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Abstract. A key encapsulation mechanism (KEM) allows two parties to
establish a shared secret key using only public communication. For post-
quantum KEMs, the most widespread approach is to design a passively
secure public-key encryption (PKE) scheme and then apply the Fujisaki–
Okamoto (FO) transform that turns any such PKE scheme into an
IND-CCA secure KEM. While the base security requirement for KEMs
is typically IND-CCA security, adversaries in practice can sometimes
observe and attack many public keys and/or ciphertexts, which is referred
to as multi-challenge security. FO does not necessarily guarantee multi-
challenge security: for example, FrodoKEM, a Round 3 alternate in NIST’s
post-quantum project, used FO to achieve IND-CCA security, but was
subsequently shown to be vulnerable to attackers that can target multiple
ciphertexts. To avert this multi-ciphertext attack, the FrodoKEM team
added a salt to the encapsulation procedure and proved that this does
not degrade (single-ciphertext) IND-CCA security. The formal analysis
of whether this indeed averts multi-ciphertext attacks, however, was left
open, which we address in this work.
Firstly, we formalize FrodoKEM’s approach as a new variant of the FO
transform, called the salted FO transform. Secondly, we give tight re-
ductions from multi-challenge security of the resulting KEM to multi-
challenge security of the underlying public key encryption scheme, in
both the random oracle model (ROM) and the quantum-accessible ROM
(QROM). Together these results justify the multi-ciphertext security of
the salted FrodoKEM scheme, and can also be used generically by other
schemes requiring multi-ciphertext security.
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1 Introduction

The Fujisaki–Okamoto (FO) transform [FO99,FO13] converts a weakly secure
public-key encryption scheme into an IND-CCA-secure public-key encryption
scheme. In the context of post-quantum cryptography, its adaptations for key
encapsulation mechanisms (KEMs) given in [Den03a,HHK17] received renewed
attention and by now have become the de-facto standard for designing KEMs.
Notably, all KEM submissions to the NIST Post-Quantum Cryptography stan-
dardization process which made it to later rounds used some variant of FO. Given
that communications security protocols like TLS need to perform key exchanges,
and that the best-studied post-quantum replacements so far are KEMs, it can
be envisioned that the future security of such protocols will be based (amongst
others) on some variant of FO.

IND-CCA vs. multi-challenge security. The required security goal for KEMs
during the NIST PQC process was IND-CCA security in the presence of quantum
attackers. Within the last few years, the community made huge progress [HHK17,
BHH+19,SXY18,JZC+18,HKSU20,JZM19,DFMS22,HHM22,HM24] in analyzing
whether FO meets this goal by developing more sophisticated formalisms to
capture quantum attackers. It can be argued, however, that IND-CCA security
alone might not be enough in practice, where attackers can observe client-server
interactions over a long period of time and then exploit the large collection of
public keys and ciphertexts that amounted during these interactions. It would
hence be desirable to guarantee the security of the exchanged keys even if
adversaries can observe and attack many public keys and/or ciphertexts: this
is multi-challenge security. However, multi-challenge security is not a security
goal that is automatically achieved by the FO transform. This was recently
exemplified by an attack on the NIST PQC Round 3 alternate FrodoKEM, which
could recover the shared secret of one of a large (but not unfeasibly large) amount
of collected ciphertexts. The attack made use of the fact that the KEM was built
by applying FO to a public key encryption (PKE) scheme whose message space
was small enough to permit the attack. While this attack formally falls out of
the scope of IND-CCA security, it nonetheless exposes an important vulnerability,
which motivates the study into techniques for establishing multi-challenge security
in KEMs.

The Fujisaki–Okamoto transform. A modern way of understanding the FO
transform is the modular approach of [HHK17], in which the FO transformation
for KEMs was dissected into two separate steps: a pre-transformation T converting
a probabilistic PKE scheme into a deterministic one; and a transform U converting
a PKE to a KEM. The combination is denoted FO := U ◦ T.

– T : PKE→ DPKE : this transform modifies the probabilistic encryption algo-
rithm so that, rather than computing c ← Enc(pk,m; r) for some encryption
randomness r , instead it computes

c ← Enc1(pk,m) := Enc(pk,m; G(m)) ,
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where G is a hash function, modelled as a random oracle during security
proofs. Decryption is also modified by introducing a re-encryption check:
Dec1(sk, c) still first computes m′ ← Dec(sk, c), but after that, it checks
whether Enc(pk,m′; G(m′)) = c and only returns m′ if it does. (Otherwise,
Dec1 rejects.)

– U : PKE → KEM : this transform builds an IND-CCA secure KEM from a
PKE by letting

Encaps(pk) := (c ← Enc(pk,m), ss := H(m, c))

for a randomly chosen message m. Decaps likewise, will return H(m) unless c
fails to decrypt. Two variants of U are given in [HHK17], called U⊥ and U̸⊥;
with superscripts ⊥ and ̸⊥ describing how invalid ciphertexts are handled: if
c fails to decrypt, U⊥ will return a dedicated error symbol ⊥, whereas U ̸⊥ will
return a pseudorandom value of the same length as an honestly generated key.
These variants can be further subdivided based on which values are included
as hash inputs for ss – U⊥m and U ̸⊥m only hash m instead of m, c. Follow-up
work [BHH+19] proved that security is unaffected by the choice between the
two hash input options, assuming the re-encryption check is included (so
when the step is explicitly added to U or when U simply is combined with T).

Multi-user and multi-ciphertext security. Multi-challenge security refers
to attack models parameterized by the number of users nu, and the number of
challenge ciphertexts nc. A multi-ciphertext attack refers to the case that nu = 1,
while nc > 1. Likewise, multi-user security refers to the scenario where nu > 1
and nc = nu. A general multi-challenge attack may have nu > 1 and nc > nu.

Multi-ciphertext attack on KEMs with small message space. We now
revisit a generic attack on any KEM := FO[PKE,G,H], built from a PKE scheme
with comparably small message space. For the sake of giving an example, we pick
size 2128, which is exemplified by FrodoKEM-640 as proposed in [NAB+20]. This
multi-ciphertext attack was identified privately by NIST [NIS21] and publicly by
Bernstein [Ber22], which led to an update of FrodoKEM [ABD+23]. The same
sort of attack was identified by NIST against HQC [AAB+22].

Suppose an attacker A collected nc many ciphertexts c1, . . . , cnc belonging
to a single user, and their attack goal is only to distinguish just one out of the
nc many corresponding keys from random. (Here, the choice between real and
random is universal: for all challenges, the attacker either always sees a real key
or always sees an independent random value.)

For message space size 2128 and a reasonable amount of challenges (think: 264),
success is very likely: A can prepare nc ciphertexts c′1, . . . , c′nc

on their own by
picking uniformly random messages and encrypting them under the user’s public
key . If there is any intersection between the set of challenge ciphertexts c1, . . . , cnc

and A’s own precomputed set c′1, . . . , c′nc
, A can easily win the game: since the

intersection must stem from having picked a message m that was also used by
one of the observed ci , A can compute the corresponding key ss = H(m, ci) and
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thus immediately can tell this challenge apart from random. To estimate the
probability with which this kind of collision will happen, we note that for each
challenge ciphertext ci , there is approximately an N/2128 chance that ci used the
same message as one of A’s ciphertexts c′1, . . . , c′nc

. Over the nc many challenge
ciphertexts, the probability of A sampling a collision is thus

Pr[COLL] ≈ ncN
2128 .

Assuming that A was given up to nc = 264 many challenges and that A can
feasibly compute N = 264 many encryptions on its own, A is able to find a collision
with almost-certain probability and thus completely breaks the multi-challenge
security of KEM.

Mitigation of multi-ciphertext attacks via salted FO. As seen above, for
small message spaces, FO based KEMs will be susceptible to multi-ciphertext
attacks. But depending on the concrete PKE scheme at hand, increasing the
message space size might render it prohibitively inefficient. The FrodoKEM
update [ABD+23] thus presented an FO variant, called the salted Fujisaki–
Okamoto (SFO) transform, that aimed to mitigate collisions based on too-small
message spaces by increasing the search space via salting: SFO takes the T-
transformed encryption scheme and slightly alters how the encryption randomness
is derived. Instead of only hashing the message, SFO additionally hashes a
uniformly random salt of length lensalt (which is then communicated along with
the ciphertext). While the Frodo team’s updated specification provided a proof
that this tweak does not degrade IND-CCA security, it did not give a proof that
the salted version actually achieved multi-challenge security.

1.1 Our contributions

In this work, we prove that the salted Fujisaki–Okamoto (SFO) transform produces
a KEM achieving multi-challenge security against chosen ciphertext attacks,
assuming multi-challenge security against chosen plaintext in the underlying
PKE. We show that for suitably chosen parameters—such as those used in
FrodoKEM and HQC—the SFO transform generically achieves multi-challenge
security since the probability of critical collisions significantly decreases.

We show results for two variants of the SFO transform, one that rejects invalid
ciphertexts implicitly and one that does so explicitly, in both the random oracle
model (ROM) and the quantum-accessible random oracle model (QROM). To do
so, we capture multi-user-multi-challenge security for nu many users and nc many
ciphertexts via security notions we denote by INDnc,nu -CPA and INDnc,nu -CCA. We
base INDnc,nu -CCA security of the SFO-constructed KEM on the INDnc,nu -CPA
security of its underlying encryption scheme. The resulting security bounds
contains a term that reflects collision attacks: let nc be the number of challenge
ciphertexts an attacker is given access to, and let qRO represent the number of
ROM queries. We now look at the success probability of an attacker A that aims
to craft valid ciphertexts that collide with a challenge. This proves to depend
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PKE
INDnc,nu -CPA

SFO ̸⊥[PKE, lensalt],
SFO⊥[PKE, lensalt]

INDnc,nu -CPA

SFO⊥[PKE, lensalt]
INDnc,nu -CCA

SFO ̸⊥[PKE, lensalt]
INDnc,nu -CCA

Thm. 13
ROM

Thm. 12
ROM

Thm. 11
ROM

PKE
INDnc,nu -CPA

SFO ̸⊥[PKE, lensalt],
SFO⊥[PKE, lensalt]

INDnc,nu -CPA

SFO⊥[PKE, lensalt]
INDnc,nu -CCA

SFO ̸⊥[PKE, lensalt]
INDnc,nu -CCA

Thm. 18
QROM

Thm. 17
QROM

[BHH+19, Thm. 3] QROM

Fig. 1: Summary of our results on the salted Fujisaki–Okamoto (SFO) transform.
Top: Tight results in the classical random oracle model (Section 4). Bottom:
Non-tight results in the quantum random oracle model (Section 5).

on qRO for probabilistic schemes: for such schemes, FO constructions tie the
encryption randomness to the message by setting it to r := G(m). It is thus
prohibitively hard to craft valid ciphertexts without a query to the random oracle
that models G. For the standard FO transform, the probability of A successfully
crafting a valid, colliding ciphertext would be upper-bounded by

2qROnc + n2
c

|M|
. (1)

For the SFO transform, each of the nc challenges samples its own independent
salt. With this change, we find that A’s success probability is upper-bounded by

n2
c

|M|2lensalt
+ 2ncqRO
|LS ||M|

, (2)

where LS is the set of salts that were sampled when creating the challenges. (|LS |
can be smaller than nc since a salt might be sampled more than once.) Considering
the same concrete attacker resources mentioned in the attack section above,
namely nc = 264 challenge ciphertexts and message space of size |M| = 2128, the
attacker advantage in Equation (1) against an FO-transformed scheme becomes
close to 1. On the other hand, an SFO-transformed scheme can still tightly achieve
multi-ciphertext security: taking lensalt = 64, and noting that |LS | ≈ nc, the
attacker advantage against an SFO-transformed scheme in Equation (2) remains
small.

We also show that the salted Fujisaki–Okamoto is secure even in the QROM
regardless of its rejection mode, by deploying recently developing QROM tech-
niques. Our results in the ROM are tight, but the QROM results are not.
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2 Preliminaries

In this section we recall important definitions for correctness of public key
encryption schemes and KEMs, as well as previous formulations of the FO
transform.

2.1 Public-Key Encryption
A public-key encryption scheme PKE = (Gen,Enc,Dec) consists of three algo-
rithms and a finite message space M. The key generation algorithm Gen outputs
a key pair (pk, sk), with pk defining a randomness space R = R(pk). The encryp-
tion algorithm Enc, on input pk and a message m ∈M, produces an encryption
c ← Enc(pk,m) of m under the public key pk. If necessary, we explicitly specify
the used randomness of encryption by writing c = Enc(pk,m; r), where r ←$R.
The decryption algorithm Dec, on input sk and a ciphertext c, yields either a
message m = Dec(sk, c) ∈M or a special symbol ⊥ /∈M to show that c is not a
valid ciphertext.

A key encapsulation mechanism KEM = (Gen,Encaps,Decaps) consists of
three algorithms and a finite message space M. The key generation algorithm
Gen outputs a key pair (pk, sk), with pk also defines a finite key space K. The
encapsulation algorithm Encaps, on input pk, produces a tuple (c, ss) where c is
said to be an encapsulation of the key ss. The decapsulation algorithm Decaps,
on input sk and an encapsulation c, outputs either ss = Decaps(sk, c)or a special
symbol ⊥ /∈M to show that c is not a valid encapsulation.
Correctness notions Certain public key encryption schemes, for example those
based on lattice problems, exhibit correctness errors. These occur when encrypting
a message m ∈M and then decrypting the result does not return m. There are
several works [DGJ+19,BS20,DRV20,FKK+22] showing how to attack schemes
based on correctness errors. Hofheinz, Hövelmanns, and Kiltz [HHK17] developed
a statistical notion of correctness that is relevant to security proofs of modular
FO transforms, which we recall here:
Definition 1 (δ-correctness of a PKE). A public key encryption scheme
PKE = (Gen,Enc,Dec) with message space M is called δ-correct if

E
[

max
m∈M

Pr[Dec(sk, c) ̸= m|c ← Enc(pk,m)]
]
≤ δ ,

where the expectation is taken over (pk, sk)←$ Gen().
Definition 2 (δ-correctness of a KEM). A key encapsulation mechanism
KEM = (Gen,Encaps,Decaps) with message space M is called δ-correct if

Pr[Decaps(sk, c) ̸= ss|(c, ss)← Encaps(pk)] ≤ δ ,

Multi-user correctness To capture settings with nu many users, we define a
corresponding multi-user correctness term δ(nu) defined almost identically to
δ correctness, for both PKE’s and KEM’s, except that we take the maximum
probability over all j ∈ [nu] [DHK+21a].
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T.Gen:
01 (pk, sk)←$ Gen
02 sk′ ← (sk, pk)
03 return (pk, sk′)

T.Enc(pk, m):
04 c ← Enc(pk, m; G(m))
05 return c

T.Dec(sk′ = (pk, sk), c):
06 m′ ← Dec(sk, c)
07 if m′ =⊥ or c ̸= T.Enc(pk, m′)
08 return ⊥
09 else
10 return m′

Fig. 2: Algorithms of T[PKE,G].

Definition 3 (γ-spreadness). We say that PKE is γ-spread iff for all key pairs
(pk, sk) ∈ supp(Gen) and all messages m ∈M it holds that

max
c∈C

Pr[Enc(pk,m) = c] ≤ 2−γ

where the probability is taken over the internal randomness Enc.

2.2 The Fujisaki-Okamoto Transform

In this section, we recall the definition of the FO transform as the composition of
the two following transformations:

– the de-randomizing T-transform that additionally adds a re-encryption check
to the decryption procedure; and

– augmented PKE-to-KEM U-transforms that derive session keys from a ran-
domly chosen message m, which they encrypt using PKE. The two variants
of U vary in their responses to invalid ciphertexts (U⊥ returns ⊥, while U ̸⊥
returns pseudo-random values).

Definition 4 (The T-transform). Let PKE = (Gen,Enc,Dec) and G be a hash
function G :M→R. The transformed deterministic PKE T[PKE,G] is defined
in Fig. 2

We recall two variants of the PKE to KEM transformation used in the FO
transform. We augment the transform of [HHK17], by including the public key in
the inputs to the hash function H when preparing shared secrets, which is done
for many KEMs in practice.

Definition 5 (Augmented U̸⊥ transform). Let PKE = (Gen,Enc,Dec) be a
public key encryption scheme, and let H be a hash function. The transformed
KEM KEM ̸⊥ = U̸⊥[PKE,H] is defined in Figure 3.

Definition 6 (Augmented U⊥ transform). Let PKE = (Gen,Enc,Dec) be a
public key encryption scheme, and let H be a hash function. The transformed
KEM KEM⊥ = U⊥[PKE,H] is defined in Figure 4.
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KEM̸⊥.Gen()
01 (pk, sk)←$ Gen()
02 s←$M
03 sk′ ← (sk, s)
04 return (pk, sk′)

KEM̸⊥.Encaps(pk, m)
05 m←$M
06 c ← Enc(pk, m)
07 ss← H(pk, m, c)
08 return (K , c)

KEM̸⊥.Decaps(sk, c)
09 parse sk′ ← (sk, s)
10 m′ ← Dec(sk, c)
11 if m′ = ⊥
12 return H(pk, s, c)
13 return H(pk, m′, c)

Fig. 3: KEM KEM̸⊥ constructed by the augmented U̸⊥ transform. The only
difference from the original U ̸⊥ transform is that when deriving the session key,
we additionally hash in pk.

KEM⊥.Decaps(sk, c)
01 parse sk′ ← (sk, s)
02 m′ ← Dec(sk, c)
03 if m′ = ⊥
04 return ⊥
05 return H(pk, m′, c)

Fig. 4: Decapsulation algorithm for the KEM KEM⊥ constructed by the aug-
mented U⊥ transform; the key generation and encapsulation algorithms are the
same as in Figure 3. The only difference from the original U ̸⊥ transform is that
when deriving the session key, we additionally hash in pk.

2.3 Multi-challenge security notions

We now adapt the relevant standard notions for PKE schemes and KEMs to the
multi-challenge (multi-user, multi-ciphertext) setting. The definitions thus are
relative to nc, the number of challenge ciphertexts, and nu, the number of users.

Definition 7 (Multi-challenge IND-CPA security (INDnc,nu-CPA) for PKE).
Let PKE be a public key encryption scheme, let nu and nc be positive integers,
and let A be an adversary in the experiment ExpINDnc,nu -CPA

PKE (A) shown in Fig. 5.
The INDnc,nu-CPA advantage function of an adversary A against PKE is

AdvINDnc,nu -CPA
PKE (A) :=

∣∣∣∣Pr
[
ExpINDnc,nu -CPA

PKE (A)⇒ 1
]
− 1

2

∣∣∣∣ .

Definition 8 (Multi-challenge IND-CCA security(INDnc,nu-CCA) for KEM).
Let KEM be a key encapsulation mechanism, let nu and nc be positive integers,
and let A be an adversary in the experiment ExpINDnc,nu -CCA

KEM (A) shown in Fig. 6.
The INDnc,nu-CCA advantage function of an adversary A against KEM is

AdvINDnc,nu -CCA
KEM (A) :=

∣∣∣∣Pr
[
ExpINDnc,nu -CCA

KEM (A)⇒ 1
]
− 1

2

∣∣∣∣ .
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ExpINDnc,nu -CPA
PKE (A)

01 b←$ {0, 1}
02 for j = 1, ..., nu
03 (pkj , skj)←$ Gen()
04 p⃗k = (pk1, ..., pknu )
05 b′ ← AChall(p⃗k)
06 return Jb = b′K

Chall(j, m0, m1) �At most nc queries
07 return Enc(pkj , mb)

Fig. 5: Multi-challenge security experiment (INDnc,nu -CPA) against a public key
encryption scheme PKE, with nu users and nc ciphertexts.

ExpINDnc,nu -CCA
KEM (A)

01 b←$ {0, 1}
02 for j = 1, ..., nu
03 (pkj , skj)←$ Gen()
04 p⃗k = (pk1, ..., pknu )
05 b′ ← ADecaps,Chall(p⃗k)
06 return Jb = b′K

Chall(j) � At most nc queries
07 (c, ss0) ←$ Encaps(pkj)
08 ss1←$K
09 LCj ← LCj ∪ {c}
10 return (c, ssb)

Decaps(j, c /∈ LCj )
11 return Decaps(skj , c)

Fig. 6: Multi-challenge security experiment (INDnc,nu -CCA) against a key encap-
sulation mechanism KEM, with nu users and nc encapsulations.

Omitting the oracle Decaps on line 05 in Figure 6 yields INDnc,nu -CPA
security for a KEM.

Prefix hashing. To mitigate multi-user attacks, a common security measure is
to tie ciphertexts and their decapsulations to the user’s public key by including
pk into the input to the hash function used to derive encryption randomness and
session keys. However, hashing all of pk can be a costly measure, especially in
lattice-based schemes where public keys are large matrices, rather than short bit
strings. In many cases, it may already be enough to hash only a bit string that
uniquely identifies the public key: Duman et al. [DHK+21a] show that, for an
identifying function with sufficient entropy, one can get the same security level,
with a significant decrease in overhead, with experimental results showing that
overhead could be reduced by over 30% for certain lattice-based KEMs. This
amounts to hashing a small, unpredictable part of pk, by using an identifying
function ID : PK → {0, 1}ℓ. This technique is known as prefix hashing.

Results on a transformation that use the full public key can be adapted
to a transformation that uses prefix hashing as follows. Insert before the first
game-hop a new game that raises a flag COLL and aborts if there are colliding
public key identifiers, namely if there are indices i ̸= j with F(pki) = F(pkj). By
the birthday bound, the probability of COLL is n2

u/2ℓ. Provided that flag COLL
is not raised, each public key has a unique identifier. The rest of the security
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analysis can thus proceed as in the full-key-hashing case and results in a bound
that only differs from the original one by the term n2

u/2ℓ.

3 The Salted FO transform

In this section, we formalize the salting countermeasure introduced in [ABD+23] to
thwart pre-computation attacks on multi-ciphertext security. The countermeasure
introduces a uniformly random salt in the encryption process, so that the change
of a collision between the pre-computed ciphertexts and the challenge ciphertexts
depends not only on the message space size |M| and the number of collected
ciphertexts nc, but also on the length of the uniformly random salt. We formalize
this approach as a modified T-transform which we call the salted T-transform
(the ST-transform).

Definition 9 (ST-transform). Let PKE = (Gen,Enc,Dec) be a public-key en-
cryption scheme, let G be a hash function, and let lensalt be a non-negative integer.
To PKE, G and lensalt we associate public-key encryption scheme

ST[PKE,G] = PKE1 = (Gen,Enc1,Dec1) ,

with algorithms Enc1 and Dec1 defined in Fig. 7.

ST[PKE, G].Enc1(pk, m)
01 salt←$ {0, 1}lensalt

02 r ← G(pk, m∥salt)
03 c ← PKE.Enc(pk, m; r)
04 return c∥salt

ST[PKE, G].Dec1(sk, c∥salt)
05 m′ ← PKE.Dec(sk, c)
06 r ′ ← G(pk, m∥salt)
07 if m′ = ⊥ or PKE.Enc(pk, m′; r ′) ̸= c
08 return ⊥
09 else return m′

Fig. 7: Public key encryption scheme ST[PKE,G] constructed by the salted T-
transform. ST deviates from [HHK17]’s FO T-transform in two ways: to increase
the search space, ST includes salts; and ST binds ciphertexts to their users by
additionally tying the encryption randomness to pk.

The resulting salted KEMs. The FO-transform is usually obtained by com-
posing the T-transform with one of [HHK17]’s PKE-to-KEM transformations
U ∈ {U⊥,U ̸⊥}. Similarly, we obtain the salted FO transformations by combining
U with the salted T-transform ST.

Definition 10 (SFO ̸⊥ and SFO⊥ transforms). For a public key encryption
scheme PKE, a salt length parameter lensalt, and hash functions G, H, the salted
FO transforms yields the KEMs

KEM̸⊥ := SFO ̸⊥[PKE,G,H, lensalt] and KEM⊥ := SFO⊥[PKE,G,H, lensalt]

with algorithms described in Figure 8 and Figure 9 respectively.
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KEM̸⊥.Gen()
01 (pk, sk)←$ Gen()
02 s←$M
03 sk′ ← (sk, s)
04 return (pk, sk′)

KEM̸⊥.Encaps(pk, m)
05 salt←$ {0, 1}lensalt

06 r ← G(pk, m∥salt)
07 c ← PKE.Enc(pk, m; r)
08 ss← H(pk, m, c)
09 return (ss, c∥salt)

KEM̸⊥.Decaps(sk, c∥salt)
10 parse sk′ = (sk, s)
11 m′ ← Dec(sk, c)
12 r ← G(pk, m∥salt)
13 c′ ← Enc(pk, m; r)
14 if m′ = ⊥ or c ̸= c′

15 return H(pk, s, c)
16 return H(pk, m′, c)

Fig. 8: KEM KEM ̸⊥ constructed by the salted FO transform SFO ̸⊥.

KEM⊥.Gen()
17 (pk, sk)←$ Gen()
18 return (pk, sk)

KEM⊥.Encaps(pk, m)
19 salt←$ {0, 1}lensalt

20 r ← G(pk, m∥salt)
21 c ← PKE.Enc(pk, m; r)
22 ss← H(pk, m, c)
23 return (ss, c∥salt)

KEM⊥.Decaps(sk, c∥salt)
24 parse sk′ = (sk, s)
25 m′ ← Dec(sk, c)
26 r ← G(pk, m∥salt)
27 c′ ← Enc(pk, m; r)
28 if m′ = ⊥ or c ̸= c′

29 return ⊥
30 return H(pk, m′, c)

Fig. 9: KEM KEM⊥ constructed by the salted FO transform SFO⊥.

Other possible variants. One could also define a version of the SFO transform,
which does not include the ciphertext as input to H during encapsulation and
decapsulation. This would entail composing the ST-transform with either U⊥m or
U̸⊥m from [HHK17].

Bindel et al. [BHH+19] show that in the single-challenge setting, using H(m)
as a KEM key is equivalent to using H(m, c) in that the IND-CCA security of
either KEM is equivalent. To briefly summarize, the argument provided there is
that for KEM1 = Um,c[PKE,H1] and KEM2 = Um [PKE,H2], an adversary against
the IND-CCA security of KEM2 can perfectly simulate the IND-CCA game for
KEM1 by sampling a new random oracle H and setting

H1(m, c) =
{

H2(m), if c = Enc(pk,m),
H(m, c), otherwise.

In the other direction, an adversary against the IND-CCA security of KEM1 can
simulate the IND-CCA game for KEM2 by letting H2(m)← H1(m,Enc(pk,m)).

This argument does not immediately extend to the multi-challenge setting, as
there would be u public keys to consider. In fact, H(m) is in no way connected to
the public key of any user, while H(m, c ← Enc(pkj ,m) is. However, if the public
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key hash is included, the argument does hold, with the simulation being

H1(pkj ,m, c) =
{

H2(pkj ,m), if c = Enc(pkj ,m),
H(pkj ,m, c), otherwise.

The difference being that now the adversary is required to have knowledge of
the public key in either case.

4 Security proofs in the ROM

We prove INDnc,nu -CCA security for KEM’s built from the SFO transform, applied
to INDnc,nu -CPA KEM’s. We break up our results into smaller theorems, for the
purpose of making them easier to follow. First, we use known methods to show
how to simulate a decapsulation oracle, for implicit and explicit rejection KEM’s.
Combining, we obtain INDnc,nu -CCA security bounds. Then we prove that the
SFO transform tightly preserves INDnc,nu -CPA security.

4.1 Simulating the decapsulation oracle in the ROM: INDnc,nu-CPA
to INDnc,nu-CCA

In the following theorems, we use known techniques to simulate decapsulation
oracles with either implicit or explicit rejection. These techniques have been
used in [Den03b,HHK17,DHK+21a,HHM22,HM24], usually in conjunction with
other proofs steps, to provide a monolithic reduction between IND-CCA security
of a KEM, to IND-CPA security of a PKE. Intuitively, we apply a series of
modifications to the decapsulation oracle, which remove dependence on the secret
key, and bound the changes the occur at each step. We then apply a patching
technique to ensure that the outputs of H, the random oracle used for producing
KEM keys, will match the output of Decaps.

Theorem 11 (Simulation of Decaps̸⊥). Let KEM̸⊥ = SFO ̸⊥[PKE,G,H, lensalt].
For any INDnc,nu-CCA adversary B against KEM̸⊥, issuing at most qH queries
to H, qG queries to G and qD queries to Decaps̸⊥, there exists an INDnc,nu-CPA
adversary A against KEM ̸⊥ such that

AdvINDnc,nu -CCA
KEM̸⊥ (B) ≤ AdvINDnc,nu -CPA

KEM̸⊥ (A) + qH
|M|

+ (qG + qH + qD) · δ(nu)

Proof. Let G and Chall be defined as in G0 in the proof of theorem 1. Further-
more, let LCj denote the list of challenge ciphertexts for a user j. Consider the
sequence of games shown in Figure 11.
G0 is the INDnc,nu -CCA-game against KEM̸⊥ and so

|Pr[G0 ⇒ 1]| = AdvINDnc,nu -CCA
KEM̸⊥ (B)

In G1 we abort whenever H is queried on sj , and we make the outputs of H
perfectly random when an input is rejected by making use of a separate internal
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PKE
INDnc,nu -CPA

SFO ̸⊥[PKE, lensalt],
SFO⊥[PKE, lensalt]

INDnc,nu -CPA

SFO⊥[PKE, lensalt]
INDnc,nu -CCA

SFO ̸⊥[PKE, lensalt]
INDnc,nu -CCA

Thm. 13
ROM

Thm. 12
ROM

Thm. 11
ROM

Fig. 10: Summary of our results on the salted Fujisaki-Okamoto (SFO) transform
in the ROM.

H(pkj , m, c∥salt)
01 if ∃ss s.t. (m, c∥salt, ss) ∈ LHj

02 return ss
03 ss←$K
04 if m = sj � G1-G2
05 QUERY = true; abort � G1-G2
06 if Enc1(pkj , m) = c � G2
07 if ∃ss′ s.t. (c∥salt, ss′) ∈ LDj � G2
08 ss := ss′ � G2
09 else � G2
10 LDj ← LDj ∪ {c∥salt, ss} � G2
11 LHj ← LHj ∪ {(m, c∥salt, ss)}
12 return ss

Decaps̸⊥(j, c∥salt)
13 if c ∈ LCj abort
14 m′ ← Dec(sk′

j , c∥salt) � G0-G1
15 if m′ =⊥ or

Enc(pkj , m′; G(pkj , m′∥salt) ̸= c � G0-G1
16 ss← H(pkj , sj , c∥salt) � G0
17 ss← H′(pkj , sj , c∥salt) � G1
18 if m′ = sj � G1
19 ss← H′(pkj , m′, c∥salt) � G1
20 ss← H(pkj , m′, c∥salt) � G0-G1
21 if ∃ss s.t. (c∥salt, ss) ∈ LDj � G2
22 return ss � G2
23 ss←$K � G2
24 LDj ← LDj ∪ {c∥salt, ss}
25 return ss

Fig. 11: Simulation of a decapsulation oracle with implicit rejection for proof of
Theorem 11.

random oracle H′. G1 and G0 are identical unless the adversary queries H on sj ,
Thus

|Pr[G1 ⇒ 1]− Pr[G0 ⇒ 1]| ≤ qH
|M|

.

In G2, we remove dependence on the secret key and claim that the oracles H
and Decaps̸⊥ are patched so that, assuming there is no correctness error, G2
and G1 are identical. Hence, if CORR is the event that B queries G, with a j and
m∥salt such that m ̸= Dec(skj ,Enc(pkj ,m; G(m∥salt))), by δ(nu)-correctness, we
have that

Pr[CORR] ≤ (qG + qH + qD) · δ(nu)
Now we show that G2 and G1 proceed identically, conditioned on ¬CORR.

Consider a query Decaps̸⊥(j, c∥salt) where c = Enc(pkj ,m; G(pkj ,m∥salt)).
Let m′ = Dec(skj , c∥salt) and c′ = Enc(pkj ,m′; G(pkj ,m′∥salt)).

– Case 1: m′ = ⊥, then in both G2 and G1 Decaps̸⊥ outputs a uniformly
random ss, and H cannot be queried on m.
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– Case 2: m ̸= ⊥ and c ̸= c′. In this case, Decaps̸⊥ will output a uniformly
random secret in either game. However, in G2 a query H(pkj ,m, c∥salt) would
return the same value as Decaps̸⊥(j, c∥salt), where in G1 Decaps̸⊥(j, c∥salt)
would output H′(pkj , c∥salt), while H(pkj ,m, c∥salt) would output an inde-
pendent random value. This can only happen if m exhibits a correctness
error.

– Case 3: m ̸= ⊥ and c = c′. In G1 the output of Decaps̸⊥ is H(pkj ,m′, c∥salt).
In G2 the output of Decaps̸⊥(j, c∥salt) is H(pkj ,m, c∥salt) if H(pkj ,m, c∥salt).
Hence the output of the two games will only be different if m ̸= m′.

By the difference lemma

|Pr[G2 ⇒ 1]− Pr[G1 ⇒ 1]| ≤ (qG + qH + qD) · δ(nu)

Now, observe that in G2 Decaps̸⊥ has no dependence on sk, and can therefore
be simulated by an INDnc,nu -CPA adversary A.

Theorem 12 (Simulation of Decaps⊥). Let KEM⊥ = SFO⊥[PKE,G,H, lensalt].
For any INDnc,nu-CCA adversary B against KEM⊥, issuing at most qH queries
to H, qG queries to G and qD queries to Decaps⊥, there exists an INDnc,nu-CPA
adversary A against KEM⊥ such that

AdvINDnc,nu -CCA
KEM⊥ (B) ≤ AdvINDnc,nu -CPA

KEM⊥ (A) + qD2−γ + (qG + qH + qD) · δ(nu)

Proof. Let G and Chall be defined as in G0 in the proof of theorem 1. Further-
more, let LCj denote the list of challenge ciphertexts for a user j. Consider the
sequence of games shown in Figure 12

G0 is the INDnc,nu -CCA-game against KEM̸⊥ and so

|Pr[G0 ⇒ 1]| = AdvINDnc,nu -CCA
KEM̸⊥ (B)

In G1 we patch the random oracles so that Decaps and H always return the
same thing. Even in the event of an correctness error, the view of the adversary
is identical, since Decaps⊥ implicitly makes a CVO query in line 13, and will
return ⊥ on a correctness error, as in G2

Pr[G1 ⇒ 1] = Pr[G0 ⇒ 1]

In G2, we modify Decaps⊥, so that instead of checking that m′ ∈M, it in-
stead checks that G(m′∥salt) had been queried, and then Enc(pkj ,m′; G(m′∥salt)) =
c′. The two games proceed identically, unless B was able to produce a ciphertext
c such that c = Enc(pkj ,m′; G(m′)) without querying G(m′). In this case in
G2 Decaps⊥(j, c∥salt) would return ⊥, while in G1 Decaps⊥(ss, c∥salt) would
return H(pkj ,m′, c∥salt).

This implies that B found r ̸= G(m′∥salt), such that Enc(pk,m; G(m′∥salt)) =
Enc(pk,m; r). For a single decapsulation query, this occurs with probability 2−γ ,
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H(pkj , m, c∥salt)
01 if ∃ss s.t. (m, c∥salt, ss) ∈ LHj

02 return ss
03 ss←$K
04 if Enc1(pkj , m) = c � G1-G3
05 if ∃ss′ s.t. (c∥salt, ss′) ∈ LDj � G1-G3
06 ss := ss′ � G1-G3
07 else � G1-G3
08 LDj ← LDj ∪ {c∥salt, ss} � G1-G3
09 LHj ← LHj ∪ {(m, c∥salt, ss)}
10 return ss

Decaps⊥(j, c∥salt)
11 if c ∈ LCj abort
12 m′ ← Dec(sk′

j , c∥salt) � G0-G2
13 if m′ =⊥ or
Enc(pkj , m′; G(pkj , m′∥salt) ̸= c �G0-G1

14 ss← ⊥ � G0-G1
15 ss← H(pkj , m′, c∥salt) � G0
16 if ̸ ∃(m′, r) ∈ LGj s.t.

Enc(pk, m; r∥salt) = c � G2
17 return ⊥ � G2
18 if ̸ ∃(m, r) ∈ LGj s.t.

Enc(pk, m; r∥salt) = c � G3
19 return ⊥ � G3
20 if ∃ss s.t. (c∥salt, ss) ∈ LDj �G1-G3
21 return ss � G1-G3
22 ss←$K � G1-G3
23 LDj ← LDj ∪ {c∥salt, ss}
24 return ss

Fig. 12: Simulation of a decapsulation oracle with explicit rejection for proof of
Theorem 12.

by the assumption that PKE is γ-spread. For qD decapsulation queries, we have
that

Pr[G2 ⇒ 1]− Pr[G1 ⇒ 1] ≤ qD · 2−γ

In G4 we remove all dependence on the secret key, by no longer checking
decryption c during decapsulation. Instead, we check for queries to G(pkj ,−)
which encrypt to c. This change goes unnoticed, unless the adversary was able
to query a message and a ciphertext which exhibit a correctness error. Following
the same argument as for G2 theorem Theorem 11, , as there are qG + qD + qH
implicit and explicit queries to G we have

Pr[G3 ⇒ 1]− Pr[G2 ⇒ 1] ≤ (qD + qH + qG) · δ(nu)

Now, observe that in G3 Decaps⊥ has no dependence on sk, and can therefore
be simulated by an INDnc,nu -CPA adversary A.

4.2 Tight passive security of SFO

In Theorem 13 below we show that SFO tightly turns multi-challenge security of
PKE into (for now passive) multi-challenge security of the salted KEM.

Bookkeeping salts. In the following proofs challenges are produced using an
oracle Chall which takes as input an index j ∈ [nu]. LS denotes the list of
distinct salts sampled during challenge oracle queries as, and LSj denotes the
list of salts sampled for a specific user j. Likewise, nc denotes the total queries
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to Chall, while ncj denotes the number of challenge queries to a specific user -
Chall(j).

The expected number of distinct salt values for ncj queries to Chall(j) is

E
(
|LSj |

)
= 2lensalt

(
1−

(
1− 1

2lensalt

)ncj )
.4

Repeated sampling of salts introduces collisions in LS , so that, with high
probability, |LS | < nc when nc ≥

√
2lensalt by the birthday paradox. As ncj

increases, the rate of collisions in LSj grows quadratically. We make use of a
simplifying assumption, that ∑

j

ncj

|LSj |
≤ nc
|LS |

.

One can see that in the case where all challenges were issued to the same user (i.e.,
there exists a j so that LS = LSj ), where the rate of salt collisions is maximized.

Theorem 13 ( PKE INDnc,nu-CPA ROM====⇒ SFO ̸⊥m,c[PKE, lensalt ] INDnc,nu-CPA).
Let PKE be a public-key encryption scheme, and let KEM be the KEM constructed

as KEM := SFO ̸⊥m,c[PKE,G,H, lensalt]. If PKE is δ(nu)-correct, then KEM is δ(nu)-
correct in the random oracle model. Moreover for any INDnc,nu-CPA adversary B
against KEM, issuing at most qH queries to H, qG queries to G and qD queries to
Decaps, there exists an INDnc,nu-CPA adversary A against PKE such that

AdvINDnc,nu -CPA
KEM (B) ≤ n2

c
|M|2lensalt

+ 2nc(qG + qH)
|M∥LS |

+ 2 ·AdvINDnc,nu -CPA
PKE (A) ,

Furthermore A and B have similar run-time.
The same bound holds for the KEM KEM⊥ := SFO⊥m,c[PKE,G,H, lensalt]

since they only differ in their decapsulation algorithm (which is not used in
the INDnc,nu-CPA experiment).

The correctness bound is trivial. To summarize the security proof: instead
of sending the proper challenge KEM keys ss0 in the case b = 0, we want
to always send a random key, leaving B with randomly guessing b as its only
option. B could only notice this replacement of ss0 = H(pk,m, c) if they already
queried H on (pk,m, c). To make such queries harder to achieve, we exploit
INDnc,nu -CPA of PKE: we can replace the encryptions of the proper challenge
seeds m with encryptions of independent messages, after which B would have to
query H on messages about which it has no information at all. The INDnc,nu -CPA
adversary A simulates the KEM challenge oracle by sampling a message/salt
pair (m0, salt) and an additional message m1, uses their PKE challenge oracle to
4 This uses a generic result from discrete probability: expected number of distinct

values when sampling n times, from a set of size N , with replacement. Here N = 2lensalt

and n = ncj .
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G0-G2
01 b←$ {0, 1}
02 for j = 1, ..., u
03 (pkj , skj)←$ Gen()
04 p⃗k = (pk1, ..., pkj)
05 b′ ← BChall,G,H(p⃗k)
06 return Jb = b′K

G(pkj , m∥salt)
07 if ∃r s.t. (m∥salt, r) ∈ LGj

08 return r
09 if m∥salt ∈ LMj � G2
10 CHAL = true; abort � G2
11 r ←$R
12 LGj ← LGj ∪ {(m∥salt, r)}
13 return r

Chall(j) � at most nc queries
14 (m∥salt)←$M×{0, 1}lensalt � G0
15 r ← G(pkj , m∥salt) � G0-G1
16 r ←$R � G2
17 c = Enc

(
pkj , m; r

)
18 if (m∥salt) ∈ LMj � G1 −G2
19 return (c∥salt, ss←$K) � G1 −G2
20 LMj ← LMj ∪ {m∥salt}
21 ss0 = H

(
pkj , m, c∥salt

)
� G0-G1

22 ss0←$K � G2
23 ss1←$K
24 return (c∥salt, ssb)
H(pkj , m, c∥salt)
25 if ∃ss s.t. (m, c∥salt, ss) ∈ LHj

26 return ss
27 if m∥salt ∈ LMj � G2
28 CHAL = true; abort � G2
29 ss←$K
30 LHj ← LHj ∪ {(m, c∥salt, ss)}
31 return ss

Fig. 13: Games for the proof of Theorem 13.

obtain c := Enc(pkj ,mb), samples a uniformly random key and returns (c, ss).
What we glossed over so far is that A obtains encryptions of the plain encryption
scheme PKE, whereas B expects ST-encryptions, so encryptions using the specific
fixed randomness r := G(pk,m∥salt). To show that this specific randomness is
indistinguishable from uniform, we thus argue that queries to G involving (m∥salt)
are unlikely, which is captured with the technique already used for H.

Proof. Consider the sequence of games shown in Fig. 13.

Game G0. G0 is the original INDnc,nu -CPA-game against the KEM constructed
as SFO ̸⊥[PKE,G,H, lensalt].

|Pr[G0 ⇒ 1]| = AdvINDnc,nu -CCA
KEM (B)

Game G1: capture challenge repetitions. As a first preparation step, G1
deals with repeated message-salt tuples: If a user sampled the same message-salt
tuple twice, they would also return the same KEM key twice when b = 0, but not
when b = 1. This would trivially allow the adversary to determine b. We thus
first ensure that the challenge response ss0 is not given out a second time even if
the respective message-salt tuple was repeatedly sampled by the user, see line 19.
Since the games only differ if such a resampling of message/salt pairs occurs and
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since the total number of challenge messages is n, the birthday bound yields

|Pr[G1 ⇒ 1]− Pr[G0 ⇒ 1]| ≤ n2
c

|M| · 2lensalt
.

Game G2: randomize challenges. In G2, we randomize our challenges both
with respect to encryption randomness and ‘honest’ session key: we change
challenge oracle Chall so that it samples the encryption randomness r at
random, rather than setting r := G(pkj ,m∥salt), and such that it also randomizes
the ‘honest’ session key ss0 = H(pkj ,m, c∥salt). The KEM adversary B will not
notice these changes unless they accessed G(pkj ,m∥salt) or H(pkj ,m, c∥salt). To
capture this, we raise a flag CHAL and abort if B poses such a query: we abort if
B queries G on a tuple (pkj ,m∥salt) for which m∥salt previously was stored in
the challenge seed list LMj . We also abort if the adversary queries H on a tuple
(pkj ,m, c∥salt) for which m∥salt previously was stored in the challenge seed list
LMj . Since the games do not differ unless CHAL occurs,

|Pr[G2 ⇒ 1]− Pr[G1 ⇒ 1]| ≤ Pr[CHAL] .

Since G2 provides B with random shared secrets regardless of the bit b, rendering
B’s view completely independent of b,

|Pr[G2 ⇒ 1]| = 1
2 .

It remains to bound CHAL.

Bounding CHAL. To this end, we construct an INDnc,nu -CPA adversary A against
PKE that perfectly simulates G2 for B and wins if CHAL is raised. Adversary A
forwards its input vector of public keys to B and simulates the random oracles
according to G2. For each user index j, A also initializes two empty lists Mj0
and Mj1 which it will use for bookkeeping during its simulation of Chall. To
simulate Chall for index j, A samples salt ← {0, 1}lensalt and stores salt in a
‘user’s salts’ list LSj . Then A samples (m0,m1)←M2 and stores m0∥salt inMj0 ,
and m1∥salt to Mj1.

Then A queries its CPA challenge oracle on input (j,m0,m1) to obtain
c = Enc(pk,mb) . A samples a random ss←$K and returns (c∥salt,K) to B.
Regardless of A’s challenge bit, this output perfectly matches the output of
Chall in G2.

We will now discuss how A can win their own game. Intuitively, A recognizes
any query triggering CHAL by looking through the two bookkeeping lists Mj0
and Mj1 - if CHAL occurs, then the message included in this query is found in
Mjb for A’s challenge bit b. A will thus return b if one of B’s random oracle
queries (pkj ,m∥salt) included a message m stored in Mjb. If no query was made
that can be found in either of the two lists, A returns a random guess. If queries
were made with respect to both lists, A will also return a random guess. The
main remaining issue is that B might derail A’s guess by querying G on a message
m ∈ LMj,1−b , so on a message that has nothing to do with the ciphertexts B
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received. We denote this event by BADG, that is, we let BADG be the event that B
queries G on any (pkj ,m∥salt) or H on (pkj ,m, c∥salt) such that m∥salt ∈ LMj,1−b .
Since these messages are completely independent of B’s view and since the right
salt must be chosen from the user’s overall list of salts LSj to trigger BADG,

Pr[BADG] =
∑
j∈[u]

ncj · (qH + qG)
|M∥LSj |

≤ nc · (qH + qG)
|M∥LS |

.

If CHAL is raised, but BADG is not, then A accurately detects that a random
oracle query containing m ∈Mjb triggered CHAL, returns b, and wins. If neither
CHAL nor BADG is raised, A returns a random guess, as is the case when both
CHAL and BADG are raised. So, provided BADG is not raised, A wins the game
with probability 1 if CHAL is raised and with probability 1

2 otherwise. Hence

AdvINDnc,nu -CPA
PKE (A) + Pr[BADG] ≥

∣∣∣∣Pr[b = b′|¬BADG]− 1
2

∣∣∣∣
=

∣∣∣∣Pr[CHAL] + 1
2 Pr[¬CHAL]− 1

2

∣∣∣∣
= 1

2 Pr[CHAL].

And so

Pr[CHAL] ≤ 2nc · (qH + qG + 2qD)
|M∥LS |

+ 2 ·AdvINDnc,nu -CPA
PKE (A).

Adding up the terms gives the desired result.

5 The Salted FO transform in the QROM

Before adapting our two ROM proof steps to the QROM in Sections 5.2 and 5.3,
we first collect some necessary helper theorems about the QROM in Section 5.1.

5.1 Online-extractable QROMs and One-Way To Hiding (OWtH)

We will use the extractable QROM variant [HHM22] of OWtH (extOWtH). This
variant integrates semi-classical OWtH [AHU19] into the extractable QROM
framework developed in [DFMS21]. Before giving the respective theorems, we
recollect some intuition and contextualization for the reader’s convenience.

Extractable OWtH. We use the adaptation that lifted OWtH into the ex-
tractable QROM framework because the extractable QROM framework allows
almost-classical reasoning. (In our application, it helps with simulating the de-
capsulation oracle in a way that is comparably close to our ROM simulation.)
This framework models a quantum-accessible random oracle O : X → Y as a
compressed oracle eCO with random oracle interface eCO.RO, plus an additional
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‘extraction’ oracle interface eCO.Ext. Intuitively, that additional interface eCO.Ext
can be used as a replacement for query book-keeping. It is defined relative to
a function f : X × Y = T that maps the domain X of a random oracle O and
its co-domain Y to some other ’target’ set T . eCO.Ext takes as input a classical
target value t ∈ T . Intuitively, eCO.Ext performs a quantum analogue of going
through the random oracle queries that were issued so far and then returning a
query x such that f (x,O(x)) = t, if such an x exists. (For our purposes, we will
model the randomness-generating oracle G as an extractable QROM eCO.RO and
define eCO.Ext relative to a function f for which eCO.Ext helps with identifying
the plaintexts of ciphertexts.)

To that end, it performs suitable measurements on the oracle database:
for each target t ∈ T , we define a projective measurement Mt. Mt measures
according to the measurement projectors {Σt,x}x∈X ∪ {Σt,∅} that are defined
as follows: for x ∈ X , the projector Σt,x selects the case where Dx is the first
register (in lexicographical order) that contains y such that f (x, y) = t, i.e., it is
defined as

Σt,x :=
⊗
x′<x

Π̄t,x′

Dx′ ⊗Π
t,x
Dx
, with Πt,x =

∑
y∈Y :

f (x,y)=t

|y⟩⟨y| and Π̄ = id −Π . (3)

The remaining projector Σt,∅ captures the case where no register contains such
a y:

Σt,∅ :=
⊗

x′∈{0,1}m

Π̄t,x′

D′
x
.

Effect of eCO.Ext on adversarial behavior. We start by restating helper
Theorem [DFMS21, 4.3]. Intuitively, the first item states that any quantum-
accessible QROM can be replaced by an extractable one, and items 2a-2c express
that calls to the extraction interface can be introduced into the run of a game
by ‘commuting’ them into the game, i.e., from after the game (where they have
no impact on the adversary whatsoever) to the desired point during the game
run, provided that f behaves sufficiently unpredictable. This unpredictability
requirement is formalized via value Γ (f ) in item 2c.
Lemma 14 (Online extractability (Part of Theorem 4.3 in [DFMS21])).
The extractable RO simulator eCO, with interfaces eCO.RO and eCO.Ext, satisfies
the following properties.

1. If eCO.Ext is unused, eCO is perfectly indistinguishable from a random oracle.
2.a Any two subsequent independent queries to eCO.RO commute. In particular,

two subsequent classical eCO.RO-queries with the same input x give identical
responses.

2.b Any two subsequent independent queries to eCO.Ext commute. In particular,
two subsequent eCO.Ext-queries with the same input t give identical responses.

2.c Any two subsequent independent queries to interfaces eCO.Ext and eCO.RO
8
√

2Γ (f )/2n-almost-commute, where {0, 1}n is the codomain of the random
oracle and

Γ (f ) := max
x,t
|{y | f (x, y) = t}| .
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Furthermore, the total runtime and quantum memory footprint of eCO, when
using the sparse representation of the compressed oracle, are bounded as

Time(eCO, qRO, qE) = O
(
qRO · qE · Time[f ] + q2

RO
)
, and

QMem(eCO, qRO, qE) = O
(
qRO

)
.

where qE and qRO are the number of queries to eCO.Ext and eCO.RO, respectively.

One-Way-To-Hiding (OWtH). When analyzing FO-constructed KEMs in the
QROM, it is common to apply OWtH. In our context, OWtH allows a QROM
equivalent to the ROM argument done in game 2 of the proof of Theorem 13:
there we argued that the encapsulated challenge key ss = H(pkj ,m, c∥salt) looks
completely random unless the attacker queried H on the challenge plaintext m
(and thus broke security of PKE). OWtH allows a quantum analogue of that step.
Intuitively, OWtH says ‘the adversary posed superposition queries to H with
enough amplitude on m such that we can find it’.

In general, OWtH shows that a distinguisher A cannot distinguish the ex-
tractable oracle from one that was reprogrammed on certain inputs, unless A
managed to pose oracle queries with substantial amplitude on one of the repro-
grammed positions. To model this, the framework defines a set of reprogrammed
positions S as follows: the input inp of the distinguishing algorithm A is assumed
to be classical, i.e., generated by an algorithm GenInp with classical access to
the superposition oracle. S is defined as the set of all random oracle inputs
x queried by GenInp. E.g., for input (c∗,K∗) := (Enc(pk,m∗; G(m∗))),H(m∗)),
S is {m∗}. To model reprogramming, a superposition oracle eCO0 is used to
generate A’s input, but instead of giving A access to that oracle, A is given
access to a freshly initialized extractable oracle eCO1. To identify queries with
high amplitude on S, the games use ‘punctured’ versions eCO\S of the oracles
eCO: eCO\S behaves according to the random oracle eCO.RO, but only after
having applied an additional ‘semi-classical’ oracle OSC

S that essentially marks if
an element of S was found in one of the query registers, by performing a suitable
measurement. The event that any measurement of F returns 1 is denoted by
FIND.

We now we restate [HHM22, Theorem 6] that related the distinguishing
advantage between eCO0 and eCO1 to the probability that FIND occurs.

Theorem 15 (Extractable OWTH: Distinguishing to Finding [HHM22,
Theorem 6]). Let eCO0 and eCO1 be two extractable superposition oracles from
X to Y, with their respective extraction interfaces defined relative to a function
f : X × Y → T . Let GenInp be an algorithm generating a classical input inp,
having access to eCO0. Let S be the set of elements x ∈ X whose oracle values
were queried to compute inp, and let TS := {t | ∃x ∈ S s.th. t = f (x, eCO0(x))}.

We define the OWTH distinguishing advantage function of A as

AdvOWTH
eCO,f (A) := |Pr[1← AeCO0

(inp)]− Pr[1← AeCO1
(inp)]| ,
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where the probabilities are taken over the coins of GenInp and the internal ran-
domness of A. For any algorithm A of query depth d with respect to eCO.RO
that never performs an extraction query on any t ∈ TS , we have

AdvOWTH
eCO,f (A) ≤ 4 ·

√
d · Pr[FIND : AeCO1\S(inp)] .

In one part of our proof, the reprogramming set S = {m∗1 , · · · ,m∗n} will
have become completely independent of the attacker’s view. There we will
use [HHM22, Corollary 4 ] below which bounds the probability of FIND in this
special case.

Corollary 16 (Extractable OWTH: Finding independent values [HHM22,
Corollary 4 ]). Let eCO, f , GenInp, FIND, be like in Theorem 15, for a set
S = {x1, · · · , xn} of uniformly chosen elements x1, · · · , xn. If S and inp are
independent, then for any algorithm AeCO issuing q many queries to eCO.RO in
total,

Pr[FIND : AeCO\{x}(inp)] ≤ 4qn
|X | .

5.2 From IND-CPA-KEM to IND-CCA-KEM in the QROM

In this section, we lift our IND-CPA-KEM to IND-CCA-KEM result, Theorem 11,
to the quantum-accessible random oracle model.

Theorem 17 (Simulatability of salted Decaps⊥ in the QROM). Let PKE
be a public-key encryption scheme, let PKE1 := ST[PKE,G], and let KEM⊥ =
SFO⊥m,c[PKE,G,H, lensalt]. Let A be a INDnc,nu-CCA adversary against KEM⊥,
issuing at most qG many queries to G, qD queries to Decaps̸⊥, and with d and w
being the combined query depth/width of A’s random oracle queries. Then there
exist an INDnc,nu-CPA adversary B against KEM̸⊥ and an FFP-CCAu adversary
C against PKE1 in the extractable QROM such that

AdvINDnc,nu -CCA
KEM⊥ (A) ≤ AdvINDnc,nu -CPA

KEM⊥ (B)+AdvFFP-CCAu
PKE1

(C)+12qD(qG+4qD)·2−
γ
2 .

The FFP-CCAu game for PKE1 is defined in Fig. 14 Adversary B makes
qG + qH + qD queries to eCO.RO with a combined depth of d + qD and a combined
width of w, and qD queries to eCO.Ext. Adversary C makes qD many queries to
Dec and eCO.Ext and qG queries to eCO.RO. Neither B nor C query eCO.Ext on
any of the challenge ciphertexts. The running times of B and C are bounded as
Time(B),Time(C) = Time(A) + O(qD).

Discussion of the bound in Theorem 17. Before discussing the proof, we
briefly discuss the additional disruption terms: we expect that for many real-world
schemes, the additive loss relative to γ is still small enough to be neglected. For
HQC and FrodoPKE, the term was calculated in [HHM22].

There are several ways to analyze the ‘Find-Failing-Plaintext’ (FFP-CCA)
advantage against the salted derandomized encryption scheme PKE1:
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Game FFP-ATKPKE1,nu

01 for j ∈ [nu]
02 (pkj , skj)←$ Gen()
03 p⃗k = (pk1, ..., pknu )
04 (j, m, salt)← AOATK,eCO(p⃗k)
05 (c, salt) := PKE1.Enc(pkj , m) for given salt
06 m′ := Dec(skj , (c, salt))
07 return [[m′ ̸= m]]

Dec(j ∈ [nu], (c, salt))
08 m′ := PKE1.Dec(skj , (c, salt))
09 return m′

Fig. 14: Multi-user ‘Find Failing Plaintext’ games FFP-ATKu for the salted PKE
scheme PKE1 := ST[PKE,G], where ATK ∈ {CPA,CCA}, in the eQROMf . Ran-
dom oracle G is modeled as an extractable superposition oracle eCO that provides
an additional extraction interface that is described in the paragraph above Eq. (4).
OATK is the additional oracle that is available in the respective IND-ATK game,
so either the decryption oracle or none at all. To prevent confusion, we highlight
our slight abuse of notation: we adapted the original FFP-ATK definition in a
way such that A is allowed to preselect the salt that PKE1.Enc otherwise would
have chosen randomly in line 05. (So in this game, we view the salt as part of
the message.)

1. We can analyze a softer requirement: according to Theorem 21 which we
prove in Section A, there exists an FFP-CPAu attacker C′ such that

AdvFFP-CCAu
PKE1

(C) ≤ (qD + 1) ·AdvFFP-CPAu
PKE1

(C′) + 12 · qD(qG + 4qD) · 2−
γ
2 ,

so it is sufficient to analyze the ‘Find-Failing-Plaintext’ property of PKE1 for
passive attackers (see Fig. 14). The additional γ-term in the resulting bound
occurs only due to our modular proof (combining Theorem 17 with Theo-
rem 21) and can be avoided with a direct proof that immediately reduces to
FFP-CPA.

2. According to Theorem 22 which we also prove in Section A, if PKE is δ-worst-
case correct, then we can alternatively bound

AdvFFP-CCAu
PKE1

(C) ≤ 10(q + qD + 1)2 · δ(nu) .

We note that the statistical term δ in practice is being estimated via heuristics
(as discussed in a footnote in the introduction of [HHM22].

Summary of the proof of Theorem 17. The main idea is to simulate the
decapsulation oracle without using the secret key, drawing some inspiration from
the proofs of single-instance IND-CCA security of the standard FO transform
given in [DFMS21] and [HHM22, Theorem 4]. We have to adapt in two ways: first,
address multi-instance security instead of single-instance security, and second,
adapt to the salted FO transform.

The simulations do not have to use the secret key because we use the ex-
tractable QROM formalism described in Section 5.1: they have access to the
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additional extraction interface eCO.Ext, and intuitively, eCO.Ext allows them
to connect queried ciphertexts to their plaintexts, assuming that the plaintext
can be found in the oracle database. The method of simulating introduces two
disruption terms: one reflects the simulation going wrong because the ciphertext
does not decrypt to its originating plaintext (FFP-CCAu). The term related to
γ-spreadness reflects that the originating plaintext can not always be found in
the oracle database and that using eCO.Ext inflicts errors on the oracle database.
For the sake of completeness, we formally prove Theorem 17 in Section A.

5.3 From IND-CPA-PKE to IND-CPA-KEM in the QROM

We now revisit the IND-CPA-PKE to IND-CPA-KEM result, Theorem 13, and
lift it to the QROM.

Theorem 18. Let PKE be a public-key encryption scheme, and let KEM̸⊥ :=
SFO ̸⊥[PKE,G,H, lensalt]. Let B be an adversary against the INDnc,nu-CPA security
of KEM in the extractable QROM, issuing at most q many queries in total to
H and G, with a total depth of d and let the bounds ncj of challenges per user
j ∈ {1, · · · , u} be known in advance. Furthermore, assume that B does not query
eCO.Ext on any of its challenge ciphertexts.

Then there exists a quantum INDnc,nu-CPA adversary A against PKE such that

AdvINDnc,nu -CPA
KEM (B) ≤ 4

√
d ·AdvINDnc,nu -CPA

PKE (A) + n2
c

|M|2lensalt
+ 4

√
d ncjq
|M∥LS |

,

where ncj is the number of queries to Chall for user index j.

In spirit, the proof proceeds exactly like its classical counterpart: we replace
the proper challenge KEM keys ss0 and the encryption randomness with random,
argue that this can only be noticed via a reasonably informative random oracle
query, which we make harder to form by replacing the key seeds in question with
random (there utilizing INDnc,nu -CPA of PKE). The only difference is that the
oracle queries now are in superposition and that the respective search bound
thus becomes a quantum search bound. To show this bound, we use one-way to
hiding - the respective reduction will measure a random oracle query and use the
set of results to solve its multi-INDCPA game.

Proof. We consider the same sequence of games as in the proof of Theorem 13,
except that in this proof, the random oracles in game 2 do not abort. (Since
the RO-query-related event CHAL no longer is a well-defined event if the ROs
are accessible in superposition.) For convenience, games 0 and 2 are repeated
in Fig. 15. Since the reasoning underlying the bounds does not change for quantum
attackers up to how we bound CHAL, the bound

AdvINDnc,nu -CCA
KEM (B) ≤ n2

c
|M| · 2lensalt

+ |Pr[G2 ⇒ 1]− Pr[G1 ⇒ 1]|
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still holds and it only remains to bound |Pr[G2 ⇒ 1]− Pr[G1 ⇒ 1]| in the QROM,
which we will do with a quantum counterpart to bounding CHAL.

Games G1′ and G2′ : presample to prepare quantum counterpart of
bounding CHAL. We will still want to construct an INDnc,nu -CPA adversary A
against PKE that bounds |Pr[G2 ⇒ 1]− Pr[G1 ⇒ 1]|. This will involve OWtH.
OWtH, however, cannot randomize the values adaptively as the game proceeds,
but rather has to do this in advance. We thus introduce adapted games G1′ and
G2′ that are exactly like G1/G2, except that the message-salt tuples and all
associated values are defined already before adversary B is run. For convenience,
we make this formal with pseudocode in Fig. 15. Since the time of sampling does
not change B’s view, G1′ is equivalent to G1 and game G2′ is equivalent to G2,
meaning these changes do not impact the bound above, and that we can now
instead bound |Pr[G2′ ⇒ 1]− Pr[G1′ ⇒ 1]|.

G1′ and G2′

01 b←$ {0, 1}
02 for j ∈ [nu]
03 (pkj , skj)←$ Gen()
04 p⃗k = (pk1, ..., pkj)
05 for j ∈ [nu]
06 for i ∈ [ncj ]
07 (mj,i , saltj,i)←$M×{0, 1}lensalt

08 if (mj,i , saltj,i) ∈ LMj

09 REPEATj,i := true
10 LMj := LMj ∪ {mj,i ||saltj,i}
11 rj,i := G(pkj , m∥saltj,i) � G1′

12 cj,i := Enc
(
pkj , mj,ij ; rj,ij

)
13 ss0,j,i = H

(
pkj , mj,ij , cj,i∥salt

)
� G1.5

14 (rj,i , ss0,j,i)←$R×K � G2′

15 b′ ← BChall,G,H(p⃗k)
16 return Jb = b′K

Chall(j) � at most ncj queries
17 ij + +
18 c := cj,ij

19 if REPEATj,i
20 return (c, ss←$K)
21 ss0 := ss0,j,ij

22 ss1←$K
23 return (c, saltj,ij , ssb)

Fig. 15: Games for the proof of Theorem 18 with early sampling of all values
during game initialization.

Quantum counterpart of bounding CHAL. We still want to construct an
INDnc,nu -CPA adversary A against PKE that bounds |Pr[G2′ ⇒ 1]− Pr[G1′ ⇒ 1]|.
As a first step, we use Theorem 15, according to which

|Pr[G2 ⇒ 1]− Pr[G1 ⇒ 1]| ≤ 4 ·
√

d · Pr[FIND : BeCO1\S(inp)] ,

where BeCO1\S denotes that B is run in the version G2′ that punctures G and
H on the set S of challenge message-salt tuples in question, and FIND denotes
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that the punctured oracles measured a challenge message-salt tuple in B’s oracle
queries.

To further bound the right-hand side, we use that we can replace the challenge
ciphertexts with encryptions of independent messages. This will make it much
harder to create suitable superposition queries and thus significantly decrease the
probability of FIND. In more detail, we replace the puncturing set of challenge
message-salt tuples: instead of puncturing on the challenge tuples (mj,i , saltj,i) ∈
LMj with their respective public keys, so instead of setting S := LMj , we now
puncture on the set S ′′ := L′′Mj

in which each message mj,i is replaced by a fresh
uniform message m′′j,i . This switch can be perfectly simulated by the following
INDnc,nu -CPA adversary A against PKE: A pre-computes S = LMj and S ′′ := L′′Mj

,
punctures the oracles on S, and simulates B’s challenge oracle as follows: A queries
their own challenge oracle to obtain an encryption of either the messages mj,ij or
m′′j,ij

and returns the encryption together with saltj,ij and a random key. After
running the extractor, it returns 1 iff FIND occured. We thus obtain∣∣∣Pr[FIND : BeCO1\S(inp)]− Pr[FIND : BeCO1\S′′

(inp)]
∣∣∣ ≤ AdvINDnc,nu -CPA

PKE (A) .

Lastly, we bound Pr[FIND : BeCO1\S′′(inp)]. In this experiment, the puncturing
set S” is independent of the ciphertexts used by the challenge oracle. We can
thus apply Corollary 16 to conclude

Pr[FIND : BeCO1\S′′
(inp)] ≤

∑
j∈[nu]

ncj · (qH + qG)
|M∥LSj |

≤ nc · (qH + qG)
|M∥LS |

.

6 Conclusions

Our results show that the SFO transform tightly reduces INDnc,nu -CCA KEM
security, to the INDnc,nu -CPA security of the underlying PKE. Our theorems show
that this approach indeed mitigate the sort of multi-target attacks identified by
NIST against FrodoKEM and HQC.

6.1 Comparison to existing work

Comparison to hybrid bound. Bellare et al. [BBM00] proved the following
bound on multi-challenge IND-CCA security for a generic protocol:

AdvINDnc,nu -CCA ≤ nu · nc ·AdvIND-CCA .

Combining this with the bounds in [HHK17] yields the following simplified
bounds:
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AdvINDnc,nu -CCA
KEM̸⊥ ≤ nu · nc ·

(
2AdvIND-CPA

PKE + qRO · δ + 2qRO
M

)

AdvINDnc,nu -CCA
KEM⊥ ≤ nu · nc ·

(
2AdvIND-CPA

PKE + qRO · δ + 2qRO
M

+ qRO2−γ

)
where qRO is the number of random oracle queries (across all oracles).

In comparison applying the hybrid bound to AdvINDnc,nu -CPA
PKE , our analysis

yields:

AdvINDnc,nu -CCA
KEM̸⊥ ≤ (2nu · nc)AdvIND-CPA

PKE + n2
c

|M|2lensalt
+ 2nc · qRO
|M∥LS |

+ qRO · δ(nu)

AdvINDnc,nu -CCA
KEM⊥ ≤ (2nu·nc)AdvIND-CPA

PKE + n2
c

|M|2lensalt
+2nc · qRO
|M∥LS |

+qRO·δ(nu)+qRO·2γ

For example, consider |M| = 2128, lensalt = 64, nc = 264,nu = 232 and
qRO = 264. In the hybrid bound, the advantage is dominated by the intermediate
terms, as these are multiplied by 296. These parameters are consistent with,
for example FrodoKEM-640 and HQC-128. In our bounds, intermediate terms
relating to collision finding are very small, with

n2
c

|M|2lensalt
= nc
|M|

= 1
264

2nc · qRO
|M|LS |

≈ 4qRO
M

= 1
262

The trivial bound on multi-user correctness is δ ≤ δ(nu) ≤ nu · δ, which is
of course, much smaller than the term nu · nc · δ obtained by the hybrid bound.
There is also strong evidence that for lattice-based schemes, δ(nu) < nuδ(1) as
reasoned in [DHK+21b].

Comparison to FO transform. Duman et al. [DHK+21a] give a bound for
INDnc,nu -CCA security for FO based KEM’s, which is similar to ours, but only
covers implicit rejection, and does not include salts. Their bound is

AdvINDnc,nu -CCA
KEM̸⊥ ≤ (2nu · nc)AdvIND-CPA

PKE + n2
c + 2nc · qRO
|M|

+ qRO · δ(nu)

For our parameters, the advantage is dominated by the term

n2
c + 2nc · qRO
|M|

= 2128 + 2129

2128
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Thus, for small message spaces, (i.e., |M| = n2
c , for some feasible nc), the FO

transform results in KEM’s that are trivially not INDnc,nu -CCA secure, regardless
of the INDnc,nu -CPA security of the underlying PKE. Our SFO transform, on the
other hand, tightly reduces security to the INDnc,nu -CPA security of the underlying
PKE.

6.2 Future work

While our results dramatically improve on the hybrid bounds for INDnc,nu -CCA
KEM security, we still bound INDnc,nu -CPA PKE security by a hybrid argument.
Bellare et al. [BBM00] show that, in general, one cannot improve on the hybrid
bound for INDnc,nu -CPA security. However, for concrete schemes, like FrodoPKE,
it may be possible to induce some marginal improvement.

It may also be worth considering a weaker notion of multi-challenge security,
where the challenge bit b is sampled independently for each user, and the ad-
versarial goal is to identify an index i for which they can guess the challenge
bit. This notion might be more realistic, and better capture the intuition that a
multi-user attack breaks security for “one-of-many” user’s.
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Supplementary material

A From IND-CPA-KEM to IND-CCA-KEM in the
QROM

In this section, we prove Theorem 17, our lift of Theorem 11 to the quantum-
accessible random oracle model. We first repeat the theorem statement for
convenience.

Theorem 19 (Theorem 17: Simulatability of salted Decaps⊥ in the
QROM). Let PKE be a public-key encryption scheme, let PKE1 := ST[PKE,G],
and let KEM⊥ = SFO⊥m,c[PKE,G,H, lensalt]. Let A be a INDnc,nu-CCA adversary
against KEM⊥, issuing at most qG many queries to G, qD queries to Decaps̸⊥,
and with d and w being the combined query depth/width of A’s random oracle
queries. Then there exist an INDnc,nu-CPA adversary B against KEM̸⊥ and an
FFP-CCAu adversary C against PKE1 in the extractable QROM such that

AdvINDnc,nu -CCA
KEM⊥ (A) ≤ AdvINDnc,nu -CPA

KEM⊥ (B)+AdvFFP-CCAu
PKE1

(C)+12qD(qG+4qD)·2−
γ
2 .

Adversary B makes qG + qH + qD queries to eCO.RO with a combined depth
of d + qD and a combined width of w, and qD queries to eCO.Ext. Adversary C
makes qD many queries to Dec and eCO.Ext and qG queries to eCO.RO. Neither
B nor C query eCO.Ext on any of the challenge ciphertexts. The running times
of B and C are bounded as Time(B),Time(C) = Time(A) + O(qD).

Proof. We give in Fig. 16 below two simulated variants of the decapsulation
oracle, Decaps′ that will be used by the INDnc,nu -CPA reduction B, and a second
simulation Decaps′′ that will be used by the FFP-CCA reduction C. Intuitively,
Decaps′′ additionally notices (and stores) plaintext that trigger a decryption
failure.

The simulations extract potential plaintexts by accessing extractor interface
eCO.Ext (see lines 12 and 18). We let this interface extract plaintexts relative to
the function

f : ((pk,m∥salt), r) 7→ (Enc(pk,m; r), pk, salt) , (4)

so eCO.Ext(c, pk, salt) either returns ⊥ or a message m such that Enc(pk,m; r) = c
for r := G(pk,m∥salt).

We now prove this theorem via a sequence of games.
G0 is the INDnc,nu -CCA game for KEM⊥.
G1 is like G0, except for two modifications: firstly, the quantum-accessible

random oracle G is simulated using an extractable quantum random oracle eQROf .
Secondly, after A finished, we use eCO.Ext to compute oracle preimages for all
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Decaps(j, (c∥salt) /∈ LCj )
01 m′ := Dec(skj , c)
02 if m′ = ⊥
03 return K :=⊥
04 else
05 r ′ := G(pkj , m′∥salt)
06 c′ := Enc(pkj , m′; r ′)
07 if c ̸= c′

08 return ⊥
09 else
10 return
H(pk, m′, c∥salt)

Decaps′(j, (c∥salt) /∈ LCj )
11 Parse pk := pkj
12 m̂ ← eCO.Ext(c, pk, salt)
13 if m̂ = ⊥
14 return ⊥
15 else
16 return
H(pk, m̂, c∥salt)

Decaps′′(j, (c∥salt) /∈ LCj )
17 Parse pk := pkj
18 m̂ ← eCO.Ext(c, pk, salt)
19 m′ := Dec(j, (c∥salt))
20 if m̂ ̸= ⊥ and m̂ ̸= m′

21 Store (j, m̂∥salt) in LFAIL

22 if m̂ = ⊥
23 return ⊥
24 else
25 return H(pk, m̂, c∥salt)

Dec(j, (c∥salt))
26 m′ := Dec(skj , c)
27 r ′ := G(pkj , m′, salt)
28 if m′ = ⊥
29 return ⊥
30 else
31 if Enc(pkj , m′; r ′) ̸= c
32 return ⊥
33 else
34 return m′

Fig. 16: Original multi-instance decapsulation oracle Decaps for
SFO⊥m,c[PKE,G,H, lensalt], simulation Decaps′, and failing-plaintext-extracting
simulation Decaps′′. The simulations use the extractable QRO simulator eCO
from [DFMS21] (see Section 5.1), which is assumed to be freshly initialized
at the beginning of the security game in which the simulations are being run.
Extraction interface eCO.Ext is defined with respect to function f defined in
Eq. (4).

ciphertexts on which Decaps was queried, i.e., we take each decapsulation query
(ji , (ci , salti)) and compute m̂i := eCO.Ext(ci , pkj1 , salti).

By property 1 in Lemma 14, eQROf perfectly simulates G until the first query
to eCO.Ext, and since the first eCO.Ext-query occurs only after A finishes, we
have

AdvIND-CCA
KEM⊥

m
(A) = AdvG

0 = AdvG
1 . (5)

G2 is like G1, except that m̂i := eCO.ExteCO.Ext(ci , pkj1 , salti) is computed
right after A queries Decaps on (j, (c∥salt), meaning we move the extraction
queries from the end of the game to within the decapsulation calls. Thus, G2
is obtained from G1 as follows: first swap the eCO.Ext call that produces m̂1
with all random oracle calls that happen after A posed query c1, then continue
with the eCO.Ext call that produces m̂2, and so forth. To bound the disruption
inflicted by these swaps, we now use that eCO.RO and eCO.Ext almost-commute
(property 2.a-c of Lemma 14): according to that item, each query 8

√
2Γ (f )/2n-

almost-commutes, where {0, 1}n is the random oracle co-domain. For our choice
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of random oracle, 2n = |R|. For our choice of f ,

Γ (f ) = max
(pk,m∥salt),(c,pk′,salt′)

|{r ∈ R | (Enc(pk,m; r), pk, salt) = (c, pk′, salt′)}|

= max
pk,m,c

|{r ∈ R | Enc(pk,m; r) = c}|

≤ 2−γ |R| ,

where the last step uses that we assume PKE to be γ-spread. Thus, 8
√

2Γ (f )/2n ≤
8
√

2 · 2−γ/2. For each decapsulation query, we swap the respective eCO.Ext query
with qG + qD many random oracle calls (including calls that happen inside
Decaps). Thus, ∣∣∣AdvG

1 −AdvG
2

∣∣∣ ≤ 8
√

2qD(qG + qD) · 2−γ/2 . (6)

G3 is the same as G2, except that A is run with access to the oracle
Decaps′ instead of Decaps. Since we will only want to study the difference
between Decaps′ and Decaps in this game, we still let the game also compute
Decaps(ji , (ci , salti)) upon A’s oracle call. (The reason is that Decaps makes
internal random oracle queries during reencryption. Omitting them might influ-
ence the behavior of eCO.Ext in subsequent queries and thus create additional
disruptions beyond the difference between Decaps′ and Decaps.)

Note that unless Decaps′ fails to correctly emulate Decaps, the games do not
differ at all. Accordingly, let DIFF be the event thatAmakes a decapsulation query
(j, (c∥salt)) such that Decaps(j, (c∥salt)) ̸= Decaps′(j, (c∥salt)). We bound∣∣∣AdvG

1 −AdvG
2

∣∣∣ ≤ Pr [DIFF] .

To analyze the probability of the event DIFF, we note that DIFF contains
three cases:

- the original decapsulation oracle Decaps rejects, but the simulation Decaps′

does not. The latter means that Decaps′ returns Decaps′(j, (c∥salt)) =
H(m̂, c∥salt) for m̂ := eCO.Ext(c, pkj , salt). By construction of the oracles,
this means that m̂ encrypts to c. The rejection of Decaps on the other hand
implies that c decrypts to ⊥ or fails the re-encryption check . Hence, this
case occurs only if the c’s preimage m̂ is a failing plaintext under the j-th
key pair.

- Neither oracle rejects, but the return values differ. This can only happen if
m̂ := eCO.Ext(c, pkj , salt) differs from m′ := Dec(skj , c). Like in case 1, this
implies that the pre-image m̂ is a failing plaintext under the j-th key pair.

- Decaps does not reject, but the simulation Decaps′ does. The latter means
that m̂ := eCO.Ext(c, pkj , salt) in line 12 yielded ⊥. At the same time, c passed
the re-encryption check inside Decaps (line 07), so Enc(pkj ,m′, r ′) = c
for m′ := Dec(skj , c) and r ′ := G(pkj ,m′, salt) . Intuitively, A managed
to compute a valid encryption without determining the right encryption
randomness r ′ via a respective random oracle query.
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We denote the combination of the first two cases by FAIL and the last case
by GUESS, yielding

Pr [DIFF] ≤ Pr [GUESS] + Pr [FAIL ∧ ¬GUESS] ,

and now bound the two cases separately. To bound GUESS, we will make use
of Lemma 20 below, according to which

Pr [GUESS] ≤ 2qD · 2−γ .

To bound the probability of FAIL ∧ ¬GUESS, we define a failure-finding
adversary C against the salted encryption scheme PKE1: C forwards its input
vector of public keys to A and runs A with simulation Decaps′′, using its own
FFP-CCA oracle Dec to emulate the decryption of ciphertexts. A’s random oracle
queries to G are forwarded to C’s extractable superposition oracle, random oracle
H can be simulated via a fresh compressed oracle or using a t-wise independent
function for sufficiently large t. As soon as Decaps′′ adds a plaintext m̂ to LFAIL,
together with the involved salt salt and user index j, C aborts A and returns
(j, m̂∥salt). (If A finishes and LFAIL is still empty, C returns ⊥.) C succeeds if FAIL
occurs, but GUESS did not: in that case, a failing plaintext m̂ was extracted from
the ciphertext that triggered FAIL, and C recognizes m̂ as failing and returns it
to the FFP-CCA game.

Pr [FAIL ∧ ¬GUESS] ≤ AdvFFP-CCAu
PKE1

(C) .

G4 prepares for fading out the now-redundant internal calls to Decaps– note
that these calls were not used within the responses of the oracle Decaps′ to
which A has access in game 3. These calls were only kept alive so that G3 could
focus on bounding the difference between decapsulation and simulation, so to
avoid additional disruptions in the oracle database that would have occurred
when omitting Decaps (and the involved random oracle calls) entirely. Games
4-5 are somewhat-symmetric to Games 0-2 in the sense that they use almost-
commutativity to push calls to the end of the game. Concretely, G4 is defined
like G3, except that the internal Decaps invocations are postponed until after
A finishes. With similar reasoning as when stepping from G1 to G2, we obtain∣∣∣AdvG

3 −AdvG
4

∣∣∣ ≤ 8
√

2q2
D2−γ/2 .

Finally, G5 is like G4, except that the redundant internal calls to Decaps
are omitted entirely. Since all invocations of Decaps already happened after the
execution of A in game 4, this omission does not influence A’s success probability
and

AdvG
4 = AdvG

5 .

We now define INDnc,nu -CPA adversary B against KEM̸⊥ in the eQROMf ,
perfectly simulating G5 to A: B provides A with access to Decaps′ and forwards

35



Dec(j, (c∥salt))
01 m′ := Dec(skj , c)
02 r ′ := G(pkj , m′, salt)
03 if m′ = ⊥
04 return ⊥
05 else
06 if Enc(pkj , m′; r ′) ̸= c
07 return ⊥
08 else
09 return m′

Dec′(j, (c∥salt))
10 m̂ ← eCO.Ext(c, pkj , salt)
11 return m

Fig. 17: Simulation Dec′ of decryption oracle Dec for PKE1 := ST[PKE,G].

A’s random oracle queries to its own INDnc,nu -CPA game. When A finishes, B
returns its guess b′ to its own game.

AdvG
5 = AdvIND-CPA

KEM⊥
m

(B). (7)

We thus obtain the desired bound by collecting the terms and bounding the
collection of γ-terms, using that qD2−γ ≤ q2

D2−γ/2.

We now close the proof above by bounding the probability of GUESS. We did
not include this into the proof because we will soon (Theorem 21) want to bound
a very similar event when simplifying FFP-CCAnu security of the encryption
scheme PKE1 := ST[PKE,G]. To avoid redoing the same argument, we generalize
the analysis of GUESS: we also capture attackers against PKE1 for which the
decryption oracle Dec is simulated via simulation Dec′ (see Fig. 17). (Dec′ uses
the same plaintext extraction technique as simulation Decaps′ and differs from
Dec only in a case very similar to GUESS.)

Lemma 20. Let PKE be γ-spread, and let GUESS be as defined like in the
previous proof: let A be an eQROMEnc adversary with access to random oracles G,
H and decapsulation oracle Decaps for SFO⊥m,c[PKE,G,H, lensalt], issuing at most
qD many queries to Decaps. Let A be run with Decaps (or Decaps′ as defined
in Fig. 16), and upon each query ci, we first compute m̂i = Dec′(j, (c∥salt)) and
then m′i = Dec(j, (c∥salt)). Let GUESS be the event that there occurs a query
such that m̂i = ⊥ and mi ̸= ⊥. Then

Pr [GUESS] ≤ 2qD · 2−γ .

The same bound applies if we instead consider any eQROMEnc adversary A
that expects random oracles G, H and a decryption oracle Dec for ST[PKE,G],
issuing at most qD many queries to Dec, if A has access to Dec or Dec′ as
defined in Fig. 17.
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Proof. The proof is very similar to the proof of [HHM22, Lemma 3] that bounded
the probability of GUESS for the standard FO transformation (which does not
involve salts), in a single-user setting. The technical difference between [HHM22,
Lemma 3] and this lemma is that there, G only hashed m, so neither pk nor salt.
Consequently, the extraction interface in [HHM22, Lemma 3] is defined relative
to the simpler function fpk : (m, r) 7→ Enc(pk,m; r), where pk is the public key
of the single user. However, the unpredictability of our function f (see previous
proof, G2) boils down to the same γ-term as the function fpk. This explains why
we obtain the same bound as in [HHM22, Lemma 3].

We will now bound the probability for a fixed query, so we will fix the i-th
query (j, (c∥salt)) and bound the probability that m̂ = ⊥ but m ̸= ⊥ for that
query. Intuitively, this captures that c = Enc(pkj ,m′; r ′) for m′ := Dec(skj , c)
and r ′ := G(pkj ,m′, salt), but that the query (pkj ,m′, salt)) had not yet been
written into the oracle database of G before the re-encryption step. We claim

Pr[m̂i = ⊥ ∧mi ̸= ⊥] ≤ 2 · 2−γ . (8)

Once we have proven Eq. (8), the desired bound is obtained by taking the union
over all decapsulation queries.

To show prove the claim, we plug in the definitions of the interfaces eCO.RO
and eCO.Ext:

Pr[m̂ = ⊥ ∧m′ ̸= ⊥] ≤Pr[m̂ = ⊥ ∧ Enc(m′; eCO.RO(pkj ,m′, salt)) = c]

=
∥∥∥Πc,x

Y OXYFΣ
c,∅
F |pkj ,m′, salt⟩X |0⟩Y |ψi⟩FE

∥∥∥2
, (9)

where |ψi⟩ denotes the adversary-oracle state right before A submits the i-th
query c, and the projectors Πc,x

Y and Σc,∅ (see Eq. (3)) are defined with respect
to the function f : ((pk,m∥salt), r) 7→ (Enc(pk,m; r), pk, salt).

In [HHM22, Lemma 3], it was shown that the corresponding term – so the
term where G only hashes m, meaning the X -register only contains x := m′, and
where the projectors are defined relative to fpk : (m, r) 7→ Enc(pk,m; r) – can be
bounded by ∥∥∥Πc,x

Y OXYFΣ
c,∅
F |x⟩X |0⟩Y |ψi⟩FE

∥∥∥ ≤ √2 · 2−γ/2 . (10)

The proof used that the chosen projectors are diagonal in the computational
basis, plus a commutator bound which in turn used that the predictability term
of pk can be bounded by Γ (fpk) ≤ 2−γ |R|. By adapting the X -register such that
it additionally accommodates pk and salt, and by noticing that our projectors
are also diagonal and that Γ (f ) ≤ 2−γ |R|, we thus obtain the same bound as
in Eq. (10) in our adapted setting, and thus Eq. (8) by combining Eq. (10)
with Eq. (9).

Bound FFP-CCA via FFP-CPA. We now show that we can simplify the
FFP-CCA term as indicated below Theorem 17: firstly, we simplify it to its
passive counterpart, FFP-CPA.
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Theorem 21 (ST [PKE, G ] FFP-CPAu ⇒ ST [PKE, G ] FFP-CCAu). Let PKE
be a γ-spread public-key encryption scheme, and let C be an FFP-CCAu adversary
in the eQROMEnc against ST[PKE,G], issuing at most qD many decryption queries
and at most qeCO.RO and qeCO.Ext many queries to the two interfaces eCO.RO and
eCO.Ext, respectively.

Then there exist an FFP-CPAu adversary C’ in the eQROMEnc such that

AdvFFP-CCAu
ST[PKE,G](C) ≤ (qD + 1) ·AdvFFP-CPAu

ST[PKE,G](C
′) + 12qD(qG + 4qD)2−γ/2 . (11)

The adversary C’ makes qeCO.RO queries to eCO.RO and qeCO.Ext + qD queries
to eCO.Ext, and its runtime satisfies Time(C′) = Time(B) + O(qD).

Proof. We will want to show that the decryption oracle Dec provided in the
FFP-CCA game can be simulated via oracle Dec′ (see Fig. 17). Since Dec′ works
without the secret key, we can then construct C′ that uses C, simulating C’s
decryption oracle via Dec′. In a way, this is analogous to Theorem 17 in which
we replaced Decaps by simulation Decaps′. We note the tightness loss: as a
passive adversary C′ cannot use Dec to determine at which Dec′ query a failure
occurs, C′ instead resorts to guessing the query.

Let G0 be the FFP-CCAu game, and let games 1-5 be defined based on G0,
reflecting the same changes that we did in the proof of Theorem 17 – we first
’commute in’ the extraction queries that would be needed for Dec′, then switch
from Dec to Dec′, and then omit the redundant internal calls to Dec. Like in
the proof of Theorem 17, we have

AdvFFP-CCAu
ST[PKE,G](C) ≤ AdvG

5 + 12qD(qG + 2qD)2−γ/2 + Pr [FAIL ∧ ¬GUESS] .

Assume without loss of generality that C makes exactly qD many queries
to its decryption oracle (if it does not, we modify C by adding a number of
useless decryption queries in the end). We now define FFP-CPA adversary C′ as
follows: C′ samples i ← {1, ..., qD + 1} and runs C until its i-th decryption query
((ji , (ci , salti))), or until the end if i = qD + 1. If i is smaller then i = qD + 1, C′
returns m̂i , the message that was computed during C’s i-th query to Decaps′,
together with ji and salti . If i = qD + 1, then C′ simply outputs the output of C.
By construction,

AdvFFP-CPA
T[PKE,G](C′) ≥

1
qD + 1

(
AdvG5 + Pr[FAIL ∧ ¬GUESS]

)
.

Combining the two inequalities yields the desired bound.

Bound FFP-CCA via δ-correctness. To provide the alternative simplification
of the FFP-CCA term as indicated below Theorem 17, we now bound it in terms
of (statistical) worst-case correctness.

38



Theorem 22 (PKE δ (nu)-worst-case-correct ⇒ ST[PKE,G] FFP-CCAu).
Let PKE be a (randomized) PKE scheme that is δ-worst-case-correct, and let C
be an eQROM adversary against ST[PKE,G] in the FFP-CCAu game as defined
in Fig. 14, issuing at most qD many decryption queries and at most q many
queries to its interface eCO.RO. Then

AdvFFP-CCAu
ST[PKE,G](C) ≤ 10(q + qD + 1)2 · δ(nu) .

The proof will use [HM24, Theorem 3] which proved a corresponding single-
user bound for the ’standard’ derandomization transformation T that is used
within ’standard’ FO transforms. Before giving the proof of Theorem 22, we thus
first recall this theorem.

Theorem 23 (PKE δ-worst-case-correct ⇒ T[PKE,G] FFP-CCA). Let PKE
be a (randomized) PKE scheme that is δ-worst-case-correct, and let C be an
FFP-CCA adversary against T[PKE,G] in the eQROMEnc, issuing at most qD
decryption queries and q many queries to its extQROM oracle interface eCO.RO.
Then

AdvFFP-CCA
T[PKE,G](C) ≤ 10(q + qD + 1)2 · δ .

Proof of Theorem 22.. First, we will show that the bound in Theorem 23 also
applies for our transformation ST when viewing the salts as part of the message,
like in Fig. 14. Afterwards, we lift the setting from single- to multi-user. We
decompose the ’also-output-salt’ counterpart to ST into its ’salting’ part and a
variation of T:

1. Apply to PKE the ’salting’ transform Salt which turns PKE into an encryption
scheme Salt[PKE] := (Gen,Encst,Decst) with message space M× {0, 1}lensalt .
Encst simply appends the given salt to the PKE encryption, and Decst appends
it to its PKE decryption, see Fig. 18.

2. Apply to Salt[PKE] a multi-user variant Tpk of the original T-transform. Tpk
only differs from T by including pk into the randomness derivation, see Fig. 19.

Encst(pk, m∥salt)
01 c ← PKE.Enc(pk, m)
02 return c∥salt

Decst(sk, c∥salt)
03 m′ := PKE.Dec(sk, c)
04 return m′∥salt

Fig. 18: Salted PKE scheme Salt[PKE] = (Gen,Encst,Decst).

So when viewing salts as part of the message for ST, we have ST[PKE,G] =
Tpk[Salt[PKE],G] and thus

AdvFFP-CCA
ST[PKE,G](C) = AdvFFP-CCA

Tpk[Salt[PKE],G](C) .
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Tpk[PKE, G].Enc(pk, m)
01 r := G(pk,m)
02 c ← PKE.Enc(pk, m; r)
03 return c

Tpk[PKE, G].Dec(sk, c)
04 m′ = PKE.Dec(sk, c)
05 r ′ := G(pk,m)
06 if m′ = ⊥ or PKE.Enc(pk, m′; r ′) ̸= c
07 return ⊥
08 else return m′

Fig. 19: Multi-user variant Tpk[PKE,G], deviations from T highlighted in violet.

To finish step 1, we would like to use [HM24, Theorem 3] to argue that

AdvFFP-CCA
Tpk[Salt[PKE],G](C) ≤ 10(q + qD + 1)2 · δ . (12)

We address two (minor) obstacles: first, we use transformation Tpk instead
of T. However, feeding pk into G during randomness derivation has no influence
whatsoever on this single-user bound since this additional hash input neither
hinders nor eases the search for a message that exhibits decryption failure. (In
case this is not obvious, see Theorem 24 below). Second, the bound’s right-hand
side would use the correctness term of Salt[PKE], denoted by δst, not that of
PKE. We thus quickly verify that δst is upper-bounded by δ: fix any key pair
kp := (pk, sk) ∈ Supp(Gen), any message-salt tuple (m∥salt) ∈ M× {0, 1}lensalt ,
and define the conditional terms

δ(kp,m) := Pr[Dec(sk, c) ̸= m : c ← Enc(pk,m)]
and

δst(kp,m∥salt) := Pr[Decst(sk, c∥salt) ̸= m∥salt : c∥salt← Encst(pk,m∥salt)] .

Plugging this notation in our definition of worst-case correctness, we identify

δ = E
[
max

m
δ(kp,m)

]
and δst = E

[
max
m∥salt

δst(kp,m∥salt)
]
,

where the expectations are both taken over kp←$ Gen. But the conditional terms
coincide: since the salted encryption (c∥salt) of any fixed tuple (m∥salt) fails to
decrypt to (m∥salt) iff c fails to decrypt to m,

δst(pk, sk,m∥salt) = δ(pk, sk,m), so δst = δ

and we thus obtain the bound claimed in Eq. (12).
We proceed to capturing the multi-user setting. In [HM24], Theorem 23 was

proven by fixing the key pair (pk, sk), showing that conditioned on that key pair,

Pr[FFP-CCACT[PKE,G] ⇒ 1 | (pk, sk)] ≤ 10(q + qD + 1)2 · δ(pk, sk) ,

where
δ(pk, sk) := max

m
Pr

r←R
[Decsk(Encpk(m; r)) ̸= m] ,
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and then taking the expectation over the key pair to obtain

AdvFFP-CCA
T[PKE,G](C) ≤ 10(q + qD + 1)2 · δ .

Using the reasoning above, we adapt each of these steps to accommodate
transformation ST instead of T. In particular,

Pr[FFP-CCACST[PKE,G] ⇒ 1 | (pk, sk)] ≤ 10(q + qD + 1)2 · δ(pk, sk) . (13)

To capture nu many users, we generalize this to

AdvFFP-CCAu
ST[PKE,G](C) ≤ 10(q + qD + 1)2 · δ(nu) ,

by sampling nu many key pairs instead of a single one and taking the maximum
over the sampled key pairs. (We fix the key pairs and case separate the winning
condition of FFP-CCAu into the cases of C winning with the j-th key pair – in
each case, C’s advantage is upper bounded by its advantage in the case with the
’best’ key pair, which in turn is upper bounded by Eq. (13).)

For the sake of completeness, we close the proof of Theorem 22 by taking
T-derandomized schemes and showing that in/exclusion of pk during randomness
derivation has no influence on their FFP-CCA property in the single-user setting.

Theorem 24 (Tpk[PKE,G] FFP-CCA ⇔ T[PKE,G] FFP-CCA). Let PKE be a
(randomized) PKE scheme. Let C be an FFP-CCA adversary against T[PKE,G] in
the eQROMEnc. Additionally, let a second extractor function f be like Enc, but
adapted to hashed public keys, i.e. defined by f : ((pk,m), r) 7→ (Enc(pk,m; r), pk).
Then there exists an FFP-CCA adversary C′ against Tpk[PKE,G′] in the eQROMf
such that

AdvFFP-CCA
T[PKE,G](C) ≤ AdvFFP-CCA

Tpk[PKE,G′](C′) .

Vice versa, let D be an FFP-CCA adversary against Tpk[PKE,G′] in the
eQROMf , where f is defined as above. Then there exists an FFP-CCA adver-
sary D′ against T[PKE,G] in the eQROMEnc such that

AdvFFP-CCA
Tpk[PKE,G′](D) ≤ AdvFFP-CCA

T[PKE,G](D′) .

Adversary C′ runs in about the time of C and issues as many queries to its
respective oracles as C does, and adversary D′ runs in about the time of D and
issues as many queries to its respective oracles as D does.

Proof. First, consider FFP-CCA adversary C against T[PKE,G] in the eQROMEnc.
We construct FFP-CCA adversary C′ against Tpk[PKE,G′] as follows: C′ forwards
its challenge public key pk∗ to C, and at the end, it forwards the output of C to
its own game.
C′ simulates the random oracle G for C as follows: upon a query |φ⟩M to G,

C′ queries its own oracle G′ on |ψ⟩PK×M := |pk∗⟩PK ⊗ |φ⟩M and returns the
result to C. This simulation ensures that G(m) = G′(pk∗,m) for all messages,
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and thereby that the re-encryption check with r := G′(pk∗,m) is identical to the
re-encryption check with r := G(m). This has two consequences: first, if C wins,
then so does C′. Second, the decryption oracle that is provided to C′ perfectly
emulates the decryption oracle that C would expect, C′ thus can simply forward
any decryption query to its own decryption oracle.

It remains to describe how C′ can perfectly simulate the extraction interface
for C. Whenever C issues an extraction query c, C′ issues the query (c, pk∗) to
its own extraction interface. The result is either ⊥ or a message m such that
c = Enc(pk,m; G′(pk∗,m)). By definition of G, this coincides with the definition
of the extraction interface of C.

In conclusion, C′ issues queries to its oracles exactly when C does, perfectly
simulates the FFP-CCA game to C, and wins if C wins. We conclude

AdvFFP-CCA
T[PKE,G](C) ≤ AdvFFP-CCA

Tpk[PKE,G′](C′) .

For the other direction, we consider FFP-CCA adversaryD against Tpk[PKE,G′]
in the eQROMf . We construct FFP-CCA adversary FFP-CCA adversary D′ against
T[PKE,G] in the eQROMEnc as follows: again, D′ will forward its challenge public
key pk∗ to D, and its output to its own game. To be able to simulate G, D′
will prepare and maintain an internal compressed superposition oracle eCO with
domain PK ×M. To answer a query |φ⟩PK×M to G′, D′ will use its own oracle
G and this additional compressed oracle: on each base state, the return value is

OG′(|pk,m⟩ ⊗ |out⟩) :=
{
|pk∗,m⟩ ⊗ |out ⊕ G(m)⟩ pk = pk∗

|pk,m⟩ ⊗ |out ⊕ eCO.RO(pk,m)⟩ pk ̸= pk∗

This simulation again ensures that G′(pk∗,m) = G(m) for all messages. The
simulation of the decryption oracle thus again can be done perfectly by forwarding
all queries, and D′ again inherits its success from D. To respond to extraction
queries (c, pk), D′ will simply execute eCO.Ext whenever pk ̸= pk∗, and forward
the query to its extraction oracle for G when pk = pk∗.

The ’composed domain-separated’ simulation perfectly emulates an extractable
superposition oracle – the extraction interface of G′ anyways would take its input
(t, pk), perform the measurement Mt,pk and return the result. The measurement
thus would anyways act on the database of G if pk = pk∗, and otherwise on the
database of eCO. (This can be verified by reordering the registers in the oracle
database DG′ of G′ in a way such that it can be rewritten as DG ⊗DeCO.)

Additional take-away The approach used in the previous proof can serve as a
general framework to lift a certain proof technique to the extQROM:

Remark 25 (Lifting ROM proofs based on domain separation). In the
previous proof, we showed a quite intuitive result: we showed that a construction
C that uses an internal computation v := RO(x) is exactly as secure as a
counterpart Cvar of C that replaces v := RO(x) by v := RO(var, x), provided var
is some trivially computable variable.
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In our setting, the eQROM extractor interface in the game for Cvar accounted
for this additional hash input, by using the extractor function f ′ := (fvar(x, y), var)
with fvar being the extractor function in the game for C .

In the random oracle, one would show that security of C implies security of
Cvar via domain separation. (Given RO : X → T , simulate RO′ : X ×Var → T
via RO′(x, var′) := RO(x) iff var = var′, and lazy sampling otherwise.)

To lift this to the extractable QROM, we defined a ’composed domain-
separated’ simulation: we still viewed RO as RO′(−, var′) and composed it with
an internal extractable QRO ROint with complementary domain X ×Var \ {var},
by accordingly defining the output of RO′ on the base states. It only remained
to simulate the extraction interface Extract′(t, var′) of RO′, which forwarded the
extraction query to either RO or RO′′, depending on input value var′.

The ’composed domain-separated’ simulation in general perfectly emulates
an extractable superposition oracle with the same reasoning as at the end of the
previous proof. The technique can thus be applied whenever one want to include
or omit a hash input var in a construction, provided that

– var can be computed by a reduction, e.g., because it is public,
– the construction’s extractor function f was already parameterized by var

anyways, and one is satisfied if security of the ’include-var’ construction is
defined in the eQROMf ′ for the adapted extractor function f ′.
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