[0 : k]) constitutes a collision for MTHH, and by Lemma 1, this leads to a collision
in H: this is what is output by R3 in its call to R1 on line 18.

Case 2. Now suppose | #–C | > 2.

Case 2(a). First, suppose n0 < k. (See Figure 12(b).) Use the definitions of `1, `
′
1, r1, r

′
1 on

lines 8–11 of R3. By lines 4, 5, and 8 of Root1FromConsProof, H(1‖`′1‖r′1) is the value returned
by Root1FromConsProofH(

#–

C, n0, n1). By definition of MTH, H(1‖`1‖r1) is the value returned by
MTHH(

#–

D1). By equation (2), these hashes are equal. If `1 6= `′1 or r1 6= r′1, we have a collision in
H: this is what is output by R3 on line 13. Suppose `1 = `′1 and r1 = r′1. Then in particular

MTHH(
#–

D1[0 : k]) = Root1FromConsProofH(
#–

C [0 : | #–C | − 1]) .

By line 3 of Root0FromConsProof and equation (1), we have that

MTHH(
#–

D0) = Root0FromConsProofH(
#–

C, n0, n1) = Root0FromConsProofH(
#–

C [0 : | #–C |−1], n0, k) .

Moreover,
#–

D0 6≺
#–

D1[0 : k]. Thus,
#–

D0,
#–

D1[0 : k,
#–

C [0 : | #–C | − 1] satisfy conditions (1)–(3). By
induction, R3’s recursive call on line 14 will yield a collision in H.

Case 2(b). Second, suppose n0 > k. (See Figure 12(c).) While we know that
#–

D0 6=
#–

D1[0 : n0],

there are two possibilities: either
#–

D0[0 : k] =
#–

D1[0 : k] but
#–

D0[k : n0] 6=
#–

D1[k : n0], or
#–

D0[0 : k] 6= #–

D1[0 : k].
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Suppose
#–

D0[0 : k] =
#–

D1[0 : k] but
#–

D0[k : n0] 6=
#–

D1[k : n0]. This means that MTHH(
#–

D0[0 :
k]) = MTHH(

#–

D1[0 : k]), which is ` on line 25 of R3. Now, either ` =
#–

C [| #–C | − 1] or not. If
` 6= #–

C [| #–C | − 1], then we already have a collision in equation (1), and this is output by line 35. If
` =

#–

C [| #–C | − 1], then—intuitively—we have to look on the right side of the trees for the collision.
If r0 (the right side of the

#–

D0 tree) is not equal to r′0 (the right side of the reconstructed path to
root zero), then we have a collision:

H(1‖`‖r0) = MTHH(
#–

D0) = Root0FromConsProofH(
#–

C, n0, n1) = H(1‖`‖r′0) ,

and this is what R3 outputs on line 29. Similarly if r1 (the right side of the
#–

D1 tree) is not
equal to r′1 (the right side of the reconstructed path to root one): this is what R3 outputs on
line 32. Otherwise, r0 = r′0 and r1 = r′1, and thus

#–

D0[k : n0],
#–

D1[k : n1],
#–

C ′ satisfy conditions
(1)–(3): by induction, the recursive call to B3 on line 33 will return a collision.

Finally, suppose
#–

D0[0 : k] 6= #–

D1[0 : k]. Either these two lists hash to the same value
under MTHH or they do not. If they do, then this constitutes a collision in MTHH, and by
Lemma 1, this leads to a collision in H: this is what is output by R3 in its call to R1 on
line 40. If these two lists hash to different values `0, `1 under MTHH, then at least one of
`0, `1 must be different from

#–

C [| #–C | − 1]. Suppose `0 6=
#–

C [| #–C | − 1]. By condition (1), the
definition of MTH, and lines 6–8 of Root0FromConsProof in Figure 6, 1‖`0‖MTHH(

#–

D0[k : n0])
and 1‖ #–

C [| #–C | − 1]‖Root0FromConsProofH(
#–

C ′, n0 − k, n1 − k) hash to the same value but are
different strings, constituting a collision for H: this is what R3 outputs on line 42. Similarly,
if `1 6=

#–

C [| #–C | − 1], we obtain a collision related to condition (2), which is what R3 outputs on
line 44.

Theorem 4 (Inclusion of promises). If hash function H is collision-resistant and signature scheme
SIG is existentially unforgeable under chosen-message attacks, then, in Certificate Transparency
(with hash function H and signature scheme SIG), no malicious monitor/auditor can frame an
honest logger of not including a promised entry within the maximum merge delay. More precisely,
if algorithm A wins Exppromise-incl

CTH,SIG
, then there exist algorithms BA and CA, described in the proof,

that find a collision in MTHH or a forgery in SIG, respectively. Moreover, the runtimes of BA and
CA are approximately the same as that of A.

Proof. By definition of OTick (cf. Figure 10), the simulated honest logger will keep track of any
promise P issued through OPromiseEntry and will include the P through OUpdateLog by time
T = P.t + MMD. As in particular MMD > 0, this ensures that any fingerprint issued by the
honest logger at time T ′ ≥ T will include the promised entry P.e.

Assume A wins by outputting (F, P,
#–

E), i.e., F is a valid fingerprint representing entries
#–

E
and P is a promise for an entry e /∈ #–

E although P.t + MMD ≤ F.t. This means either one of
the promise P or the fingerprint F (or both) were not issued by the simulated honest logger
through an invocation of OPromiseEntry or OUpdateLog, or that A repeated an honest F that
matches an entry list

#–

E different from the entry list
#–

E ′ hold by the honest logger when creating
the fingerprint.

The second case constitutes a Merkle-tree hash collision (as MTHH(
#–

E) = MTHH(
#–

E ′), but
#–

E 6= #–

E ′). Hence A’s advantage in winning through this case can be bound by the advantage of
an algorithm B (that simulates the oracles and simply outputs the colliding

#–

E and
#–

E ′) against
the collision resistance of MTHH. (Applying Lemma 1 leads to a collision in H.)

For the first case, we show how this allows constructing a signature forgery attacker C against
the euf-cma security of SIG, which works as follows. First of all, C creates an initial state with
empty list of entries. It then simulates experiment Exppromise-incl

CTH,SIG,MMD for A, providing the public

key pk from its euf-cma game as input for A. It furthermore uses its euf-cma signing oracle OSign
when required to generate a signature in the simulations of the OPromiseEntry and OUpdateLog
oracles and keeps a list of all the values queried to the signing oracle.
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If A halts (outputting (F, P,
#–

E)) and wins, as argued above, at least one of P or F was not
output through C’s simulation of OPromiseEntry and OUpdateLog (as we excluded the case of a
Merkle-tree hash collision). Hence, in particular, the according value was not queried to the
euf-cma signing oracle, so C checks which of the two values is not contained in its list of queries
and outputs this as its valid signature forgery.

Remark 1. Our security results for CT depend on security of Merkle tree hashing, which in
turn depend on collision resistance. Some hash-based signature schemes are able to rely on
second-preimage resistance [DOTV08, BDH11] or pseudorandomness [BDE+11] by XORing
(pseudo)random values into intermediate node computations, but these techniques are not used
in CT’s use of traditional Merkle trees so we rely solely on collision resistance.

6 Conclusion and Future Work

Certificate Transparency is a promising approach for providing assurances in the web PKI by
using untrusted auditable public logs to detect fraudulently issued certificates. We introduced
a generic model for logging schemes and captured Certificate Transparency as one specific
instance of our model. Based on the security notions we formalized, we were able to analyze
the cryptographic aspects of CT and show how its cryptographic mechanisms prevent both
undetected misbehaviour of log servers as well as false accusations of honest loggers.

Although cryptography plays an essential role to establish the trust necessary in a public
and auditable logging scheme like Certificate Transparency, there are other components involved
that are difficult or even impossible to capture in a cryptographic model. For example, under
various conditions on adversary control of the network and with various patterns of honest entity
behaviour, how long does it take for the CT gossiping protocol to propagate SCTs and STHs to
ensure detection of dishonest log behaviour? Once misbehaviour is detected, what organizational
measures should be taken to ensure an appropriate response? Analyzing these components in
general as well as their specific relevance in the CT framework is an important task for future
work.
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BA1 ():

1: (
#–

E0,
#–

E1)← A()

2: // assume MTHH(
#–

E0) = MTHH(
#–

E1) but
#–

E0 6=
#–

E1

3: return R1(
#–

E0,
#–

E1)

R1(
#–

D0,
#–

D1):

1: // require:
#–

D0 6=
#–

D1 but MTHH(
#–

D0) = MTHH(
#–

D1)

2: n0 ← |
#–

D0|, n1 ← |
#–

D1|
3: k0 ← 2dlog2(n0)/2e, k1 ← 2dlog2(n1)/2e

4: if n0 = n1 = 1, return (0‖ #–

D0[0], 0‖ #–

D1[0])
5: elseif (n0 = 1) ∧ (n1 > 1)

6: return (0‖ #–

D0[0], 1‖MTHH(
#–

D1[0 : k1])‖MTHH(
#–

D1[k1 : n1])).
7: elseif (n0 > 1) ∧ (n1 = 1)

8: return (1‖MTHH(
#–

D0[0 : k0])‖MTHH(
#–

D0[k0 : n0]), 0‖ #–

D1[0])
9: else (n0, n1 > 1)

10: if (MTHH(
#–

D0[0 : k0]) 6= MTHH(
#–

D1[0 : k1]))

11: ∨ (MTHH(
#–

D0[k0 : n0]) 6= MTHH(
#–

D1[k1 : n1]))

12: return (1‖MTHH(
#–

D0[0 : k0])‖MTHH(
#–

D0[k0 : n0]),

13: 1‖MTHH(
#–

D1[0 : k1])‖MTHH(
#–

D1[k1 : n1]))

14: elseif
#–

D0[0 : k0] 6= #–

D1[0 : k1]

15: return R1(
#–

D0[0 : k0],
#–

D1[0 : k1])

16: elseif
#–

D0[k0 : n0] 6= #–

D1[k1 : n1]

17: return R1(
#–

D0[k0 : n0],
#–

D1[k1 : n1])

Figure 13: Algorithm B1 for Lemma 1.

A Proofs of Merkle Tree Security Properties

We now provide proofs for the facts about Merkle tree hashing stated in Section 2.2.

Proof of Lemma 1. Suppose A outputs sets
#–

E0 and
#–

E1 such that MTHH(
#–

E0) = MTHH(
#–

E1) but
#–

E0 6=
#–

E1. B1 then runs R1 on
#–

E0,
#–

E1. R1 is a recursive algorithm which takes as input two
lists that are distinct but hash to the same value under MTHH. Somewhere in the recursive
computation of MTHH(

#–

E0) and MTHH(
#–

E1), a collision occurs in H, and R1 recurses until it finds
that collision.

Proof of Lemma 2. Suppose R2 receives as input values e,
#–

D,
#–

A,m such that

RootFromPathH(e, n,
#–

A,m) = MTHH(
#–

D) (4)

(where n = | #–D|) but
e 6∈ #–

D . (5)

We claim that R2 outputs a collision for H when run with values satisfying (4) and (5). The
proof of this claim proceeds by induction on n.

First suppose n = 1. Then MTHH(
#–

D) = H(0‖ #–

D[0]) and RootFromPathH(e, 1,
#–

A,m) = H(0‖e),
and these are equal by assumption on R2’s inputs. Since e 6∈ #–

D, we have that e 6= #–

D[0] and thus
0‖ #–

D[0] 6= 0‖e, but H(0‖ #–

D[0]) = H(0‖e), which is a collision for H. This is what is output by R2

on line 3.
Now suppose n > 1. Let k = 2dlog2(n)/2e.
Suppose m < k, and let `, r, `′, and r′ be as on lines 5, 6, 8, and 9 of R2 in Figure 14.

Then MTHH(
#–

D) = H(1‖`‖r) and RootFromPathH(e, n,
#–

A,m) = H(1‖`‖r), and these are equal
by assumption on R2’s inputs. If ` 6= `′ or r 6= r′, then we immediately have a collision
for H: (1‖`‖r, 1‖`′‖r′), which is what R2 outputs on line 10. If these are all equal, then
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BA2 ():

1: (e,
#–

E,
#–

A,m)← A()

2: // assume RootFromPathH(e, n,
#–

A,m) = MTHH(
#–

E) but e 6∈ #–

E

3: return R2(e,
#–

E,
#–

A,m)

R2(e,
#–

D,
#–

A,m):

1: // require: RootFromPathH(e, | #–D|, #–

A,m) = MTHH(
#–

D)

2: n← | #–D|
3: if n = 1, return (0‖ #–

D[0], 0‖e)
4: k ← 2dlog2(n)/2e

5: `← MTHH(
#–

D[0 : k])

6: r ← MTHH(
#–

D[k : n])
7: if m < k
8: `′ ← RootFromPathH(e, k,

#–

A[0 : | #–A| − 1],m)
9: r′ ← A[|A| − 1]

10: if (` 6= `′) ∨ (r 6= r′), return (1‖`‖r, 1‖`′‖r′)
11: else return R2(e,

#–

D[0 : k],
#–

A[0 : | #–A| − 1],m)
12: else (m ≥ k)

13: `′ ← #–

A[| #–A| − 1]

14: r′ ← RootFromPath(e, n− k, #–

A[0 : | #–A| − 1],m− k)
15: if (` 6= `′) ∨ (r 6= r′), return (1‖`‖r, 1‖`′‖r′)
16: else return R2(e,

#–

D[k : n],
#–

A[0 : | #–A| − 1],m− k)

Figure 14: Algorithm B2 for Lemma 2.

e,
#–

D[0 : k],
#–

A[| #–A| − 1],m satisfy (4) and (5). By induction, this recursive call to R2 outputs a
collision.

Suppose m ≥ k, and let `, r, `′, and r′ be as on lines 5, 6, 13, and 14 of R2 in Figure 14.
Then MTHH(

#–

D) = H(1‖`‖r) and RootFromPathH(e, n,
#–

A,m) = H(1‖`‖r), and these are equal
by assumption on R2’s inputs. If ` 6= `′ or r 6= r′, then we immediately have a collision
for H: (1‖`‖r, 1‖`′‖r′), which is what R2 outputs on line 15. If these are all equal, then
e,

#–

D[k : n],
#–

A[| #–A| − 1],m satisfy (4) and (5). By induction, this recursive call to R2 outputs a
collision.
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