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Abstract. Most security models for authenticated key exchange (AKE)
do not explicitly model the associated certification system, which includes
the certification authority (CA) and its behaviour. However, there are
several well-known and realistic attacks on AKE protocols which exploit
various forms of malicious key registration and which therefore lie outside
the scope of these models. We provide the first systematic analysis of AKFE
security incorporating certification systems (ASICS). We define a family
of security models that, in addition to allowing different sets of standard
AKE adversary queries, also permit the adversary to register arbitrary
bitstrings as keys. For this model family we prove generic results that
enable the design and verification of protocols that achieve security even
if some keys have been produced maliciously. Our approach is applicable
to a wide range of models and protocols; as a concrete illustration of its
power, we apply it to the CMQV protocol in the natural strengthening
of the eCK model to the ASICS setting.
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1 Introduction

After public key encryption and digital signatures, authenticated key estab-
lishment (AKE) is perhaps the most important public key primitive. From a
real-world perspective, AKE protocols relying on public key techniques are widely
deployed in systems that are used every day by billions of users, including systems
such as TLS, IPsec, SSH, and various single sign-on systems. From a theoretical
perspective, formal, cryptographically sound modelling for AKE protocols began
in the symmetric setting with the seminal work of Bellare and Rogaway [4], and
was later extended to the public key setting [6]. Since then, there has been a
large body of work in this tradition, and many additions and modifications have
been proposed. The most prominent current models in this tradition [3,12,25,33]
strengthen or add to the required security properties, cover different protocol
classes, and strengthen adversary powers.

Despite intensive study over two decades, important elements of AKE proto-
cols have not been sufficiently modelled, preventing our deeper understanding



of this important primitive and limiting its applicability to real-world proto-
cols. Specifically, the public key infrastructure (PKI) needed to support the
authenticity of public keys in AKE, and the interactions between the certification
authority (CA), honest parties, and the adversary, are rarely modelled. Rather,
with exceptions as noted below, in typical AKE models and proofs it is assumed
that all public keys are honestly generated and authentically distributed at the
start of the security game, and that there is a single key per party; certificates
are excluded from the model. The adversary can corrupt parties, learning all
their secrets, but has limited ability to register malicious keys. Roughly speaking,
this modelling approach corresponds to an ideal CA, who zealously generates
perfect key pairs and securely distributes them to the correct parties.

However, CAs in the real world simply do not operate in such rigorous ways.
They have differing strengths of procedures for checking claimed identities?, so
malicious parties might in some cases get arbitrary public keys certified against
identifiers of their choice. The most egregious examples involve CAs who, either
willingly, under coercion, or as a result of security compromises, have issued
certificates for keys and identifiers that they should not have.® CAs following
best-practices may require that a user requesting a certificate submit a certificate
signing request to the CA. This involves the user self-signing the data that is to
be certified. Various standards [1,2,32] include other approaches to providing
proofs of possession. However, even these basic tests of private key ownership are
not mentioned in industry guidelines issued by the CA/Browser Forum [10,11].
Furthermore, these procedures all fall short of the proofs of knowledge [31]
required to match what is assumed in typical AKE models. Thus, an attacker
may be able to register another party’s public key under his own identifier, or
register a malformed key which then interacts with properly generated keys in
an unfortunate way.

Critically, there are realistic attacks on AKE protocols which cannot be
captured by AKE security models that omit CA and PKI aspects:

— Kaliski’s unknown key share (UKS) attack [22] on early versions of MQV
exploits the ability of the adversary to dynamically register a public key
(which is valid and for which the adversary does know the secret key).

— The UKS attack on KEA described by Lauter and Mityagin [26, p. 380]
exploits the adversary’s ability to re-register some party’s static public key
as his own public key.

— Blake-Wilson and Menezes [8] introduced the duplicate-signature key selection
(DSKS) attack on signature schemes: after observing a user’s signature o

4 For example, issuance of Extended Validation (EV) certificates requires stronger
identity-checking requirements than non-EV certificates, see https://www.cabforum.
org/certificates.html for more details.

5 In June and July 2011, Dutch CA DigiNotar was hacked [18], with the intruder
taking control of all 8 of the CA’s signing servers; at least 531 rogue certificates were
then issued. In August 2011, TURKTRUST CA [17] issued special certificates with
wildcard signing capabilities, allowing impersonation of any domain in the Internet.
This was discovered, by coincidence, only 18 months later.
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on a message m, the adversary FE is able to compute a signature key pair
(skg,vkg) (or sometimes just a verification key vkg) such that o is also E’s
signature on the message m. Now, for example, if the Station-to-Station
(STS) protocol is implemented using a signature scheme that is vulnerable to
DSKS attacks, and the adversary can register arbitrary public keys with the
CA, then the protocol is vulnerable to an online UKS attack [8].

— In Lim and Lee small subgroup attacks [27], the adversary extracts information
about a party’s long-term secret key. Some of these attacks require registering
invalid public keys with the CA before engaging in protocol runs with honest
participants. Of particular note are the Lim—Lee-style attacks of Menezes
and Ustaoglu [29] on the HMQV protocol [23].

We claim that to date there has been no systematic treatment in the literature
of the behaviour of CAs with respect to public keys and identifiers chosen by the
adversary. Our paper sets out to rectify this situation, providing a comprehensive
and self-contained treatment of these features, as well as establishing generic
results to make protocols resilient against such attacks.

Contributions. Our paper has three main contributions.

First, we present in Section 2 a framework for reasoning about the security
of AKE protocols with respect to various CA key registration procedures. This
framework allows us to capture several attacks based on adversarial key registra-
tion, including UKS attacks, small-subgroup attacks, attacks that occur when
the CA does not check if public keys are registered twice, and attacks that occur
when multiple public keys can be registered per identifier.

Second, we provide in Section 3 a generic approach to achieve strong security
guarantees against adversaries that can register arbitrary public keys for certain
types of protocols. In particular, we show how to transform Diffie-Hellman type
AKE protocols that are secure in a model where only honest key registration
is allowed into protocols that are secure even when adversaries can register
arbitrary valid or invalid public keys. In such cases, security is still guaranteed
for all sessions (that were considered clean or fresh in the base model) except
those in which the peer’s public key is valid but registered by the adversary.

Third, we demonstrate in Section 4 how our methodology can be used to
establish strong security guarantees, even when the adversary can register arbi-
trary public keys, for concrete protocols such as CMQV, NAXOS, and UP, using
CMQV as a running example. We provide in Section 5 recommendations for the
design of protocols that are secure in our models.

Related work. The original computational model for key exchange of Bellare
and Rogaway [4] has a long-lived key generator, which is used to initialise
all parties’ keys at the start of the game. This is a standard part of most
computational models today. However, in common with several later models [12,
21,24], the adversary cannot influence long-term keys: only honestly generated
keys are considered. Starting with the 1995 model of Bellare and Rogaway [5] it
was recognised that the adversary may be able to choose long-term keys for certain



parties, whether public keys or symmetric keys. It is possible to identify three
different methods that have been used to model such an adversary capability.

1. The adversary can replace long-term keys by providing them as an input to a
corrupt query. This was the method used originally by Bellare and Rogaway [5]
and was subsequently used in the public key setting by others [7,30].

2. The adversary is allowed to generate arbitrary keys for corrupted parties at
any time during the protocol run [23].

3. An additional query is added specifically to set up a user with a new key
chosen by the adversary [14,20,35]. This query is typically called establishparty
and takes as input the user name and its long-term public key.

These methods allow the models to capture the Kaliski attack [22], which requires
the adversary to register a new public key after certain protocol messages have
been obtained. However, none of these currently used methods has the generality
of our model and, in particular, all of them omit the following realistic features:

— registration of multiple public keys per user;
— flexible checking by certification authorities via a verification procedure;
— adversarial choice of public keys per session.

Special mention should also be made of the model of Shoup [33]. Unlike most
popular AKE models today, it uses a simulatability definition of security com-
paring ideal and real world views. Security is defined to mean that for any real
world adversary there is an ideal world adversary (benign by definition) such
that the transcripts of the two are computationally indistinguishable. Real-world
adversaries have the ability to assign users to public key certificates. Shoup’s
model has not been widely used and the examples in [33] are not fully worked
through. Furthermore, the model cannot represent an adversary who obtains only
ephemeral secret keys without knowing the long-term key of the same user and
therefore cannot capture security properties common in more modern models.

Other works [13, 19] have considered the security of non-interactive key
exchange (NIKE) in settings where the adversary can register arbitrary public
keys, analogously to our ASICS setting for interactive key exchange. It is an
interesting open problem to examine how the security models and constructions
for NIKE [13,19] can be built upon to achieve security in the ASICS setting.

Critically, all of the approaches mentioned above have only been used to
establish results for a handful of specific protocols. In contrast, we establish
generic results that facilitate the design and verification of AKE protocols, and
that can be applied to a large class of protocols.

2 ASICS model family

In this section we define a parameterized AKE security model that allows for
explicit modelling of the certification of public keys. Prominent AKE security
frameworks can be instantiated in this family of models, as well as extensions
that allow dynamic adversarial registration of arbitrary bitstrings as public keys.

Generally speaking, from a user’s point of view, participation in key exchange
encompasses three consecutive phases: First, users set up their individual key pairs;



more precisely, each user invokes a randomized algorithm KeyGen that outputs
a fresh secret-key/public-key pair (sk, pk). Second, users contact a certification
authority (CA) to get their keys certified: each user provides the CA with its
identifier P and its public key pk, and obtains a certificate C' that binds the
identifier to the key. After completing these setup steps, in the third phase,
users can engage in interactive sessions with other users to establish shared keys.
To do so, they usually require knowledge of their own key pair (sk, pk), their
identifier P, and the corresponding certificate C'. In addition to that, protocols
may require a priori knowledge of (a subset of) the peer’s public key pk’, peer’s
identifier Q, and peer’s certificate C’. As we will see, our execution model is
general enough to cover all these settings. To ease notation, we assume that
public key pk and identifier P can be readily derived from any certificate C'; we
use notation C.pk = pk and C.id = P correspondingly.

Our work enables the modeling of different degrees of rigour in the checks
of consistency and ownership of public keys pk presented to the CA. On the
one hand, CAs could be pedantic with such verifications (e.g., require a proof of
knowledge of the secret key corresponding to pk); on the other hand, CAs could
also just accept any given bitstring pk as valid and issue a certificate on it. The
ability to precisely assess the security of key establishment in the face of different
CA behaviours is a key contribution of our new model family.

Definition 1. An ASICS protocol Il consists of a set of domain parameters,
a key generation algorithm KeyGen, a public key verification procedure VP, and
the protocol description m that describes how key exchange protocol messages are
generated and responded to as well as how the session key is derived.

We denote by VP the specific verification procedure on public keys and identifiers
that a considered CA deploys. As different checks on pk and P might require
different levels of interaction between the registering user and the CA, we model
it as a procedure, as opposed to a function. We require that VP is efficient and
has binary output. Furthermore, we require that the CA issues the requested
certificate only if VP outputs value 1; all certification requests where VP outputs
value 0 are rejected. Note that, for simplicity, we only consider non-interactive
verification procedures (i.e., two-message registration protocols) between the
user and the CA. A more general treatment covering interactive verification
procedures as well would introduce additional complexities to our framework.

Specific key exchange protocols might be insecure for one (liberal) instantiation
of VP, and be secure for another (stricter) one. Note that CAs that do not perform
any check on pk and P are modelled by a verification procedure VP that always
outputs 1. A verification procedure that performs few checks may output 1 for at
least all pk € PK, where PK denotes the set of possible public keys output by
KeyGen. Precisely, if the inputs of algorithm KeyGen are security parameter 1¥
and randomness 7 € {0, 1}, then we define

PK = {pk | there exists r € {0,1}" such that KeyGen(1*;7) = (-, pk)}

A verification procedure with high assurance may require a zero-knowledge
argument that the requester knows the secret key corresponding to the public



key, and even that the key was generated verifiably at random. Note that we
allow VP to keep an internal state between invocations; our model hence covers
possible implementations of CAs that reject certification requests with public
keys that have already been registered (e.g., for a different identifier).

2.1 Security model

At a high level, our model stipulates users that generate one or more keys,
obtain certificates for these keys from a CA, and use keys and certificates to
run (potentially concurrent) sessions of the key agreement protocol. Similar
to other security models, the adversary controls all communication in these
sessions, corrupts users at will to obtain their secret keys, and arbitrarily reveals
established session keys. Innovative is the adversary’s additional ability to steer
the registration process with the CA: it can obtain from the CA valid certificates
for public keys and identifiers of its choosing (as long as VP evaluates to 1), and
provides users with such certificates.

To keep our model simple and comprehensible, we abstract away any forgeabil-
ity issues of certificates and assume the following ideal functionality: no certificate
will be considered valid unless it has been issued by the CA. We model this by
letting the challenger keep a list C of all CA-issued certificates and by equipping
users with a certificate verification oracle Ocy that checks membership in that
list; concretely, we assume that Ocy (C) = 1 & C € C. Of course, in concrete
implementations, this oracle is replaced by an explicit local verification routine;
for instance, if certification is implemented via a signature scheme, this will
include its verification procedure.

Sessions and session state. Users, once they have created their keys and
obtained corresponding certificates, can execute protocol sessions. Within a user,
each such session is uniquely identified by a pair s = (C, i), where C denotes the
certificate used by the user (by himself) in that session, and i is a counter. The user
maintains session-specific variables as indicated in Table 1. Some session variables
are fixed upon session creation, whereas others can be assigned or updated during
protocol execution. Some, such as pcert, status, and key, are considered to be
outputs of the key establishment and might be used in higher-level protocols or
applications. A session s has accepted if sgparus = accepted.

Adversarial queries. The adversary interacts with users by issuing queries.
The adversary can direct users to establish long-term key pairs and certifi-
cates (kgen, hregister), to initiate protocol sessions (create), and to respond to
protocol messages (send). The adversary may be able to learn long-term keys
(corrupt), session-specific randomness (randomness), or session keys (session-key)
from users. The adversary can also maliciously obtain certificates from the CA
(pkregister, npkregister).

The queries in set Qn = {kgen, hregister, create, send}, defined as follows,
model normal operation of the protocol; they are required in any security model.
Initially, the auxiliary variables HK, C, Cp,, Cpk, and Cnpk are set to 0.



acert  certificate of the actor (the user running this session)
pcert  certificate of this session’s peer

role taken role; either Z (initiator) or R (responder)

sent concatenation of all messages sent in this session
revd concatenation of all messages received in this session
status session status; either active, accepted, or rejected
key key in {0,1}* established in this session

rand randomness used in this session

data, any additional protocol-specific data

Table 1. Elements of session state

On = {kgen, hregister, create, send} (Normal protocol behaviour)
Qs = {corrupt, randomness, session-key} (corruption of Secrets)
Qr = {pkregister, npkregister} (adversarial key Registration)

Table 2. Overview of query sets. Additionally, there is a test-session query.

— kgen () By running algorithm KeyGen, a fresh key pair (sk, pk) is generated.
Public key pk is returned to the adversary; secret key sk is stored for processing
potential later queries corresponding to pk. The public key is added to the
set of honestly generated keys: HK < HI U {pk}.

— hregister(pk,P) The query requires that pk € H/X and that VP outputs 1
on input pk® and ]5; otherwise, it returns . The public key pk is registered
at the CA for the identifier P. The resulting certificate C' is added to the
global set of certificates and to the set of honestly generated certificates:
C + CU{C} and Cj, + C, U{C}. The query returns C.

— create (s = (C,4),r,[C']) The query requires that C' € Cj, that a session
with counter ¢ for certificate C' does not already exist, and that r € {Z, R};
otherwise, it returns 1. A new session s is created for the user with public
key C.pk and identifier C'id. Session variables are initialized as

(Sacer‘m Spcert s Sroley Ssents Srcvd ) Sstatus) Skey) — (07 1,7,€,6,active, J—) .

If the optional certificate C’ is provided, we set Speert <— C’. In addition,
a string in {0,1}* is sampled uniformly at random and assigned to s,anq;
we assume that all randomness required during the execution of session s
is deterministically derived from s;anq. The user also runs the initialization
procedure for the key exchange protocol, which may further initialize its own
(internal) state variable sgat. and optionally generate a message M. If M
was generated, set Sgent <— M, and return M. Otherwise, return L.

— send (s, M) The query requires that session s exists and that Sgatus =
active; otherwise, it returns L. The user continues the protocol execution
for this session with incoming message M, which may optionally generate a
response message M’. Next, Sycyd 1S set to (Speva || M) and, if M’ is output,
Ssent 18 set t0 (Sgent || M'). The protocol execution may (re-)assign values to

% Reasonable implementations of VP output 1 on all keys pk € HC, because HK C PK.



Sstatus ald Skey, and to the session’s internal state variable sqata. Also, if the
value Spcert Was not provided to the create query, then protocol execution may
assign a value to speert. If M " was generated, return M’; otherwise return L.

The queries in set Qg = {corrupt, randomness, session-key} model the corruption
of a user’s secrets. Similar queries are found in other standard AKE models [4,12].

— corrupt (pk) The query requires pk € HK; otherwise, it returns L. This
query returns the secret key sk corresponding to public key pk.

— randomness (s) The query requires that session s exist; otherwise, it re-
turns L. The query returns the randomness syanq. This is similar to the
ephemeral key reveal query in the eCK model [25].

— session-key (s) The query requires that session s exist and that Sgtatus =
accepted; otherwise, it returns L. The query returns the session key siey .

The hregister query introduced above only allows registration of keys pk € HIC,
i.e., keys held by honest users. In contrast, the adversary can obtain certificates
on arbitrary (valid) public keys using the following pkregister query. Going
even further, the npkregister query allows registration of objects that are not
even public keys (always assuming that VP outputs 1 on the candidate object).
These queries will allow modelling Kaliski’s attack on MQV [22] and small
subgroup attacks [27], amongst others. We emphasize that the queries in set
Qr = {pkregister, npkregister} have no counterparts in standard definitions of
key exchange security.

— pkregister(pk, P) The query requires that pk € PK and that VP outputs 1
on input pk and P; otherwise, it returns L. The public key pk is registered
at the CA for identifier P. The resulting certificate C' is added to the global
set of certificates and to the set of certificates generated through pkregister
query: C <= CU{C} and Cpk + Cp U {C}. The query returns C.

— npkregister(pk, ]5) The query requires that pk ¢ PK and that VP outputs 1
on input pk and P: otherwise, it returns L. The public key pk is registered at
the CA for the identifier P. The resulting certificate C' is added to the global
set of certificates and to the set of certificates generated through npkregister
query: C <= CU{C} and Chpk < Cnpk U {C}. The query returns C.

2.2 Security experiment

Using the above queries, we define a parameterized family of AKE security
models. As is common in BR-style AKE models, we must restrict query usage so
that the adversary cannot trivially win the security experiment. The conditions
under which queries are disallowed are expressed by a freshness condition, which
typically uses a matching condition to formalize intended partner sessions.

Definition 2 (Matching, freshness, ASICS model). Let IT be an ASICS
protocol. A matching condition M for II is a binary relation on the set of
sessions of II. Let Q be a set of queries such that Qn CQ C Oy U Qg U ORr. A
freshness condition F for (II, Q) is a predicate (usually depending on a matching
condition M) that takes a session of II and a sequence of queries (including



arguments and results) of a security experiment over queries in Q. We call
X =(M,Q,F) an ASICS model for II.

Definition 3 gives two possible matching conditions. We will later give examples
of freshness conditions, in Example 1 on the following page and in Section 4.

The intricacies of matching definitions in AKE protocols are explored in detail
by Cremers [15]. Two issues are important here. First, there is a strong connection
between the information used in a matching definition and the information used
to compute the session key. Second, some protocols like the two-message versions
of MQV and HMQYV allow sessions to compute the same key even if they perform
the same role, whereas other protocols such as NAXOS require the sessions that
compute the same key to perform different roles. In the remainder of the paper
we will use one of the definitions below, depending on the type of protocol.

Definition 3 (Ml-matching, M2-matching). Let s and s’ denote two sessions
of an ASICS protocol. We say that session s’ M1-matches (or is M1-matching)

5€850n S if Sstatus = Shtatus = accepted and

(Sacert-pka Sacert-id, Spcert-pk7 spcert-ld; Ssent s Srcvd)
’ / ’ /

o . . ,
- (Spcert'pk’ Spcert'|d> sacert'pk’ Sacert‘|d7 Srcvd’ Ssent)
Similarly, we say that session s’ M2-matches (or is M2-matching) session s if s’

: /
M1-matches session s and Srole 7 Syoje-

The goal of the adversary is to distinguish the session key of a fresh session from
a completely random string. This is modelled through an additional query:

— test-session (s) This query requires that session s exists and that Sgpatus =
accepted; otherwise, it returns L. A bit b is chosen at random. If b = 1, then
Skey is Teturned. If b = 0, a random element of {0, 1}* is returned.

Definition 4 (ASICSx experiment). Let IT be an ASICS protocol and X =
(M,Q, F) be an ASICS model. We define experiment ASICSx, between an adver-
sary E and a challenger who implements all users and the CA, as follows:

1. The experiment is initialized with domain parameters for security parameter k.

2. The adversary E can perform any sequence of queries from Q.

8. At some point in the experiment, E issues a test-session query for a session s
that has accepted and satisfies F' at the time the query is issued.

4. The adversary may continue with queries from Q, under the condition that
the test session must continue to satisfy F.

5. Finally, E outputs a bit b’ as E’s guess for b.

Definition 5 (ASICSx advantage). The adversary E wins the security ex-
periment if it correctly outputs the bit b chosen in the test-session query. The
ASICS x-advantage of E is defined as AdvIAI%gSX (k) =12Pr(b=0") —1].

Definition 6 (ASICS security). Let II be an ASICS protocol and X =
(M,Q,F) be an ASICS model. II is said to be secure in ASICS model X if,
for all PPT adversaries E, it holds that



1. if two users successfully accept in M-matching sessions, then they both
compute the same session key, and

2. E has no more than a negligible advantage in winning the ASICS x experiment;
that is, there exists a negligible function negl in the security parameter k such
that Adv/}ilEcsx (k) < negl(k).

Remark 1 (Implicit authentication). Note that the ASICS security definition,
like eCK-style security definitions, only provides implicit peer authentication,
meaning that the key could only be known by the peer, not explicit authentication
that the peer actually was active in the session.

Ezxample 1. Let us consider the following ASICS model as a concrete example.
Let X = (M1,Q, F) be the ASICS model given by Q = Qx U {session-key} U Qg
and F' defined as follows. Given a sequence of queries and a session s, I’ holds if:

— no session-key(s) query has been issued, and

— for all sessions s’ such that s’ M1-matches s, no query session-key(s’) has
been issued, and

— no query pkregister(spcert-PK, Speert-id) has been issued.

The model X is an extension of a BR-like model with a CA that allows registration
of arbitrary keys. If a protocol is secure in X, then it is secure even if the adversary
can register arbitrary bitstrings as public keys, as long as the specific peer key
used in the test session is not an adversary-generated valid public key.

2.3 Capturing attacks

We illustrate how several attacks exploiting the adversary’s ability to register
valid or invalid public keys can be captured in ASICS models.

Kaliski’s online UKS attack against MQV [22]. Kaliski’s attack against MQV
can be captured in an ASICS model where the adversary can register a specific
valid public key with his own identifier via a pkregister query. As the adversary
knows the secret key corresponding to the registered public key, the attack cannot
be prevented by VP requiring a proof-of-possession of the secret key.

UKS attack against KEA based on public-key re-registration [26, p. 380]. Suppose
that public key pk has been honestly registered at the CA for some user with
identifier P via the query hregister(pk, P) In this UKS attack on the KEA
protocol, the adversary re-registers the public key pk under his own identifier
L #* P by issuing the query pkregister(pk, L) The attack is prevented if VP
checks for uniqueness of the public key and outputs 0 when the public key was
certified before (as observed in [26, p. 381]). Note that the UKS attack can also
be prevented by making the session key derivation depend on users’ identifiers.

UKS attack against KEA+ based on impersonation attack. Lauter and Mitya-
gin [26] produced the KEA+ protocol from the KEA protocol and Protocol 4
in [6] by incorporating the identifiers of the user and its peer in the session
key computation to prevent UKS attacks; however, a similar but previously
unreported UKS attack still works on the KEA+ protocol. This UKS attack



involves a type of impersonation attack [34, p. 3]: it requires the adversary to
successfully impersonate a user to the CA who then issues a certificate containing
the user’s identifier, but the adversary’s valid public key. We stress that the
attack does not arise when only one public key per identifier can be registered.
See the full version of this paper [9] for a more detailed description of the attack.

Online UKS attack on STS-MAC based on duplicate-signature key selection
(DSKS) [8]. Suppose that the signature scheme employed in the STS-MAC
protocol is vulnerable to DSKS attacks. The UKS attack on STS-MAC [8, p.
160] exploits the ability of the adversary to register a valid public key pk under
his own identifier during the run of the protocol. More precisely, the adversary
first intercepts a user’s message containing a signature o on message m. He then
issues a query pkregister(pk, ﬁ) such that o is also a valid signature on m under
pk. The query associates pk with the adversary’s identifier L. Since the adversary
knows the secret key corresponding to pk, he obtains a certificate from the CA
even if VP requires a proof-of-possession. Countermeasures to such UKS attacks
via modification of the protocol are available [8].

Lim—Lee style attack against HMQV with DSA domain parameters, without
validation of ephemeral public keys [28]. Let G = (g) denote a g-order subgroup
of Zj, where g and p are prime and (p — 1)/q is smooth. The attack on two-pass
HMQV [28, p. 5] can be captured in an ASICS model where the adversary is given
access to the queries in the set Q = Qn U (Qg \ {corrupt}) U (Qr \ {pkregister}).
In particular, the adversary can register invalid public keys via the npkregister
query. This attack can be prevented by countermeasures such as requiring VP to
include a group membership test on the public key submitted for certification, or
by including group membership tests on both ephemeral and long-term public
keys during protocol execution. Small-subgroup attacks may also exist in other
settings, for instance in groups over elliptic curves.

3 Achieving ASICS security

We provide a modular approach to obtain provable ASICS security for certain
types of protocols. We first show in Theorem 1 how a result from Kudla and
Paterson [24, Theorem 2] can be adapted to incorporate adversarial registration of
valid public keys. Then, in Theorem 2, we indicate how to transform protocols to
achieve security in the presence of adversaries that can register arbitrary invalid
public keys. We start by defining an adapted version of strong partnering [24].

Definition 7 (Strong partnering). Let II be an ASICS protocol, and let
X = (M,Q,F) be an ASICS model. We say that II has strong partnering in
the ASICS x experiment if no PPT adversary, when attacking II in the ASICS x
ezxperiment, can establish two sessions s and s’ of protocol I holding the same
session key without being M -matching, with more than negligible probability in
the security parameter k.

Given an ASICS model X = (M, @, F), we denote by cNR-X (“computational
No-Reveals” for session keys, following [24]) the reduced computational ASICSx



experiment which is similar to the ASICS x experiment except that the adversary
(a) is not allowed to issue session-key and test-session queries, (b) must pick a
session that has accepted and satisfies F' at the end of its execution, and (c)
output the session key for this session. See Kudla and Paterson [24] for a more
detailed description of reduced games.

Definition 8 (cNR-X security). Let IT be an ASICS protocol and X = (M, Q, F)
be an ASICS model. II is said to be cNR-X-secure if, for all PPT adversaries I,
it holds that

1. if two users successfully accept in M-matching sessions, then they both
compute the same session key, and

2. E has no more than a negligible advantage in winning the cNR-X experiment;
that is, there exists a negligible function negl in the security parameter k such
that Advfjl\{%x(k) < negl(k), where Advfj'\{%x(k) is defined as the probability
that E outputs (s, skey) for a session s that has accepted and satisfies F.

Our first theorem deals with the security of DH-type ASICS protocols, which
are a generalization of DH-type AKE protocols of Cremers and Feltz [16] to
include certificates and to explicitly identify session strings. This class of protocols
includes the most prominent modern two-message AKE protocols.

Definition 9 (DH-type ASICS protocol). 4 DH-type ASICS protocol is an
ASICS protocol of the following form, specified by functions fz, fr, Fr, Fr, H:

— Domain parameters (G, g,q), where G = (g) is a group of prime order q
generated by g.

— KeyGen(): Choose a €g [0,q — 1]. Set A < g®. Return secret key sk = a and
public key pk = A.

— VP(x,P) =1 for all z and all P (i.c., the CAs do not perform any checks).

— The specification of how users respond to create and send queries as well as
how the session key is computed, namely as the hash H of some string which
we call the session string, is given in Figure 1.

Theorem 1. Let X = (M, Q, F) be an ASICS model with Oy C Q C On U Qg.
Let Y = (M,Q', F') be the ASICS model where Q' = Q U {pkregister} and F’
is defined as follows. A session s is said to satisfy F' if it satisfies F and no
pkregister(Spcert-PK, Speert-id) query has been issued. Let IT be a DH-type ASICS
protocol. Suppose that

— II has strong partnering in the ASICSy experiment,

— cNR-X security of the related protocol m (defined in the same way as IT
except that the session key generated in w is the session string of II (i.e.,
Skey = ss!!)) is probabilistic polynomial-time reducible to the hardness of the
computational problem of some relation ¢,

— the session string decisional problem in the ASICSy experiment for II is
polynomial-time reducible to the decisional problem of ¢, and

— there is a polynomial-time algorithm that decides whether an arbitrary bitstring
is an element of G,
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Fig. 1. Messages for generic DH-type ASICS protocol

then the security of IT in ASICS model Y is probabilistic polynomial-time reducible
to the hardness of the gap problem of ¢, if H is modelled as a random oracle.

In the cNR-X experiment of Theorem 1 the queries session-key and pkregister
are not allowed, whereas in ASICSy both queries are allowed. Theorem 1 states
that for any DH-type protocol IT, under certain conditions, it holds that security
of the related protocol 7 in a reduced model (in which public keys can only be
honestly registered) implies security of IT in the stronger non-reduced model that
additionally captures adversarial registration of valid public keys.

The following theorem, which is applicable to a wider range of protocols than
Theorem 1 (e.g., to three-message protocols such as UM [30] or HMQV-C [23)]),
allows us to achieve security against adversaries that can obtain certificates from
the CA for invalid public keys by transforming the protocol to include a group
membership test on the peer’s public key. In contrast to Theorem 1, no additional
requirement is imposed on the freshness condition of model Y.

Theorem 2. Let X = (M,Q, F) be an ASICS model with Qn C Q C On U
Qs U (Qg \ {npkregister}).

Let IT be an ASICS protocol where the domain parameters (G,g,q), the
key generation algorithm KeyGen and the verification procedure VP are as in
Definition 9.

Let f(II) denote the ASICS protocol derived from IT by adding the following
protocol step for each role of the protocol. Upon creation with (or, via send, receipt
of ) the certificate C' to be used for the peer of session s, the user running session
s checks whether the public key C’'.pk belongs to the group G before continuing
the execution of the protocol. In case the check fails, the protocol execution is
aborted and sgatus 1S Set to rejected.

Suppose that protocol II is secure in ASICS model X and that there is
a polynomial-time algorithm that decides whether an arbitrary bitstring is an
element of G. Then the transformed protocol f(II) is secure in ASICS model
Y = (M, Q U {npkregister}, F').



Combining both theorems, we obtain the following result.

Corollary 1. Let IT be a DH-type ASICS protocol. Let X = (M,Q,F) and
Y =(M,Q’, F’) be defined as in Theorem 1, and let the conditions of Theorem 1
hold with respect to protocol I1. Let f(II) denote the protocol derived from II as
specified in Theorem 2. Then the transformed protocol f(IT) is secure in ASICS
model Z = (M,Q", F"), where Q" = Q" U {npkregister}, if H is modelled as a
random oracle.

Applying Corollary 1 to a concrete DH-type ASICS protocol that satisfies all the
preconditions, we obtain a protocol that is secure in an ASICS model in which
(a) sessions (including the test session) may use a certificate for the peer that
resulted from an npkregister query, and (b) the certificate of the test session’s
peer was not the result of a pkregister query. The reader is referred to the full
version of this paper [9] for detailed proofs of the above statements.

4 Applications

To illustrate the power of our generic approach, we examine in this section how
to apply our technique to Ustaoglu’s CMQV protocol [35]. CMQV is a modern
DH-type protocol that is comparable in efficiency to HMQV, but enjoys a simpler
security proof in the eCK model.

Our results allow us to analyse CMQV in a model that does not include
session-key, pkregister, and npkregister queries, which simplifies the overall proof.
We verify that CMQV meets the preconditions of Corollary 1, and conclude
that a variant of CMQV with group membership test on the peer’s public key
is ASICS-secure in an eCK-like model. Similarly, our generic approach can be
applied to other DH-type candidates such as NAXOS [25] and UP [36].

CMQV [35] was originally proven secure in the eCK model, where there is

only one public key per identifier. In the ASICS setting, there is no such unique
mapping between user identifiers and public keys. Hence, to be able to prove
CMQYV secure in the ASICS model, we need to include the public keys of the
users in the session string to ensure that they have the same view of these keys
when deriving the session key.
CMQV as a DH-type ASICS protocol. Two-pass CMQV can be stated as a DH-
type ASICS protocol, by instantiating Definition 9 with the following functions.
Let Hy : {0,1}% x ZF — Z%, Hy : {0,1}* — Zg, and H : {0,1}* — {0,1}" be
hash functions. We define fz, fr, Fr, Fr as:

fz(r,a,C,C") = H1(r,a)

1 LiIfY € G\ {1}
F b 7Y,C70/ -
zl@a ) &uﬁﬂ““|¢|Y|cw|A|0w|B>7ﬁYeru

fR(T7 b, C/,C) = Hl(r, b)
1 JFX ¢ G\ {1}

F 0, X,C,C) = . .
=l ) LM%%““HXIWICMIAIUMHB),ﬁXGG\ﬂL



where d = Ho(X || Clid || C".id), e = Ho(Y || Clid || C".id), A = C.pk, B = C’.pk;
|| denotes tagged concatenation to avoid ambiguity with variable-length strings.
We now show, using Corollary 1, that the resulting DH-type CMQV protocol

is a secure ASICS protocol in an ASICS model with leakage queries corresponding
to the eCK model.

ASICS model for eCK-like leakage. Define the ASICS model eCK = (M2, Q, F)
for eCK-like leakage [25] as follows. Let Q = Qn U Qg. Let F' be the condition
that a session s satisfies F if, for all sessions s’ such that s’ M2-matches s, none
of the following conditions hold:

— a session-key(s) query has been issued;
— if ' exists:
e a session-key(s’) query has been issued;
e both corrupt(sacert-pk) and randomness(s) queries have been issued;
o both corrupt(s) e-pk) and randomness(s’) queries have been issued;
— if s’ does not exist:

e both corrupt(sacert-pk) and randomness(s) queries have been issued;
o a corrupt(spcers-pk) query has been issued.

Theorem 3. Let f(CMQV) be the DH-type ASICS protocol derived from the
CMQV protocol defined above, as specified in Theorem 2. If Hi,Ha and H
are modelled as random oracles, G is a group where the gap Diffie-Hellman
assumption holds and membership in G is decidable in polynomial time, then
F(CMQV) is secure in ASICS model Z = (M2,Qn U Qg U Qgr, F'), where a
session s 1s said to satisfy F' if it satisfies the freshness condition F from the
eCK model and no pkregister(Spcert-PK; Speert-id) query has been issued.

Proof (Sketch). We can readily show that CMQV satisfies the preconditions of
Corollary 1 under the above formulation of the eCK model as an ASICS model:

1. Strong partnering. It is straightforward to see that CMQV has strong part-
nering in the ASICS.ck game (where eCK’ is derived from eCK as described
in Theorem 1): since the session key in CMQV is computed via a random
oracle, the probability that two sessions derive the same session key without
using the same session string input to the random oracle is negligible.

2. cNR-eCK-security of the session string variant of CMQV. This can be shown
by an adaptation of Ustaoglu’s original proof of CMQV. In large part, the
main proof can be followed. However, a few simplifications can be made
because the simulation need not answer session-key queries (so preventing
key replication attacks and simulating sessions where the public key is a
challenge value are easier).

3. Hardness of the session string decision problem. It can be easily seen that
this is polynomial-time reducible to the decisional problem for Diffie-Hellman
triples (U, V, W) by noting that the first component of the CMQV session
string o is equal to g(¥Teb)(@tda) — gy gady gbex jabde. the DDH values (U, V)
can be injected into either (X,Y"), (A4,Y), (B, X), or (4, B), with W inserted
into the corresponding part of o, yielding a polynomial-time reduction.



Detailed proofs of each of the above claims can be found in the full version [9].

5 Lessons learned and recommendations

As we started our systematic investigation we assumed that certification authori-
ties would need to perform some minimal checks on public keys to obtain secure
KE protocols. Perhaps surprisingly, nearly all of the effort can be shifted to the
protocols; and modern protocols often perform sufficient checks. In particular, our
results provide formal foundations for some of the protocol-specific observations
of Menezes and Ustaoglu [29]: checking that short- and long-term public keys are
in the key space (i.e., in group G for DH-type protocols) is not superfluous.

Based on these observations, and given M public keys, IV users may need to
perform on the order of M x N such checks in total, even when caching the results.
Reasoning purely about the overall amount of computation time used, one could
consider moving the burden to the CAs. If the CAs only create certificates after
a successful check, the CAs would only perform on the order of M checks in total.
Depending on the deployment scenario, this might be a preferable alternative.

Similarly, CAs do not necessarily need to check uniqueness of public keys.
As long as the key derivation involves the identifiers in an appropriate way,
UKS attacks such as the one on KEA can be prevented. Even if public keys are
associated with multiple identifiers, secrecy of the corresponding private key is
sufficient to enable ASICS security for the honest user.

In general, our results further justify using as much information as possible in
the key derivation function (KDF). This helps with establishing formal security
proofs and it is also a prudent engineering principle. In particular, we recommend
that in settings where users may have multiple long-term public keys, the input
to the KDF should not only include the identifiers and the message transcript,
but also the specific public keys used in the session.

We hope our work can serve as a foundation for the development of a range
of protocols specifically designed to incorporate certification systems, offering
different tradeoffs between efficiency and trust assumptions of the involved parties.
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