
A Reduction-Based Proof for Authentication
and Session Key Security in 3-Party Kerberos

Jörg Schwenk1 and Douglas Stebila2

1Horst Görtz Institute for IT Security, Ruhr University Bochum, Germany,
joerg.schwenk@rub.de

2University of Waterloo, Canada, dstebila@uwaterloo.ca

July 3, 2019

Abstract

Kerberos is one of the earliest network security protocols, providing authentication between
clients and servers with the assistance of trusted servers. It remains widely used, notably as the
default authentication protocol in Microsoft Active Directory (thus shipped with every major
operating system), and is the ancestor of modern single sign-on protocols like OAuth and OpenID
Connect.

There have been many analyses of Kerberos in the symbolic (Dolev–Yao) model, which is more
amenable to computer-aided verification tools than the computational model, but also idealizes
messages and cryptographic primitives more. Reduction-based proofs in the computational model
can provide assurance against a richer class of adversaries, and proofs with concrete probability
analyses help in picking security parameters, but Kerberos has had no such analyses to date.

We give a reduction-based security proof of Kerberos authentication and key establishment,
focusing on the mandatory 3-party mode. We show that it is a secure authentication protocol
under standard assumptions on its encryption scheme; our results can be lifted to apply to
quantum adversaries as well.

As has been the case for other real-world authenticated key exchange (AKE) protocols, the
standard AKE security notion of session key indistinguishability cannot be proven for Kerberos
since the session key is used in the protocol itself, breaking indistinguishability. We provide
two positive results despite this: we show that the standardized but optional sub-session mode
of Kerberos does yield secure session keys, and that the hash of the main session key is also a
secure session key under Krawczyk’s generalization of the authenticated and confidential channel
establishment (ACCE) model.

1 Introduction

Kerberos was developed by Miller and Neuman at MIT to protect network services in a distributed
computing project Athena. Initially, Kerberos exclusively used symmetric key primitives and was
based on the Needham–Schroeder protocol [NS78a]. Early versions were internal to MIT; version 4
was published in [SNS88], and version 5 was standardized by the Internet Engineering Task Force
[KN93, NYHR05].

The Kerberos protocol allows a client to authenticate to a server with the help of trusted server(s).
The client and server each share long-term keys with a Kerberos Authentication Server (KAS), but

1

not with each other. Kerberos can be run in two modes: a two-exchange/three-party mode, or a
three-exchange/four-party mode.

In the two-exchange/three-party case (which is mandatory-to-implement in the standard and the
focus of this paper), the initial exchange, called the Authentication Service (AS) exchange [NYHR05,
§3.1], takes place between the client and the KAS. The KAS provides the client a credential, part
of which it decrypts and part of which it relays to the final server. The last exchange is called
the Client/Server Authentication (CS) exchange [NYHR05, §3.2], in which the client and server
authenticate each other using a challenge-response protocol.

In the three-exchange/four-party case (which is optional to implement), a middle exchange, called
the Ticket Granting Service (TGS) exchange [NYHR05, §3.3] takes place between the client and
the Ticket Granting Server. Here, the client presents its credential from the KAS (called a Ticket
Granting Ticket (TGT)) to the TGS, which then issues a ticket for the final server which the client
uses in the Client/Server Authentication exchange mentioned above. The main form of Kerberos
described above relies solely on symmetric key primitives. There is a public-key variant of Kerberos
[ZT06] which we do not consider in this paper.

Kerberos does not explicitly define a secure channel which follows session establishment. An
optional feature allows transmission of a “sub-session key”. Two separate RFCs [Rae05b, ZJH05]
describe mechanisms by which the Kerberos session key can be used for encryption specifically or
more generally exported to other cryptographic applications.

Adoption. Version 5 of Kerberos eliminated some security problems with the initial protocol,
and was subsequently adopted in Microsoft Windows 2000 and all later versions as the default
authentication protocol in Microsoft Active Directory. Many other operating systems support
Kerberos, including FreeBSD, Linux, and macOS. In large Microsoft environments running Active
Directory, Kerberos is used to implement access controls to all critical systems. It is thus a target for
advanced persistent threat (APT) attackers: when Kerberos is run in three-exchange/four-party case,
a ticket granting ticket acts as a “golden ticket” that can be used to gain access to services anywhere
on the network [Met15]. Kerberos is also the progenitor of many single sign-on protocols where the
same communication pattern is used, including Microsoft Passport, OAuth [Har12], OpenID, OpenID
Connect, and SAML. Kerberos is constantly being updated to meet new security requirements, with
6 RFCs published since 2016.

1.1 Related work

Three-party communication protocols. There is a large class of three-party protocols, in
which two parties C and S want to communicate with the assistance of a trusted party TP. In
symmetric-key three-party protocols, C and S each share a symmetric key with TP, and the goal of
the protocol is to perform authentication between C and S, and possibly establish a secret key or a
secure channel. These protocols reduce the effort for key setup and key management: instead of
initializing O(n2) keys between every pair of n parties, we only need to initialize n keys between
each party and the trusted third party.

Figure 1 shows the three common communication patterns for three-party protocols as identified
by Schwenk [Sch16]. Two-exchange/three-party Kerberos is an example of pattern 1, where the
client C relays any messages between TP and the server S; other examples of pattern 1 include
Needham–Schroeder [NS78b] as well as single sign-on protocols like OAuth [Har12]. In pattern
2, the server S relays communication between the client and TP; examples include Otway–Rees
[OR87] and the Extended Authentication Protocol (EAP) [ABV+04]. In pattern 3, TP mediates all

2

Pattern 1: TP-C-S

TP

C S

Pattern 2: C-S-TP

TP

C S

Pattern 3: C-TP-S

TP

C S

Figure 1: Communication patterns for 3-party protocols between a client C, server S, and trusted
party TP, based on [Sch16, Fig. 1].

communication between C and S; examples include the “wide-mouthed frog” protocol [BAN90] and
[BR95].

Symbolic modelling versus computational modelling. There are two main approaches to
modelling security of protocols. In the symbolic approach, known as the Dolev–Yao model, messages
and cryptographic operations are abstracted into an algebra on symbolic values, and proofs are based
on logical or algebraic reasoning. In the computational approach (sometimes called “provable security”),
messages remain as bitstrings and cryptographic operations are algorithms applied to bitstrings, and
proofs are based on probabilistic arguments and complexity-theoretic reductions to (well-established)
cryptographic assumptions like factoring or the Diffie–Hellman problem. Automated tools for proof
generation and verification are more readily applied in the symbolic model and reduce the risk of
errors in manual proofs, whereas the computational model can often admit richer adversaries, and
reductionist proofs with concrete probability analyses can help in picking security parameters.

Three-party protocols, including Kerberos, have been extensively studied in the symbolic model.
A full survey of this literature is beyond the scope of this paper, but we highlight a few works.
The seminal paper of Burrows, Abadi, and Needham [BAN90] developed a symbolic logic for
analysis of authentication protocols and initiated the study of three-party protocols in this setting,
including Needham–Schroeder and Kerberos, from which has followed a long line of symbolic
analyses of both Needham–Schroeder [Low96, Mea96, Bac04, BP03, WGC12, SB12] and Kerberos
[BR97, BP98b, BCJ+06b, KEGM14]; we will further discuss some of the results on Kerberos below.

Reduction-based proofs are extensively used in the literature for all types of cryptographic
primitives and protocols. For our purposes, the most relevant are of authentication and authenticated
key exchange protocols, of which the seminal work is [BR94]. Most deal with either (a) two-party
protocols, in which each party has a different role, i.e., client/server; or (b) group key agreement
protocols [BD95, STW96, STW00], in which each party has the same role, i.e., they all execute the
same code. For three-party protocols, Bellare and Rogaway [BR95] gave the first security model
analysis for three-party key distribution, focusing on communication pattern 3 of Figure 1. Brzuska
and Jacobsen [BJ17] gave a reduction-based proof for the 3-party Extensible Authentication Protocol
(EAP), which follows pattern 2 in Figure 1; EAP differs from Kerberos in its communication pattern
and that it involves public keys. Bhargavan et al [BBF+17] describe a three-party secure channel
notion (3ACCE) and use it to analyze a proxied form of TLS.

There have also been serious efforts to unify the symbolic and computational models by developing
methodologies to translate results in the Dolev–Yao model to the computational model, often provided
certain requirements are met. Several works have applied this to Kerberos, which we discuss below.

3

1.2 Related work on Kerberos

Kerberos version 4 was first presented to the academic community in 1988 [SNS88] and version 5
in 1989 [Koh90]. Kerberos has been subject to many modifications, integrations, and performance
studies, which we omit from this section.

A variety of weaknesses and limitations have been identified in Kerberos. Bellovin and Merritt
[BM91] discussed a number of limitations which still exist, e.g. the vulnerability to replay attacks
within the ticket’s lifetime, and the usage of insecure time. A weakness was discovered in a weak
random number generator algorithm in Kerberos version 4 [DLS97], and [YHR04] showed the dangers
of using unauthenticated encryption: they were able to forge arbitrary tickets by modifying the
ciphertext.

Starting in 1995, public key versions of Kerberos have been proposed [McM95, Gan95, SC97,
ZT06]. A man-in-the-middle attack on one public key version was reported in [CJS+08], and
mitigations have been proposed and implemented.

Symbolic modelling of Kerberos. After Burrows, Abadi, and Needham [BAN90], Bella et al.
in a series of papers [BR97, BP98b, BP98a], initiated the Dolev–Yao style analysis of Kerberos. This
work was continued later by Butler et al. [BCJS02, BCJS03, BCJ+06b]. Using different tools like
CSP, BAN logic and strand spaces, this work was continued in [LYZZ09, FLW09, AHSM10, LP10].
Sprenger and Basin [SB12] use a theorem prover to analyze several AKE protocols, including
Kerberos, in the Dolev–Yao model.

Computational modelling of Kerberos. Boldyreva and Kumar [BK11] investigated the differ-
ent encryption modes used in Kerberos. They showed that a modified form of Kerberos version
5’s general encryption profile [Rae05b, §6] and the simplified profile [Rae05b, §5],[Rae05a] both
satisfy standard definitions of authenticated encryption (IND-CCA and INT-CTXT) under standard
assumptions on the underlying cryptographic algorithms.

Turning to the authentication and key establishment portions of Kerberos, we find the works
most closely related to ours. Two lines of work give proofs in a symbolic model and then use some
methodology to translate to a computational model.

Backes et al. [BCJ+06a, BCJ+11] show in the BPW [BPW03] form of the Dolev–Yao model
that each of Kerberos’s three (or four) exchanges satisfies an authentication property as well as
key indistinguishability for the sub-session key. The framework of Backes, Pfitzmann, and Waidner
[BPW03] then lifts these results to the computational setting. [BCJ+06a, BCJ+11] also show results
for the public key version.

Roy et al. [RDDM07] work in the computational version [DDM+05] of the Protocol Composition
Logic [DDMP03], which allows for abstract reasoning like in the symbolic model but translates
results to the computational model, showing secrecy properties of the session key in Kerberos in two
ways: (a) when Kerberos is truncated before the session key is used. They show that the session key
is indistinguishable; (b) when Kerberos is not truncated, the session key can be safely used in an
IND-CCA-secure encryption scheme. A subset of the same authors shows results for the public key
version [RDM07].

Blanchet et al. [BJST08] give computational proofs of Kerberos’s three-exchange/four-party
mode and public key mode using the CryptoVerif [Bla06] prover, specifically showing authentication
properties separately for each of the three (or four) exchanges. They also show secrecy of the session
key in truncated sessions, safe use of the session key from non-truncated sessions in IND-CCA-secure
encryption schemes, and indistinguishability of the sub-session key.

4

None of these models allow for adaptive corruptions of parties. Roy et al. do not allow for
reveal of unrelated session keys. Both Backes et al. and Blanchet et al. [BJST08] consider the
three-exchange/four-party mode, but both only analyze each exchange separately and provide
no composition theorem to combine results on the three exchanges; this limits the adversary to
attacking one exchange at a time, excluding attacks which might interleave components from different
exchanges. Blanchet et al. provide a concrete analysis (showing quantitatively how the effort of
breaking Kerberos relates to the effort of breaking the underlying primitives) for only one of their
analyzed properties, and the other works above do not do this at all. Schwenk [Sch14] analyzes a
modified version of Kerberos in which timestamps are replaced by nonces, and in which the session
key is not used directly in the protocol; but [Sch14] does not address the security of the unmodified
Kerberos protocol.

1.3 Contributions

In this paper, we give a reduction-based security proof for authentication and session key security
of the two-exchange/three-party mode of Kerberos version 5; to the best of our knowledge, this
work is the first reduction-based analysis which allows simultaneous sessions, and does not require
modifications to the protocol.

Authentication. In Section 3, we develop a security definition for mutual authentication of clients
and servers in 3-party protocols, where the third-party authentication server is stateless. Our
definition is a Bellare–Rogaway-style model [BR94]. Our model is generic and can be applied to
any such 3-party protocol, however the matching and freshness conditions are specialized to capture
specific properties of Kerberos that are distinct from those in existing 3-party models such as [BR95].
The Kerberos-specific properties captured include:

• The authentication definition allows multiple servers to match a single client session, since
Kerberos does not prevent replay attacks against servers.

• Matching in the authentication definition is based on session identifiers, not transcripts, since
in Kerberos is no cryptographic binding between the c1 ciphertext from the KAS to the client
and the c2 ciphertext that the client is supposed to relay from the KAS to the server.

These and other subtleties are discussed in Section 4.1.
(The 3ACCE model [BBF+17] includes 4 security properties, one of which is entity authentication,

which we could use to model authentication. However, 3ACCE would still not suffice for modelling
the two forms of session key security we note below. As such, we go with a BR-style model rather
than the 3ACCE framework so we can more readily model both authentication and session key
security in the same framework.)

We proceed to prove in Section 5 that three-party Kerberos satisfies this authentication security
definition, under the assumption that its symmetric encryption scheme is an authenticated encryption
scheme (IND-CPA and INT-CTXT) (an assumption justified by [BK11]). Our proof provides concrete
probability bounds which can aid in selecting security parameters. Our proof is a game-hopping
proof in the standard model, and each hop is either combinatorial, a guess, or involves a straight-line
reduction. As a consequence, we can immediately apply Song’s lifting lemma [Son14] to show that
Kerberos is secure against quantum adversaries if its underlying primitives are. Given that basic
Kerberos relies solely on symmetric primitives, and that public key cryptography is at the greatest

5

risk from quantum computers, our results reinforce that Kerberos is a sound option for quantum
resistance, assuming its underlying symmetric primitives are quantum-secure.1

Session key security. We next consider in Section 6 whether Kerberos establishes a secure session
key. Unfortunately, the session key kCS is used during the execution of the Kerberos protocol in
the symmetric encryption scheme, so it no longer satisfies the standard indistinguishability security
property required of authenticated key exchange (AKE) protocols. Recall that the adversary picks a
“test” session and is given a value which is either the real key for that session or a random string; the
adversary’s challenge is to distinguish the two cases. Since the real session key is already used in
the execution of the protocol, the adversary can check its challenge value by trial decrypting the
protocol’s ciphertexts. We follow two approaches to still prove useful results about Kerberos session
key security.

First, we consider the Kerberos sub-session key. Kerberos permits the negotiation of an optional
sub-session key via key transport from the client to the server or vice versa. We show that this key
is indistinguishable from random in the typical sense from AKE models.

Second, we consider the use of the Kerberos session key in subsequent applications. The goal is
to prove that the Kerberos session key remains suitable for use generically in other cryptographic
schemes. The preferred reduction-based approach for doing so is the authenticated and confidential
channel establishment (ACCE) which Jager et al. [JKSS12] introduced to resolve the problem of
composing the TLS 1.2 handshake with its encryption layer. But the ACCE (and its 3-party variant
3ACCE [BBF+17]) require a fully specified encryption layer in order to model channel security. RFC
3961 [Rae05b] does specify one way in which the Kerberos session key can be used in a subsequent
encryption layer, but this is not the only allowed use of the Kerberos session key: for example,
[ZJH05] describes a general mechanism by which the Kerberos session key can be exported, and this
is still not exclusive. Thus there is no reason to believe it will be used outside Kerberos in the same
encryption scheme inside Kerberos, and thus there is no specific encryption layer with which we
could apply the ACCE or 3ACCE notions of channel security.

Instead, we turn to a generalization of the ACCE framework by Krawczyk [Kra16], which models
the use of the session in an arbitrary subsequent protocol modelled by “functional queries” and
tests the security of the session key when used in a “functional test”. Ideally, we would show that
the Kerberos session key is secure when used in any subsequent functional queries and functional
test, but that is not possible: one could design degenerate schemes that lead to insecurity when
used in combination with the symmetric encryption scheme used inside Kerberos. However, we
can show that if the Kerberos session key is hashed before being passed to the application, then
security is maintained. To do so, we construct a novel hashed-key-hiding property for symmetric
encryption schemes, similar to the key-hiding property of Fischlin [Fis99]. We justify this assumption
by showing it holds when the hash function is a random oracle and Kerberos’ encryption scheme is
secure against key recovery under chosen plaintext attacks.

This approach provides a more generic solution than works mentioned above [RDDM07, BJST08]
which either truncated the key exchange to prove session indistinguishability, or only showed safe
composition with an IND-CCA-secure encryption scheme, but without adaptive corruptions of parties
and other model restrictions noted above.

1Symmetric key cryptography was thought, for a long time, to be relatively unperturbed by quantum algorithms,
with the exception that one would have to double the key size due to Grover’s algorithm. However, recent results
[KLLN16] show that many authenticated encryption modes of operation are insecure when a quantum adversary has
superposition access to the encryption oracle, but HMAC, which is used for authentication in Kerberos, is not affected
by [KLLN16].

6

KAS Client C Server S
long-term keys: kC , kS long-term key: kC long-term key: kS

Authentication Service (AS) exchange

nC ←$ {0, 1}λC, S, nC

kCS ←$K
tKAS ← now()

c1←$ EnckC ((kCS , nC , tKAS , S))

c2←$ EnckS ((kCS , tKAS , C))c1, c2
(kCS , n

′
C , tKAS , S

′)← DeckC (c1) or reject
reject if (n′C 6= nC) or (S′ 6= S)

Client/Server Authentication (CS) exchange

tC ← now()

[optional: k∗CS ←$K∗]
c3←$ EnckCS

(C, tC [, k∗CS]) c2, c3
(kCS , tKAS , C)← DeckS (c2) or reject
(C ′, tC [, k∗CS])← DeckCS

(c3) or reject
reject if ¬timeok(tKAS , tC ; now())

reject if C 6= C ′

c4←$ EnckCS
(tC)

accept [and output k∗CS]c4
t′C ← DeckCS

(c4) or reject
reject if t′C 6= tC
accept [and output k∗CS]

Figure 2: The 3-party form of Kerberos v5, protocol 3K = 3K[Π, λ] constructed from authenticated
encryption scheme Π and nonce length λ; [k∗CS] denotes optional sub-session key mode.

Limitations. Our work focuses on the two-exchange/three-party mode of Kerberos with symmetric
key authentication; it excludes the optional three-exchange/four-party mode, as well as the public
key modes. Our proof for authentication of the three-party mode is already lengthy, requiring 19
game hops across 2 cases. Some other works have looked at the four-party mode, but these also
have limitations as noted above. While Backes et al. and Blanchet et al. [BJST08] both analyze the
three-exchange/four-party mode, they only analyze each exchange separately but do not say how to
compose results on the three exchanges to obtain security against an adversary who can arbitrarily
attack any stage of the protocol. Directly in the computational setting, it would be desirable to use
a composable approach like Brzuska and Jacobsen [BJ17] applied to the EAP protocol (which is
composed of three separate sub-protocols), the individual exchanges of Kerberos do not seem quite
substantial enough on their own to extract as sub-protocols which can then be composed. We leave
a suitable abstraction in the computational setting as future work.

2 The Kerberos protocol

The 3-party Kerberos protocol (which is the focus of the remainder of this paper) is built from an
authenticated encryption scheme Π = (Enc,Dec). In this mode of Kerberos, a central Kerberos
Authentication Server (KAS) shares long-term symmetric keys with all clients and servers in the
network. Any pair of client C and server S can mutually authenticate and agree on a symmetric key
kCS with the assistance of the KAS using the protocol flow depicted in Figure 2. In the standard
[KN93, NYHR05], the Authentication Service (AS) exchange consists of steps 1–3 below, and the

7

Client/Server Authentication (CS) exchange consists of steps 4–6 below.
(1) To initiate, client C chooses a fresh nonce nC and sends its identity C, the identity of its

desired peer server S, and the nonce to the KAS. This message is not protected.
(2) On receiving (C, S, nC), the KAS chooses a fresh session key kCS and constructs two

ciphertexts, one for the client (c1) and one for the server (c2). Both contain the session key kCS ,
and the time tKAS when the KAS generated the message, and the identity of each party’s intended
peer. The client’s nonce is echoed back to the client to check freshness. Each is encrypted and
authenticated using the long-term key each party shares with the KAS.

(3) The KAS forwards the two ciphertexts to C, who decrypts and verifies c1, and checks the
nonce and server identity match the (unprotected) request made by the client.

(4) The client C proceeds to construct a ciphertext c3 for the server, which contains the client’s
identity and current time. This message is encrypted under the session key kCS , and is meant to
demonstrate C’s possession of the key kCS to S. The client forwards c2 along with c3 to the server.

(5) The server S decrypts and verifies both ciphertexts, first c2 to retrieve kCS , and then c3

using this key. If either of these fails, the server rejects. Otherwise, it checks if the peer identities
contained in c2 and c3 match, and if the two timestamps contained in c2 and c3 are “fresh enough”
by calling some function timeok(). If so, the server accepts the authentication of C as valid, and
generates a ciphertext c4 for C the timestamp tC received in message c3 using the session key kCS
to also prove possession of kCS .

(6) The client decrypts and verifies c4 and checks if the returned time value matches the one it
sent. If so, the client accepts the authentication of S as valid.

The timestamps play a central role in enabling the server to reject most replay attacks without
maintaining a large list of previous sessions. Our model does not prevent replay attacks against the
server, so freshness of timestamps does not play a role in our analysis. We discuss some aspects of
modelling time in computational models in Appendix B.

In an optional mode, the parties can establish a sub-session key, separate from the session key.
It can be established either (a) by the client picking a fresh random key k∗CS and encrypting it as
part of the ciphertext c3 sent to the server; or (b) the server picking k∗CS and encrypting it as part
of c4 sent to the client. Figure 2 shows the first case for simplicity.

Threat model. Kerberos is designed to be operated in a network environment where the adversary
controls the communication channel (so it can drop, delay, reorder, change, or create messages) and
can initiate client instances. Kerberos is designed to be secure against compromise of individual
clients and servers, but not against the compromise of the trusted KAS. The primary security goal,
which we formalize in the next section, is mutual authentication of the client and server. A secondary
goal, which we address in Section 6, is establishment of a secret session key. In Appendix A, we
discuss some attack scenarios which Kerberos is not designed to protect against.

3 Security model for 3-party authentication

Kerberos has two use cases: it can be used as a symmetric authentication protocol (in which case the
session key kCS is only used within the protocol), or as a means to distribute an authenticated key
to client and server for further, non-specified use. To analyze the security of each of these settings,
our security models start from a common execution model, but diverge when it comes to the specific
goal of the adversary. Here we focus on 3-party authentication; we consider security of the session
key in Section 6.

8

3.1 Execution model

We consider the execution of a 3-party protocol in an environment with n = nclnts +nsrvrs + 1 parties,
of which nclnts are clients, nsrvrs are servers, and there is a single authentication server. Our model
assumes a stateless authentication server, meaning that interactions with it consist of a single query
and response, without any ongoing session state. Our model focuses on symmetric authentication.

Protocol. A 3-party protocol consists of four algorithms:

• KG() $→ k: A probabilistic long-term key generation algorithm that generates a random
symmetric key k.

• RunAS(C, S,m) $→ (m′, cid): A probabilistic algorithm executed by the authentication server,
which takes as input identifiers of a client C and server S, as well as a messagem (and implicitly
long-term keys of all parties), and outputs a message m′ and a contributive identifier cid.

• RunC(m,π) $→ (m′, π′) A probabilistic algorithm executed by the client, which takes as input
message m and instance state π (and implicitly the party’s long-term key), and outputs an
outgoing message m′ (possibly empty ⊥), and an updated instance state π′. As the client is
the initiator, the protocol is started by running RunC with m as the client’s configuration data.

• RunS(m,π) $→ (m′, π′) A probabilistic algorithm executed by the server, analogous to RunC.

Parties and instances. Each client or server P shares with the authentication server a long-term
key kP which is established at the beginning of the experiment. Each party may run up to nsess
protocol instances (executed concurrently or sequentially) with their own local state. The ith instance
of a party P is represented by πiP , which is a collection of variables containing the local state. P is
called the owner of instance πiP . The following state variables represent “real” protocol values which
would typically be found in implementations of a protocol:

• πiP .status: The status of the instance πiP . For client and server instances, this could be the
uninitialized value ⊥, or accepted or rejected. For client instances, this could also be a counter
which records which stage of execution the client instance is at.

• πiP .pid: The identifier of the intended peer of this instance.

• πiP .k: The session key k established in this instance.

• Additional variables maintained during the execution of the protocol. (In Kerberos, these will
include a nonce πiP .n and a time πiP .t.)

Additionally, some state variables are maintained in the security experiment to assist with modelling:

• πiP .cid: A contributive identifier, used in the freshness definition as explained below.

• πiP .sid: A session identifier, used in the authentication definition as explained below.

• πiP .revealed: A flag indicating if the adversary has revealed the session key via the Reveal
oracle.

The protocol must specify what values comprise the contributive and session identifiers, and in
particular will be set by RunC / RunS.

Note that when working with contributive and session identifiers we use the notation ‖ to denote
unambiguous concatenation and sid[j] to denote the jth component.

9

Adversarial interaction. The adversary can interact with the system using the oracles specified
in Figure 3. The following oracles model execution of honest parties:

• SendAS(C, S,m): Models the (stateless) execution of the authentication server to establish a
session between parties C and S using message m. During its execution, it maintains a list
cids of contributive identifiers which is used in the freshness definition.

• Send(P, i,m): Models execution of party P ’s ith instance, πiP , (where P is a client or server)
with input message m; the output message (if any) is returned to the adversary, and the
instance variables πiP may be updated.

Using these queries, the adversary can control the delivery of all messages, including dropping,
delaying, reordering, changing, or creating messages.

The adversary can also learn some secret information from parties, either long-term keys or
session keys, which is modelled by the following oracles:

• Corrupt(P): The adversary learns the long-term key kP of party P , which is then marked as
corrupted (corruptedP ← true).

• Reveal(P, i): The adversary learns the session key of party P ’s ith instance, namely πiP .k,
which is then marked as revealed (πiP .revealed← true).

3.2 Security experiment for 3-party authentication

Figures 3 shows the security experiment 3-auth for mutual authentication of a client and server, via
an authentication server.

The idea of the experiment is as follows. The main experiment (Exp3-auth
Π,C,S,nsess,M,F(A)) sets up

the execution environment (generating long-term keys that each client and server shares with the
authentication server), then runs the adversary A. The adversary can interact with the authentication
server, clients, and servers using the corresponding SendAS and Send oracles

The adversary is deemed to have won the experiment if it makes a client or server instance
maliciously accept, as defined by the malicious-accept predicate. (We sometimes called the maliciously
accepting instance the “target instance”.) This means an instance has accepted without a peer
instance, violating the general idea that “authentication” means existence of a peer who agrees on
the messages sent and received; formally, this agreement is modelled by the match predicate M, and
may be specific to the protocol being analyzed. One example is the matching conversations notion
from Bellare and Rogaway [BR94].

Since the adversary can compromise certain secrets, we must restrict the winning condition to
exclude scenarios where the adversary has revealed secrets that let it trivially impersonate the parties
and trivially win the game. The malicious-accept predicate restricts the adversary from learning the
long-term secrets of either party involved in the target instance. Via the freshness predicate F, it
may also restrict the adversary from learning other secrets, and may be specific to the protocol being
analyzed. See Section 4 for details of the predicates we use for analyzing Kerberos.

Having defined the experiment, we can define the corresponding advantage for an adversary
algorithm A:

Adv3-auth
Π,C,S,nsess,M,F(A) = Pr

[
Exp3-auth

Π,C,S,nsess,M,F(A)⇒ true
]
.

10

Exp3-auth
Π,C,S,nsess,M,F(A)

1: // generate long-term keys
2: for P ∈ C ∪ S do
3: kP ←$ Π.KG()
4: // run the experiment
5: ASendAS,Send,Reveal,Corrupt()
6: // winning condition
7: return true iff ∃ P ∈ C ∪ S, i ∈ [nsess]

such that malicious-acceptM,F(P, i))

malicious-acceptM,F(A, i):

1: B ← πiA.pid
2: return true iff
3: // adversary wins if the session accepted
4: (πiA.status = accepted)
5: // ... and the session owner was uncorrupted
6: ∧ ¬corruptedA
7: // ... and the intended peer was uncorrupted
8: ∧ ¬corruptedB
9: // ... and the session is “fresh”
10: ∧ F(A, i)
11: // ... and there is no peer session with a matching

transcript.
12: ∧ ¬(∃j ∈ [nsess] : M(A, i,B, j))

SendAS(C, S,m):
1: // run the authentication server’s code
2: (m′, cid)←$ Π.RunAS(C, S,m)
3: // keep list of contributive identifiers for freshness pred-

icate
4: cids← cids‖cid
5: return m′

Send(P, i,m):
1: // run the party’s code
2: if P ∈ C then
3: (m′, πiP)←$ RunC(m,πiP)
4: else
5: (m′, πiP)←$ RunS(m,πiP)
6: return m′

Reveal(P, i):
1: // only reveal keys in sessions that have not rejected
2: if πiP .status 6= rejected then
3: πiP .revealed← true
4: return πiP .k

Corrupt(P):
1: corruptedP ← true
2: return kP

Figure 3: Authentication security experiment for 3-party protocols

4 Instantiating Kerberos in the model

The M and F predicates we use to analyze 3-party Kerberos are defined in Figure 4. Our M predicate
is based on matching conversations, but only for a subset of the transcript. Our F predicate restricts
the adversary from learning the session key of the target instance or of related instances.

Figure 5 shows 3-party Kerberos from Figure 2 instantiated as a protocol in our formalism.
Specifically, 3K = 3K[Π, λ] is constructed from an authenticated encryption scheme Π and a nonce
length λ. (We rely on standard definitions for authenticated encryption schemes [BN08], which we
include in Appendix C.)

4.1 Discussion of security model

There are certain subtleties in our security experiment for 3-party authentication that merit further
discussion, especially when compared with typical authenticated key exchange security definitions.

Following recent works like Fischlin and Günther [FG14], we distinguish between the contributive
identifier and the session identifier. The session identifier is used in the M predicate to indicate
which other instances must exist when an instance accepts. We cannot rely simply on matching
conversations on the full transcript: in Kerberos, the adversary can send a different c2 to the client
and server yet have them both accept with the same session key, so mismatching on c2 should not
violate authentication. Thus in Kerberos authentication should only demand that clients and servers
match on c3 and c4: this is captured by the session identifier sid. (As is typical, the adversary could
drop the final c4 from the client to the server, so we allow that possibility in the M predicate.)

The contributive identifier is used in the F predicate to indicate which other instances’ session

11

M(A, i,B, j): // session matching for Kerberos

1: if A ∈ C, B ∈ S then
2: return (πjB .sid = πiA.sid)
3: else if A ∈ S, B ∈ C then
4: return (πiA.sid[0] = πjB .sid[0])

F(A, i): // session freshness for Kerberos

1: if A ∈ C then
2: // a client session is unfresh if the session key was

revealed at a session at the originally intended peer
server that has a matching contributive identifier

3: if ∃ B, j : (A,B, πiA.cid, π
j
B .cid) ∈ cids ∧

πjB .revealed then
4: return false
5: // ... or the session key was revealed at the session

itself
6: return ¬ πiA.revealed
7: else if A ∈ S then
8: // a server session is unfresh if the session key was

revealed at a session at the originally intended peer
client that has a matching contributive identifier

9: if ∃ B, j : (B,A, πjB .cid, π
i
A.cid) ∈ cids ∧

πjB .revealed then
10: return false
11: // ... or the session key was revealed at any of this

party’s sessions where it used this contributive identi-
fier

12: return ¬(∃ j : πiA.cid = πjA.cid∧π
j
A.revealed)

Figure 4: Matching and freshness predicates for analysis of 3-party Kerberos

12

RunAS(C, S, n):
1: // generate a random key and encrypt it for the client

and server
2: k←$K
3: t← now()
4: c1←$ Π.EnckC (k, n, t, S)
5: c2←$ Π.EnckS (k, t, C)
6: return (m′ = (c1, c2), cid = (C, S, c1, c2))

RunS(m,πiS):
1: // instance must be unused
2: if πiS .status 6= ⊥ then
3: return (m′ = ⊥, πiS)
4: parse m as (c2, c3)
5: (πiS .k, tKAS , C)← Π.DeckS (c2) // decrypt c2 if possi-

ble
6: if Dec returned ⊥ then
7: πiS .status← rejected
8: return (m′ = ⊥, πiS)
9: (C, tC)← Π.Decπi

S
.k(c3) // decrypt c3 if possible

10: if Dec returned ⊥ then
11: πiS .status← rejected
12: return (m′ = ⊥, πiS)
13: t← now()
14: if timeok(tKAS , tC ; t) then
15: c4←$ Π.Encπi

S
.k(tC) // generate outgoing cipher-

text
16: // accept and record identifiers
17: πiS .status← accepted
18: πiS .cid← c2
19: πiS .sid← c3‖c4
20: πiS .pid← C
21: return (m′ = c4, π

i
S)

22: else
23: πiS .status← rejected
24: return (m′ = ⊥, πiS)

RunC(m,πiC) where πiC .status = ⊥: // start client in-
stance

1: parse m as S
2: πiC .n←$ {0, 1}λ // generate nonce
3: πiC .status← 1 // record instance state
4: πiC .pid← S
5: return (m′ = (C, S, πiC .n), πiC)

RunC(m,πiC) where πiC .status = 1: // process KAS mes-
sage

1: parse m as (c1, c2)
2: (πiC .k, n

′, tKAS , S
′) ← Π.DeckC (c1) // decrypt c1 if

possible
3: if Dec returned ⊥ then
4: πiC .status← rejected
5: return (m′ = ⊥, πiC)
6: // check received data based on Kerberos protocol specifica-

tion
7: if (πiC .n = n′) ∧ (πiC .pid = S′) then
8: // generate outgoing ciphertext
9: πiC .t← now()
10: c3←$ Π.Encπi

C .k
(C, πiC .t)

11: πiC .status← 2 // update instance state
12: πiC .cid← c1 // record identifiers
13: πiC .sid← c3
14: return (m′ = (c2, c3), πiC)
15: else
16: πiC .status← rejected
17: return (m′ = ⊥, πiC)

RunC(m,πiC) where πiC .status = 2: // process server mes-
sage

1: parse m as c4
2: t′ ← Π.Decπi

C .k
(c4) // decrypt c4 if possible

3: if Dec returned ⊥ then
4: πiC .status← rejected
5: return (m′ = ⊥, πiC)
6: // check received data based on Kerberos protocol specifica-

tion
7: if t′ = πiC .t then
8: // accept and update identifiers
9: πiC .status← accepted
10: πiC .sid← πiC .sid‖c4
11: else
12: πiC .status← rejected
13: return (m′ = ⊥, πiC)

Figure 5: Specification of 3-party Kerberos protocol 3K[Π, λ] with symmetric encryption scheme Π
and nonce length λ.

13

keys are related to a particular instance. In Kerberos, session keys are established by the Kerberos
authentication server, and distributed in the ciphertexts c1 and c2. Therefore, any instances involving
c1 or c2 use the same session key, and thus cannot be revealed without compromising security of the
target instance. For modelling purposes, we depend on the authentication maintaining a list cids of
contributive identifiers that records which c1 and c2 are related; we have no other way of tracking
this because there is no requirement that either the client or the server see an authentic version of
the KAS message intended for the other party. For client instances, there should be at most one
instance using the same c1, so we only have to worry about one instance’s session key being revealed.
For server instances, however, there is a priori no replay protection, and thus there could be multiple
instances using the same c2, so we have to worry about any of these session keys being revealed,
hence the expression on line 12 of the F predicate.

5 Security proof for 3-party authentication of Kerberos

Theorem 1. If Π is an IND-CPA- and INT-CTXT-secure authenticated encryption scheme, and the
nonce size λ is sufficiently large, then 3K[Π, λ] is a secure 3-party authentication protocol, in the
sense of Section 3.2, with M and F predicates from Figure 4. More specifically, for any adversary
algorithm A, there exist algorithms BC3, . . . (with approximately the same runtime as A), described
in the proof, such that

Adv3-auth
3K[Π,λ],C,S,nsess,M,F(A) ≤ (nclnts · nsess)2

2λ

+ nsrvrs

(
Advint-ctxt

Π (BC3) + Advind-cpa
Π (BC4)

+ nclnts

(
Advint-ctxt

Π (BC6) + Advind-cpa
Π (BC7)

+ nkas ·Advint-ctxt
Π (BC9)

))
+ nclnts

(
Advint-ctxt

Π (BS3) + Advind-cpa
Π (BS4)

+ nsrvrs

(
Advint-ctxt

Π (BS6) + Advind-cpa
Π (BS7)

+ nkas
(
Advint-ctxt

Π (BS9) + Advint-ctxt
Π (BS10)

)))
,

where nkas is the number of queries made by the adversary to the KAS.

We use the standard definitions of IND-CPA and INT-CTXT security [BN08].

Proof. The proof is divided into two cases—whether (case C) client-to-server authentication or (case
S) server-to-client authentication is broken—and each case proceeds by a sequence of games. Table 1
summarizes the proof structure. We let Si denote the event that the experiment outputs true in
game Gi.

Game G0

This is the original experiment, Exp3-auth
3K[Π,λ],C,S,nsess,M,F(A). By definition,

Adv3-auth
3K[Π,λ],C,S,nsess,M,F(A) = Pr[S0] .

14

Table 1: Proof structure for Theorem 1, proof of 3-party-authentication security of 3-party Kerberos
3K[Π, λ]

Game Change from previous game Argument based on

G0 original 3-auth experiment for 3K[Π, λ]

Case S: server-to-client authentication (assume first malicious accept is at a client)

GS1 exclude nonce collisions birthday bound
GS2 guess first client C∗ to maliciously accept guessing probability
GS3 abort if C∗ accepts any forged c1 ciphertext INT-CTXT reduction
GS4 replace session keys k in c1 ciphertexts to C∗ with random keys IND-CPA reduction
GS5 guess peer S∗ of first client to maliciously accept guessing probability
GS6 abort if S∗ accepts any forged c2 ciphertext INT-CTXT reduction
GS7 replace session keys k in c2 ciphertexts to S∗ with random keys IND-CPA reduction
GS8 guess which KAS call generated the session key for the malicious session guessing probability
GS9 abort if S∗ accepts any forged c3 ciphertext INT-CTXT reduction
GS10 abort if C∗ accepts any forged c4 ciphertext INT-CTXT reduction

Case C: client-to-server authentication (assume first malicious accept is at a server)

GC1 exclude nonce collisions birthday bound
GC2 guess first server S∗ to maliciously accept guessing probability
GC3 abort if S∗ accepts any forged c2 ciphertext INT-CTXT reduction
GC4 replace session keys k in c2 ciphertexts to S∗ with random keys IND-CPA reduction
GC5 guess peer C∗ of first server to maliciously accept guessing probability
GC6 abort if C∗ accepts any forged c1 ciphertext INT-CTXT reduction
GC7 replace session keys k in c1 ciphertexts to C∗ with random keys IND-CPA reduction
GC8 guess which KAS call generated the session key for the malicious session guessing probability
GC9 abort if S∗ accepts any forged c3 ciphertext INT-CTXT reduction

Case C: Client-to-server authentication

In this case, we assume that client authentication is broken first, namely, the first party to maliciously
accept is a server.

Game GC1

Difference from previous game: We exclude nonce collisions: the game aborts if the same nonce
value is chosen twice by any honest client.

Analysis of abort event: The number of nonces chosen throughout the game is at most nclnts ·nsess,
and each nonce is chosen from a set of size 2λ. Thus,

|Pr[S0]− Pr[SC1]| ≤ (nclnts · nsess)2

2λ
.

Game GC2

Difference from previous game: The game guesses a value S∗ ∈ S, and aborts if S∗ is not the first
server to maliciously accept.

Analysis of abort event: The guess is correct with probability 1/|S|, thus

Pr[SC1] ≤ nsrvrs Pr[SC2] .

From this point on, we can assume there exists some i such that malicious-accept(S∗, i) is true.

15

Game GC3

Difference from previous game: This game aborts if there exists any instance πiS∗ which does not
reject when it receives a c2 that was not output by a call to SendAS(·, S∗, ·).

Analysis of abort event: We claim that if the abort event occurs, then the adversary has forged a
valid c2 ciphertext, breaking the integrity of the authenticated encryption scheme. More precisely,
we build a reduction BC3 which interacts with an INT-CTXT challenger for Π and behaves exactly
as in game GC2, except as follows.

Reduction description: BC3 generates all long-term keys as specified in the game, except it does
not generate the long-term key kS∗ for S∗. When it needs to answer SendAS(·, S∗, ·) queries, it
generates c2 by calling the Enc(·) oracle provided by the INT-CTXT challenger, and then stores c2

and the corresponding plaintext in a list. When it needs to answer Send(S∗, i, (c2, ·)) queries, it
passes all c2 to the Dec∗ oracle provided by the INT-CTXT challenger; if c2 was in the list stored
during the SendAS calls, it uses the corresponding plaintext and continues as specified, otherwise it
rejects.

Simulation correctness: Send queries: all messages are correctly distributed. Assuming the
abort event does not occur, the simulation of processing of c2 in Send(S∗, . . .) is correct. Reveal
queries: no changes in how these are answered. Corrupt queries: we cannot answer Corrupt(S∗)
queries since the simulation does not know kS∗ , but we don’t need to: since there is some i such
that malicious-accept(S∗, i), we must have that S∗ has not been corrupted.

Winning: When the abort event occurs, some Send(S∗, i, (c2, ·)) has received a c2 that was not
output by SendAS(·, S∗, ·). Thus, none of BC3’s calls to its INT-CTXT Enc oracle ever returned c2.
But since this instance did not reject, it must be that BC3 call to its INT-CTXT Dec∗ oracle with c2

did not return ⊥, which constitutes a forgery, and BC3 thereby wins its INT-CTXT game. Thus,

|Pr[SC2]− Pr[SC3]| ≤ Advint-ctxt
Π (BC3) .

Game GC4

Differences from previous game: In SendAS(·, S∗, ·) queries, generate a random k′, and use k′ in the
generation of c2, rather than k; store (c2, k) in a list. In Send(S∗, i, (c2, ·)) queries where (c2, k) is in
the aforementioned list for some k, proceed using k as the key. In Send(S∗, i, (c2, ·)) queries where
no (c2, ·) entry is in the list, reject.

Analysis of game difference: We claim that any adversary that can distinguish the previous game
from this one can be used to break the indistinguishability of the authenticated encryption scheme.
More precisely, we build a reduction BC4 which interacts with an IND-CPA challenger for Π and
behaves exactly as in game GC3, except as follows.

Reduction description: BC4 generates all long-term keys as specified in the game, except it does
not generate the long-term key kS∗ for S∗. When it needs to answer SendAS(·, S∗, ·) queries, it picks a
random k′, then generates c2 by calling the Enc(LR(·, ·)) oracle provided by the IND-CPA challenger,
using two plaintexts m0 = (k, n, C) and m1 = (k′, n, C). It stores (c2, k) in a list. When it needs to
answer Send(S∗, i, (c2, ·)) queries, where (c2, k) is in the list for some k, it proceeds using k as the
key. When it needs to answer Send(S∗, i, (c2, ·)) queries, where no (c2, ·) is in the list, it rejects.

Simulation correctness: When the bit b in the IND-CPA challenger is 0, BC4 exactly simulates
game GC3. When the bit b is 1, BC4 exactly simulates game GC4. Thus,

|Pr[SC3]− Pr[SC4]| ≤ Advind-cpa
Π (BC4) .

16

Game GC5

Difference from previous game: The game guesses a value C∗ ∈ C, and aborts if C∗ is not the alleged
peer in the first maliciously accepting server session.

Analysis of abort event: The guess is correct with probability 1/|C|, thus

Pr[SC4] ≤ nclnts Pr[SC5] .

Game GC6

Difference from previous game: This game aborts if there exists any instance πjC∗ which does not
reject when it receives a c1 that was not output by a call to SendAS(C∗, ·, ·).

Analysis of abort event: We claim that if the abort event occurs, then the adversary has forged a
valid c1 ciphertext, breaking the integrity of the authenticated encryption scheme. More precisely,
we build a reduction BC6 which interacts with an INT-CTXT challenger for Π and behaves exactly
as in game GC5, except as follows.

Reduction description: BC6 generates all long-term keys as specified in the game, except it does
not generate the long-term key kC∗ for C∗. When it needs to answer SendAS(C∗, ·, ·) queries, it
generates c1 by calling the Enc(·) oracle provided by the INT-CTXT challenger, and then stores c1

and the corresponding plaintext in a list. When it needs to answer Send(C∗, j, (c1, ·)) queries, it
passes all c1 to the Dec∗ oracle provided by the INT-CTXT challenger; if c1 was in the list stored
during the SendAS calls, it uses the corresponding plaintext and continues as specified, otherwise it
rejects.

Simulation correctness: Send queries: all messages are correctly distributed. Assuming the
abort event does not occur, the simulation of processing of c1 in Send(C∗, . . .) is correct. Reveal
queries: no changes in how these are answered. Corrupt queries: we cannot answer Corrupt(C∗)
queries since the simulation does not know kC∗ , but we don’t need to: since there is some i such
that malicious-accept(S∗, i), and πiS∗ .pid = C∗, we must have that C∗ has not been corrupted.

Winning: When the abort event occurs, some Send(C∗, j, (c1, ·)) has received a c1 that was not
output by SendAS(C∗, ·, ·). Thus, none of BC6’s calls to its INT-CTXT Enc oracle ever returned c1.
But since this instance did not reject, it must be that BC6 call to its INT-CTXT Dec∗ oracle with c1

did not return ⊥, which constitutes a forgery, and BC6 thereby wins its INT-CTXT game. Thus,

|Pr[SC5]− Pr[SC6]| ≤ Advint-ctxt
Π (BC6) .

Game GC7

Differences from previous game: In SendAS(C∗, ·, ·) queries, generate a random k′′, and use k′′ in the
generation of c1, rather than k; store (c1, k) in a list. (The list in this game is separate from the list
in game GC4.) In Send(C∗, j, (c1, ·)) queries where (c1, k) is in the aforementioned list for some k,
proceed using k as the key. In Send(C∗, i, (c1, ·)) queries where no (c1, ·) entry is in the list, reject.

Analysis of game difference: We claim that any adversary that can distinguish the previous game
from this one can be used to break the indistinguishability of the authenticated encryption scheme.
More precisely, we build a reduction BC7 which interacts with an IND-CPA challenger for Π and
behaves exactly as in game GC6, except as follows.

Reduction description: BC7 generates all long-term keys as specified in the game, except it does
not generate the long-term key kC∗ for C∗. When it needs to answer SendAS(C∗, ·, ·) queries, it
picks a random k′′, then generates c1 by calling the Enc(LR(·, ·)) oracle provided by the IND-CPA
challenger, using two plaintexts m0 = (k, n, t, S) and m1 = (k′′, n, t, S). It stores (c1, k) in a list.

17

When it needs to answer Send(C∗, j, (c1, ·)) queries, where (c1, k) is in the list for some k, it proceeds
using k as the key. When it needs to answer Send(C∗, j, (c1, ·)) queries, where no (c1, ·) is in the list,
it rejects.

Simulation correctness: When the bit b in the IND-CPA challenger is 0, BC7 exactly simulates
game GC6. When the bit b is 1, BC7 exactly simulates game GC7. Thus,

|Pr[SC6]− Pr[SC7]| ≤ Advind-cpa
Π (BC7) .

Game GC8

Difference from previous game: The game guesses a value ` ∈ [1, nkas], and aborts if the c2 in the
first S∗ session to maliciously accept was not generated by the `th SendAS(C∗, S∗, ·) call.

Analysis of abort event: The guess is correct with probability at least 1/nkas, thus

Pr[SC7] ≤ nkas Pr[SC8] .

Game GC9

Difference from previous game: This game aborts if there exists any instance πiS∗ with π
i
S∗ .pid = C∗

that received c3 but no C∗ session πjC∗ exists with session identifier πjC∗ .sid starting with c3.
Analysis of abort event: We claim that if the abort event occurs, then the adversary has forged a

valid c3 ciphertext, breaking the integrity of the authenticated encryption scheme. More precisely,
we build a reduction BC9 which interacts with an INT-CTXT challenger for Π and behaves exactly
as in game GC8, except as follows.

Reduction description: Let (c∗1, c
∗
2) be the outputs of the `th query to SendAS(C∗, §∗, ·). In

Send(C∗, j, (c∗1, ·)), generate c3 by calling the Enc(·) oracle provided by the INT-CTXT challenger.
(Note that this happens only once since it is preceded by a nonce check, and nonces are assumed to be
unique by game GC1.) Store c3 and the corresponding plaintext in a list. In Send(S∗, i, (c∗2, c3)) for
any c3, pass c3 to the INT-CTXT challenger’s Dec∗ oracle; if c3 was not in the aforementioned list, it
rejects. Otherwise, continue with the corresponding plaintext. When it needs to generate c4, it uses
the Enc oracle provided by the INT-CTXT challenger, and stores c4 and the corresponding plaintext
in a (separate) list. In Send(C∗, j, c4) for which πjC∗ .cid = c∗1, use the plaintext corresponding to c4

from the list, or reject if none.
Simulation correctness: Send queries: all messages are correctly distributed. Assuming the abort

event does not occur, the simulation of processing of c4 in Send(C∗, . . .) is correct. Reveal queries:
we cannot answer Reveal(C∗, j) where πjC∗ .cid = c∗1, but we don’t need to: F(S∗, i) requires that
there was no Reveal(C∗, j) for any j such that (C∗, S∗, c∗1, c

∗
2) ∈ cids (i.e., for which c∗1, c∗2 were output

by a call to SendAS(C∗, S ∗, ·).) We also cannot answer Reveal(S∗, i) where πiS∗ .cid = c∗2, but we
don’t need to: F(S∗, i) requires there was no Reveal(C∗, j) for any j such that πiC∗ .cid = πjC∗ .cid.
Corrupt queries: no change compared to the previous game.

Winning: When the abort event occurs, some S∗ instance accepted maliciously, say the one
corresponding to Send(S∗, i, (c∗2, c

∗
3)). Note that the only place that the reduction makes calls to its

INT-CTXT challenger’s Enc oracle are either in calls to Send(C∗, j, (c∗1, ·)) (where Enc is called with
plaintexts consisting of 2 components), or in Send(S∗, i, (c∗2, ·)) (where Enc is called with plaintexts
consisting of 1 component). Since no C∗ session exists with session identifier starting with c∗3, the
(at most one non-rejecting) Send(C∗, j, (c∗1, ·)) call did not output c∗3. This is the only place that Enc
oracle queries are made for plaintexts consisting of 2 components, so c∗3 was not the output of an
Enc query to the INT-CTXT challenger. But since this instance did not reject, it must be that BC9

18

call to its INT-CTXT Dec∗ oracle with c∗3 did not return ⊥, which constitutes a forgery, and BC9

thereby wins its INT-CTXT game. Thus,

|Pr[SC8]− Pr[SC9]| ≤ Advint-ctxt
Π (BC9) .

Analysis of Game GC9

This game GC9 aborts if any server instance maliciously accepts, thus we have that

Pr[SC9] = 0

and our sequence of games for this case terminates.

Case S: Server-to-client authentication

In this case, we assume that server authentication is broken first, namely, the first party to maliciously
accept is a client.

Game GS1

Difference from previous game: We exclude nonce collisions: the game aborts if the same nonce
value is chosen twice by any honest client.

Analysis of abort event: The number of nonces chosen throughout the game is at most nclnts ·nsess,
and each nonce is chosen from a set of size 2λ. Thus,

|Pr[S0]− Pr[SS1]| ≤ (nclnts · nsess)2

2λ
.

Game GS2

Difference from previous game: The game guesses a value C∗ ∈ C, and aborts if C∗ is not the first
client to maliciously accept.

Analysis of abort event: The guess is correct with probability 1/|C|, thus

Pr[SS1] ≤ nclnts Pr[SS2] .

From this point on, we can assume there exists some i such that malicious-accept(C∗, i) is true.

Game GS3

Difference from previous game: This game aborts if there exists any instance πiC∗ which does not
reject when it receives a c1 that was not output by a call to SendAS(C∗, ·, ·).

Analysis of abort event: We claim that if the abort event occurs, then the adversary has forged a
valid c1 ciphertext, breaking the integrity of the authenticated encryption scheme. More precisely,
we build a reduction BS3 which interacts with an INT-CTXT challenger for Π and behaves exactly as
in game GS2, except as follows.

Reduction description: BS3 generates all long-term keys as specified in the game, except it does
not generate the long-term key kC∗ for C∗. When it needs to answer SendAS(C∗, ·, ·) queries, it
generates c1 by calling the Enc(·) oracle provided by the INT-CTXT challenger, and then stores c1

and the corresponding plaintext in a list. When it needs to answer Send(C∗, i, (c1, ·)) queries, it
passes all c1 to the Dec∗ oracle provided by the INT-CTXT challenger; if c1 was in the list stored

19

during the SendAS calls, it uses the corresponding plaintext and continues as specified, otherwise it
rejects.

Simulation correctness: Send queries: all messages are correctly distributed. Assuming the
abort event does not occur, the simulation of processing of c1 in Send(C∗, . . .) is correct. Reveal
queries: no changes in how these are answered. Corrupt queries: we cannot answer Corrupt(C∗)
queries since the simulation does not know kC∗ , but we don’t need to: since there is some i such
that malicious-accept(C∗, i), we must have that C∗ has not been corrupted.

Winning: When the abort event occurs, some Send(C∗, i, (c1, ·)) has received a c1 that was not
output by SendAS(C∗, ·, ·). Thus, none of BS3’s calls to its INT-CTXT Enc oracle ever returned c1.
But since this instance did not reject, it must be that BS3 call to its INT-CTXT Dec∗ oracle with c1

did not return ⊥, which constitutes a forgery, and BS3 thereby wins its INT-CTXT game. Thus,

|Pr[SS2]− Pr[SS3]| ≤ Advint-ctxt
Π (BS3) .

Game GS4

Differences from previous game: In SendAS(C∗, ·, ·) queries, generate a random k′, and use k′ in the
generation of c1, rather than k; store (c1, k) in a list. In Send(C∗, i, (c1, ·)) queries where (c1, k) is in
the aforementioned list for some k, proceed using k as the key. In Send(C∗, i, (c1, ·)) queries where
no (c1, ·) entry is in the list, reject.

Analysis of game difference: We claim that any adversary that can distinguish the previous game
from this one can be used to break the indistinguishability of the authenticated encryption scheme.
More precisely, we build a reduction BS4 which interacts with an IND-CPA challenger for Π and
behaves exactly as in game GS3, except as follows.

Reduction description: BS4 generates all long-term keys as specified in the game, except it does
not generate the long-term key kC∗ for C∗. When it needs to answer SendAS(C∗, ·, ·) queries, it
picks a random k′, then generates c1 by calling the Enc(LR(·, ·)) oracle provided by the IND-CPA
challenger, using two plaintexts m0 = (k, n, t, S) and m1 = (k′, n, t, S). It stores (c1, k) in a list.
When it needs to answer Send(C∗, i, (c1, ·)) queries, where (c1, k) is in the list for some k, it proceeds
using k as the key. When it needs to answer Send(C∗, i, (c1, ·)) queries, where no (c1, ·) is in the list,
it rejects.

Simulation correctness: When the bit b in the IND-CPA challenger is 0, BS4 exactly simulates
game GS3. When the bit b is 1, BS4 exactly simulates game GS4. Thus,

|Pr[SS3]− Pr[SS4]| ≤ Advind-cpa
Π (BS4) .

Game GS5

Difference from previous game: The game guesses a value S∗ ∈ S, and aborts if S∗ is not the alleged
peer in the first maliciously accepting client session.

Analysis of abort event: The guess is correct with probability 1/|S|, thus

Pr[SS4] ≤ nsrvrs Pr[SS5] .

Game GS6

Difference from previous game: This game aborts if there exists any instance πjS∗ which does not
reject when it receives a c2 that was not output by a call to SendAS(·, S∗, ·).

Analysis of abort event: We claim that if the abort event occurs, then the adversary has forged a
valid c2 ciphertext, breaking the integrity of the authenticated encryption scheme. More precisely,

20

we build a reduction BS6 which interacts with an INT-CTXT challenger for Π and behaves exactly as
in game GS5, except as follows.

Reduction description: BS6 generates all long-term keys as specified in the game, except it does
not generate the long-term key kS∗ for S∗. When it needs to answer SendAS(·, S∗, ·) queries, it
generates c2 by calling the Enc(·) oracle provided by the INT-CTXT challenger, and then stores c2

and the corresponding plaintext in a list. When it needs to answer Send(S∗, j, (c2, ·)) queries, it
passes all c2 to the Dec∗ oracle provided by the INT-CTXT challenger; if c2 was in the list stored
during the SendAS calls, it uses the corresponding plaintext and continues as specified, otherwise it
rejects.

Simulation correctness: Send queries: all messages are correctly distributed. Assuming the
abort event does not occur, the simulation of processing of c2 in Send(S∗, . . .) is correct. Reveal
queries: no changes in how these are answered. Corrupt queries: we cannot answer Corrupt(S∗)
queries since the simulation does not know kS∗ , but we don’t need to: since there is some i such
that malicious-accept(C∗, i), and πiC∗ .pid = S∗, we must have that S∗ has not been corrupted.

Winning: When the abort event occurs, some Send(S∗, j, (c2, ·)) has received a c2 that was not
output by SendAS(·, S∗, ·). Thus, none of BS6’s calls to its INT-CTXT Enc oracle ever returned c2.
But since this instance did not reject, it must be that BS6 call to its INT-CTXT Dec∗ oracle with c2

did not return ⊥, which constitutes a forgery, and BS6 thereby wins its INT-CTXT game. Thus,

|Pr[SS5]− Pr[SS6]| ≤ Advint-ctxt
Π (BS6) .

Game GS7

Differences from previous game: In SendAS(·, S∗, ·) queries, generate a random k′′, and use k′′ in the
generation of c2, rather than k; store (c2, k) in a list. (The list in this game is separate from the list
in game GS4.) In Send(S∗, j, (c2, ·)) queries where (c2, k) is in the aforementioned list for some k,
proceed using k as the key. In Send(S∗, j, (c2, ·)) queries where no (c2, ·) entry is in the list, reject.

Analysis of game difference: We claim that any adversary that can distinguish the previous game
from this one can be used to break the indistinguishability of the authenticated encryption scheme.
More precisely, we build a reduction BS7 which interacts with an IND-CPA challenger for Π and
behaves exactly as in game GS6, except as follows.

Reduction description: BS7 generates all long-term keys as specified in the game, except it does
not generate the long-term key kS∗ for S∗. When it needs to answer SendAS(·, S∗, ·) queries, it picks a
random k′′, then generates c2 by calling the Enc(LR(·, ·)) oracle provided by the IND-CPA challenger,
using two plaintexts m0 = (k, t, C) and m1 = (k′′, t, C). It stores (c2, k) in a list. When it needs to
answer Send(S∗, j, (c2, ·)) queries, where (c2, k) is in the list for some k, it proceeds using k as the
key. When it needs to answer Send(S∗, j, (c2, ·)) queries, where no (c2, ·) is in the list, it rejects.

Simulation correctness: When the bit b in the IND-CPA challenger is 0, BS7 exactly simulates
game GS6. When the bit b is 1, BS7 exactly simulates game GS7. Thus,

|Pr[SS6]− Pr[SS7]| ≤ Advind-cpa
Π (BS7) .

Game GS8

Difference from previous game: The game guesses a value ` ∈ [1, nkas], and aborts if the c1 in the
first C∗ session to maliciously accept was not generated by the `th SendAS(C∗, S∗, ·) call.

Analysis of abort event: The guess is correct with probability at least 1/nkas, thus

Pr[SS7] ≤ nkas Pr[SS8] .

21

Game GS9

Let (c∗1, c
∗
2) be the outputs of the `th SendAS(C∗, S∗, ·) call.

Difference from previous game: This game aborts if there exists any instance πjS∗ which does not
reject when it receives a c3 that was not output by a call to Send(C∗, i, (c∗1, ·)).

Analysis of abort event: We claim that if the abort event occurs, then the adversary has forged a
valid c3 ciphertext, breaking the integrity of the authenticated encryption scheme. More precisely,
we build a reduction BS9 which interacts with an INT-CTXT challenger for Π and behaves exactly as
in game GS8, except as follows.

Reduction description: In Send(C∗, i, (c∗1, ·)), generate c3 by calling the Enc(·) oracle provided by
the INT-CTXT challenger. (Note that this happens only once since it is preceded by a nonce check,
and nonces are assumed to be unique by game GC1.) Store c3 and the corresponding plaintext in a
list. In Send(S∗, j, (c∗2, c3)) for any c3, pass c3 to the INT-CTXT challenger’s Dec∗ oracle; if c3 was
not in the aforementioned list, it rejects. Otherwise, it continues with corresponding plaintext. When
it needs to generate c4, it uses the Enc oracle provided by the INT-CTXT challenger, and stores c4

and the corresponding plaintext in a (separate) list. In Send(C∗, i, c4) for which πiC∗ .cid = c∗1, use
the plaintext corresponding to c4 from the aforementioned list, or reject if none.

Simulation correctness: Send queries: all messages are correctly distributed. Assuming the abort
event does not occur, the simulation of processing of c3 in Send(S∗, . . .) is correct. Reveal queries: we
cannot answer Reveal(C∗, i), but we don’t need to: F(C∗, i) requires that there was no Reveal(C∗, i).
We also cannot answer Reveal(S∗, j) for any j such that πjS∗ .cid = c∗2, but we don’t need to: F(S∗, i)

requires there was no Reveal(S∗, j) for any j such that (C∗, S∗, c∗1, π
j
S∗ .cid) ∈ cids. Corrupt queries:

no change compared to the previous game.
Winning: When the abort event occurs, some Send(S∗, j, (c∗2, c3)) has received a c3 that was not

output by Send(C∗, i, (c∗1, ·)). Thus, none of BS9’s calls to its INT-CTXT Enc oracle ever returned c3.
But since this instance did not reject, it must be that BS9 call to its INT-CTXT Dec∗ oracle with c3

did not return ⊥, which constitutes a forgery, and BS9 thereby wins its INT-CTXT game. Thus,

|Pr[SS8]− Pr[SS9]| ≤ Advint-ctxt
Π (BS9) .

Game GS10

Difference from previous game: This game aborts if some C∗ instance accepts maliciously.
Analysis of abort event: We claim that if the abort event occurs, then the adversary has forged a

valid c4 ciphertext, breaking the integrity of the authenticated encryption scheme. More precisely,
we build a reduction BS10 which interacts with an INT-CTXT challenger for Π and behaves exactly
as in game GS9, except as follows.

Reduction description: Let (c∗1, c
∗
2) be the outputs of the `th query to SendAS(C∗, §∗, ·). In

Send(C∗, i, (c∗1, ·)), generate c3 by calling the Enc(·) oracle provided by the INT-CTXT challenger.
(Note that this happens only once since it is preceded by a nonce check, and nonces are assumed to be
unique by game GC1.) Store c3 and the corresponding plaintext in a list. In Send(S∗, j, (c∗2, c3)) for
any c3, pass c3 to the INT-CTXT challenger’s Dec∗ oracle; if c3 was not in the aforementioned list, it
rejects. Otherwise, continue with the corresponding plaintext. When it needs to generate c4, it uses
the Enc oracle provided by the INT-CTXT challenger, and stores c4 and the corresponding plaintext
in a (separate) list. In Send(C∗, j, c4) for which πiC∗ .cid = c∗1, use the plaintext corresponding to c4

from the aforementioned list, or reject if none.
Simulation correctness: Send queries: all messages are correctly distributed. Assuming the

abort event does not occur, the simulation of processing of c4 in Send(C∗, . . .) is correct. Reveal
queries: we cannot answer Reveal(C∗, i) where πjC∗ .cid = c∗1, but we don’t need to: F(S∗, i) requires

22

that there was no Reveal(C∗, i) for the target session i. We also cannot answer Reveal(S∗, j) where
πjS∗ .cid = c∗2, but we don’t need to: F(C∗, i) requires there was no Reveal(S∗, j) for any j such that
(C∗, S∗, c∗1, π

j
S∗ .cid) ∈ cids. Corrupt queries: no change compared to the previous game.

Winning: When the abort event occurs, some C∗ instance πi∗C∗ has accepted maliciously. Note
that the only place that the reduction makes calls to its INT-CTXT challenger’s Enc oracle are either
in calls to Send(C∗, i, (c∗1, ·)) (where Enc is called with plaintexts consisting of 2 components), or
in Send(S∗, j, (c∗2, ·)) (where Enc is called with plaintexts consisting of 1 component). Since πi∗C∗
accepted maliciously, it did so with a session identifier πi∗C∗ .sid = c∗3‖c∗4 where there is no matching
session, namely, no j such that πjS∗ .sid = c∗3‖c∗4. For every S∗ instance that accepted with peer C∗, it
did so with a sid that differed either in the c3 component or the c4 component. By the previous game,
every S∗ instance that accepted did so with a c3 that was output by a call to Send(C∗, i, (c∗1, ·)).
This means that S∗’s session identifier does not differ in the c3 component, so it must differ in the c4

component. Thus, no Send(S∗, j, (c∗2, c
∗
3)) call ever output c∗4. This is the only place that Enc oracle

queries are made for plaintexts consisting of 1 component, so c∗4 was not the output of an Enc query
to the INT-CTXT challenger. But since this instance did not reject, it must be that BS10 call to its
INT-CTXT Dec∗ oracle with c∗4 did not return ⊥, which constitutes a forgery, and BS10 thereby wins
its INT-CTXT game. Thus,

|Pr[SS9]− Pr[SS10]| ≤ Advint-ctxt
Π (BS10) .

Analysis of Game GS10

This game GS10 aborts if any client instance maliciously accepts, thus we have that

Pr[SS10] = 0

and our sequence of games for this case terminates.

6 Session key security for Kerberos

A proof that Kerberos can be used to securely establish session keys faces the problem that standard
authenticated key exchange security models cannot be used. Recall that classical AKE models
(e.g. [BR94, CK01]) demand session key indistinguishability : in a “test” session, the adversary is
challenged to distinguish the real session key from a random string of the same length. In Kerberos,
the session key kCS is already used to encrypt messages c3 and c4. Thus, the adversary can take the
challenge, try to use it to decrypt c3 and c4, and thereby decide whether the challenge session key
was real or random.

This problem is not unique to Kerberos. Many popular real-world cryptographic protocols have
this characteristic, including TLS v1.0-1.2 and SSH v2. We have two options for dealing with this:
we can try to argue indistinguishability of some intermediate key, or we can instead try to analyze the
protocol as a secure channel protocol (which establishes and uses keys for authenticated encryption)
rather than just a key establishment protocol. Early results on TLS focused on the first approach,
but the first full analysis of TLS 1.2 by Jager et al. [JKSS12] was achieved via the introduction of
the authenticated and confidential channel establishment (ACCE) security model, which addresses
security of the channel resulting from the key exchange, rather than the indistinguishability of the
key derived during the key exchange. We investigate the application of these two techniques to
Kerberos.

For the first option, we recall that, as noted in Section 2, Kerberos can be run in an optional mode
which establishes a separate “sub-session” key, k∗CS . Unlike kCS , this key is not used in the main

23

Kerberos exchange, so it is unaffected by the issues that prevented proofs of the indistinguishability
of kCS discussed at the beginning of this section. In Section 6.1, we show that the sub-session key is
secure (indistinguishable from random) in an appropriate AKE security notion.

For the second option, unfortunately, neither the ACCE model nor the 3-party variant 3ACCE
[BBF+17] can be applied to Kerberos. The ACCE and 3ACCE secure channel security notions
specifically address the combination of a key exchange protocol and an authenticated encryption
scheme. For TLS, this is fine: the TLS protocol specifies both a “handshake layer” (key exchange
protocol) and subsequent “record layer” (authenticated encryption scheme). As noted earlier, Kerberos
does not specify an exclusive record layer with which the Kerberos session key can only be used, and
in fact does specify that it can be exported for arbitrary use [ZJH05]. Thus we cannot apply the
ACCE or 3ACCE secure channel security notions since we have no specific encryption scheme with
which the key will always be used.

This necessitates some generalization of the ACCE model. Krawczyk [Kra16] introduced such a
generalization in the context of TLS 1.3 using functional queries. In Krawczyk’s model, the classical
Test query from AKE models is replaced by one or more functional queries (examples of which are
the Encrypt and Decrypt queries in ACCE) on a black box containing the session key k, which may
be adapted to each use case. We discuss this approach and how it can be applied to Kerberos in
Section 6.2.

6.1 Indistinguishability of the sub-session key

Here we aim to show that the Kerberos sub-session key, denoted k∗CS in Figure 2, is a secure session
key. The typical security property for session keys dates from the original Bellare–Rogaway model
[BR94]: indistinguishability of the session key from random, in an appropriate adversarial model.
Figure 6 shows our security experiment 3-ake for security of the session key of a 3-party authenticated
key exchange protocol Π. The experiment uses the same oracles as in Figure 3. It depends on a
freshness predicate F (such as in Figure 4). The adversary is allowed to pick a single “test” session
(using the Test oracle). The adversary is given either the real key from that session (πi∗A∗ .k) or
a random value chosen uniformly from the appropriate key space. The adversary wins if it can
distinguish these with good probability:

Adv3-ake
Π,C,S,nsess,F(A) =

∣∣∣∣Pr
[
Exp3-ake

Π,C,S,nsess,F(A)⇒ true
]
− 1

2

∣∣∣∣ .
The sub-session key can be shown to be secure (indistinguishable from random) in the sense

of Figure 6. To be clear, in the formulation of this sub-session key mode of Kerberos, we say that
session key output by an instance, πiA.k, is the sub-session key k∗CS , rather than the session key kCS .
Assume that we are dealing with the sub-session key mode where the client picks the sub-session key
and sends it in c3. (The server-picked case sent in c4 follows analogously.) The argument follows a
similar structure to the proof of Theorem 1, with two similar cases and, most game hops in each
case similar; only games GS9 and GC9 differ.

The sub-session key can be shown to be secure (indistinguishable from random) in the sense
of Figure 6. To be clear, in the formulation of this sub-session key mode of Kerberos, we say that
session key output by an instance, πiA.k, is the sub-session key k∗CS , rather than the session key kCS .
Assume that we are dealing with the sub-session key mode where the client picks the sub-session key
and sends it in c3. (The server-picked case sent in c4 follows analogously.) The argument follows a
similar structure to the proof of Theorem 1, with two similar cases and, most game hops in each
case similar; only games GS9 and GC9 differ. We now sketch each game hop.

In case S, we assume that the test session is at a client.

24

Exp3-ake
Π,C,S,nsess,F(A)

1: // generate long-term keys
2: for P ∈ C ∪ S do
3: kP ←$K
4: b←$ {0, 1}
5: A∗ ← ⊥; i∗ ← ⊥
6: // run the experiment
7: b′←$ASendAS,Send,Reveal,Corrupt,Test()
8: // winning condition
9: return true iff (b′ = b)∧ (πiA.status = accepted)

10: ∧ ¬corruptedA∗ ∧ ¬corruptedπi∗
A∗ .pid ∧ F(A∗, i∗)

Test(P, i):
1: if P ∗ 6= ⊥ return ⊥ // only 1 Test query allowed
2: if πi

∗

P∗ .status 6= accepted return ⊥
3: P ∗ ← P, i∗ ← i
4: if b = 0 then
5: return πi

∗

P∗ .k
6: else
7: k′←$K∗
8: return k′

Figure 6: Session key security experiment for 3-party AKE protocol Π with freshness predicate F.
Oracles SendAS, Send,Reveal,Corrupt as defined in Figure 3.

• In game GS1, we exclude nonce collision exactly as in Theorem 1. (Game hop based on birthday
bound.)

• In game GS2, we guess the client C∗ to be the target of the test session. (Game hop based on
guessing probability.)

• In game GS3, we abort if C∗ accepts any forged c1 ciphertext, exactly as in Theorem 1. (Game
hop based on INT-CTXT reduction.)

• In game GS4, we replace all kCS in c1 ciphertexts to C∗ with random keys, exactly as in
Theorem 1. (Game hop based on IND-CPA reduction.)

• In game GS5, we guess the peer S∗ of the target of the test session. (Game hop based on
guessing probability.)

• In game GS6, we abort if S∗ accepts any forged c2 ciphertext, exactly as in Theorem 1. (Game
hop based on INT-CTXT reduction.)

• In game GS7, we replace all kCS in c2 ciphertexts to S∗ with random keys, exactly as in
Theorem 1. (Game hop based on IND-CPA reduction.)

• In game GS8, we guess which KAS call generated the kCS for the test session. (Game hop
based on guessing probability.)

• In game GS9, we replace the k∗CS in c3 with a random value. (Game hop based on IND-CPA
reduction.)

Since the sub-session key k∗CS in game GS9 is now completely independent of any transmitted
messages, the adversary’s advantage in game GS9 is 0.

In case C, we assume that the test session is at a server.

• In game GC1, we exclude nonce collision exactly as in Theorem 1. (Game hop based on
birthday bound.)

• In game GC2, we guess the server S∗ to be the target of the test session. (Game hop based on
guessing probability.)

• In game GC3, we abort if S∗ accepts any forged c2 ciphertext, exactly as in Theorem 1. (Game
hop based on INT-CTXT reduction.)

• In game GC4, we replace all kCS in c2 ciphertexts to S∗ with random keys, exactly as in
Theorem 1. (Game hop based on IND-CPA reduction.)

25

• In game GC5, we guess the peer C∗ of the target of the test session. (Game hop based on
guessing probability.)

• In game GC6, we abort if C∗ accepts any forged c1 ciphertext, exactly as in Theorem 1. (Game
hop based on INT-CTXT reduction.)

• In game GC7, we replace all kCS in c1 ciphertexts to C∗ with random keys, exactly as in
Theorem 1. (Game hop based on IND-CPA reduction.)

• In game GC8, we guess which KAS call generated the kCS for the test session. (Game hop
based on guessing probability.)

• In game GC9, we replace the k∗CS in c3 with a random value. (Game hop based on IND-CPA
reduction.)

Since the sub-session key k∗CS in game GC9 is now completely independent of any transmitted
messages, the adversary’s advantage in game GS9 is 0.

6.2 Security of (the hash of) the session key in other applications

We discussed already why we cannot prove it is safe to use session key directly in arbitrary applications.
Krawczyk [Kra16] gave a generalization of the ACCE security model which allows one to prove that
keys established in a session can be used in a specific setting, even when the adversary learns some
information derived from the session key. In Krawczyk’s framework, the setting in which the key is
used is modelled by a functional test, and the information derived from the session key is modelled
by a functional query. We now review this framework in more detail.

Let F = {fp} be a family of randomized functions, parameterized by p, and each taking a single
argument k. We extend the security model of Section 3.1 with two “functional” queries associated to
F :

• FQuery(P, i, p): The adversary provides a parameter p, and receives in return fp(πiP .k).

• FTest(P, i): The arguments P, i identify a test session πiP . FTest executes an arbitrary
functional test interactively with the adversary. The challenger’s input to the functional test
is the test session’s session key πPA .k, as well as a random bit b. The adversary outputs a
bit b′, and is said to win if b′ = b while maintaining the first four conditions in the predicate
malicious-accept(P, i) (namely, that πiP has accepted, that P and its peer are not corrupted,
and that the instance is fresh). Freshness is extended as follows: the adversary is permitted to
issue FQuery queries to any instances that could also be revealed without violating freshness,
and is also permitted to issue FQuery queries to the test session.

The functional test inside FTest must satisfy the condition that, if one replaces the input to the
challenger with a random independent key, then the advantage of the adversary in winning the game
is small; we call such a functional test valid.

Ideally, we would prove that Kerberos is secure in Krawczyk’s framework for all function families
F and all valid functional tests FTest. Unfortunately, we cannot: using the same key in an IND-CCA-
like functional test that includes a decryption oracle (for the same authenticated encryption scheme
Π as used in Kerberos) could allow for trial decryption of the Kerberos ciphertext (but not violate
standard IND-CCA freshness since the functional test is not decrypting its challenge ciphertext). We
know of no generic way to model when F is sufficiently different from Π to avoid this problem.

To achieve at least some positive result, we will consider the scenario where the Kerberos
session key is first hashed before it is passed to the application; we call this protocol H(3K). More

26

specifically, the output session key is H(k) (but c3 and c4 continue to be encrypted with k directly).
Any applications that take the Kerberos session key and run it through a hash function, key derivation
function, or pseudorandom function before using it fit this pattern.

Our goal will be to prove that H(3K) is secure in Krawczyk’s framework for all functional families
F and all valid functional tests FTest. We will do so by introducing a joint assumption on the hash
function H and the authenticated encryption scheme Π which is an extension of Fischlin’s definition
of a key-hiding symmetric encryption scheme [Fis99, Def. 6]. Our joint assumption intuitively says
that encryptions under the key are independent of the hash of the key.

Fischlin’s definition of a key-hiding symmetric encryption scheme is as follows. Let D be a
distinguishing algorithm. For a symmetric encryption scheme Π with key space K, define

Advkh
Π (D) =

∣∣∣∣Pr
[
k←$K;DEnck(·),Enck(·)()⇒ 1

]
− Pr

[
k, k′←$K;DEnck(·),Enck′ (·)()⇒ 1

] ∣∣∣∣ .
In other words, in a key-hiding symmetric encryption scheme, the adversary cannot tell whether
ciphertexts are being generated using the same key or different keys.

Based on Fischlin’s definition of a key-hiding symmetric encryption scheme, we define H-key-
hiding symmetric encryption scheme as follows. Let D be a distinguishing algorithm, Π be a
symmetric encryption scheme Π with key space K, and H : K → K′ be a hash function. Define

Advhkh
Π,H(D) =

∣∣∣∣Pr
[
k←$K;DEnck(·)(H(k))⇒ 1

]
− Pr

[
k, k′←$K;DEnck(·)(H(k′))⇒ 1

] ∣∣∣∣ .
In other words, in an H-key-hiding symmetric encryption scheme, the adversary cannot tell whether
it is being given the hash of the encryption key, or the hash of different key, even with access to an
encryption oracle.

First, we show that the use of an H-key-hiding symmetric encryption scheme in Kerberos is
secure in Krawczyk’s framework. Second, we give some justification that this new assumption is
reasonable by showing that it holds in the random oracle model, assuming the encryption scheme is
secure against key recovery under chosen plaintext attacks.

Theorem 2 (Security of H(3K) in Krawczyk’s framework). If H is a random oracle and, in addition
to all of the assumptions in Theorem 1, we also have that Π is an H-key-hiding symmetric encryption
scheme, then H(3K), is secure in Krawczyk’s framework for any functional family F and any valid
functional test FTest.

Proof sketch. We first apply the same sequence of games in the proof of Theorem 1 to H(3K), except
everywhere we are considering the test session rather than the first session to maliciously accept. By
the end of this sequence of games, we have guessed participants C∗ and S∗, and know that the test
session involves c∗1 or c∗2 generated by the KAS.

In the next game, we replace the session key H(k) with H(r) for r←$K in every C∗ or S∗

session involving c∗1 or c∗2. We don’t have to worry about inconsistency of Reveal queries since those
are prohibited by freshness. Indistinguishability of this game from the previous game follows under
H-key-hiding of Π, introducing a Advhkh

Π,H(D) term in the advantage.
This game is our final game: the session key of the test session are indistinguishable from random

since the input to the random oracle model is independent and unknown to the adversary. This

27

allows application of Krawczyk’s framework: the functional test being valid thereby implies that the
advantage of the adversary winning is small.

We have two questions to answer: Does this approach say anything meaningful about uses of
Kerberos? And is the H-key-hiding notion reasonable?

Utility of the approach can be seen by looking at RFCs 3961 [Rae05b] and 4121 [ZJH05], which
both discuss use of Kerberos session keys to derive subsequent keys; their mechanism is in effect
“hashing” the session key using a block cipher (e.g. RFC 3961 [Rae05b] Section 5.1).

Finally: is the H-key-hiding notion reasonable? We can provide a heuristic justification of it
in the random oracle model, under the assumption the symmetric encryption is secure against
key recovery under chosen plaintext attack (KR-CPA), which of course is implied by the standard
IND-CPA property. (In the HKH experiment in the random oracle model, D also gets access to the
random oracle.)

Theorem 3 (KR-CPA =⇒ H-key-hiding in ROM). If Π is a symmetric encryption scheme secure
against key recovery under chosen plaintext attacks (KR-CPA) and H is a random oracle, then Π is
an H-key-hiding symmetric encryption scheme. More precisely, if D is an algorithm that makes q
queries to its H oracle, then there exists an algorithm R, described in the proof, such that

Advhkh
Π (D) ≤ q ·Advkr-cpa

Π (R) ,

where R has approximately the same runtime as D.

The definition of KR-CPA security appears in Appendix C.

Proof. Suppose D is an adversary against the H-key-hiding security of Π. Since H is a random
oracle, D has no advantage unless it queries H on k. We construct a reduction R against the KR-CPA
security of R. R interacts with a KR-CPA challenger. When D makes an Enc query, R passes that
query directly to its challenger and returns the result. When D makes an H query, R simulates
a random oracle, maintaining a list of queries. When D terminates, R picks one of the q queries
at random from the list of queries and outputs it as its guess of the key. When D succeeds in
distinguishing, k appears on R’s list so R succeeds with probability 1/q.

Of course we would prefer to have a justification of H-key-hiding in the standard model (e.g.,
assuming H is a pseudorandom generator rather than a random oracle). This is tricky: one could
construct degenerate encryption schemes Enc and functions H that are individually secure but
together interfere with each other, especially if Enc and H are built from common building primitives.
Additionally, Fischlin [Fis99], in his discussion about key-hiding being non-trivial, notes an example
in which the Hamming weight is leaked, and this extends in the obvious was to H-key-hiding as well.
In practice, many natural constructions likely would not interfere with each other, but in a proof we
would need a formalization of “similarity” of algorithm structure, which is outside the scope of this
effort.

7 Discussion

Since this work gives provable security results with concrete bounds, it can be used to pick parameters
in a protocol instantiation. Here a key issue is “tightness”: the smaller the multiplicative factor
between the advantage of breaking the protocol and the advantage of breaking the underyling
primitives, the “tighter” the result, and therefore the smaller the overhead that the proof incurs on
the parameter sizes. Looking at Theorem 1, we see that the multiplicative factors are nclnts and

28

nsrvrs, which are the number of clients and servers, and nkas, the number of queries to the Kerberos
authentication server. In practice nclnts and nsrvrs is likely to be smaller relative to the security
parameter (e.g., on the order of 210 or 220 compared to 2128), so they do not impose a huge penalty
on tightness. The number of KAS queries—roughly the number of sessions—could be much larger
over a long deployment. One solution is to apply rate-limiting on the KAS to ensure this number
does not grow too large. Alternatively, one could instantiate the authenticated encryption scheme
with higher security for the message authentication component. Noting as well the birthday bound
involving nclnts · nsess versus the size of the nonce, this suggests one should use sufficiently large
nonces, e.g. 256-bit. If a weak cipher is used in Kerberos—such as DES with 56-bit keys and a
lower security checksum [Rae05b]—then the multiplicative factors may overwhelm the advantage
yielding no security assurance; but with high security ciphers with larger keys, our theorem yields a
meaningful security bound.

Another benefit of our explicit reductionist proof is that we see the structure of the proof in the
computational setting, and so we can confirm that Song’s quantum lifting lemma [Son14] can be
applied to yield security against quantum adversaries (assuming quantum security of the underlying
authenticated encryption scheme). While the symbolic (Dolev–Yao) proof for Kerberos of Backes
et al. [BCJ+06a, BCJ+11] can be lifted by results of BPW [BPW03] to the computational setting
for classical adversaries, we do not know the structure of the implicit computational proof to know
whether Song’s quantum lemma can be applied for quantum adversaries.

Finally, by providing results about the security of the sub-session key as well as the hash of
the session key, we show that it safe to use these keys in subsequent cryptographic algorithms like
authenticated encryption. Although it would be nice to be able to prove results about the main
session key, we cannot do so due to its use directly in the protocol itself, as we explained above, and
thus can only achieve provable security results in these alternates, the first of which (sub-session
keys) is standardized and the second of which (hashing the session key) is a straightforward variant
that would be simple for practitioners to use.

Acknowledgements

We acknowledge helpful discussions on earlier versions of this work with Florian Bergsma, Choudary
Gorantla, and Florian Kohlar. D.S. is supported by Natural Sciences and Engineering Research Coun-
cil of Canada (NSERC) Discovery grant RGPIN-2016-05146 and an NSERC Discovery Accelerator
Supplement grant.

References
[ABV+04] B. Aboba, L. Blunk, J. Vollbrecht, J. Carlson, and H. Levkowetz. Extensible Authentication

Protocol (EAP). RFC 3748 (Proposed Standard), June 2004. Updated by RFCs 5247, 7057.

[AHSM10] N. T. Abdelmajid, M. Alamgir Hossain, S. Shepherd, and K. Mahmoud. Improved kerberos
security protocol evaluation using modified BAN logic. In 10th IEEE International Conference on
Computer and Information Technology, CIT 2010, Bradford, West Yorkshire, UK, June 29-July
1, 2010, pages 1610–1615, 2010.

[Bac04] Michael Backes. A cryptographically sound Dolev-Yao style security proof of the Otway-Rees
protocol. In Pierangela Samarati, Peter Y. A. Ryan, Dieter Gollmann, and Refik Molva, editors,
ESORICS 2004, volume 3193 of LNCS, pages 89–108. Springer, Heidelberg, September 2004.

[BAN90] Michael Burrows, Martín Abadi, and Roger M. Needham. A logic of authentication. ACM Trans.
Comput. Syst., 8(1):18–36, 1990.

29

[BBF+17] Karthikeyan Bhargavan, Ioana Boureanu, Pierre-Alain Fouque, Cristina Onete, and Benjamin
Richard. Content delivery over TLS: a cryptographic analysis of keyless SSL. In 2017 IEEE
European Symposium on Security and Privacy. IEEE Computer Society Press, April 2017.

[BCJ+06a] Michael Backes, Iliano Cervesato, Aaron D. Jaggard, Andre Scedrov, and Joe-Kai Tsay. Crypto-
graphically sound security proofs for basic and public-key kerberos. In Dieter Gollmann, Jan
Meier, and Andrei Sabelfeld, editors, ESORICS 2006, volume 4189 of LNCS, pages 362–383.
Springer, Heidelberg, September 2006.

[BCJ+06b] Frederick Butler, Iliano Cervesato, Aaron D. Jaggard, Andre Scedrov, and Christopher Walstad.
Formal analysis of kerberos 5. Theor. Comput. Sci., 367(1-2):57–87, 2006.

[BCJ+11] Michael Backes, Iliano Cervesato, Aaron D. Jaggard, Andre Scedrov, and Joe-Kai Tsay. Crypto-
graphically sound security proofs for basic and public-key kerberos. Int. J. Inf. Sec., 10(2):107–134,
2011.

[BCJS02] Frederick Butler, Iliano Cervesato, Aaron D. Jaggard, and Andre Scedrov. A formal analysis
of some properties of kerberos 5 using MSR. In 15th IEEE Computer Security Foundations
Workshop (CSFW-15 2002), 24-26 June 2002, Cape Breton, Nova Scotia, Canada, page 175,
2002.

[BCJS03] Frederick Butler, Iliano Cervesato, Aaron D. Jaggard, and Andre Scedrov. Verifying confidentiality
and authentication in kerberos 5. In Software Security - Theories and Systems, Second Mext-
NSF-JSPS International Symposium, ISSS 2003, Tokyo, Japan, November 4-6, 2003, Revised
Papers, pages 1–24, 2003.

[BD95] Mike Burmester and Yvo Desmedt. A secure and efficient conference key distribution system
(extended abstract). In Alfredo De Santis, editor, EUROCRYPT’94, volume 950 of LNCS, pages
275–286. Springer, Heidelberg, May 1995.

[BF09] Manuel Barbosa and Pooya Farshim. Security analysis of standard authentication and key
agreement protocols utilising timestamps. In Bart Preneel, editor, AFRICACRYPT 09, volume
5580 of LNCS, pages 235–253. Springer, Heidelberg, June 2009.

[BJ17] Chris Brzuska and Håkon Jacobsen. A modular security analysis of EAP and IEEE 802.11. In
Serge Fehr, editor, PKC 2017, Part II, volume 10175 of LNCS, pages 335–365. Springer, 2017.

[BJST08] Buno Blanchet, Aaron D. Jaggard, Andre Scedrov, and Joe-Kai Tsay. Computationally sound
mechanized proofs for basic and public-key Kerberos. In Masayuki Abe and Virgil Gligor, editors,
ASIACCS 08, pages 87–99. ACM Press, March 2008.

[BK11] Alexandra Boldyreva and Virendra Kumar. Provable-security analysis of authenticated encryption
in kerberos. IET Information Security, 5(4):207–219, 2011.

[Bla06] Bruno Blanchet. A computationally sound mechanized prover for security protocols. In 2006
IEEE Symposium on Security and Privacy, pages 140–154. IEEE Computer Society Press, May
2006.

[BM91] Steven M. Bellovin and Michael Merritt. Limitations of the kerberos authentication system.
In Proceedings of the Usenix Winter 1991 Conference, Dallas, TX, USA, January 1991, pages
253–268, 1991.

[BN08] Mihir Bellare and Chanathip Namprempre. Authenticated encryption: Relations among notions
and analysis of the generic composition paradigm. Journal of Cryptology, 21(4):469–491, October
2008.

[BP98a] Giampaolo Bella and Lawrence C. Paulson. Kerberos version 4: Inductive analysis of the secrecy
goals. In Jean-Jacques Quisquater, Yves Deswarte, Catherine Meadows, and Dieter Gollmann,
editors, ESORICS’98, volume 1485 of LNCS, pages 361–375. Springer, Heidelberg, September
1998.

30

[BP98b] Giampaolo Bella and Lawrence C. Paulson. Mechanising BAN kerberos by the inductive method.
In Computer Aided Verification, 10th International Conference, CAV ’98, Vancouver, BC, Canada,
June 28 - July 2, 1998, Proceedings, pages 416–427, 1998.

[BP03] Michael Backes and Birgit Pfitzmann. A cryptographically sound security proof of the needham-
schroeder-lowe public-key protocol. In FST TCS 2003: Foundations of Software Technology
and Theoretical Computer Science, 23rd Conference, Mumbai, India, December 15-17, 2003,
Proceedings, pages 1–12, 2003.

[BPW03] Michael Backes, Birgit Pfitzmann, and Michael Waidner. A composable cryptographic library
with nested operations. In Sushil Jajodia, Vijayalakshmi Atluri, and Trent Jaeger, editors, ACM
CCS 2003, pages 220–230. ACM Press, October 2003.

[BR94] Mihir Bellare and Phillip Rogaway. Entity authentication and key distribution. In Douglas R.
Stinson, editor, CRYPTO’93, volume 773 of LNCS, pages 232–249. Springer, Heidelberg, August
1994.

[BR95] Mihir Bellare and Phillip Rogaway. Provably secure session key distribution: The three party
case. In 27th ACM STOC, pages 57–66. ACM Press, May / June 1995.

[BR97] Giampaolo Bella and Elvinia Riccobene. Formal analysis of the kerberos authentication system.
J. UCS, 3(12):1337–1381, 1997.

[CJS+08] Iliano Cervesato, Aaron D. Jaggard, Andre Scedrov, Joe-Kai Tsay, and Christopher Walstad.
Breaking and fixing public-key kerberos. Inf. Comput., 206(2-4):402–424, 2008.

[CK01] Ran Canetti and Hugo Krawczyk. Analysis of key-exchange protocols and their use for building
secure channels. In Birgit Pfitzmann, editor, EUROCRYPT 2001, volume 2045 of LNCS, pages
453–474. Springer, Heidelberg, May 2001.

[DDM+05] Anupam Datta, Ante Derek, John C. Mitchell, Vitaly Shmatikov, and Mathieu Turuani. Proba-
bilistic polynomial-time semantics for a protocol security logic (invited lecture). In Luís Caires,
Giuseppe F. Italiano, Luís Monteiro, Catuscia Palamidessi, and Moti Yung, editors, ICALP 2005,
volume 3580 of LNCS, pages 16–29. Springer, Heidelberg, July 2005.

[DDMP03] Anupam Datta, Ante Derek, John C. Mitchell, and Dusko Pavlovic. A derivation system for
security protocols and its logical formalization. In 16th IEEE Computer Security Foundations
Workshop (CSFW-16 2003), 30 June - 2 July 2003, Pacific Grove, CA, USA, pages 109–125.
IEEE Computer Society, 2003.

[DLS97] Bryn Dole, Steven W. Lodin, and Eugene H. Spafford. Misplaced trust: Kerberos 4 session keys.
In NDSS’97. IEEE Computer Society, February 1997.

[DSZ16] Benjamin Dowling, Douglas Stebila, and Greg Zaverucha. Authenticated network time synchro-
nization. In Proc. 25th USENIX Security Symposium 2016. USENIX, August 2016.

[EBS95] James T. Ellis, David M. Balenson, and Robert W. Shirey, editors. 1995 Symposium on Network
and Distributed System Security, (S)NDSS ’95, San Diego, California, February 16-17, 1995.
IEEE Computer Society, 1995.

[FG14] Marc Fischlin and Felix Günther. Multi-stage key exchange and the case of Google’s QUIC
protocol. In Gail-Joon Ahn, Moti Yung, and Ninghui Li, editors, ACM CCS 2014, pages
1193–1204. ACM Press, November 2014.

[Fis99] Marc Fischlin. Pseudorandom function tribe ensembles based on one-way permutations: Improve-
ments and applications. In Jacques Stern, editor, EUROCRYPT’99, volume 1592 of LNCS, pages
432–445. Springer, Heidelberg, May 1999.

[FLW09] Kai Fan, Hui Li, and Yue Wang. Security analysis of the kerberos protocol using BAN logic. In
Proceedings of the Fifth International Conference on Information Assurance and Security, IAS
2009, Xi’An, China, 18-20 August 2009, pages 467–470, 2009.

31

[Gan95] Ravi Ganesan. Yaksha: augmenting kerberos with public key cryptography. In Ellis et al. [EBS95],
pages 132–143.

[Har12] D. Hardt. The OAuth 2.0 Authorization Framework. RFC 6749 (Proposed Standard), October
2012.

[JKSS12] Tibor Jager, Florian Kohlar, Sven Schäge, and Jörg Schwenk. On the security of TLS-DHE in
the standard model. In Reihaneh Safavi-Naini and Ran Canetti, editors, CRYPTO 2012, volume
7417 of LNCS, pages 273–293. Springer, Heidelberg, August 2012.

[KEGM14] Yoney Kirsal-Ever, Agozie Eneh, Orhan Gemikonakli, and Leonardo Mostarda. Analysing the
combined kerberos timed authentication protocol and frequent key renewal using CSP and rank
functions. TIIS, 8(12):4604–4623, 2014.

[KLLN16] Marc Kaplan, Gaëtan Leurent, Anthony Leverrier, and María Naya-Plasencia. Breaking symmetric
cryptosystems using quantum period finding. In Matthew Robshaw and Jonathan Katz, editors,
CRYPTO 2016, Part II, volume 9815 of LNCS, pages 207–237. Springer, Heidelberg, August
2016.

[KN93] J. Kohl and C. Neuman. The Kerberos Network Authentication Service (V5). RFC 1510 (Historic),
September 1993. Obsoleted by RFCs 4120, 6649.

[Koh90] John T. Kohl. The use of encryption in Kerberos for network authentication. In Gilles Brassard,
editor, CRYPTO’89, volume 435 of LNCS, pages 35–43. Springer, Heidelberg, August 1990.

[Kra16] Hugo Krawczyk. A unilateral-to-mutual authentication compiler for key exchange (with applica-
tions to client authentication in TLS 1.3). In Edgar R. Weippl, Stefan Katzenbeisser, Christopher
Kruegel, Andrew C. Myers, and Shai Halevi, editors, ACM CCS 2016, pages 1438–1450. ACM
Press, October 2016.

[Low96] Gavin Lowe. Breaking and fixing the needham-schroeder public-key protocol using FDR. Software
- Concepts and Tools, 17(3):93–102, 1996.

[LP10] Yongjian Li and Jun Pang. Extending the strand space method with timestamps: Part II
application to kerberos V. J. Information Security, 1(2):56–67, 2010.

[LYZZ09] Qin Li, Fan Yang, Huibiao Zhu, and Longfei Zhu. Formal modeling and analyzing kerberos
protocol. In CSIE 2009, 2009 WRI World Congress on Computer Science and Information
Engineering, March 31 - April 2, 2009, Los Angeles, California, USA, 7 Volumes, pages 813–819,
2009.

[McM95] P. V. McMahon. SESAME V2 public key and authorisation extensions to kerberos. In Ellis et al.
[EBS95], pages 114–131.

[Mea96] Catherine Meadows. Analyzing the Needham-Schroeder public-key protocol: A comparison of
two approaches. In Elisa Bertino, Helmut Kurth, Giancarlo Martella, and Emilio Montolivo,
editors, ESORICS’96, volume 1146 of LNCS, pages 351–364. Springer, Heidelberg, September
1996.

[Met15] Sean Metcalf. Red vs. blue: Modern active directory - attacks, detec-
tion, and protection. https://www.blackhat.com/docs/us-15/materials/
us-15-Metcalf-Red-Vs-Blue-Modern-Active-Directory-Attacks-Detection-And-Protection-wp.
pdf, 2015.

[NS78a] Roger M. Needham and Michael D. Schroeder. Using encryption for authentication in large
networks of computers. Commun. ACM, 21(12):993–999, 1978.

[NS78b] Roger M. Needham and Michael D. Schroeder. Using encryption for authentication in large
networks of computers. Communications of the Association for Computing Machinery, 21(21):993–
999, December 1978.

32

https://www.blackhat.com/docs/us-15/materials/us-15-Metcalf-Red-Vs-Blue-Modern-Active-Directory-Attacks-Detection-And-Protection-wp.pdf
https://www.blackhat.com/docs/us-15/materials/us-15-Metcalf-Red-Vs-Blue-Modern-Active-Directory-Attacks-Detection-And-Protection-wp.pdf
https://www.blackhat.com/docs/us-15/materials/us-15-Metcalf-Red-Vs-Blue-Modern-Active-Directory-Attacks-Detection-And-Protection-wp.pdf

[NYHR05] C. Neuman, T. Yu, S. Hartman, and K. Raeburn. The Kerberos Network Authentication Service
(V5). RFC 4120 (Proposed Standard), July 2005. Updated by RFCs 4537, 5021, 5896, 6111,
6112, 6113, 6649, 6806, 7751.

[OR87] David J. Otway and Owen Rees. Efficient and timely mutual authentication. Operating Systems
Review, 21(1):8–10, 1987.

[Rae05a] K. Raeburn. Advanced Encryption Standard (AES) Encryption for Kerberos 5. RFC 3962
(Proposed Standard), February 2005.

[Rae05b] K. Raeburn. Encryption and Checksum Specifications for Kerberos 5. RFC 3961 (Proposed
Standard), February 2005.

[RDDM07] Arnab Roy, Anupam Datta, Ante Derek, and John C. Mitchell. Inductive proofs of computational
secrecy. In Joachim Biskup and Javier López, editors, ESORICS 2007, volume 4734 of LNCS,
pages 219–234. Springer, Heidelberg, September 2007.

[RDM07] Arnab Roy, Anupam Datta, and John C. Mitchell. Formal proofs of cryptographic security of
diffie-hellman-based protocols. In Gilles Barthe and Cédric Fournet, editors, Trustworthy Global
Computing, Third Symposium, TGC 2007, Sophia-Antipolis, France, November 5-6, 2007, Revised
Selected Papers, volume 4912 of Lecture Notes in Computer Science, pages 312–329. Springer,
2007.

[RS06] Phillip Rogaway and Thomas Shrimpton. A provable-security treatment of the key-wrap problem.
In Serge Vaudenay, editor, EUROCRYPT 2006, volume 4004 of LNCS, pages 373–390. Springer,
Heidelberg, May / June 2006.

[SB12] Christoph Sprenger and David Basin. Refining key establishment. In CSF 2012, pages 230–246.
IEEE, 2012.

[SC97] Marvin A. Sirbu and John C.-I. Chuang. Distributed authentication in Kerberos using public
key cryptography. In NDSS’97. IEEE Computer Society, February 1997.

[Sch14] Jörg Schwenk. Modelling time for authenticated key exchange protocols. In Miroslaw Kutylowski
and Jaideep Vaidya, editors, ESORICS 2014, Part II, volume 8713 of LNCS, pages 277–294.
Springer, Heidelberg, September 2014.

[Sch16] Jörg Schwenk. Nonce-based kerberos is a secure delegated AKE protocol. Cryptology ePrint
Archive, Report 2016/219, 2016. http://eprint.iacr.org/2016/219.

[SNS88] Jennifer G. Steiner, B. Clifford Neuman, and Jeffrey I. Schiller. Kerberos: An authentication
service for open network systems. In Proceedings of the USENIX Winter Conference. Dallas,
Texas, USA, January 1988, pages 191–202, 1988.

[Son14] Fang Song. A note on quantum security for post-quantum cryptography. In Michele Mosca,
editor, PQCrypto 2014, volume 8772 of LNCS, pages 246–265. Springer, 2014.

[STW96] Michael Steiner, Gene Tsudik, and Michael Waidner. Diffie-Hellman key distribution extended to
group communication. In Li Gong and Jacques Stern, editors, ACM CCS 96, pages 31–37. ACM
Press, March 1996.

[STW00] Michael Steiner, Gene Tsudik, and Michael Waidner. Key agreement in dynamic peer groups.
IEEE Transactions on Parallel and Distributed Systems, 11(8):769–780, August 2000.

[WGC12] Kazunori Wagatsuma, Yuichi Goto, and Jingde Cheng. Formal analysis of cryptographic protocols
by reasoning based on deontic relevant logic: A case study in needham-schroeder shared-key
protocol. In International Conference on Machine Learning and Cybernetics, ICMLC 2012, Xian,
Shaanxi, China, July 15-17, 2012, Proceedings, pages 1866–1871, 2012.

[YHR04] Tom Yu, Sam Hartman, and Kenneth Raeburn. The perils of unauthenticated encryption:
Kerberos version 4. In NDSS 2004. The Internet Society, February 2004.

33

http://eprint.iacr.org/2016/219

[ZJH05] L. Zhu, K. Jaganathan, and S. Hartman. The Kerberos Version 5 Generic Security Service
Application Program Interface (GSS-API) Mechanism: Version 2. RFC 4121 (Proposed Standard),
July 2005. Updated by RFCs 6112, 6542, 6649.

[ZT06] L. Zhu and B. Tung. Public Key Cryptography for Initial Authentication in Kerberos (PKINIT).
RFC 4556 (Proposed Standard), June 2006. Updated by RFC 6112.

34

A Attacks on Kerberos

In this appendix we mention two types of attacks that Kerberos is not designed to protect against.
These inform the boundaries of any security definition for Kerberos.

Replay attacks. Any network adversary can simply replay messages (c2, c3) to the same server S
as long as timeok(tKAS , tC ; now()) is true. This attack would make another server instance at server
S accept, but would not lead to the establishment of a secure channel, since any client instance at
client C would choose a fresh, increased timestamp t′C for each new session, and would reject the old
tC .

Such replay attacks could completely be eliminated by having the server maintain a persistent
variable tlastC at the server, which would be set to the client’s supplied tC on the first reception from
C of a c3 message. Each subsequent message would have its tC checked against tlastC ; the server
rejecting if the timestamps are out of order, otherwise accepting and updating tlastC with the new tC .

Transcript modification attacks. In this attack, depicted in Figure 7, an active network ad-
versary may change the transcript of both client and server, but both parties nevertheless accept.
Specifically the adversary replaces the c2 delivered to the client with a fake value, but then delivers
the original c2 to the server. Neither party will detect that the adversary has performed this. This
attack does not break any security goals of Kerberos, but shows that we cannot use the whole
transcript to define partnering.

KAS Client C Server SAdversary Adversary

C, S, nC
C, S, nC

c1, c2
c1, r

r, c3
c2, c3

c4
c4

Figure 7: Transcript modification attack on Kerberos.

B Modelling timestamps

Kerberos uses timestamps to protect servers from replay attacks. Since we are not modelling such
attacks, and in order to keep our proof generic, we did not explicitly specify the functions now() and
timeok(). They can be instantiated with different functions, as long as the following requirements
are met:

• Approximating time using now(). Ideally, one would instantiate the function now() with
physical time, i.e. with perfectly synchronized local clocks. However, our formal model is
based on Turing machines, which model only computation steps, not physical processes. For
Kerberos protocol to be functional in the presence of a benign adversary, it suffices that now()
is a local function at each party that returns monotonically increasing values.

• Checking freshness using timeok(). The timeok function is a local function of a server which
takes as input two received timestamps tKAS and tC , and a local timestamp t← now(), and

35

returns true or false. Typically it checks if the difference between the fresh local time t and
each of the two received timestamps is below a defined threshold.

Few reduction-based security proofs consider time. Barbosa and Farshim [BF09] introduced a
model in which each party maintains a local clock, and the adversary can control each party’s flow of
time by calling a tick query at each party. In this model, the adversary controls all clocks, and even a
benign adversary must be activate to ensure normal protocol operation. The adversary can arbitrarily
desynchronize all clocks. Barbosa and Farshim used this approach to model timed authenticated
key exchange protocols; Dowling et al. [DSZ16] use a similar approach for authenticated network
time synchronization (i.e., simulating a global clock using local clocks). Schwenk [Sch14] models
time as a global counter T which is increased on each call of the function. A network adversary may
manipulate the responses to global time queries, but since parties keep a local counter, an attack
will be detected if the manipulated value is smaller than the local counter.

One of the results of our security analysis of Kerberos is that clients do not rely on timestamps
at all. After decrypting c1, the client may safely ignore the timestamp tKAS , since freshness is
guaranteed through the nonce nC . In message c4, the timestamp tC is a “predictable nonce” and does
not play a role at all in the security proof – due to the properties of the authenticated encryption
scheme, it would be sufficient to simply encrypt a constant value here.

C Encryption definitions

A symmetric encryption scheme Π consists of the following two algorithms, along with an associated
key space K and message spaceM:

• Enc(k,m) $→ c: A probabilistic encryption algorithm that takes as input a key k ∈ K and a
message m ∈M, and outputs a ciphertext c. Sometimes denoted Enck(m).

• Dec(k, c)→ m or ⊥: A deterministic decryption algorithm that takes as input a key k ∈ K and
a ciphertext c, and outputs a message m or a distinguished error symbol ⊥ 6∈ M. Sometimes
denoted Deck(c).

The scheme is said to be correct if, for all m ∈M,

Pr [k←$K;Deck(Enck(m)) = m] = 1 .

To be an authenticated encryption scheme, a symmetric encryption scheme should satisfy two
main security properties: confidentiality and integrity [BN08]. Confidentiality is modelled as
indistinguishability under either chosen plaintext or chosen ciphertext attacks using the “left or
right” notation, shown in Figure 8. Integrity can be of either plaintexts or ciphertexts, shown
in Figure 9. The difference between the two integrity notions is subtle, but important: if an
authenticated encryption scheme is only INT-PTXT-secure, the adversary may be able to change
the ciphertext, as long as the decrypted plaintext remains the same. (Some workd prefer to use
combined confidentiality+integrity (“all-in-one”) definitions [RS06]. We stick with separate notions,
since our proofs will separately use either integrity or confidentiality at different stages, and it is
instructive to see which property is in use.)

We also recall a weaker notion, called key recovery under chosen plaintext attacks (KR-CPA),
which suffices for some of our proofs, and which is clearly implied by IND-CPA.

36

Expkr-cpa
Π (A)

1: k←$K
2: k′←$AEnck(·)()
3: if k = k′ return 1 else re-

turn 0

Expind-cpa
Π (A)

1: k←$K
2: b←$ {0, 1}
3: b′←$AEnck(LRb(·,·))()
4: if b = b′ return 1 else re-

turn 0

LRb(m0,m1)

1: return mb

Expint-ctxt
Π (A)

1: k←$K
2: b←$ {0, 1}
3: b′←$AEnck(LRb(·,·)),Deck(·)()
4: if A queries an output of its Enc oracle

to its Dec oracle then
5: return x←$ {0, 1}
6: if b = b′ return 1 else return 0

Figure 8: Security experiments for key recovery under chosen plaintext attack and indistinguishability
under chosen plaintext and chosen ciphertext attack of a symmetric encryption scheme Π against an
adversary A.

Expint-ptxt
Π (A)

1: k←$K
2: run AEnck(·),Dec∗(·)()
3: if A makes a query c to Dec∗ such that

Dec∗ returned 1 and m = Deck(c) was never
a query to Enc then

4: return 1
5: else
6: return 0

Expint-ctxt
Π (A)

1: k←$K
2: run AEnck(·),Dec∗(·)()
3: if A makes a query c to Dec∗ such that Dec∗

returned 1 and c was never a response of Enc
then

4: return 1
5: else
6: return 0

Dec∗(c)
1: if Deck(c) = ⊥ then return 0 else

return 1

Figure 9: Security experiments for plaintext- and ciphertext-integrity of an authenticated encryption
scheme Π against an adversary A.

We define corresponding advantages for each experiment:

Advkr-cpa
Π (A) = Pr[Expkr-cpa

Π (A)⇒ 1]

Advind-cpa
Π (A) =

∣∣∣Pr[Expind-cpa
Π (A)⇒ 1]− 1/2

∣∣∣
Advind-cca

Π (A) =
∣∣∣Pr[Expind-cca

Π (A)⇒ 1]− 1/2

∣∣∣
Advint-ptxt

Π (A) = Pr[Expint-ptxt
Π (A)⇒ 1]

Advint-ctxt
Π (A) = Pr[Expint-ctxt

Π (A)⇒ 1]

37

	Introduction
	Related work
	Related work on Kerberos
	Contributions

	The Kerberos protocol
	Security model for 3-party authentication
	Execution model
	Security experiment for 3-party authentication

	Instantiating Kerberos in the model
	Discussion of security model

	Security proof for 3-party authentication of Kerberos
	Session key security for Kerberos
	Indistinguishability of the sub-session key
	Security of (the hash of) the session key in other applications

	Discussion
	Attacks on Kerberos
	Modelling timestamps
	Encryption definitions

