
Hybrid Obfuscated Key Exchange and KEMs

Felix Günther
IBM Research Europe – Zurich
mail@felixguenther.info

Michael Rosenberg
Cloudflare

research@mrosenberg.pub

Douglas Stebila
University of Waterloo

dstebila@uwaterloo.ca

Shannon Veitch
ETH Zurich

shannon.veitch@inf.ethz.ch

Version 1.0, March 3, 2025

Abstract

Hiding the metadata in Internet protocols serves to protect user privacy, dissuade
traffic analysis, and prevent network ossification. Fully encrypted protocols require
even the initial key exchange to be obfuscated: a passive observer should be unable
to distinguish a protocol execution from an exchange of random bitstrings. Deployed
obfuscated key exchanges such as Tor’s pluggable transport protocol obfs4 are Diffie–
Hellman-based, and rely on the Elligator encoding for obfuscation. Recently, Günther,
Stebila, and Veitch (CCS ’24) proposed a post-quantum variant pq-obfs, using a novel
building block called obfuscated key encapsulation mechanisms (OKEMs): KEMs whose
public keys and ciphertexts look like random bitstrings.

For transitioning real-world protocols, pure post-quantum security is not enough.
Many are taking a hybrid approach, combining traditional and post-quantum schemes
to hedge against security failures in either component. While hybrid KEMs are already
widely deployed (e.g., in TLS 1.3), existing hybridization techniques fail to provide
hybrid obfuscation guarantees for OKEMs. Further, even if a hybrid OKEM existed,
the pq-obfs protocol would still not achieve hybrid obfuscation.

In this work, we address these challenges by presenting the first OKEM combiner
that achieves hybrid IND-CCA security with hybrid ciphertext obfuscation guarantees,
and using this to build Drivel, a modification of pq-obfs that is compatible with
hybrid OKEMs. Our OKEM combiner allows for a variety of practical instantiations,
e.g., combining obfuscated versions of DHKEM and ML-KEM. We additionally provide
techniques to achieve unconditional public key obfuscation for LWE-based OKEMs,
and explore broader applications of hybrid OKEMs, including a construction of the first
hybrid password-authenticated key exchange (PAKE) protocol secure against adaptive
corruptions in the UC model.

Keywords: KEM combiners, hybrid, obfuscation, anonymity, key exchange, ML-KEM,
quantum-safe

1

https://orcid.org/0000-0002-8495-6610
https://orcid.org/0000-0001-9784-125X
https://orcid.org/0000-0001-9443-3170
https://orcid.org/0000-0002-8981-5593

Contents

1 Introduction 3
1.1 Post-quantum Obfuscated Key Exchange and Beyond 3
1.2 Barriers to Hybrid Obfuscated Key Exchange 4
1.3 Contributions . 4

2 Preliminaries 6
2.1 Obfuscated KEMs . 7

3 OEINC: An OKEM Combiner 10
3.1 Overview of Security . 11
3.2 IND-CPA and IND-CCA Security . 12
3.3 SPR-CCA Security . 12
3.4 Ciphertext Uniformity . 16
3.5 Public Key Uniformity . 18
3.6 Instantiating the Combiner . 18

4 A Hybrid Obfuscated Key Exchange Protocol 20
4.1 Shortcomings of the pq-obfs Protocol . 21
4.2 The Drivel Protocol . 21
4.3 Security . 22
4.4 Additional Features . 26

5 Hybrid PAKE with Adaptive Security 27
5.1 CAKE . 27
5.2 Achieving Hybrid CAKE . 28

6 Future Work 29

A Additional Definitions 37

B Relations Between Anonymity Notions 38

C Security Proofs for OEINC 40
C.1 IND-CPA / IND-CCA Security . 40
C.2 Public Key Uniformity . 42

D An OKEM from DHKEM 42

E Obfuscated Key Exchange Security Model 45
E.1 Session and game variables. 45
E.2 Session identifiers, contributive identifiers, and partnering. 46
E.3 Security Definition . 46
E.4 Single-challenge selective security . 46

F Security Proof for Drivel (Theorem 4.1) 46

2

1 Introduction

Increasingly, Internet protocols are hiding not just message contents, but the protocol
metadata itself, due to metadata being repeatedly leveraged to violate user security and
privacy, and to degrade connectivity [Hal24, XAR+24, WMSM11, And12]. As a pertinent
example, network censors often block traffic based on certain identifiable (plaintext) features
of the protocol [WSS+23]. To evade this form of censorship, circumvention tools often
encrypt metadata to avoid protocol fingerprinting and blocklists [The19, sha23, vme19].
These fully encrypted protocols [FJ24], such as the obfs4 protocol integrated in the Tor
ecosystem [The19], produce a stream of random-looking bytes intended to avoid classification.
Such streams can also be used in steganography due to their lack of structure [WJJS23].
Another motivation for encrypting protocol metadata, e.g., in pseudorandom cTLS [SP22], is
to prevent network ossification, whereby network middleboxes expect a specific protocol mode
(such as TLS 1.2) and fail to parse and route traffic of newer protocol versions (such as TLS
1.3 without its intentional 1.2 compatibility). If protocol metadata appears to a middlebox as
a random string of bytes, then no parsers can be written in the first place. Random-looking
metadata as an anti-ossification tool is already widely deployed, appearing in the QUIC
protocol [IT21], where elements of the initial packet are encrypted to make the wire image of
the protocol closer to pseudorandom, and in TLS Encrypted Client Hello [ROSW24], where
the server “accept” response is encoded as a truncated MAC and hidden in the randomness
sent from server to client. Both these techniques are also employed to improve privacy
guarantees.

Recent formalizations capture the guarantees provided by fully encrypted protocols in the
context of censorship circumvention [FJ24, GSV24]. A shared secret key allows encrypting
(meta)data into random-looking strings of bytes. However, it is less obvious how to make
the initial key exchange of a connection look random—this is what obfuscated key exchange
protocols aim to achieve.

1.1 Post-quantum Obfuscated Key Exchange and Beyond

As timelines for cryptographically relevant quantum computers shorten, there is an increased
need to update current obfuscated key exchange protocols which derive their security from
elliptic curve Diffie–Hellman. Recent work [GSV24] proposes a quantum-safe variant of obfs4
called pq-obfs. The construction relies on the newly defined obfuscated key encapsulation
mechanism (OKEM): a KEM that supports random-looking encoding of public keys and
ciphertexts. That work shows how to construct an efficient OKEM from the Module Learning
with Errors (MLWE) assumption by introducing the Kemeleon encoding which—akin to the
Elligator2 encoding for elliptic curve Diffie–Hellman [BHKL13]—turns ML-KEM public keys
and ciphertexts into random strings.

Due to caution over fully switching to newer assumptions, some governments [Ger24,
Fre22] and cloud providers [Wes24] opt instead for hybrid constructions, i.e., constructions
whose assumptions combine the hardness of two input primitives, usually one post-quantum
and one well-established. The reasons for this approach are twofold. First, using two
hardness assumptions hedges risk of mathematical advances, since the resulting construction
is secure even if one of the underlying assumptions fails, as happened with NIST PQC
Round 3 alternates and a finalist [BBC+22, Beu22, CD23]. Second, it hedges risk of
implementation errors, since newer post-quantum implementations may be more prone to
bugs [GJN20, GHJ+22, HSC+23, BBB+24]. For these reasons, hybrid protocols, such as the

3

X25519MLKEM768 key agreement protocol for TLS 1.3 have already been deployed to millions
worldwide [Rad]. It would thus be ideal to migrate obfuscated key exchange protocols to
post-quantum using a hybrid solution rather than a purely lattice-based one.

To date, the work on building hybrid KEMs and key exchange has focused primarily
on IND-CCA security [GHP18, WW24, BCD+24, BBF+19]. And although it has already
been argued that a broader study of security properties should be considered for post-
quantum KEMs [GMP22], works exploring additional properties in the hybrid setting are
very sparse [PG25]. To this end, we initiate a study of obfuscation and anonymity guarantees
in the hybrid setting, towards constructing quantum-safe metadata-hiding protocols that are
in line with modern techniques of hybridization.

1.2 Barriers to Hybrid Obfuscated Key Exchange

One might think that a straightforward approach to construct hybrid obfuscated key exchange
is to instantiate pq-obfs with a hybrid OKEM combining two OKEMs using a standard
KEM combiner. This however does not work, for two reasons.

Firstly, there are no OKEM-specific hybridization methods, and the existing methods for
KEM hybridization do not produce hybrid OKEMs. A KEM combiner takes as input two
KEMs and produces a single, hybrid KEM whose security is maintained as long as one of the
two input KEMs remains secure. Existing combiner techniques [GHP18, WW24, BCD+24]
do not apply to the obfuscation properties of OKEMs, where the goal is to have public keys
and ciphertexts indistinguishable from random strings. Take for example the Xyber hybrid
KEM [WW24], which encapsulates by performing a Kyber encapsulation and X25519 key
agreement in parallel, and where the final shared secret is a key derived from the two resulting
shared secrets. While parallel combiners like this provide hybrid IND-CCA security, they
do not provide hybrid obfuscation for OKEMs: if an adversary receives two concatenated
public keys or ciphertexts, then they need only observe a non-uniformity in one of them
to determine that the joint public key/ciphertext is not random. Most existing combiners
are in this parallel style, depicted in Figure 1(a), which even when applied to OKEMs only
provides obfuscation as strong as the weakest of the underlying obfuscation assumptions.

Secondly, even if there were an OKEM hybridization technique, there is still a hurdle in
using it to make pq-obfs hybrid. pq-obfs requires its OKEM to have public key uniformity :
public keys must appear uniformly random. Since a KEM public key must be available for
encapsulation prior to any other communication, it appears the only way to represent the
combined public key is as the concatenation of the underlying public keys, or something
equivalent. As a consequence, constructing a combined OKEM with hybrid public key
uniformity seems to require that the two underlying OKEMs have unconditional public key
uniformity. Unconditional public key uniformity, however, is uncommon for post-quantum
(O)KEMs, where public keys have structure that becomes distinguishable from random if
the underlying hardness assumption breaks down. This bars the path to make pq-obfs into
a hybrid obfuscated key exchange using standard components.

1.3 Contributions

We discuss how we overcome these limitations to achieve hybrid obfuscated key exchange,
and introduce an additional application in hybrid password-authenticated key exchange
(PAKE) protocols.

4

pk1 pk2

Encap Encap

K1, c1 K2, c2

c1 ∥ c2 ciphertextW

Kkey

(a) Classic parallel-style KEM combiner

pkout pkin

Encap Encap

Kout, cout Kin, cin

G

Kok,Koe SE.Enc

c′in

cout ∥ c′in ciphertextW

Kkey

(b) Our Outer-Encrypts-Inner Nested Combiner OEINC

Figure 1: Structure of Encap in KEM Combiners. W is a split-key PRF, G is a pseudorandom
generator, and SE is symmetric encryption.

OKEM combiner. Our first contribution is OEINC (“oink”), our Outer-Encrypts-Inner
Nested Combiner for OKEMs which yields hybrid IND-CCA security and ciphertext obfusca-
tion (without public key obfuscation) properties. The combiner is not fully generic, as it
requires one of the component OKEMs to have statistically uniform ciphertexts. This allows
us to use a nested approach in which we leverage the stronger OKEM as the outer one,
using its shared secret towards encrypting the ciphertext of the weaker, inner OKEM. Our
nested approach is depicted in Figure 1(b). This provides hybrid guarantees for ciphertext
uniformity and strong pseudorandomness (which in turn implies hybrid anonymity).

We show that the necessary statistical uniformity of ciphertexts can be achieved us-
ing the DHKEM construction from HPKE [BBLW22], over a prime-order group such as
P-256 or Ristretto [NIS23, LHT16], with the Elligator2 encoding algorithm [BHKL13]. This
obfuscated variant of DHKEM can then be combined with a post-quantum OKEM, such
as ML-Kemeleon [GSV24], to achieve the desired hybrid guarantees. We use OEINC as a
building block for the following applications.

Application: Hybrid obfuscated key exchange. Naturally, we would like to apply our
OKEM combiner to obtain a hybrid obfuscated key exchange protocol, but, as noted above,
hybrid pq-obfs would require hybrid public key uniformity, which OEINC does not achieve
and generally seems elusive for hybrid OKEMs with post-quantum security.

We present Drivel, a modification to the pq-obfs protocol which permits the use of
OKEMs without needing to obfuscate public keys. Our key insight is that public keys need
not be sent in the clear, but can instead be encrypted with intermediate secrets in the key
exchange. We describe the new protocol in detail and prove that Drivel achieves the same
security guarantees as pq-obfs.

5

Application: Hybrid PAKE with adaptive corruptions. Finally, we consider how
to apply our combiner to construct a hybrid password-authenticated key exchange (PAKE)
protocol. Existing hybrid PAKEs are secure only in the static corruption model, where the
adversary may not corrupt any parties during the protocol execution [HR24, LL24]. Prior
work [HR24] asked whether there exists a method for constructing adaptively secure hybrid
PAKEs. We answer this question in the affirmative.

We observe that CAKE [BCP+23], which is proven secure in the Universal Composability
model [Can01] with adaptive corruptions, can be instantiated with any OKEM with ciphertext
and public key uniformity. As previously noted, public key uniformity guarantees for
combiners seem elusive unless both underlying OKEMs have unconditional public key
uniformity. We describe a method to achieve unconditional public key uniformity in LWE-
based OKEMs. We observe that some standards-track KEMs, such as FrodoKEM [BCD+16,
NAB+20], have a dual-LWE structure: both public keys and ciphertexts are LWE samples.
This is done to optimize ciphertext size, but is not strictly necessary. We show how removing
this optimization (reverting back to earlier ideas of [Reg05]) yields a statistically uniform
public key, at the expense of a 15× increase in ciphertext size.

Combining this LWE-based OKEM with a classical OKEM with unconditional ciphertext
uniformity via OEINC, and then using it in CAKE, we achieve hybrid PAKE. This is the first
known hybrid PAKE that is secure under adaptive corruptions.

2 Preliminaries

We write y ← A(z) to denote assigning y the output of a deterministic algorithm A(z). When
A is non-deterministic, we write y←$ A(z). Similarly, we write y←$ S to denote uniformly
sampling an element from the set S.

A pseudorandom function (PRF) F : X × Y → Z treats the first input as a key and the
second as a label. For a randomly chosen key, the outputs on an adversarially-chosen label
of F should be indistinguishable from those of a random function on the label input. The
swap of F is F′(y, x) = F(x, y). We say that F is a swap-PRF if its swap F′ is a PRF. A
dual-PRF is both a PRF and a swap-PRF. We defer the standard definitions of PRF security,
pseudorandom generator (PRG) security, and OT-IND$ security (one-time indistinguishability
of ciphertexts from random) of symmetric encryption to Appendix A.

We adopt the definition of a split-key pseudorandom function from [GHP18], which is a
generalization of a pseudorandom function to multiple key inputs that behaves like a random
function if at least one of its key inputs is picked uniformly at random.

Definition 2.1 (Split-key pseudorandom function). A split-key pseudorandom function
F : K1 × · · · × Kn × X → Y takes as input a finite number of keys in K1 × · · · × Kn and a
label in X and produces an output in Y. We define the split-key pseudorandom function
(skPRF) advantage of an adversary A against a function F as

AdvskPRFF,i (A) := Pr
[
AF(··· ,ki,···)()⇒ 1 | ki←$Ki

]
− Pr

[
AR(···)()⇒ 1 | R←$ {all functions : Kn\i ×X → Y}

]
,

where Kn\i denotes K1 × · · · × Ki−1 ×Ki+1 × · · · × Kn.

6

2.1 Obfuscated KEMs

Günther, Stebila, and Veitch [GSV24] introduced notions of obfuscated key encapsulation
mechanisms (OKEMs). We present equivalent definitions next, with slight modifications for
simplicity.

Definition 2.2 (Key encapsulation mechanism). A key encapsulation mechanism KEM =
(KGen,Encap,Decap) consists of three algorithms:

• KGen() $→ (sk , pk) is a probabilistic key generation algorithm that generates a secret
key sk and corresponding public key pk.

• Encap(pk) $→ (c,K) is a probabilistic encapsulation algorithm that takes as input a KEM
public key pk, and outputs a ciphertext c and shared secret K .

• Decap(sk , c)→ K is a deterministic decapsulation algorithm that takes as input a secret
key sk and ciphertext c, and outputs a shared secret K .

Definition 2.3 (KEM encapsulation/decapsulation correctness). We say that a KEM KEM =
(KGen,Encap,Decap) is δKEM-correct if

Pr

[
Decap(sk , c) ̸= K

∣∣∣∣ (sk , pk)←$ KGen(),
(c,K)←$ Encap(pk)

]
≤ δKEM.

IND-CPA, IND-CCA, SPR-CCA. We will consider KEMs with indistinguishability
under chosen-plaintext or chosen-ciphertext attacks (IND-CPA / IND-CCA), meaning that
the shared secret is indistinguishable from random given a real ciphertext, as well as
strong pseudorandomness under chosen-ciphertext attacks (SPR-CCA) [Xag22], meaning
that a real (ciphertext, shared secret) pair is indistinguishable from a random pair (in
SPR-CCA, pseudorandomness of the ciphertext is defined with respect to a simulator S
defining a ciphertext target distribution). We provide the definitions of both these games
in Figure 2 and define the respective advantages of an adversary A against the X ∈
{IND-CPA, IND-CCA,SPR-CCA} security of a KEM K as

AdvXK (A) := 2 · Pr
[
GX
K (A)⇒ 1

]
− 1.

Definition 2.4 (KEM public key collision probability). Let KEM be a KEM. We define the
public key collision probability of KEM for n ∈ N public keys as

pkcollKEM(n) := Pr

[
pk i = pk j

∧ i ̸= j

∣∣∣∣ (sk i, pk i)←$ KEM.KGen()
for i ∈ [1, n]

]
.

Definition 2.5 (Obfuscated KEM). An obfuscated key encapsulation mechanism (OKEM)
O = (KGen,Encap,Decap,DecodePk) with obfuscated key length ol ∈ N and obfuscated
ciphertext length cl ∈ N consists of the following algorithms:

• KGen() $→ (sk , pk , p̂k) is a probabilistic key generation algorithm that generates a secret

key sk, public key pk, and obfuscated public key p̂k ∈ {0, 1}ol.

• Encap(pk) $→ (c,K) is a probabilistic encapsulation algorithm that takes as input a
KEM public key pk and outputs an (obfuscated) ciphertext c ∈ {0, 1}cl and key K .

7

GIND-CCA
K (A):
1 b←$ {0, 1}
2 (pk , sk)←$ KGen()

3 (c∗,K∗
1)←$ Encap(pk)

4 K∗
0 ←$K

5 b′←$AODecap(·)(pk , c∗,K∗
b)

6 return Jb = b′K

GSPR-CCA
K,S (A):

7 b←$ {0, 1}
8 (pk , sk)←$ KGen()

9 (c∗1 ,K
∗
1)←$ Encap(pk)

10 c∗0 ←$ S; K∗
0 ←$K

11 c∗ ← c∗b

12 b′ ← AODecap(·)(pk , c∗b ,K
∗
b)

13 return Jb = b′K

ODecap(c):

14 if c = c∗ then return ⊥
15 K ← Decap(sk , c)

16 return K

Figure 2: Security games for IND-CCA and SPR-CCA security of a KEM K =
(KGen,Encap,Decap) with key space K. The IND-CPA game is obtained by removing the
decapsulation oracle from IND-CCA.

• Decap(sk , c) → K is a deterministic decapsulation algorithm that takes as input a
secret key sk and (obfuscated) ciphertext c, and outputs a key K .

• DecodePk(p̂k)→ pk is a deterministic decoding algorithm that on input an obfuscated

public key p̂k ∈ {0, 1}ol outputs a public key pk.

Note that the tuple of algorithms (KGen,Encap,Decap), when ignoring the obfuscated public

key p̂k output by KGen, is a KEM as in Definition 2.2.
Beyond KEM correctness, as per Definition 2.3, we demand that public keys generated

by KGen can be successfully decoded:

Pr
[
DecodePk(p̂k) = pk

∣∣∣(sk , pk , p̂k)←$ KGen()
]
= 1.

IND-CPA, IND-CCA, and SPR-CCA security of an OKEM are defined exactly as for the

underlying KEM (see Figure 2), merely ignoring the encoded public key p̂k output by KGen.
We also adopt notions of public key and ciphertext uniformity of (O)KEMs from [GSV24].

Definition 2.6 (Public key uniformity). Let O be an OKEM. We measure the uniformity
of the obfuscated public keys of length ol generated by O.KGen against an adversary A as

Advpk-unifO (A) := 2 · Pr

[
A(p̂kb) = b

∣∣∣∣∣ b←$ {0, 1}, p̂k0←$ {0, 1}ol,
(sk1, pk1, p̂k1)←$ O.KGen()

]
− 1.

For an unbounded adversary A, we call the advantage Advpk-unifO (A) statistical.

Definition 2.7 (Ciphertext uniformity – strong or regular). Let O be an OKEM. We
measure the strong or regular ciphertext uniformity of the obfuscated ciphertext of length cl
generated by O.Encap against an adversary A as

Advatk-ctxt-unifO (A) := 2 · Pr

A(sk, pk , cb) = b

∣∣∣∣∣∣
b←$ {0, 1}, c0←$ {0, 1}cl,
(sk , pk , p̂k)←$ O.KGen(),
(c1,K1)←$ O.Encap(pk)

− 1,

where atk ∈ {strong, reg} and the code in the dashed box is only included for atk = strong.

For an unbounded adversary A, we call the advantage Advatk-ctxt-unifO (A) statistical.

8

strong ctxt uniformity

strong-ctxt-unif
(random ctxts, given sk)

regular ctxt uniformity

reg-ctxt-unif [GSV24]
(random ctxts, given pk)

anonymous KEM

[BCP+23]

anonymous KEM

[SGJ23]

strong pseudorandomness

SPR-CCA [Xag22]
(indist. shared secrets, ciphertexts simulatable by S)

anonymity

ANO-CCA [GMP22]

indistinguishability
IND-CPA / IND-CCA

(indistinguishable shared secrets)

public key uniformity

pk-unif [GSV24]
(random public key)

fuzzy KEM
=

uniform public keys

[BCP+23] [SGJ23]

defined over regular
public key/ciphertext spacedefined over bitstrings {0, 1}∗

A has decapsulation oracle

no decapsulation oracle

for simulators
S ←$ {0, 1}cl

for simulators
S ←$ ctxt space

Figure 3: Relations between anonymity and uniformity notions for KEMs. Arrows =⇒
indicate strict implications. Properties shaded in blue are used in this paper.

Note that, when paired with an encoding function like Elligator2 [BHKL13], a Diffie–
Hellman-based KEM over a prime-order curve (e.g., DHKEM(P-256) as defined in HPKE
[BBLW22]) is an OKEM with statistical strong ciphertext uniformity and statistical public key
uniformity (see Appendix D). Additionally, ML-KEM paired with the Kemeleon encoding is an
OKEM with (computational) regular ciphertext uniformity and (computational) public key
uniformity, as proven in [GSV24, §2.4]. Finally, Saber [DKRV18] and FrodoKEM [BCD+16]
have the same properties as ML-KEM with Kemeleon and are “natural” OKEMs, i.e., KEMs
where no encoding step is necessary in order to achieve obfuscation. This is because both
KEMs, based on Module Learning-with-Rounding (MLWR) and unstructured Learning-
with-Errors (LWE) respectively, use power-of-two moduli, making their public keys and
ciphertexts pack perfectly into bitstrings. Their IND-CCA and SPR-CCA properties are
stated in [Xag22, GMP22, MX23].1

The notions of strong pseudorandomness, public key uniformity, and (strong and regular)
ciphertext uniformity are related to existing notions of anonymity and uniformity for KEMs
in the literature, summarized in Figure 3. We elaborate on these relations in Appendix B,
and note that all related notions are weaker than or equivalent to one of the properties
we use here. The stronger notions of anonymity and uniformity are required for our later
applications (see Sections 4 and 5). We focus on the above definitions of ciphertext and
public key uniformity (rather than existing definitions of uniformity), because we require
uniformity properties defined over the space of bitstrings {0, 1}∗ rather than the space of
public keys/ciphertexts as used in some prior works. Although regular ciphertext uniformity
is implied by SPR-CCA (when SPR-CCA is defined with respect to a simulator that outputs

1Specifically, [GMP22] shows that FrodoKEM achieves computational ANO-CCA, and [Xag22] suggests
that it also achieves computational SPR-CCA.

9

uniformly random bitstrings), we consider it separately because in some results we only
require the weaker assumption.

3 OEINC: An OKEM Combiner

We now present our OKEM combiner and prove the necessary security properties for use in
our hybrid obfuscated key exchange protocol (Section 4).

Shortcomings of existing combiners. A KEM combiner merges two ingredient KEMs
into a single, hybrid KEM such that security of the hybrid is maintained as long as one of
the ingredient KEMs remains secure. The main focus of prior work analyzing KEM combin-
ers [GHP18, BBF+19] has been on achieving hybrid IND-CCA security: an attacker should
not be able to learn the secret key by breaking only one of the underlying KEMs. Although
this is a natural starting point, some applications such as broadcast encryption, anonymous
credential systems, and auction protocols, require anonymity properties not implied by
IND-CCA security [GMP22]. Likewise, for our use case of constructing a hybrid obfuscated
key exchange, we require that the combined KEM has hybrid obfuscation properties, to
ensure that an adversary cannot distinguish the key exchange transcript from random by
breaking obfuscation of only one of the underlying primitives.

Prior work on KEM combiners constructed parallel combiners: the combined public keys,
secret keys, and ciphertexts are the concatenation of the ingredient KEM’s public keys, secret
keys, and ciphertexts, respectively (perhaps with an added MAC). The combined KEM’s
encapsulation and decapsulation routines first execute the underlying KEM’s encapsulation
and decapsulation routines and then join the resulting shared secrets using a split-key
PRF [GHP18] to derive the final shared secret. Figure 1(a) illustrates a parallel combiner.

These existing combiners, however, do not provide hybrid obfuscation. Specifically, if an
ingredient KEM’s ciphertext is distinguishable from random, then its concatenation with
another ciphertext is trivially distinguishable from random as well. For example, since the
uniformity of ML-KEM ciphertexts relies on the module LWE assumption, breaking this
assumption would be sufficient to violate the ciphertext uniformity of any parallel combiner
using ML-KEM, such as Xyber [WW24] or X-Wing [BCD+24]. Furthermore, it is not obvious
how to fix this: if one were to encrypt each component ciphertext under a key from the
respective other ingredient KEM, the result is impossible to decapsulate. Therefore, we
require a more thoughtful construction.

The OEINC construction. Our OKEM combiner’s encapsulation function operates
sequentially, rather than in parallel. This new method, depicted in Figure 1(b), operates as
follows. The first (outer) ingredient OKEM is run, and (a key derived from) its shared secret
is used to encrypt the second (inner) ingredient OKEM’s ciphertext. The final ciphertext is
the outer ciphertext concatenated with the encrypted inner ciphertext. The shared secrets
are combined with a split-key PRF. We call this the Outer-Encrypts-Inner Nested Combiner
(OEINC).

The ciphertext uniformity of this new scheme relies on the security of the encryption
scheme and the ciphertext uniformity of one of the two ingredient OKEMs. We use the
OKEM with the stronger ciphertext uniformity property as the outer OKEM. When the
outer OKEM has statistical strong ciphertext uniformity, e.g., as in DHKEM combined with
Elligator2 (Appendix D), we find that the resulting combiner achieves hybrid security for the
relevant notions.

10

KGen():

1 (skout, pkout, p̂kout)←$ outOKEM.KGen()

2 (sk in, pk in, p̂kin)←$ inOKEM.KGen()

3 return ((skout, sk in), (pkout, pk in), p̂kout∥p̂kin)

Encap(pk):

4 (pkout, pk in)← pk

5 (Kout, cout)←$ outOKEM.Encap(pkout)

6 (Koe,Kok)← G(Kout) // keys for enc. & key deriv.

7 (Kin, cin)←$ inOKEM.Encap(pk in)

8 c′in ← SE.Enc(Koe, cin)

9 c ← cout∥c′in
10 K ←W(Kok,Kin, c)

11 return (K , c)

DecodePk(pk):

12 p̂kout∥p̂kin ← p̂k

13 pkout ← outOKEM.DecodePk(p̂kout)

14 pk in ← inOKEM.DecodePk(p̂kin)

15 return (pkout, pk in)

Decap(sk , c):

16 (skout, sk in)← sk

17 cout∥c′in ← c // ciphertexts are fixed-length

18 Kout ← outOKEM.Decap(skout, cout)

19 (Koe,Kok)← G(Kout)

20 cin ← SE.Dec(Koe, c′in)

21 Kin ← inOKEM.Decap(sk in, cin)

22 K ←W(Kok,Kin, c)

23 return K

Figure 4: Our OKEM combiner OEINC[outOKEM, inOKEM,SE,G,W] for two OKEMs
outOKEM and inOKEM, SE a length-preserving symmetric encryption scheme, G a PRG,
and W a split-key PRF.

Our detailed combiner construction is given in Figure 4. Its building blocks include a
length-preserving, OT-IND$-secure symmetric encryption scheme SE with key space K =
{0, 1}klSE and message length clinOKEM, a function G : {0, 1}kl → {0, 1}kl+klSE assumed to be a
pseudorandom generator, and a split-key PRF W.

3.1 Overview of Security

We now prove that OEINC satisfies IND-CPA2, IND-CCA, SPR-CCA, ciphertext uniformity
(ctxt-unif), and public key uniformity (pk-unif), given some properties of the underlying
OKEMs. More specifically, for OEINC instantiated with an outer OKEM outOKEM and an
inner OKEM inOKEM:

• IND-CPA: If either outOKEM or inOKEM is IND-CPA, then the combined OKEM is
IND-CPA.

• IND-CCA: If either outOKEM or inOKEM is IND-CCA, then the combined OKEM is
IND-CCA.

• SPR-CCA: If either (1) outOKEM is SPR-CCA, or (2) inOKEM is SPR-CCA and
outOKEM is strong-ctxt-unif, then the combined OKEM is SPR-CCA.

• Ciphertext uniformity: If either (1) outOKEM is reg-ctxt-unif and outOKEM is IND-CCA,
or (2) outOKEM is reg-ctxt-unif and inOKEM is reg-ctxt-unif, then the combined OKEM
is reg-ctxt-unif.

• Public key uniformity: If both outOKEM and inOKEM are pk-unif, then the combined
OKEM is pk-unif.

2We show IND-CPA separately from IND-CCA since the weaker notion is sufficient for some applications,
e.g., password-authenticated key exchange (Section 5), and often comes with substantial performance benefits.

11

In particular, when outOKEM is statistically strong-ctxt-unif, the combined OKEM has
IND-CPA, IND-CCA, SPR-CCA, and reg-ctxt-unif properties that are the stronger of the two
underlying OKEMs.

Public key uniformity stands out because it requires both underlying OKEMs to be
pk-unif. While this limitation appears to be inherent to the primitive (when only the public
key is known, there is no key material with which to obfuscate it), it is not a deal breaker for
deployment. Our key exchange protocol in Section 4 does not require public key uniformity
at all, since it encrypts ephemeral public keys using intermediate secrets derived from static
keys. And where public key uniformity is necessary, e.g., in password-authenticated key
exchange in Section 5, we show that it is possible to construct lattice-based OKEMs with
statistical public key uniformity. This comes at the cost of significantly larger public keys
and ciphertexts compared to, e.g., ML-KEM with Kemeleon.

3.2 IND-CPA and IND-CCA Security

Intuitively, IND-CPA and IND-CCA security of OEINC should naturally hold, since the final
shared secret is derived from the two underlying shared secrets using a split-key PRF.
Importantly, OEINC does not use the same secret for encrypting ciphertexts (Koe) as for key
derivation (Kok). The straightforward proof is deferred to Appendix C.1.

Theorem 3.1 (IND-CPA / IND-CCA security of OEINC). Let OEINC =
OEINC[outOKEM, inOKEM,SE,G,W] be a combined OKEM as defined in Figure 4. Then
for any adversary A against the IND-atk security of OEINC, for atk ∈ {CPA,CCA}, we give
algorithms B1, B2, B3, C1, C2 such that

AdvIND-atk
OEINC (A) ≤ AdvIND-atk

outOKEM(B1) + AdvPRGG (B2) + AdvskPRFW,1 (B3),

and

AdvIND-atk
OEINC (A) ≤ AdvIND-atk

inOKEM(C1) + AdvskPRFW,2 (C2).

3.3 SPR-CCA Security

Consider the case where the underlying computational assumption of inOKEM is broken.
Then, assuming the SPR-CCA security of the outer OKEM holds, this implies that the outer
ciphertext is uniformly random and the inner ciphertext is encrypted (using an OT-IND$
symmetric encryption scheme) with a random key, and thus also pseudorandom. The final
shared secret is also random since the split-key PRF W takes as input the shared secret of
the outer OKEM.

Now, consider the case where the underlying computational assumption of outOKEM is
broken, i.e., IND-CCA and SPR-CCA no longer hold (note that strong ciphertext uniformity
cannot fail when it is statistical). Then the outer ciphertext is still uniformly random, and
the inner one is a keyed permutation of a uniformly random value, and thus still random
even though the encryption key may be compromised. The shared secret is also uniformly
random, since the split-key PRF W still consumes the shared secret of the inner OKEM.

Theorem 3.2 (SPR-CCA Security of OEINC). Let OEINC = OEINC[outOKEM, inOKEM,SE,G,
W] be a combined OKEM as defined in Figure 4. Then (stated informally) OEINC has strong
pseudorandomness under chosen-ciphertext attack (SPR-CCA) if either (I) the outer KEM
outOKEM is SPR-CCA-secure, SE is OT-IND$-secure, G is a PRG, and W is a PRF, or

12

(II) inOKEM is SPR-CCA-secure, outOKEM has strong ciphertext uniformity, and W is a
PRF. More precisely, for any adversary A against the SPR-CCA security of OEINC, we give
algorithms B1–B4 and C1–C3 such that

AdvSPR-CCAOEINC,S1(A) ≤ AdvSPR-CCAoutOKEM,SoutOKEM
(B1) + AdvPRGG (B2) + AdvskPRFW,1 (B3)

+ AdvOT-IND$
SE (B4),

where S1 is a simulator that returns a ciphertext c̃outOKEM∥c̃inOKEM where c̃outOKEM←$ SoutOKEM

and c̃inOKEM←$ {0, 1}clinOKEM , and

AdvSPR-CCAOEINC,S2(A) ≤ AdvSPR-CCAinOKEM,SinOKEM
(C1) + AdvskPRFW,2 (C2) + Advstrong-ctxt-unifoutOKEM (C3),

where SinOKEM and S2 sample ciphertexts uniformly at random from {0, 1}clinOKEM and c̃←$

{0, 1}clinOKEM+cloutOKEM , respectively.
We note that when SoutOKEM is the simulator that samples ciphertexts uniformly at random

from {0, 1}cloutOKEM , then S1 = S2.3

Proof. Game 0. We start with the security game for SPR-CCA (GSPR-CCA
OEINC,S1(A)).

Case I.

In the first case, we reduce to SPR-CCA security of the outer OKEM, and proceed via a
series of game hops.

Game I.0. In GI.0, we replace (in the challenge encapsulation yielding K ∗1 and c∗1) the outer

OKEM shared secret Kout and ciphertext cout with a random key K̃out←$KoutOKEM and
simulated ciphertext c̃out←$ SoutOKEM. We bound the adversary’s difference in advantage by
a reduction B1 to the SPR-CCA of outOKEM w.r.t the simulator SoutOKEM. B1 obtains the
SPR-CCA challenge (pk , c∗,K ∗) for outOKEM and simulates the game as follows for A. It
uses pk in place of pkout. When ODecap is called, if cout = c∗ (in line 17 of Figure 4) then B1
computes the remainder of Decap using K ∗ as Kout; else, if cout ̸= c∗ then B1 queries its
SPR-CCA decapsulation oracle (for outOKEM) and uses the response as Kout.

If (c∗,K ∗) are real values then B1 exactly simulates G0 to A; else, B1 simulates GI.0 to
A. Therefore:

Pr[G0]− Pr[GI.0] ≤ AdvSPR-CCAoutOKEM,SoutOKEM
(B1).

Game I.1. In GI.1, for the computation of the challenge shared secret K ∗1 , we replace the

output Koe,Kok of G(K̃out) with uniformly random K̃oe, K̃ok, in particular for the challenge.
We bound the difference in this step by a reduction B2 to the PRG security of G. The
reduction uses its oracle in place of G, simulating either GI.0 (if the G oracle output is real)
or GI.1 (if the G oracle output is random), giving:

Pr[GI.0]− Pr[GI.1] ≤ AdvPRGG (B2).

3Our result for SPR-CCA security is specific to the case where the inner KEM produces ciphertexts that
look like random bitstrings. It can be generalized to the case where both outer and inner KEMs produce
structured, simulatable ciphertexts (e.g., in many non-obfuscated KEMs) by assuming that SE is an ideal
cipher, using a generalized definition of strong-ctxt-unif that captures indistinguishability from simulated
ciphertexts, and adjusting the proof accordingly. Our focus here is on obfuscated KEMs with uniformly
random ciphertexts.

13

Encap(pk):

1 (pkout, pk in)← pk

2 (K̃out, c̃out)←$KoutOKEM × SoutOKEM // GI.0

3 (K̃oe, K̃ok)←$ {0, 1}clinOKEM × ... // GI.1

4 (Kin, cin)←$ inOKEM.Encap(pk in)

5 c′in ← SE.Enc(K̃oe, cin)

6 c ← cout∥c′in
7 K ← W̃(Kin, c) // GI.2

8 return (K , c)

Decap(sk , c):

9 (skout, sk in)← sk

10 cout∥c′in ← c

11 if cout ̸= c̃out then . . . // handle regularly

// else: use K̃oe, K̃ok

12 cin ← SE.Dec(K̃oe, c′in)

13 Kin ← inOKEM.Decap(sk in, cin)

14 K ← W̃(Kin , c) // GI.3: Kin ← 0

15 return K

Figure 5: Modifications in the game hops GI.0–GI.3 of the SPR-CCA proof, case (I), to the
encapsulation and decapsulation algorithms of OEINC (Figure 2, line 9 resp. 15).

Game I.2. We now replace evaluations of W(K̃ok, ·, ·) with a random function W̃(·, ·).
This in particular replaces the challenge shared secret K with a uniformly random value,
independent of outputs of the decapsulation oracle since the third input c to W must be
distinct from the challenge c∗ for each query.

We bound this step by a reduction B3 to the split-key pseudorandomness of W, where B3
uses its oracle in place of calls to W(K̃ok, ·, ·). It follows that

Pr[GI.1]− Pr[GI.2] ≤ AdvskPRFW,1 (B3).

Game I.3. Next, we rewrite the decapsulation oracle when queried with the challenge
outer ciphertext c̃out in a way that is unnoticeable to the adversary. First, we fix the Kin

input to W̃ (Figure 5, line 14) to a zero string. Since Kin is deterministically derived from the

second input c = c̃out∥c′in (as K̃oe and sk in are fixed), this does not change the distribution
of K : decapsulating a ciphertext c = c̃out∥c′in will yield distinct, randomly sampled shared
secrets for distinct c′in. Then

Pr[GI.2] = Pr[GI.3].

From this point on, we no longer need to decapsulate the corresponding inner ciphertext
(lines 12 and 13 of Figure 5 highlighted in gray), and hence also do not need to use K̃oe

anymore to decrypt c′in when answering decapsulation queries on ciphertexts containing the
challenge outer ciphertext c̃out.

Game I.4. Finally, in GI.4 we replace the encrypted inner ciphertext c′in of the challenge
with random bits of length clinOKEM, by a reduction B4 to the OT-IND$ security of SE. B4, on
input cin, obtains a challenge ciphertext c∗ and simulates the game for A, replacing c′in with

c∗ in the challenge ciphertext. Importantly, B4 does not need to know the encryption key K̃oe

to answer decapsulation queries on ciphertexts containing the challenge outer ciphertext c̃out,
as per GI.3.

Hence B4 exactly simulates GI.3 or GI.4 to A. Therefore:

Pr[GI.3]− Pr[GI.4] ≤ AdvOT-IND$
SE (B4).

At this point, by GI.0 and GI.4, the ciphertext received by A is uniformly random and by
GI.2 the key is uniformly random. Therefore,

AdvGI.4

OEINC,S1(A) = 0.

14

Collecting the bounds yields the theorem statement.

Case II.

In the second case, we reduce to SPR-CCA security of inOKEM and strong-ctxt-unif security
of outOKEM.

Game II.0. In GII.0, we replace (in the challenge encapsulation yielding K ∗1 and c∗1) the in-

ner OKEM shared secret Kin and ciphertext cin with a random shared secret K̃in←$KinOKEM

and random ciphertext c̃in←$ {0, 1}clinOKEM . The adversary A’s advantage is then bounded by
a reduction C1 to the SPR-CCA security of inOKEM with respect to the simulator SinOKEM

that samples ciphertexts uniformly at random from {0, 1}clinOKEM . C1 obtains an SPR-CCA
challenge (pk , c∗,K ∗) and simulates the game for A by using pk in place of pk in. When
ODecap is called, if cin = c∗ (in line 20 of Figure 4), then C1 uses K ∗ in place of Kin; else
(when cin ̸= c∗), C1 queries its SPR-CCA decapsulation oracle (for inOKEM) and uses the
response as Kin.

If (c∗,K ∗) are real then C1 exactly simulates G0 to A. Otherwise, C1 simulates GII.0 to
A. Thus,

Pr[G0]− Pr[GII.0] ≤ AdvSPR-CCAinOKEM,SinOKEM
(C1).

Game II.1. Next, we replace evaluations of W(·, K̃in, ·) with a random function. This in
particular replaces K (both in the challenge computation and in the decapsulation oracle)
with a uniformly random value, independent of outputs of the decapsulation oracle since the
third input c to W is distinct from the challenge c∗ for each query. This step is bounded by
a reduction C2 to the split-key pseudorandomness of W, where C2 uses its oracle in place of
calls to W(·, K̃in, ·). Since K̃in is random by GII.0, it follows that

Pr[GII.0]− Pr[GII.1] ≤ AdvskPRFW,2 (C2).

Game II.2. In GII.2, we replace (in the challenge encapsulation) the encrypted inner
ciphertext c′in with a random ciphertext in {0, 1}clinOKEM . This follows directly from the fact
that SE.Enc(Koe, ·) is a permutation over {0, 1}clinOKEM and that c̃in is a random bitstring (by
GII.0). Therefore,

Pr[GII.1] = Pr[GII.2].

Game II.3. Now, the final shared secret K and the inner ciphertext are random (and
independent of Kout), so it only remains to replace the outer ciphertext cout with random. In
GII.3, we replace cout with a randomly sampled ciphertext from {0, 1}cloutOKEM . We bound this
change by a reduction C3 to the strong-ctxt-unif of outOKEM. In particular, C3 simulates
the game for A by using its challenge ciphertext c∗ from the strong-ctxt-unif game in place
of cout. To answer ODecap queries, C3 uses the given sk from the strong-ctxt-unif challenge
to simulate calls to outOKEM.Decap(skout, cout). Then, C3 exactly simulates GII.2 (if the
strong-ctxt-unif challenge is real) or GII.3 (if the strong-ctxt-unif challenge is random) to A.
Therefore,

Pr[GII.2]− Pr[GII.3] ≤ Advstrong-ctxt-unifoutOKEM (C3).

15

Now, each of K , cout, and c′in are random. Hence, the adversary A can only guess the
challenge bit b:

AdvGII.3

OEINC,S2(A) = 0.

Collecting the bounds yields the theorem statement.

3.4 Ciphertext Uniformity

A hybrid ciphertext uniformity guarantee holds if the outer OKEM has statistical (regular)
ciphertext uniformity. When the computational assumption underlying inOKEM is broken
and the assumption underlying outOKEM holds, the outer KEM ciphertext is still uniformly
random by its ciphertext uniformity, and the shared secret derived from outOKEM is used
to encrypt the inner ciphertext, thus retaining its uniformity. Notably, the encryption
step should not provide any additional information about the inner ciphertext; any use of
authentication (such as AE or a MAC) would provide an oracle to the adversary distinguishing
inner ciphertexts from random. On the other hand, if the outOKEM assumption is broken,
then the encryption key no longer provides any guarantee, so ciphertext uniformity relies on
that of both the outer and inner ciphertexts.

Theorem 3.3 (reg-ctxt-unif of OEINC). Let OEINC = OEINC[outOKEM, inOKEM,SE,G,W]
be a combined OKEM as defined in Figure 4. For any adversary A against the regular
ciphertext uniformity (Definition 2.7) of OEINC, we give algorithms B1–B4 and C1–C2 such
that

Advreg-ctxt-unifOKEM (A) ≤ AdvIND-CPA
outOKEM(B1) + AdvPRGG (B2) + AdvOT-IND$

SE (B3)

+ Advreg-ctxt-unifoutOKEM (B4),

and

Advreg-ctxt-unifOKEM (A) ≤ Advreg-ctxt-unifinOKEM (C1) + Advreg-ctxt-unifoutOKEM (C2).

Proof. Game 0. We proceed via a series of game hops, starting with the security game for
reg-ctxt-unif, Greg-ctxt-unif

OEINC (A).

Case I.

In the first case, we begin by reducing to IND-CPA security and reg-ctxt-unif of the outer
KEM.

Game I.0. In GI.0, we replace the outer KEM shared secret Kout with a uniformly random
shared secret K̃out. All values derived from Kout use the random value K̃out.

We bound the difference in this step by a reduction B1 to the IND-CPA security of
outOKEM. B1 obtains the IND-CPA challenge (pk , c∗,K ∗) and simulates the game for A
by using pk , c∗, and K ∗ as pkout, cout, and Kout, respectively. (Note that there are no
decapsulation queries to be handled for reg-ctxt-unif security.) If K ∗ is a real KEM shared
secret then B1 has exactly simulated G0 to A; else, if K ∗ is random, then B1 has exactly
simulated GI.0 to A. Therefore:

Pr[G0]− Pr[GI.0] ≤ AdvIND-CPA
outOKEM(B1).

16

Game I.1. In GI.1, we replace (Koe,Kok) with uniformly random values K̃oe, and K̃ok. We
bound the difference in this step by a reduction B2 to the PRG security of G. The reduction
uses its input in place of Koe,Kok. Since Kout is random by GI.0, B2 simulates either GI.0 or
GI.1, giving:

Pr[GI.0]− Pr[GI.1] ≤ AdvPRGG (B2).

Game I.2. In GI.2, we replace the encrypted inner ciphertext c′in of the challenge with
a random ciphertext in {0, 1}clinOKEM . Note that Koe is random by GI.1, so this change can
be bounded by a reduction B3 to the OT-IND$ security of SE. B3 obtains a challenge
ciphertext c∗ and simulates the game for A, replacing c′in with c∗. It follows that:

Pr[GI.1]− Pr[GI.2] ≤ AdvOT-IND$
SE (B3).

Game I.3. Finally, in GI.3, we replace the outer KEM ciphertext cout with a random
ciphertext in {0, 1}cloutOKEM . We bound the difference by a reduction B4 to the reg-ctxt-unif of
outOKEM. B4 uses its ciphertext challenge cb in place of cout and pk for pkout; note that
Kout isn’t used anymore at this point. Exactly simulating GI.2 if cb is real, and simulating
GI.3 is cb is random, we have that:

Pr[GI.2]− Pr[GI.3] ≤ Advreg-ctxt-unifoutOKEM (B4).

Now, the ciphertext received by B consists of a random cout ∈ {0, 1}cloutOKEM by GI.3, and a
random c′in ∈ {0, 1}clinOKEM by GI.2. Hence, A has no better chance than guessing the challenge
bit b:

AdvGI.3

OEINC(A) = 0.

Case II.

This case reduces to reg-ctxt-unif of inOKEM and outOKEM.

Game II.0. In GII.0, we replace the inner ciphertext cin with a random ciphertext in
{0, 1}clinOKEM . We bound the difference by a reduction C1 to the reg-ctxt-unif of inOKEM.
C1 uses its ciphertext challenge cb in place of cin, and pk , K in place of pk in, Kin. This
simulates G0 if cb is real, and GII.0 if cb is random:

Pr[G0]− Pr[GII.0] ≤ Advreg-ctxt-unifinOKEM (C1).

Game II.1. Next, we replace c′in with a random ciphertext in {0, 1}clinOKEM in GII.1. cin
is random by GII.0, so it follows directly from the fact that SE.Enc(Koe, ·) is a permutation
over {0, 1}clinOKEM , for a fixed key Koe, that:

Pr[GII.0] = Pr[GII.1].

Game II.2. Lastly, in GII.2, we replace the outer ciphertext cout with a random ciphertext
in {0, 1}cloutOKEM . We bound this by a reduction C2 to reg-ctxt-unif of outOKEM. C2 simulates

17

either GII.1 or GII.2 by using its challenge ciphertext in place of cout (and pk , K in place of
pkout, Kout). Therefore:

Pr[GII.1]− Pr[GII.2] ≤ Advreg-ctxt-unifoutOKEM (C2).

At this point, both c′in and cout are random bitstrings. Thus, A can only guess the
challenge bit b:

AdvGII.2

OEINC(A) = 0.

Collecting the bounds yields the theorem statement.

3.5 Public Key Uniformity

Finally, OEINC only has public key uniformity as long as both underlying OKEMs retain
their public key uniformity. Since no shared key material is available when distributing
a public key, there is little that would help in obfuscating a public key if the underlying
assumption is broken. Thus, if one of the schemes does not have statistical public key
uniformity, there does not appear to be a way to construct a scheme with hybrid public key
uniformity, barring some additional PKI-like infrastructure. OEINC does achieve public key
uniformity conditioned on the public key uniformity of both underlying schemes:

Theorem 3.4 (pk-unif of OEINC). Let OEINC = OEINC[outOKEM, inOKEM,SE,G,W] be
a combined OKEM as defined in Figure 4. For any adversary A against the public key
uniformity (Definition 2.6) of OEINC, we give algorithms B1, B2 such that

Advpk-unifOEINC(A) ≤ Advpk-unifoutOKEM(B1) + Advpk-unifinOKEM(B2)

We defer the proof of public key uniformity to Appendix C.2.

3.6 Instantiating the Combiner

Following our results for OEINC, we now know that we can construct an OKEM with hybrid
guarantees when the outer OKEM has statistical strong ciphertext uniformity. Previous work
[GSV24] constructed an MLWE-based OKEM, ML-Kemeleon, from ML-KEM and Kemeleon
encodings, notably whose ciphertext (and public key) uniformity depends on the MLWE
assumption, i.e., it is not statistical. Similarly, Saber [DKRV18] and FrodoKEM [BCD+16]
achieve uniformity from MLWR and LWE assumptions, respectively. These are natural
choices for the inner OKEM. As for the outer OKEM, we can construct a (classically-
secure) OKEM using DHKEM [BBLW22] and Elligator2 [BHKL13] or Elligator2 [Tib14]
encodings. We provide the details of this construction, denoted DHKEM-Ell2, and related
security properties in Appendix D. Importantly, Elligator-style encodings do not rely on any
underlying computational assumptions for uniformity guarantees, thus giving the resulting
OKEM statistical strong ciphertext uniformity. Both ML-Kemeleon and DHKEM-Ell2 are
SPR-CCA-secure with respect to simulators that output random bitstrings. The symmetric
encryption SE can be instantiated with XOR (noting that the one-time pad gives an OT-IND$
guarantee, and is a permutation over bitstrings for a fixed key). Therefore, instantiating
OEINC = OEINC[DHKEM-Ell2,ML-Kemeleon,⊕,G,W] for any reasonable choice of PRG G
and split-key PRF W (e.g., see [GHP18, BBF+19]) provides the desired hybrid guarantees.

We now explore alternative options for instantiating the combined OKEM, omitting any
further discussion of SE, G, and W, as they can be instantiated with ⊕, any secure PRG, and

18

Table 1: Security properties of combiners instantiated with different input (O)KEMs. Un-
derlying computational assumptions are given in parentheses. Dots in the table indicate:
(at least) one of the underlying assumptions must hold, i.e., hybrid guarantee (); the
assumption of the outer KEM must hold (); both underlying assumptions must hold ();
or the property does not hold (–). For SPR-CCA, subscripts indicate whether the respective
simulator samples bitstrings ($) or uniform ciphertexts from the ciphertext space (C).

Combined KEM IND-CCA SPR-CCA reg-ctxt-unif pk-unif

OEINC Outer and Inner KEM

DHKEM-Ell2(GapDH)

ML-Kemeleon(MLWE)

$Saber (MLWR)

FrodoKEM (LWE)

ML-Kemeleon(MLWE) DHKEM-Ell2(GapDH) $

DHKEM-Ell2(GapDH) ML-KEM(MLWE) $ –

DHKEM(GapDH) ML-KEM(MLWE) C – –

X-Wing [BCD+24]
C – –

(MLWE, GapDH)

Parallel Combiner [GHP18, BBF+19]

$ML-Kemeleon + DHKEM-Ell2
(MLWE, GapDH)

any split-key PRF, respectively. Table 1 summarizes the properties of each of the following
variants, and compares them with the security properties provided by X-Wing [BCD+24]
(which does not use obfuscated KEMs) and the generic parallel combiner [GHP18, BBF+19]
instantiated with two obfuscated KEMs.

Non-obfuscated KEMs. It should be noted that the OEINC construction is not restricted
to only OKEMs. Ignoring the step that encodes public keys, one can use any KEM as an
input to the combiner. It is then interesting to ask what properties are maintained by the
combiner in such cases. Of course, using any two IND-CCA secure KEMs (e.g., ML-KEM and
DHKEM) results in an IND-CCA combined KEM. The remaining properties depend on the
input KEMs. For example, using ML-KEM as the inner KEM and DHKEM as the outer KEM,
the combined KEM would not achieve public key or ciphertext uniformity; however, it does
achieve SPR-CCA security with respect to a simulator that outputs structured ciphertexts
(i.e., DH values concatenated with random bitstrings resulting from encrypting ML-KEM
ciphertexts), assuming that the outer KEM retains its SPR-CCA security. It is important to
note that if the assumption underlying DHKEM is broken, then this construction no longer
achieves SPR-CCA security, regardless of the security of the inner KEM.

Outer OKEM and inner KEM. Alternatively, one might ask what happens if only
the outer KEM is obfuscated and the inner KEM is not. To illustrate, we consider the
combination of DHKEM-Ell2 as the outer KEM and ML-KEM as the inner KEM. It is easy to
see that IND-CCA security is maintained as a hybrid guarantee and that public key uniformity
is no longer achieved. The combined KEM in this case would still have SPR-CCA security
with respect to a simulator that outputs random bitstrings, as long as at least one of the
input KEMs is SPR-CCA-secure (i.e., the hybrid guarantee is maintained). The notable
difference is that there is no hybrid guarantee for ciphertext uniformity, which now relies
on the IND-CPA security and ciphertext uniformity of DHKEM-Ell2 (since ML-KEM has no

19

ciphertext uniformity).

Outer OKEM without strong-ctxt-unif. Finally, we ask what happens if we use
ML-Kemeleon as the outer KEM and DHKEM-Ell2 as the inner KEM (swapping the or-
der of our initial proposed instantiation). The (hybrid) IND-CCA and (non-hybrid) public key
uniformity guarantees remain the same as in the original case. SPR-CCA is not a hybrid guar-
antee anymore and now depends on SPR-CCA security of ML-Kemeleon, since ML-Kemeleon
does not have statistical strong ciphertext uniformity. Nonetheless, the SPR-CCA guar-
antee still holds with respect to a simulator that outputs random bitstrings. Similarly,
ciphertext uniformity requires now that the ciphertext uniformity (and IND-CPA security) of
ML-Kemeleon is maintained (i.e., no hybrid guarantee).

4 A Hybrid Obfuscated Key Exchange Protocol

We now present Drivel, a revised version of the post-quantum variant pq-obfs [GSV24]
of Tor’s obfs4 protocol that enables hybrid security guarantees. We recall the purpose of
an obfuscated key exchange protocol [GSV24] is to permit a client with prior knowledge
of a server’s public key to establish a fresh session key with the server, such that (1) no
passive adversary can distinguish the handshake from a random sequence of messages of
the same length and ordering; and (2) the server is otherwise quiet, meaning it does not
respond to any messages sent by an adversary that does not demonstrate knowledge of the
server’s public key. The intention of the obfs4 protocol in particular is to provide a layer
of obfuscated traffic that does not match a censor’s protocol blocklist and is secure against
probing by censors. We state the security goals in more detail below.

1. Key indistinguishability. A Bellare–Rogaway-style [BR94] notion of key indistin-
guishability requires that the shared key derived in the protocol must be indistinguish-
able from random. Formally, an adversary actively interacts with multiple sessions,
is allowed to reveal user and session keys, and must guess the challenge bit b used in
a Test oracle which returns either real or random session keys depending on b. (A
Fresh predicate prevents trivial attacks like testing and revealing the same key.) We
also aim for forward secrecy : session keys must remain secure if the involved server’s
long-term secret key is later compromised.

2. Obfuscation. The protocol transcript should be indistinguishable from a simulated
transcript, where the simulator S is a parameter of the security definition. As with
pq-obfs, we prove obfuscation with respect to a simulator that outputs random
messages of varying lengths. This captures the idea that the protocol should lie within
some class of protocols where all transmitted data appears to be random bits.

An adversary’s goal is to guess the challenge bit b used in a ChallExec oracle which
returns either real or simulated transcripts of the protocol (and real or random keys,
respectively). The challenge bit b is the same as is used in Test queries. The adversary
must not violate the ObfFresh predicate, which requires that the server’s secret key is
not revealed (i.e., we aim for strong obfuscation as defined in [GSV24]).

3. Probing resistance. The protocol should be resistant to active probing, where
censors probe suspicious proxy servers in an attempt to identify them. In particular,
a responder should not respond to messages from an initiator who has not proven
knowledge of the responder’s public key. This is captured within the Send oracle

20

and the Probed flag: If the adversary successfully elicits a non-empty response from a
responder, whose public key is not revealed, in response to a message not previously
sent by an honest initiator, then the adversary wins.

4. Explicit authentication. Finally, ExplicitAuth ensures explicit authentication of the
server. An adversary wins if it causes a client to accept a session without a partnered
server session existing.

4.1 Shortcomings of the pq-obfs Protocol

We identify a key issue that prevents pq-obfs from achieving hybrid guarantees, even when
instantiated with a hybrid OKEM. In the first round of pq-obfs, the client, who knows the
server’s static KEM public key pkS , encapsulates to pkS , yielding (cS ,KS). The client also
generates an ephemeral keypair (ske, pke)←$ KEM.KGen(). In the first message, the client
sends cS and pke to the server. The server will decapsulate cS and use pke to establish a
fresh session key with the client. The issue with this construction is that pke is sent to the
server in the clear, requiring public key uniformity (pk-unif) from the ephemeral OKEM.
However, we do not know of an existing OKEM with hybrid public key uniformity guarantees.
In other words, pq-obfs with a hybrid OKEM has obfuscation that is only as strong as the
weakest pk-unif of its underlying OKEMs, voiding the hybrid guarantees on the key exchange
level.

4.2 The Drivel Protocol

We propose the Drivel protocol which addresses the above hybrid obfuscation barrier
of pq-obfs while achieving the same security goals. In short, the key insight is to en-
crypt the ephemeral public key and ciphertext using a key derived from the shared secret
from the static (O)KEM encapsulation. That way, Drivel, unlike pq-obfs, does not re-
quire public-key uniformity of the deployed (hybrid) ephemeral KEM, which is the only
OKEM property for which OEINC does not achieve hybrid guarantees. Furthermore, ad-
ditionally encrypting the ephemeral ciphertext means that for the ephemeral KEM, a
regular (non-obfuscated) KEM suffices, improving efficiency. Instantiating Drivel with
OEINC[DHKEM-Ell2,ML-Kemeleon,⊕,G,W] (for reasonable PRG G and PRF W) as the
static KEM and any hybrid IND-1CCA-secure (non-obfuscated) KEM as the ephemeral KEM
hence yields a readily implementable hybrid obfuscated key exchange protocol. The final
structure remains closely aligned with pq-obfs, and, thus, the currently deployed obfs4

protocol.
We describe the protocol at a high level. We retain from pq-obfs the general structure

of ephemeral and static KEM encapsulations, and the key schedule (modulo deriving the
additional encryption keys), so that we need only rely on standard assumptions (avoiding any
random oracles). The full description can be found in Figure 6. In this setting, we assume
that the server has published semi-private information, namely its OKEM public key and an
identifier NodeID ∈ {0, 1}nl, to a distribution service that only honest clients are intended to
have access to. In practice, this can be a bridge distribution service, as used with Tor, or
another out-of-band sharing mechanism. Although pre-shared semi-private information is a
seemingly strong assumption, it is already an assumption of obfs4.

Client to server message. A client who knows the server’s public key and NodeID begins
by generating a fresh ephemeral KEM keypair. It then establishes a shared secret with

21

the server by encapsulating to the server’s static OKEM public key. The client sends this
ciphertext along with the ephemeral public key (encrypted, using a key derived from the
static OKEM encapsulation), randomized padding, and MACs which include the server’s
public key and NodeID .

Server to client message. The server decapsulates and checks the MACs. On success, it
encapsulates to the client’s ephemeral public key, and sends back the ciphertext (encrypted
using a key derived from the static OKEM encapsulation), along with padding and MACs. The
user verifies these and derives the session key using the ephemeral-ephemeral and ephemeral-
static KEM shared secrets, as well as the corresponding public keys and ciphertexts.

MACs. The MAC tags MC and MS are intended to aid in parsing the variable-length
messages. In particular, the server may continue sending data immediately following its
message to the client, and so the MS marker identifies where the initial handshake message
(and variable length padding) ends. The client’s tag MC is not strictly necessary, as the
server may parse the handshake message from the end; however, we leave it in the description
for symmetry and to allow for potentially more flexible designs in the future (e.g., the client
sending data immediately following its handshake message).

Replay protection. We assume that, for replay protection, the protocol works in epochs;
the client includes its epoch in MAC tag MACC . The server checks that this epoch is within
a valid range, and stores the set of MAC values seen in its state SMAC per epoch. To simplify
the presentation, we omit epochs here.

Instantiating the protocol. Like pq-obfs, Drivel relies on a secure pseudorandom
function F1 with (default) output length fl1 and a dual-PRF F2 with output length fl2.
In addition, we employ an OT-IND$-secure symmetric encryption scheme SE. To handle
potentially varying key lengths, we ask that F1 also supports variable output lengths, where
the output length is optionally specified through the function’s third input (by default, it
is fl1). Unlike pq-obfs, Drivel does not require the ephemeral KEM to have public key
or ciphertext uniformity. Instead, the client’s ephemeral KEM public key is encrypted
with a key derived from the static KEM, as is the server’s ciphertext response. Thus, any
IND-1CCA-secure KEM can be used for the ephemeral KEM, and any OKEM with IND-CCA
security, SPR-CCA security, and ciphertext uniformity can be used for the static OKEM.

This can be achieved, for example, with an obfuscated KEM constructed using OEINC from
Section 3 (see Table 1 for examples). The ephemeral KEM can be instantiated with any regular
(i.e., not necessarily obfuscated) KEM with IND-1CCA security (e.g., X-Wing [BCD+24] would
provide hybrid guarantees4). We can instantiate F1 with HKDF-Expand [Kra10, KE10] and
F2 with HMAC [BCK96, KBC97]; the latter’s dual-PRF security for fixed-length keys is
proven in [BBGS23]. The symmetric encryption scheme, requiring only OT-IND$ security,
can be instantiated with XOR with appropriate key lengths kl1, kl2 matching the ephemeral
KEM’s public key and ciphertext lengths.

4.3 Security

We use the security model of obfuscated key exchange from [GSV24], denoted sObfKE,
discussed informally at the start of this section; we provide the full details in Appendix E for
reference. In addition to the details of the model specific to the desired security properties

4In fact, even faster options are possible. Most lattice-based IND-CCA KEMs use a variant of the
Fujisaki–Okamoto transform [FO99], which requires the decapsulator to re-encrypt the message to check for
tampering. With the relaxation to IND-1CCA, this step is no longer necessary [JMZ23].

22

Server key generation/setup

NodeID ←$ {0, 1}nl
(pkS , skS ,)←$ OKEM.KGen()
st .SMAC ← ∅
return ((skS ,NodeID), (pkS ,NodeID), st)

Client Serverknows (pkS ,NodeID) knows (skS ,NodeID)

(ske, pke)←$ KEM.KGen()
PC ←$DpadC

(cS ,KS)←$ OKEM.Encap(pkS)

ES ← F2(NodeID ,KS)

EK 1 ← F1(ES , “:enckey1”, kl1)

EK 2 ← F1(ES , “:enckey2”, kl2)

epke ← SE.Enc(EK 1, pke)

MC ← F1(ES , epke∥cS∥“:mc”)
MACC ← F1(ES , epke∥cS∥PC∥MC∥“:mac c”)

msgC = epke∥cS∥PC∥MC∥MACC

epke ← msgC [1..ol] ; cS ← msgC [ol+ 1..ol+ cl]

KS ← OKEM.Decap(skS , cS)

ES ← F2(NodeID ,KS)

EK 1 ← F1(ES , “:enckey1”, kl1)

EK 2 ← F1(ES , “:enckey2”, kl2)

MC ← F1(ES, epke∥cS∥“:mc”)
parse (epke∥cS∥PC∥MC∥MACC)← msgC using MC ; else break

if F1(ES , epke∥cS∥PC∥MC∥“:mac c”) ̸= MACC : break

if MACC ∈ st .SMAC : break
pke ← SE.Dec(EK 1, epke)

(ce,Ke)←$ KEM.Encap(pke)

ecte ← SE.Enc(EK 2, ce)

protoID ← “Drivel”

ES ′ ← F1(ES , “:derive key”) ; FS ← F2(ES
′,Ke)

context ← pkS∥cS∥pke∥ce∥protoID
skey ← F1(FS , context∥“:key extract”)

auth ← F1(FS , context∥“:server mac”)
PS ←$DpadS

MS ← F1(ES , ecte∥“:ms”)
MAC S ← F1(ES , ecte∥auth∥PS∥MS∥“:mac s”)

msgS = ecte∥auth∥PS∥MS∥MAC S

ecte ← msgS [1..cl]

MS ← F1(ES, ecte∥“:ms”)
parse (ecte∥auth∥PS∥MS∥MAC S)← msgS using MS ; else break

if F1(ES , ecte∥auth∥PS∥MS∥“:mac s”) ̸= MAC S : break

ce ← SE.Dec(EK 2, ecte)

Ke ← KEM.Decap(ske, ce)

protoID ← “Drivel”

ES ′ ← F1(ES , “:derive key”) ; FS ← F2(ES
′,Ke)

context ← pkS∥cS∥pke∥ce∥protoID
skey ← F1(FS , context∥“:key extract”)

if F1(FS , context∥“:server mac”) ̸= auth: break

Figure 6: The Drivel obfuscated key exchange protocol. OKEM is an OKEM satisfying
IND-CCA, SPR-CCA, and ciphertext uniformity. KEM is an IND-1CCA-secure KEM. SE is
an OT-IND$-secure symmetric encryption scheme. F1 is a PRF and F2 is a dual PRF. Core
differences to the pq-obfs protocol from [GSV24] are highlighted in blue boxes.

23

described above, session identifiers are used to determine that two sessions are partnered,
while contributive identifiers are used to determine when a responder session has an honest
communication partner. The security analysis makes use of a selective security variant of the
game, where the adversary has to commit upfront to winning via (1) a single Test query to
a pre-declared session, or (2) a single ChallExec query against a pre-declared server. This
variant implies full security via a hybrid argument, as shown in [GSV24].

Simulator definition. We establish sObfKE security with respect to the following sim-
ulator SDrivel which outputs two uniformly random messages of length dependent on the
Drivel distribution of padding:

SDrivel:
1 PC ←$DpadC ; PS ←$DpadS // sample client/server padding according to distribution

2 m1←$ {0, 1}epl+cl+2·fl1+|PC |
// 1x encrypted pk + 1x ctxt + 2x F1 outputs (MACs) + client padding

3 m2←$ {0, 1}ecl+3·fl1+|PS | // 1x encrypted ctxt + 3x F1 outputs (auth and MACs) + server padding

4 return (m1,m2)

Here, epl, ecl are the lengths of the encrypted ephemeral KEM public key and ciphertext,
respectively, fl1 is the (default) output length of the PRF F1, and cl is the ciphertext length
of OKEM.

Session and contributive identifiers. We set the session identifier as sid := (pke, ce, pkS , cS)
where pke is the initiator’s KEM public key and ce is the corresponding KEM ciphertext,
and pkS is the responder’s static KEM public key and cS the corresponding ciphertext. We
set the contributive identifier to cid := (pke, cS) upon the client sending or server receiving
the first message.

Theorem 4.1. Let Drivel be defined as in Figure 6. For any sObfKE adversary A against
Drivel, we give algorithms B1–B17 such that

AdvsObfKE
Drivel,SDrivel(A) ≤ 2 ·

(
pkcollKEM(ns) + pkcollOKEM(nr) + ns · (δOKEM + δKEM)

+ nsnr ·
(
AdvPRFF2

(B1) + AdvPRFF1
(B2) +

1

2fl1

)
+ nsnr ·

(
AdvIND-CCA

OKEM (B3) + Advswap-PRFF2
(B4) + AdvPRFF1

(B5)

+ AdvPRFF2
(B6) + AdvPRFF1

(B7) +
1

2fl1

)
+ (ns + nrqC) ·

(
ns ·

(
AdvIND-1CCA

KEM (B8) + Advswap-PRFF2
(B9) + AdvPRFF1

(B10)
)

+ AdvSPR-CCAOKEM,S$(B11) + Advswap-PRFF2
(B12)

+AdvPRFF1
(B13)+AdvPRFF2

(B14)+AdvPRFF1
(B15)

+ AdvOT-IND$
SE (B16) + AdvOT-IND$

SE (B17)
))

,

where A makes at most qC ChallExec queries; ns, nr are the number of sessions and servers
(parties in responder role) that A interacts with, respectively; fl1 is the output bit-length of F1;
and S$ outputs a random ciphertext from {0, 1}cl.

24

Due to the intentional similarity of Drivel to pq-obfs, the proof of Theorem 4.1 follows
closely (in large parts verbatim) the security proof for pq-obfs from [GSV24]. Here, we
provide a proof sketch with the main changes compared to the proof for pq-obfs underlined;
the complete proof is deferred to Appendix F.

Proof sketch. We proceed via a series of game hops and branches, considering each clause in
Finalize. We rule out KEM public key collisions (term pkcollKEM(ns)+pkcollOKEM(nr)) and
assume correct decapsulation in all sessions (ns · (δOKEM + δKEM)), which ensures soundness
(Sound).

A first branch then rules out that A successfully probes a server (Probed): we guess
the first server and session that sets Probed (with a ns · nr loss). From that server’s
uncompromised semi-private NodeID , we apply PRF security twice to turn ES and then
MACC into random values. After this, we observe that Probed is set if a non–initiator-first
message m yields a reply by an unrevealed responder. Such a message m is either rejected
due to the replay check, or it is different from all honest initiators’ first messages sent to this
responder. In the second case, m contains the target client MAC value MAC ∗C which is a
random fl1-bit value unknown to A. The adversary A can therefore only guess MAC ∗C ; the
corresponding bound is AdvPRFF2

(B1) + AdvPRFF1
(B2) + 1/2fl1 .

A second branch prevents explicit authentication (ExplicitAuth) from being violated. We
guess the first session violating ExplicitAuth, π∗, and its peer, v∗, (losing a factor ns · nr).
Then we can embed an IND-CCA challenge in that the peer’s public key, the session’s cS ,
and the derived KS shared secret (term AdvIND-CCA

OKEM (B3)). Let (cS ,KS)←$ OKEM.Encap(pkS)
be the encapsulation computed in the target session π∗ with the long-term public key of
v∗. We replace the long-term shared secret KS with a uniformly random K̃S in π∗. All
values derived from KS in π∗ use the randomized value K̃S . We bound the adversary A’s
difference in advantage by a reduction B3 to the IND-CCA security of OKEM. Next, through
four (swap-)PRF hops (B4–B7), we show that this turns auth into a random fl1-bit value
leaving A with a 1/2fl1 chance to violate ExplicitAuth.

We then restrict the adversary to a single-challenge (sObfKE-1) version of the game,
applying the hybrid argument from [GSV24, Theorem 4.3] with a (ns + nrqC) loss. We
separately treat the following two cases.

For Case I (A makes a single Test query), we first guess the (sid - or cid -) partner
session of the tested session (losing a factor ns). We then embed an IND-1CCA challenge in
the ephemeral KEM encapsulation of the test session, π∗, and its partner session, π∗p (term

AdvIND-1CCA
KEM (B8)). In particular, we replace the ephemeral KEM key Ke with a uniformly

random K̃e in the target session π∗. All values derived from Ke in π∗ use the randomized
value K̃e. We bound the adversary A’s difference in advantage by a reduction B8 to the
IND-1CCA security of OKEM. Following this, we apply two (swap-)PRF hops (B9, B10) to
randomize the test session’s key, concluding this case.

For Case II (A makes a single ChallExec query to a pre-determined server), we
embed a SPR-CCA challenge in the long-term KEM encapsulation of the ChallExec
sessions (term AdvSPR-CCAOKEM (B11)), randomizing both cS and KS . Specifically, we replace
the ciphertext cS , as well as the long-term KEM key KS as follows. Instead of running
OKEM.Encap, the initiator samples cS ←$ {0, 1}cl and KS ←$K uniformly at random. We
bound the adversary A’s difference in advantage by a reduction B11 to the SPR-CCA security
of OKEM. Subsequently, we proceed via four (swap-)PRF hops (B12–B15) to randomize the
transcript’s MAC values as well as the encryption keys and session key. The main difference
from the proof of pq-obfs is that in the final steps, we apply the OT-IND$ security of the

25

symmetric encryption scheme SE to randomize epke and ecte, corresponding to the terms

AdvOT-IND$
SE (B16) and AdvOT-IND$

SE (B17). At this point, the protocol messages in ChallExec
sessions are uniformly distributed like outputs of the simulator SDrivel, concluding this case
and the proof.

4.4 Additional Features

We now discuss optional features of Drivel which are intended to aid in development and
deployment, but are not included in our security analysis.

Strong obfuscation vs. DoS resistance. Drivel, as described thus far, has strong
obfuscation, meaning that even an adversary who learns the server’s static public key pks

(recall that this is considered semi-private information in our setting) is not able to passively
distinguish a protocol’s transcript from a simulated one. The cost of this advantage is that
the server must perform a decapsulation for every incoming message, even when the other
party does not know the server’s NodeID . Since decapsulations can be costly, this may be
used by an attacker to launch a denial-of-service attack against the server.5

In order to accommodate different deployment environments, the client can optionally
send a cookie in the first round of communication, as was done in the original obfs4
protocol as well as Wireguard [Don17]. Concretely, this cookie may be computed as
HMAC(pks∥NodeID , epke∥cS∥PC∥MC∥MACC) (the difference from MACC being that a
static key pks∥NodeID is used rather than an ephemeral key ES). The server can then check
this cookie prior to performing decapsulation, preventing the processing of messages from
clients that do not know NodeID . To prevent replays, the server must store past cookies.

Finally, we note that there are middle ground options between strong and regular obfusca-
tion. For example, a server may publish a temporary pseudorandom token tok, along with its
public key and NodeID , and the client may compute the cookie as HMAC(tok∥pks∥NodeID ,
epke∥cS∥PC∥MC∥MACC). Thus, if a future token is ever revealed, past protocols using
old tokens are still not distinguishable from random. Temporary tokens can be eschewed
entirely if the server periodically updates its public key pks in a way that is not publicly
reversible (e.g., by generating a brand new key or re-randomizing an existing key using secret
randomness). However for lattice-based OKEMs, public keys are far larger than strictly
necessary to achieve this strong(er) obfuscation property.

Padding distribution. Another difference to pq-obfs is that we enable an arbitrary
distribution of padding to be used. Previously, the padding length (and consequently, the
message length) was chosen uniformly at random from a fixed range. An arbitrary padding
distribution provides more flexibility in traffic patterns, allowing, for example, a padding
distribution that fixes message lengths to match the traffic pattern of another protocol.

Extra data. One may optionally place data encrypted under a key derived from KS in
place of (or in addition to) the padding of the initial message to the server. This is analogous
to the extra data feature of ntor version 3 [Mat21]. We note that this extra data does not
benefit from forward secrecy because it is encrypted under a key derived from the static
KEM encapsulation alone.

5This tradeoff between strong obfuscation and DoS resistance in obfs4 has been previously noted [Ang22].

26

A(sid , pw) B(sid , pw)

(pk , sk)←$ KGen()

epk ← Esid∥1
pw (pk) epk pk ← Dsid∥1

pw (epk)

(c, Z)←$ Encap(pk)

c← Dsid∥2
pw (ec) ec ec ← Esid∥2

pw (c)

Z ← Decapsk (c)

K ← H(sid , A,B, epk , ec, Z) K ← H(sid , A,B, epk , ec, Z)

return K return K

Figure 7: The CAKE PAKE [BCP+23]. (E,D) are the encryption and decryption algorithms
of an ideal cipher. sid is the protocol execution’s session identifier, and A,B are the party
identifiers.

5 Hybrid PAKE with Adaptive Security

In this section we describe a method for constructing a password-authenticated key exchange
(PAKE) from an OKEM. When the OKEM has hybrid guarantees, then so does the resulting
PAKE. We distinguish our approach from previous constructions [HR24, LL24] in two ways.
First, our approach achieves adaptive, rather than static, security, since the underlying PAKE
protocol is proven to realize the FPAKE ideal functionality in the Universal Composability
model [Can01] with adaptive corruptions. This answers the open question in [HR24] of
whether such a scheme exists. Second, our approach achieves a new tradeoff between round
complexity and runtime: previous hybrid PAKE constructions include efficient three-round
protocols which use standard lattice-based KEMs, as well as more computationally intensive
one-round protocols using isogenies; our protocol has two rounds, and has computational
overhead that lies in between the two.

5.1 CAKE

We first provide an overview of CAKE [BCP+23], an adaptively-secure PAKE that is gener-
ically constructed from an underlying KEM with certain properties. We observe that an
OKEM with ciphertext and public key uniformity is sufficient to instantiate CAKE. Then,
we construct a hybrid OKEM with unconditional public key uniformity. Together, this yields
the first hybrid adaptively-secure PAKE.

Protocol. A graphical overview of the CAKE protocol can be found in Figure 7. The
protocol begins with the initiator generating a fresh KEM keypair, encrypting the public
key using an ideal cipher with pw as the key, and sending the result to the responder.
The responder decrypts the public key, encapsulates to it, and encrypts the encapsulation
using the ideal cipher with the same password. These ideal ciphers are domain-separated,
represented in the diagram by two distinct session IDs in the superscript of the algorithm.
Finally, the initiator decrypts and decapsulates. The session key is the hash of the KEM
shared secret along with the protocol transcript.

Required KEM properties. CAKE requires its underlying KEM to have IND-CPA security,
anonymity (Definition B.2), and fuzziness (Definition B.1). Recall that when public keys and
ciphertexts are bitstrings, anonymity is strictly weaker than ciphertext uniformity and public

27

key uniformity (Definition 2.6) is equivalent to fuzziness (these claims are treated more
rigorously in Appendix B). Thus, CAKE can be instantiated with an OKEM with IND-CPA
security, ciphertext uniformity, and public key uniformity. Further, since encoded public
keys are uniform-looking bitstrings, we may instantiate the ideal cipher with a tweakable
wide block cipher, and use the tweak for domain separation. This is easier to implement and
more efficient than, for example, a custom, constant-time, keyed permutation on the range
[0, q768), as suggested by the CAKE authors for ML-KEM-768 public keys.

5.2 Achieving Hybrid CAKE

Using the OKEM combiner of Section 3, applied to, e.g., DHKEM-Ell2 (outer) andML-Kemeleon
(inner), we obtain an OKEM with hybrid IND-CCA (and, hence, IND-CPA) security and
ciphertext uniformity, but not public key uniformity. Recall that the public key uniformity
of the combined OKEM is the weakest of the underlying public key uniformity properties.
Thus, to construct CAKE with hybrid guarantees, we will need to combine two OKEMs
with statistical public key uniformity. Since our outer KEM already has this property, it
remains only to construct a post-quantum OKEM with statistical public key uniformity.
No post-quantum OKEM we have mentioned so far achieves this; however, we are able to
construct one based on unstructured LWE. We follow the technique hinted at in [HR24] for
constructing a one-round lattice-based PAKE from (superpolynomial modulus) LWE.

Post-quantum statistical public key uniformity. As a starting point, we consider
FrodoKEM [BCD+16], an LWE-based KEM and also a natural OKEM (its public keys
and ciphertexts already perfectly pack into bitstrings). It will suffice to use its IND-CPA-
secure variant, also called FrodoPKE. FrodoKEM is a double-LWE KEM: its public keys and
ciphertexts are both LWE samples. This technique, first described in [LP11], affords the
scheme a meaningful improvement in both security guarantees and ciphertext size compared
to a Regev-style scheme [Reg05], wherein only one of the aforementioned values is an LWE
sample. Unfortunately, double-LWE schemes enjoy only computational public key uniformity,
as that uniformity relies on the hardness of LWE.

We construct a KEM with statistical public key uniformity by simply undoing the
optimization from [LP11]. Concretely, rather than defining the public key vector as an LWE
sample b ← As + e, we define it as the matrix product b ← As. To retain security, we
must modify the dimensions of A and s. Rather than using a square matrix A ∈ Zn×n

q , we

use a rectangular A ∈ Zn×n′
q where n′ ≥ n log2 q. This is necessary to make public keys

statistically close to uniform via the leftover hash lemma [HILL99, LP11]. We call this
construction, after appropriate lifting to the full dimension of the public key and ciphertext,
StatFrodoKEM.

Performance tradeoffs. Due to the necessary parameter changes, ciphertexts grow by a
factor of about log2 q. For StatFrodoKEM, this would result in 144kB ciphertexts in the level
I parameter set, up from 9.6kB.6 This would also cause encapsulation and key generation
time to increase by a similar factor.

CAKE with hybrid OKEM offers a new set of tradeoffs compared to existing hybrid
PAKEs. We summarize these tradeoffs in Table 2. This construction is two rounds, rather
than the three-round sequential combiners and one-round parallel combiners of [HR24, LL24].
In addition, it requires less overall computation than the one-round parallel combiner of

6There may be routes to improve ciphertext size using ideal-lattice-based schemes and leftover hash
analogues [LPR13, DSGKS20], but we leave this to future work.

28

Table 2: Comparison of different hybrid PAKE mechanisms at the 128-bit security level.
Estimates of runtime are in cycles on an Intel Skylake CPU, and exclude communication
time. We also include communication overhead and indicate whether a security proof exists
in the adaptive corruption setting. ParComb and SeqComb are the parallel and sequential
combiners defined in [HR24] and identically in [LL24]. X-GA-PAKE is assumed to use the
CTIDH group action [BBC+21] and passwords of bitlength ℓ = 80.

Scheme Rounds
Runtime Comm. Adaptive
(cycles) (kB) corruptions

ParComb[X-GA-PAKE,SPAKE2] 1 5.0× 1010 20.5 x
CAKE[OEINC[DHKEM-Ell2,StatFrodoKEM]] 2 1.3× 108 153.8 ✓
SeqComb[CAKE[FrodoKEM],SPAKE2] 3 2.3× 107 19.4 x

[LL24], which relies on X-GA-PAKE, a supersingular isogeny group action PAKE [AEK+22]
(as well as on a classical PAKE such as SPAKE2 [AP05]). Inferring from benchmarks on Intel
Skylake CPUs [BBC+21, BCD+16] and assuming linear scaling for matrix multiplication,
we estimate the full runtime of CAKE (ignoring communication costs) to be 384× faster than
the one-round alternative. This comes at the cost of an extra communication round and
communication overhead of 7.5×.
Other hybrid PAKEs. A similar set of tradeoffs, albeit without security against adaptive
corruptions, can be achieved by instantiating other KEM-based PAKEs such as OCAKE
[BCP+23] and CHIC [ABJS24]7 with our hybrid OKEM.

6 Future Work

We briefly describe some unresolved questions, which we leave to future work.

UDP-compatible obfuscated key exchange. A common payload limit for UDP packets
on the Internet is 1472 bytes. This is not an issue for Wireguard, which uses elliptic curve
Diffie–Hellman for its key exchange. However, when instantiated with some post-quantum
KEMs, the first round of Drivel exceeds this threshold. Since IPv4 fragmentation is
frequently left disabled due to abuse concerns, there is no obvious way to perform key
exchange over UDP while retaining obfuscation properties. Sequence numbers would violate
obfuscation requirements, and using any pre-shared information to encrypt data (e.g.,
NodeID) would surrender strong obfuscation. Another challenge is managing retransmission
as a result of fragmentation. In addition, stream IDs are necessary for users to be able to
roam, i.e., maintain a connection while changing their IP or outgoing port. Unfortunately,
embedding a stream ID would break obfuscation entirely, and using a symmetric key would
either break strong obfuscation, or require the server to do trial decryptions over its set
of session keys. It is thus an open problem whether these convenient properties can be
recovered in fully encrypted protocols with post-quantum key exchange.

Hybrid ANO-CCA KEMs. Our combiner OEINC immediately yields a KEM providing

7CHIC requires the KEM to be splittable, i.e., that all public keys contain a uniform bitstring. ML-KEM
is already splittable, since the public matrix seed is a uniform bitstring. In addition, DHKEMs are trivially
splittable: we can simply add a sample from {0, 1}λ to the end of any DHKEM public key. Since combining
splittable OKEMs yields a splittable OKEM (via concatenation), we can instantiate hybrid CHIC.

29

hybrid anonymity (ANO-CCA), since SPR-CCA implies ANO-CCA [Xag22]. While SPR-CCA
security provides a clear avenue for proving anonymity, some of the properties we required
in our combiner (in particular, strong ciphertext uniformity) arise specifically to enable
the proof of SPR-CCA. Thus, it is interesting to ask whether a hybrid ANO-CCA KEM (or
anonymous KEM combiner) can be constructed with weaker assumptions on the two input
KEMs, perhaps using a method other than SPR-CCA to prove anonymity.

Acknowledgements

D.S. is supported by Natural Sciences and Engineering Research Council of Canada (NSERC)
Discovery grant RGPIN-2022-03187 and NSERC Alliance grant ALLRP 578463-22.

References

[ABH+21] Joël Alwen, Bruno Blanchet, Eduard Hauck, Eike Kiltz, Benjamin Lipp,
and Doreen Riepel. Analysing the HPKE standard. In Anne Canteaut
and François-Xavier Standaert, editors, EUROCRYPT 2021, Part I, vol-
ume 12696 of LNCS, pages 87–116. Springer, Cham, October 2021. doi:

10.1007/978-3-030-77870-5_4.

[ABJS24] Afonso Arriaga, Manuel Barbosa, Stanislaw Jarecki, and Marjan Skrobot. C’est
très CHIC: A compact password-authenticated key exchange from lattice-based
KEM. In Kai-Min Chung and Yu Sasaki, editors, Advances in Cryptology –
ASIACRYPT 2024, pages 3–33, Singapore, 2024. Springer Nature Singapore.

[ABR01] Michel Abdalla, Mihir Bellare, and Phillip Rogaway. The oracle Diffie-Hellman
assumptions and an analysis of DHIES. In David Naccache, editor, CT-
RSA 2001, volume 2020 of LNCS, pages 143–158. Springer, Berlin, Heidelberg,
April 2001. doi:10.1007/3-540-45353-9_12.

[AEK+22] Michel Abdalla, Thorsten Eisenhofer, Eike Kiltz, Sabrina Kunzweiler, and
Doreen Riepel. Password-authenticated key exchange from group actions. In
Yevgeniy Dodis and Thomas Shrimpton, editors, CRYPTO 2022, Part II,
volume 13508 of LNCS, pages 699–728. Springer, Cham, August 2022. doi:

10.1007/978-3-031-15979-4_24.

[And12] Nate Anderson. Stakeout: how the FBI tracked and busted a Chicago
Anon, March 2012. https://arstechnica.com/tech-policy/2012/03/

stakeout-how-the-fbi-tracked-and-busted-a-chicago-anon/.

[Ang22] Yawning Angel. Comment in Issue “Improve the obfs4 obfuscation
protocol (#30716)” · The Tor Project / Anti-censorship / Plug-
gable Transports / lyrebird · GitLab, August 2022. URL: https:

//gitlab.torproject.org/tpo/anti-censorship/pluggable-transports/

lyrebird/-/issues/30716#note_2833105.

[AP05] Michel Abdalla and David Pointcheval. Simple password-based encrypted
key exchange protocols. In Alfred Menezes, editor, CT-RSA 2005, volume
3376 of LNCS, pages 191–208. Springer, Berlin, Heidelberg, February 2005.
doi:10.1007/978-3-540-30574-3_14.

30

https://doi.org/10.1007/978-3-030-77870-5_4
https://doi.org/10.1007/978-3-030-77870-5_4
https://doi.org/10.1007/3-540-45353-9_12
https://doi.org/10.1007/978-3-031-15979-4_24
https://doi.org/10.1007/978-3-031-15979-4_24
https://arstechnica.com/tech-policy/2012/03/stakeout-how-the-fbi-tracked-and-busted-a-chicago-anon/
https://arstechnica.com/tech-policy/2012/03/stakeout-how-the-fbi-tracked-and-busted-a-chicago-anon/
https://gitlab.torproject.org/tpo/anti-censorship/pluggable-transports/lyrebird/-/issues/30716#note_2833105
https://gitlab.torproject.org/tpo/anti-censorship/pluggable-transports/lyrebird/-/issues/30716#note_2833105
https://gitlab.torproject.org/tpo/anti-censorship/pluggable-transports/lyrebird/-/issues/30716#note_2833105
https://doi.org/10.1007/978-3-540-30574-3_14

[BBB+24] Daniel J. Bernstein, Karthikeyan Bhargavan, Shivam Bhasin, Anupam Chat-
topadhyay, Tee Kiah Chia, Matthias J. Kannwischer, Franziskus Kiefer, Thales
Paiva, Prasanna Ravi, and Goutam Tamvada. KyberSlash: Exploiting secret-
dependent division timings in kyber implementations. Cryptology ePrint Archive,
Report 2024/1049, 2024. URL: https://eprint.iacr.org/2024/1049.

[BBC+21] Gustavo Banegas, Daniel J. Bernstein, Fabio Campos, Tung Chou, Tanja
Lange, Michael Meyer, Benjamin Smith, and Jana Sotáková. CTIDH: faster
constant-time CSIDH. IACR TCHES, 2021(4):351–387, 2021. URL: https:
//tches.iacr.org/index.php/TCHES/article/view/9069, doi:10.46586/

tches.v2021.i4.351-387.

[BBC+22] John Baena, Pierre Briaud, Daniel Cabarcas, Ray A. Perlner, Daniel Smith-Tone,
and Javier A. Verbel. Improving support-minors rank attacks: Applications
to GeMSS and rainbow. In Yevgeniy Dodis and Thomas Shrimpton, editors,
CRYPTO 2022, Part III, volume 13509 of LNCS, pages 376–405. Springer,
Cham, August 2022. doi:10.1007/978-3-031-15982-4_13.

[BBDP01] Mihir Bellare, Alexandra Boldyreva, Anand Desai, and David Pointcheval. Key-
privacy in public-key encryption. In Colin Boyd, editor, ASIACRYPT 2001,
volume 2248 of LNCS, pages 566–582. Springer, Berlin, Heidelberg, December
2001. doi:10.1007/3-540-45682-1_33.

[BBF+19] Nina Bindel, Jacqueline Brendel, Marc Fischlin, Brian Goncalves, and Douglas
Stebila. Hybrid key encapsulation mechanisms and authenticated key exchange.
In Jintai Ding and Rainer Steinwandt, editors, Post-Quantum Cryptography -
10th International Conference, PQCrypto 2019, pages 206–226. Springer, Cham,
2019. doi:10.1007/978-3-030-25510-7_12.

[BBGS23] Matilda Backendal, Mihir Bellare, Felix Günther, and Matteo Scarlata. When
messages are keys: Is HMAC a dual-PRF? In Helena Handschuh and Anna
Lysyanskaya, editors, CRYPTO 2023, Part III, volume 14083 of LNCS, pages
661–693. Springer, Cham, August 2023. doi:10.1007/978-3-031-38548-3_
22.

[BBLW22] R. Barnes, K. Bhargavan, B. Lipp, and C. Wood. Hybrid Public Key Encryption.
RFC 9180 (Informational), February 2022. URL: https://www.rfc-editor.
org/rfc/rfc9180.txt, doi:10.17487/RFC9180.

[BCD+16] Joppe W. Bos, Craig Costello, Léo Ducas, Ilya Mironov, Michael Naehrig,
Valeria Nikolaenko, Ananth Raghunathan, and Douglas Stebila. Frodo: Take
off the ring! Practical, quantum-secure key exchange from LWE. In Edgar R.
Weippl, Stefan Katzenbeisser, Christopher Kruegel, Andrew C. Myers, and Shai
Halevi, editors, ACM CCS 2016, pages 1006–1018. ACM Press, October 2016.
doi:10.1145/2976749.2978425.

[BCD+24] Manuel Barbosa, Deirdre Connolly, João Diogo Duarte, Aaron Kaiser, Peter
Schwabe, Karoline Varner, and Bas Westerbaan. X-wing. CiC, 1(1):21, 2024.
doi:10.62056/a3qj89n4e.

31

https://eprint.iacr.org/2024/1049
https://tches.iacr.org/index.php/TCHES/article/view/9069
https://tches.iacr.org/index.php/TCHES/article/view/9069
https://doi.org/10.46586/tches.v2021.i4.351-387
https://doi.org/10.46586/tches.v2021.i4.351-387
https://doi.org/10.1007/978-3-031-15982-4_13
https://doi.org/10.1007/3-540-45682-1_33
https://doi.org/10.1007/978-3-030-25510-7_12
https://doi.org/10.1007/978-3-031-38548-3_22
https://doi.org/10.1007/978-3-031-38548-3_22
https://www.rfc-editor.org/rfc/rfc9180.txt
https://www.rfc-editor.org/rfc/rfc9180.txt
https://doi.org/10.17487/RFC9180
https://doi.org/10.1145/2976749.2978425
https://doi.org/10.62056/a3qj89n4e

[BCK96] Mihir Bellare, Ran Canetti, and Hugo Krawczyk. Keying hash functions
for message authentication. In Neal Koblitz, editor, CRYPTO’96, volume
1109 of LNCS, pages 1–15. Springer, Berlin, Heidelberg, August 1996. doi:

10.1007/3-540-68697-5_1.

[BCP+23] Hugo Beguinet, Céline Chevalier, David Pointcheval, Thomas Ricosset, and
Mélissa Rossi. GeT a CAKE: Generic transformations from key encaspulation
mechanisms to password authenticated key exchanges. In Mehdi Tibouchi
and Xiaofeng Wang, editors, ACNS 23International Conference on Applied
Cryptography and Network Security, Part II, volume 13906 of LNCS, pages
516–538. Springer, Cham, June 2023. doi:10.1007/978-3-031-33491-7_19.

[Ber06] Daniel J. Bernstein. Curve25519: New Diffie-Hellman speed records. In Moti
Yung, Yevgeniy Dodis, Aggelos Kiayias, and Tal Malkin, editors, PKC 2006,
volume 3958 of LNCS, pages 207–228. Springer, Berlin, Heidelberg, April 2006.
doi:10.1007/11745853_14.

[Beu22] Ward Beullens. Breaking rainbow takes a weekend on a laptop. In Yev-
geniy Dodis and Thomas Shrimpton, editors, CRYPTO 2022, Part II, vol-
ume 13508 of LNCS, pages 464–479. Springer, Cham, August 2022. doi:

10.1007/978-3-031-15979-4_16.

[BFGJ17] Jacqueline Brendel, Marc Fischlin, Felix Günther, and Christian Janson. PRF-
ODH: Relations, instantiations, and impossibility results. In Jonathan Katz and
Hovav Shacham, editors, CRYPTO 2017, Part III, volume 10403 of LNCS, pages
651–681. Springer, Cham, August 2017. doi:10.1007/978-3-319-63697-9_
22.

[BHKL13] Daniel J. Bernstein, Mike Hamburg, Anna Krasnova, and Tanja Lange. Elligator:
elliptic-curve points indistinguishable from uniform random strings. In Ahmad-
Reza Sadeghi, Virgil D. Gligor, and Moti Yung, editors, ACM CCS 2013, pages
967–980. ACM Press, November 2013. doi:10.1145/2508859.2516734.

[BPR00] Mihir Bellare, David Pointcheval, and Phillip Rogaway. Authenticated key
exchange secure against dictionary attacks. In Bart Preneel, editor, EURO-
CRYPT 2000, volume 1807 of LNCS, pages 139–155. Springer, Berlin, Heidelberg,
May 2000. doi:10.1007/3-540-45539-6_11.

[BR94] Mihir Bellare and Phillip Rogaway. Entity authentication and key distribution.
In Douglas R. Stinson, editor, CRYPTO’93, volume 773 of LNCS, pages 232–249.
Springer, Berlin, Heidelberg, August 1994. doi:10.1007/3-540-48329-2_21.

[Can01] Ran Canetti. Universally composable security: A new paradigm for crypto-
graphic protocols. In 42nd FOCS, pages 136–145. IEEE Computer Society
Press, October 2001. doi:10.1109/SFCS.2001.959888.

[CD23] Wouter Castryck and Thomas Decru. An efficient key recovery attack on
SIDH. In Carmit Hazay and Martijn Stam, editors, EUROCRYPT 2023,
Part V, volume 14008 of LNCS, pages 423–447. Springer, Cham, April 2023.
doi:10.1007/978-3-031-30589-4_15.

32

https://doi.org/10.1007/3-540-68697-5_1
https://doi.org/10.1007/3-540-68697-5_1
https://doi.org/10.1007/978-3-031-33491-7_19
https://doi.org/10.1007/11745853_14
https://doi.org/10.1007/978-3-031-15979-4_16
https://doi.org/10.1007/978-3-031-15979-4_16
https://doi.org/10.1007/978-3-319-63697-9_22
https://doi.org/10.1007/978-3-319-63697-9_22
https://doi.org/10.1145/2508859.2516734
https://doi.org/10.1007/3-540-45539-6_11
https://doi.org/10.1007/3-540-48329-2_21
https://doi.org/10.1109/SFCS.2001.959888
https://doi.org/10.1007/978-3-031-30589-4_15

[DFGS15] Benjamin Dowling, Marc Fischlin, Felix Günther, and Douglas Stebila. A
cryptographic analysis of the TLS 1.3 handshake protocol candidates. In
Indrajit Ray, Ninghui Li, and Christopher Kruegel, editors, ACM CCS 2015,
pages 1197–1210. ACM Press, October 2015. doi:10.1145/2810103.2813653.

[DHRR22a] Benjamin Dowling, Eduard Hauck, Doreen Riepel, and Paul Rösler. Strongly
anonymous ratcheted key exchange. Cryptology ePrint Archive, Report
2022/1187, 2022. URL: https://eprint.iacr.org/2022/1187.

[DHRR22b] Benjamin Dowling, Eduard Hauck, Doreen Riepel, and Paul Rösler. Strongly
anonymous ratcheted key exchange. In Shweta Agrawal and Dongdai Lin,
editors, ASIACRYPT 2022, Part III, volume 13793 of LNCS, pages 119–150.
Springer, Cham, December 2022. doi:10.1007/978-3-031-22969-5_5.

[DKRV18] Jan-Pieter D’Anvers, Angshuman Karmakar, Sujoy Sinha Roy, and Frederik
Vercauteren. Saber: Module-LWR based key exchange, CPA-secure encryption
and CCA-secure KEM. In Antoine Joux, Abderrahmane Nitaj, and Tajjeeddine
Rachidi, editors, AFRICACRYPT 18, volume 10831 of LNCS, pages 282–305.
Springer, Cham, May 2018. doi:10.1007/978-3-319-89339-6_16.

[Don17] Jason A. Donenfeld. WireGuard: Next generation kernel network tunnel. In
NDSS 2017. The Internet Society, February / March 2017. doi:10.14722/

ndss.2017.23160.

[DSGKS20] Dana Dachman-Soled, Huijing Gong, Mukul Kulkarni, and Aria Shahverdi. To-
wards a ring analogue of the leftover hash lemma. Journal of Mathematical Cryp-
tology, 15:87–110, 2020. URL: https://api.semanticscholar.org/CorpusID:
227129476.

[FJ24] Ellis Fenske and Aaron Johnson. Bytes to schlep? Use a FEP: Hiding protocol
metadata with fully encrypted protocols. In ACM CCS 2024, CCS ’24, page
1982–1996, New York, NY, USA, 2024. Association for Computing Machinery.
doi:10.1145/3658644.3690198.

[FO99] Eiichiro Fujisaki and Tatsuaki Okamoto. Secure integration of asymmetric and
symmetric encryption schemes. In Michael J. Wiener, editor, CRYPTO’99,
volume 1666 of LNCS, pages 537–554. Springer, Berlin, Heidelberg, August
1999. doi:10.1007/3-540-48405-1_34.

[Fre22] French Cybersecurity Agency. ANSSI views on the post-quantum cryptogra-
phy transition, March 2022. https://cyber.gouv.fr/sites/default/files/
document/EN_Position.pdf.

[Ger24] German Federal Office for Information Security. BSI TR-02102-1, crypto-
graphic mechanisms: Recommendations and key lengths, February 2024. Ver-
sion 2024-01, https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/

Publications/TechGuidelines/TG02102/BSI-TR-02102-1.pdf.

[GHJ+22] Qian Guo, Clemens Hlauschek, Thomas Johansson, Norman Lahr, Alexander
Nilsson, and Robin Leander Schröder. Don’t reject this: Key-recovery timing
attacks due to rejection-sampling in HQC and BIKE. IACR TCHES, 2022(3):223–
263, 2022. doi:10.46586/tches.v2022.i3.223-263.

33

https://doi.org/10.1145/2810103.2813653
https://eprint.iacr.org/2022/1187
https://doi.org/10.1007/978-3-031-22969-5_5
https://doi.org/10.1007/978-3-319-89339-6_16
https://doi.org/10.14722/ndss.2017.23160
https://doi.org/10.14722/ndss.2017.23160
https://api.semanticscholar.org/CorpusID:227129476
https://api.semanticscholar.org/CorpusID:227129476
https://doi.org/10.1145/3658644.3690198
https://doi.org/10.1007/3-540-48405-1_34
https://cyber.gouv.fr/sites/default/files/document/EN_Position.pdf
https://cyber.gouv.fr/sites/default/files/document/EN_Position.pdf
https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/TechGuidelines/TG02102/BSI-TR-02102-1.pdf
https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/TechGuidelines/TG02102/BSI-TR-02102-1.pdf
https://doi.org/10.46586/tches.v2022.i3.223-263

[GHP18] Federico Giacon, Felix Heuer, and Bertram Poettering. KEM combiners.
In Michel Abdalla and Ricardo Dahab, editors, PKC 2018, Part I, vol-
ume 10769 of LNCS, pages 190–218. Springer, Cham, March 2018. doi:

10.1007/978-3-319-76578-5_7.

[GJK21] Yanqi Gu, Stanislaw Jarecki, and Hugo Krawczyk. KHAPE: Asymmetric
PAKE from key-hiding key exchange. In Tal Malkin and Chris Peikert, editors,
CRYPTO 2021, Part IV, volume 12828 of LNCS, pages 701–730, Virtual Event,
August 2021. Springer, Cham. doi:10.1007/978-3-030-84259-8_24.

[GJN20] Qian Guo, Thomas Johansson, and Alexander Nilsson. A key-recovery timing
attack on post-quantum primitives using the Fujisaki-Okamoto transformation
and its application on FrodoKEM. In Daniele Micciancio and Thomas Ristenpart,
editors, CRYPTO 2020, Part II, volume 12171 of LNCS, pages 359–386. Springer,
Cham, August 2020. doi:10.1007/978-3-030-56880-1_13.

[GMP22] Paul Grubbs, Varun Maram, and Kenneth G. Paterson. Anonymous, robust post-
quantum public key encryption. In Orr Dunkelman and Stefan Dziembowski,
editors, EUROCRYPT 2022, Part III, volume 13277 of LNCS, pages 402–432.
Springer, Cham, May / June 2022. doi:10.1007/978-3-031-07082-2_15.

[GSU13] Ian Goldberg, Douglas Stebila, and Berkant Ustaoglu. Anonymity and one-
way authentication in key exchange protocols. DCC, 67(2):245–269, 2013.
doi:10.1007/s10623-011-9604-z.

[GSV24] Felix Günther, Douglas Stebila, and Shannon Veitch. Obfuscated key exchange.
In ACM CCS 2024, CCS ’24, page 2385–2399, New York, NY, USA, 2024.
Association for Computing Machinery. doi:10.1145/3658644.3690220.

[Hal24] Dan Hall. Zero Trust WARP: tunneling with a MASQUE, March 2024. https:
//blog.cloudflare.com/zero-trust-warp-with-a-masque.

[HILL99] Johan H̊astad, Russell Impagliazzo, Leonid A. Levin, and Michael Luby. A pseu-
dorandom generator from any one-way function. SIAM Journal on Computing,
28(4):1364–1396, 1999.

[HR24] Julia Hesse and Michael Rosenberg. PAKE combiners and efficient post-quantum
instantiations. Cryptology ePrint Archive, Paper 2024/1621, 2024. URL:
https://eprint.iacr.org/2024/1621.

[HSC+23] Senyang Huang, Rui Qi Sim, Chitchanok Chuengsatiansup, Qian Guo, and
Thomas Johansson. Cache-timing attack against HQC. IACR TCHES,
2023(3):136–163, 2023. doi:10.46586/tches.v2023.i3.136-163.

[IT21] J. Iyengar (Ed.) and M. Thomson (Ed.). QUIC: A UDP-Based Multiplexed
and Secure Transport. RFC 9000 (Proposed Standard), May 2021. URL:
https://www.rfc-editor.org/rfc/rfc9000.txt, doi:10.17487/RFC9000.

[JMZ23] Haodong Jiang, Zhi Ma, and Zhenfeng Zhang. Post-quantum security of key
encapsulation mechanism against CCA attacks with a single decapsulation
query. In Jian Guo and Ron Steinfeld, editors, ASIACRYPT 2023, Part IV,
volume 14441 of LNCS, pages 434–468. Springer, Singapore, December 2023.
doi:10.1007/978-981-99-8730-6_14.

34

https://doi.org/10.1007/978-3-319-76578-5_7
https://doi.org/10.1007/978-3-319-76578-5_7
https://doi.org/10.1007/978-3-030-84259-8_24
https://doi.org/10.1007/978-3-030-56880-1_13
https://doi.org/10.1007/978-3-031-07082-2_15
https://doi.org/10.1007/s10623-011-9604-z
https://doi.org/10.1145/3658644.3690220
https://blog.cloudflare.com/zero-trust-warp-with-a-masque
https://blog.cloudflare.com/zero-trust-warp-with-a-masque
https://eprint.iacr.org/2024/1621
https://doi.org/10.46586/tches.v2023.i3.136-163
https://www.rfc-editor.org/rfc/rfc9000.txt
https://doi.org/10.17487/RFC9000
https://doi.org/10.1007/978-981-99-8730-6_14

[JRX24] Jake Januzelli, Lawrence Roy, and Jiayu Xu. Under what conditions is encrypted
key exchange actually secure? Cryptology ePrint Archive, Report 2024/324,
2024. URL: https://eprint.iacr.org/2024/324.

[KBC97] H. Krawczyk, M. Bellare, and R. Canetti. HMAC: Keyed-Hashing for
Message Authentication. RFC 2104 (Informational), February 1997. Up-
dated by RFC 6151. URL: https://www.rfc-editor.org/rfc/rfc2104.txt,
doi:10.17487/RFC2104.

[KE10] H. Krawczyk and P. Eronen. HMAC-based Extract-and-Expand Key Derivation
Function (HKDF). RFC 5869 (Informational), May 2010. URL: https://www.
rfc-editor.org/rfc/rfc5869.txt, doi:10.17487/RFC5869.

[Kra10] Hugo Krawczyk. Cryptographic extraction and key derivation: The HKDF
scheme. In Tal Rabin, editor, CRYPTO 2010, volume 6223 of LNCS,
pages 631–648. Springer, Berlin, Heidelberg, August 2010. doi:10.1007/

978-3-642-14623-7_34.

[LHT16] A. Langley, M. Hamburg, and S. Turner. Elliptic Curves for Security. RFC
7748 (Informational), January 2016. URL: https://www.rfc-editor.org/
rfc/rfc7748.txt, doi:10.17487/RFC7748.

[LL24] You Lyu and Shengli Liu. Hybrid password authentication key exchange in
the UC framework. Cryptology ePrint Archive, Paper 2024/1630, 2024. URL:
https://eprint.iacr.org/2024/1630.

[LP11] Richard Lindner and Chris Peikert. Better key sizes (and attacks) for LWE-
based encryption. In Aggelos Kiayias, editor, CT-RSA 2011, volume 6558
of LNCS, pages 319–339. Springer, Berlin, Heidelberg, February 2011. doi:

10.1007/978-3-642-19074-2_21.

[LPR13] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. A toolkit for ring-
LWE cryptography. In Thomas Johansson and Phong Q. Nguyen, editors,
EUROCRYPT 2013, volume 7881 of LNCS, pages 35–54. Springer, Berlin,
Heidelberg, May 2013. doi:10.1007/978-3-642-38348-9_3.

[Mat21] Nick Mathewson. Ntor protocol with extra data, version 3. https://spec.

torproject.org/proposals/332-ntor-v3-with-extra-data.html, 2021.

[Moh10] Payman Mohassel. A closer look at anonymity and robustness in encryption
schemes. In Masayuki Abe, editor, ASIACRYPT 2010, volume 6477 of LNCS,
pages 501–518. Springer, Berlin, Heidelberg, December 2010. doi:10.1007/

978-3-642-17373-8_29.

[MRR20] Ian McQuoid, Mike Rosulek, and Lawrence Roy. Minimal symmetric PAKE
and 1-out-of-N OT from programmable-once public functions. In Jay Ligatti,
Xinming Ou, Jonathan Katz, and Giovanni Vigna, editors, ACM CCS 2020,
pages 425–442. ACM Press, November 2020. doi:10.1145/3372297.3417870.

[MX23] Varun Maram and Keita Xagawa. Post-quantum anonymity of Kyber. In
Alexandra Boldyreva and Vladimir Kolesnikov, editors, PKC 2023, Part I,
volume 13940 of LNCS, pages 3–35. Springer, Cham, May 2023. doi:10.1007/
978-3-031-31368-4_1.

35

https://eprint.iacr.org/2024/324
https://www.rfc-editor.org/rfc/rfc2104.txt
https://doi.org/10.17487/RFC2104
https://www.rfc-editor.org/rfc/rfc5869.txt
https://www.rfc-editor.org/rfc/rfc5869.txt
https://doi.org/10.17487/RFC5869
https://doi.org/10.1007/978-3-642-14623-7_34
https://doi.org/10.1007/978-3-642-14623-7_34
https://www.rfc-editor.org/rfc/rfc7748.txt
https://www.rfc-editor.org/rfc/rfc7748.txt
https://doi.org/10.17487/RFC7748
https://eprint.iacr.org/2024/1630
https://doi.org/10.1007/978-3-642-19074-2_21
https://doi.org/10.1007/978-3-642-19074-2_21
https://doi.org/10.1007/978-3-642-38348-9_3
https://spec.torproject.org/proposals/332-ntor-v3-with-extra-data.html
https://spec.torproject.org/proposals/332-ntor-v3-with-extra-data.html
https://doi.org/10.1007/978-3-642-17373-8_29
https://doi.org/10.1007/978-3-642-17373-8_29
https://doi.org/10.1145/3372297.3417870
https://doi.org/10.1007/978-3-031-31368-4_1
https://doi.org/10.1007/978-3-031-31368-4_1

[NAB+20] Michael Naehrig, Erdem Alkim, Joppe Bos, Léo Ducas, Karen Easterbrook,
Brian LaMacchia, Patrick Longa, Ilya Mironov, Valeria Nikolaenko, Christo-
pher Peikert, Ananth Raghunathan, and Douglas Stebila. FrodoKEM. Tech-
nical report, National Institute of Standards and Technology, 2020. avail-
able at https://csrc.nist.gov/projects/post-quantum-cryptography/

post-quantum-cryptography-standardization/round-3-submissions.

[NIS23] NIST. Digital signature standard (dss), February 2023. FIPS 186-5. https:
//doi.org/10.6028/NIST.FIPS.186-5.

[PG25] Jonas Janneck Phillip Gajland, Vincent Hwang. Shadowfax: Combiners for
deniability. Cryptology ePrint Archive, Paper 2025/154, 2025. URL: https:
//eprint.iacr.org/2025/154.

[Rad] Cloudflare Radar. Adoption & Usage Worldwide | Cloudflare
Radar. URL: https://radar.cloudflare.com/adoption-and-usage#

post-quantum-encryption-adoption.

[Reg05] Oded Regev. On lattices, learning with errors, random linear codes, and
cryptography. In Harold N. Gabow and Ronald Fagin, editors, 37th ACM
STOC, pages 84–93. ACM Press, May 2005. doi:10.1145/1060590.1060603.

[ROSW24] Eric Rescorla, Kazuho Oku, Nick Sullivan, and Christopher A. Wood. TLS
Encrypted Client Hello. Internet Draft draft-ietf-tls-esni-22, Internet Engi-
neering Task Force, September 2024. https://datatracker.ietf.org/doc/
draft-ietf-tls-esni-22.

[SGJ23] Bruno Freitas Dos Santos, Yanqi Gu, and Stanislaw Jarecki. Randomized
half-ideal cipher on groups with applications to UC (a)PAKE. In Car-
mit Hazay and Martijn Stam, editors, EUROCRYPT 2023, Part V, vol-
ume 14008 of LNCS, pages 128–156. Springer, Cham, April 2023. doi:

10.1007/978-3-031-30589-4_5.

[sha23] Shadowsocks. https://shadowsocks.org/doc/what-is-shadowsocks.html,
2023.

[SP22] Benjamin M. Schwartz and Christopher Patton. The Pseudorandom Ex-
tension for cTLS. Internet Draft draft-cpbs-pseudorandom-ctls-01, Internet
Engineering Task Force, April 2022. https://datatracker.ietf.org/doc/

draft-cpbs-pseudorandom-ctls-01.

[SSL20] Sven Schäge, Jörg Schwenk, and Sebastian Lauer. Privacy-preserving authen-
ticated key exchange and the case of IKEv2. In Aggelos Kiayias, Markulf
Kohlweiss, Petros Wallden, and Vassilis Zikas, editors, PKC 2020, Part II,
volume 12111 of LNCS, pages 567–596. Springer, Cham, May 2020. doi:

10.1007/978-3-030-45388-6_20.

[The19] The Tor Project. obfs4 (the obfourscator), protocol specification, ver-
sion c0898c2d. https://gitlab.torproject.org/tpo/anti-censorship/

pluggable-transports/lyrebird/-/blob/main/doc/obfs4-spec.txt,
2019.

36

https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://doi.org/10.6028/NIST.FIPS.186-5
https://doi.org/10.6028/NIST.FIPS.186-5
https://eprint.iacr.org/2025/154
https://eprint.iacr.org/2025/154
https://radar.cloudflare.com/adoption-and-usage#post-quantum-encryption-adoption
https://radar.cloudflare.com/adoption-and-usage#post-quantum-encryption-adoption
https://doi.org/10.1145/1060590.1060603
https://datatracker.ietf.org/doc/draft-ietf-tls-esni-22
https://datatracker.ietf.org/doc/draft-ietf-tls-esni-22
https://doi.org/10.1007/978-3-031-30589-4_5
https://doi.org/10.1007/978-3-031-30589-4_5
https://shadowsocks.org/doc/what-is-shadowsocks.html
https://datatracker.ietf.org/doc/draft-cpbs-pseudorandom-ctls-01
https://datatracker.ietf.org/doc/draft-cpbs-pseudorandom-ctls-01
https://doi.org/10.1007/978-3-030-45388-6_20
https://doi.org/10.1007/978-3-030-45388-6_20
https://gitlab.torproject.org/tpo/anti-censorship/pluggable-transports/lyrebird/-/blob/main/doc/obfs4-spec.txt
https://gitlab.torproject.org/tpo/anti-censorship/pluggable-transports/lyrebird/-/blob/main/doc/obfs4-spec.txt

[Tib14] Mehdi Tibouchi. Elligator squared: Uniform points on elliptic curves of prime
order as uniform random strings. In Nicolas Christin and Reihaneh Safavi-
Naini, editors, FC 2014, volume 8437 of LNCS, pages 139–156. Springer, Berlin,
Heidelberg, March 2014. doi:10.1007/978-3-662-45472-5_10.

[Vai21] Loup Vaillant. Elligator - Hiding Key Exchanges, 2021. URL: https://
elligator.org/key-exchange.

[vme19] VMess. https://www.v2ray.com/en/configuration/protocols/vmess.

html, 2019.

[Wes24] Bas Westerbaan. The state of the post-quantum Internet, March 2024. https:
//blog.cloudflare.com/pq-2024.

[WJJS23] Ryan Wails, Rob Jansen, Aaron Johnson, and Micah Sherr. Proteus: Pro-
grammable protocols for censorship circumvention. In Free and Open Commu-
nication on the Internet, number 2, pages 50–66, 2023.

[WMSM11] Andrew M. White, Austin R. Matthews, Kevin Z. Snow, and Fabian Monrose.
Phonotactic reconstruction of encrypted VoIP conversations: Hookt on fon-iks.
In 2011 IEEE Symposium on Security and Privacy, pages 3–18. IEEE Computer
Society Press, May 2011. doi:10.1109/SP.2011.34.

[WSS+23] Mingshi Wu, Jackson Sippe, Danesh Sivakumar, Jack Burg, Peter Anderson,
Xiaokang Wang, Kevin Bock, Amir Houmansadr, Dave Levin, and Eric Wustrow.
How the great firewall of china detects and blocks fully encrypted traffic. In
Joseph A. Calandrino and Carmela Troncoso, editors, USENIX Security 2023,
pages 2653–2670. USENIX Association, August 2023.

[WW24] Bas Westerbaan and Christopher A. Wood. X25519Kyber768Draft00
hybrid post-quantum KEM for HPKE. Internet Draft draft-westerbaan-
cfrg-hpke-xyber768d00-03, Internet Engineering Task Force, May
2024. Num Pages: 20. URL: https://datatracker.ietf.org/doc/

draft-westerbaan-cfrg-hpke-xyber768d00.

[Xag22] Keita Xagawa. Anonymity of NIST PQC round 3 KEMs. In Orr Dunkelman
and Stefan Dziembowski, editors, EUROCRYPT 2022, Part III, volume 13277
of LNCS, pages 551–581. Springer, Cham, May / June 2022. doi:10.1007/

978-3-031-07082-2_20.

[XAR+24] Diwen Xue, Anna Ablove, Reethika Ramesh, Grace Kwak Danciu, and Roya
Ensafi. Bridging barriers: A survey of challenges and priorities in the censorship
circumvention landscape. In Davide Balzarotti and Wenyuan Xu, editors,
USENIX Security 2024. USENIX Association, August 2024.

A Additional Definitions

Definition A.1 (Pseudorandom generator). We define the pseudorandom generator (PRG)
advantage of an adversary A against a function G : S → R as

AdvPRGG (A) := Pr [A(r1)⇒ 1 | s←$ S, r ← G(s)]− Pr [A(r0)⇒ 1 | r←$R] .

37

https://doi.org/10.1007/978-3-662-45472-5_10
https://elligator.org/key-exchange
https://elligator.org/key-exchange
https://www.v2ray.com/en/configuration/protocols/vmess.html
https://www.v2ray.com/en/configuration/protocols/vmess.html
https://blog.cloudflare.com/pq-2024
https://blog.cloudflare.com/pq-2024
https://doi.org/10.1109/SP.2011.34
https://datatracker.ietf.org/doc/draft-westerbaan-cfrg-hpke-xyber768d00
https://datatracker.ietf.org/doc/draft-westerbaan-cfrg-hpke-xyber768d00
https://doi.org/10.1007/978-3-031-07082-2_20
https://doi.org/10.1007/978-3-031-07082-2_20

Definition A.2 (Pseudorandom function). We define the pseudorandom function (PRF)
advantage of an adversary A against a function F : X × Y → Z as

AdvPRFF (A) := Pr
[
AF(k,·)()⇒ 1 | k←$ {0, 1}κ

]
− Pr

[
AR(·)()⇒ 1 | R←$ {all functions : Y → Z}

]
.

Definition A.3 (One-time indistinguishability from random strings (OT-IND$)). Let SE be
a symmetric encryption scheme with key space K and where the length |c| = ℓ(|m|) of the
ciphertext output by encryption only depends on the input message’s length |m|. We define
the OT-IND$ security game as follows.

1. The challenger samples b←$ {0, 1}.

2. A provides a chosen message m to the challenger, who returns either SE.Enc(m) if
b = 1 or a random string c←$ {0, 1}ℓ(|m|) if b = 0.

3. A outputs a guess b′ ∈ {0, 1}.

We define the OT-IND$ advantage of an adversary A as

AdvOT-IND$
SE (A) := 2 · Pr[b′ = b]− 1.

Definition A.4 (nm-PRF-ODH assumption). Let G be a group of prime order q with
generator g, and F : G× {0, 1}∗ → {0, 1}ℓ for ℓ ∈ N be a function.

We define the nm-PRF-ODH security game as follows.

1. The challenger samples b←$ {0, 1}, u, v←$ Zq, and provides G, g, gu, and gv to A,
who responds with a challenge label x∗. A has access to an oracle ODHv(·, ·) that on
input S ∈ G, x ∈ {0, 1}∗ returns y ← F(Sv, x).

2. The challenger computes y0 = F(guv, x∗) and samples y1←$ {0, 1}ℓ uniformly at random,
providing yb to A.

3. A again has access to oracle ODHv(·, ·) that on input S ∈ G, x ∈ {0, 1}∗ returns
y ← F(Sv, x), except that it disallows the input (S, x) = (gu, x∗).

4. Eventually, A stops and outputs a guess b′ ∈ {0, 1}.

We define the nm-PRF-ODH advantage function as

Advnm-PRF-ODH
F,G (A) := 2 · Pr[b′ = b]− 1.

B Relations Between Anonymity Notions

Several of the security properties that we have proven for our obfuscated KEM combiner —
strong pseudorandomness (SPR-CCA), ciphertext uniformity, and public key uniformity —
relate to existing notions of anonymity and pseudorandomness of KEMs. We compare the
goals of these notions and discuss how they relate to one another. [JRX24, Table 3] provides
a nice summary of PAKE-related notions of pseudorandomness and anonymity. We reiterate
their observations and extend them to include additional properties.

38

GANO-CCA
K (A):
1 b←$ {0, 1}
2 (pk0, sk0)←$ KGen()

3 (pk1, sk1)←$ KGen()

4 (c∗,K∗)←$ Encap(pkb)

5 b′ ← ADecapc∗ (skb,·)(pk0, pk1, (c
∗,K∗))

6 return Jb = b′K

Decapx(sk , c):

7 if c = x then return ⊥
8 K ← Decap(sk , c)

9 return K

Figure 8: Security game for ANO-CCA of a KEM K = (KGen,Encap,Decap).

The strong pseudorandomness (SPR-CCA) property that we have shown for our KEM
combiner originates in [Xag22] as a tool for proving anonymity of a KEM. In particular,
[Xag22, Theorem 2.5] shows that SPR-CCA implies ANO-CCA (which we recap in Figure 8),
where ANO-CCA of a KEM captures the idea that an adversary cannot distinguish which
public key corresponds to a given ciphertext, shared secret pair. This definition of anonymity
for KEMs was introduced in [GMP22] and an analogous definition is given for PKE schemes.
The ANO-CCA property for PKE schemes from [GMP22] is equivalent to the IK-CCA property
of PKE schemes introduced in [BBDP01]. IK-CCA, also called “key-privacy” or “indistin-
guishability of keys,” similarly captures the idea that an adversary cannot distinguish which
of two public keys corresponds to a given challenge ciphertext. This idea of anonymity of
PKE schemes is, again, similarly introduced by Mohassel [Moh10] for general encryption
schemes (capturing PKE and IBE schemes). The definition in [Moh10] is similar to that of
ANO/IK-CCA, except it also provides the adversary access to a number of public keys, and
some secret keys that do not allow for trivial wins. This is equivalent to the ANO/IK-CCA
definition up to a factor depending on the number of secret key reveals [Moh10]. Finally, all
of these definitions of anonymity for PKE schemes are related to the ciphertext anonymity
property introduced in [DHRR22a, Definition 14] for updatable randomizable PKE schemes
(note that the text in the introduction and Section 5 refers to this property as ciphertext
anonymity, while in the definition it is called anonymity). This definition of anonymity is a
natural analogue of ANO/IK-CCA in the setting of updatable randomizable PKE schemes (i.e.,
additionally allows the adversary access to public keys and an oracle which re-randomizes
public keys).

It follows directly from these results that our OKEM combiner provides ANO-CCA security
(Figure 8). Therefore, instantiating our OKEM combiner with a DH-based OKEM and a
post-quantum OKEM provides the first hybrid anonymous KEM. That is, the anonymity of
the scheme relies on the stronger underlying security assumption of the input KEMs. Prior
hybrid KEMs, e.g., X-Wing [BCD+24] and those resulting from the generic constructions in
[GHP18], do not achieve such a hybrid anonymity property because they simply concatenate
the two ciphertexts before returning them in Encap. This means that being able to correlate
one of the ciphertexts with its corresponding public key is enough to break the anonymity of
the scheme. For example, since the anonymity of ML-KEM relies on an underlying module
LWE assumption [MX23], then breaking this assumption would be sufficient to violate the
anonymity of any prior hybrid construction instantiated with ML-KEM.

The notions of public key uniformity and ciphertext uniformity that we adopt from
[GSV24] are similar to existing definitions from the literature on password-authenticated key
exchange (PAKE). In particular, [SGJ23] says that a KEM has uniform public keys if the
distribution of public keys output by KGen is indistinguishable from uniformly sampling from
the public key space. This is equal to the fuzziness property of KEMs given in [BCP+23].

39

Definition B.1 (KEM Fuzziness [BCP+23]). Let K = (KGen,Encap,Decap) be a KEM with
public key space P. The advantage of an unbounded adversary A in breaking the fuzziness of
K is:

AdvfuzzyK (A) := 2 · Pr
[
A(pk b) = b

∣∣∣∣ b←$ {0, 1}, pk0←$ P,
(sk1, pk1)←$ KGen()

]
− 1

Public key uniformity as defined in Definition 2.6 is equivalent to fuzziness when the
public key space is the set of bitstrings. Similarly, [SGJ23] and [BCP+23] define properties
of KEMs that are similar to ciphertext uniformity as defined in Definition 2.7. [BCP+23]
says that a KEM is anonymous if the ciphertexts output by Encap are indistinguishable
from uniformly sampled ciphertexts from the ciphertext space.

Definition B.2 (KEM Anonymity [BCP+23]). Let K = (KGen,Encap,Decap) be a KEM with
ciphertext space C. The advantage of an unbounded adversary A in breaking the anonymity
of K is:

AdvanoK (A) := 2 · Pr

A(cb) = b

∣∣∣∣∣∣
b←$ {0, 1}, c0←$ C,
(sk , pk)←$ KGen(),

(c1,K1)←$ Encap(pk)

− 1

[SGJ23] says that a KEM is anonymous if two KEM ciphertexts output by Encap on two
randomly generated public keys are indistinguishable. This is a slightly weaker property than
the anonymity definition from [BCP+23]. Ciphertext uniformity requires that ciphertexts
output by Encap are indistinguishable from uniform bitstrings and also provides the adversary
with the KEM public key (and in the case of strong ciphertext uniformity, the secret key), so
ciphertext uniformity is a stronger notion than KEM anonymity in both [BCP+23, SGJ23].
The relations between these notions are summarized in Figure 3

Other similar notions of anonymity for key agreement and key exchange protocols
include but are not limited to key-hiding AKEs [GJK21], privacy-preserving AKEs [SSL20],
pseudorandom (unauthenticated) key agreement protocols [MRR20], the random-message
property of [SGJ23], one-way anonymity [GSU13], and anonymous ratcheted key exchange
[DHRR22b]. As these definitions apply to protocols rather than primitives, we do not include
them in our comparison.

C Security Proofs for OEINC

C.1 IND-CPA / IND-CCA Security

We first provide the proof of Theorem 3.1 (IND-CPA / IND-CCA security of OEINC). We
focus on the IND-CCA case in our proof. The IND-CPA case follows analogously, merely
omitting the handling of decapsulation queries.

Proof. Game 0. We start with the security game for IND-CCA, GIND-CCA
OEINC (A).

Case I.

We begin with the first case reducing to IND-CCA security of the outer OKEM, and proceed
via a series of game hops.

40

Game I.0. In GI.0, we replace the key Kout with a uniformly random K̃out.
We bound the adversary A’s advantage by a reduction B1 to the IND-CCA security of

outOKEM. B1 obtains the IND-CCA challenge (pk , c∗,K ∗) and simulates the game for A
as follows. It uses pk , c∗, and K ∗ in place of the outer pkout, cout, and Kout, respectively.
Upon any Decap(c = cout∥c′in) query, B1 checks if cout = c∗ and if so, replaces Kout with

K̃out. Else, B1 queries its IND-CCA decapsulation oracle and uses the response as Kout.
If K ∗ is the real KEM key then B1 exactly simulates G0 for A; else, if K ∗ is random then

B1 exactly simulates GI.0. Therefore:

Pr[G0]− Pr[GI.0] ≤ AdvIND-CCA
outOKEM(B1).

Game I.1. In GI.1 we replace the output Koe,Kok of G(K̃out) with uniformly random

K̃oe, K̃ok, in particular for the challenge. We bound the difference in this step by a reduction B2
to the PRG security of G. The reduction uses its oracle in place of G, simulating either GI.0

or GI.1, giving:
Pr[GI.0]− Pr[GI.1] ≤ AdvPRGG (B2).

Game I.2. Finally, in GI.2, we replace evaluations of W(K̃ok, ·, ·) with a random function.

This in particular replaces the challenge K with a uniformly random K̃ , independent of all
keys returned by the decapsulation oracle because the third input c to W is distinct from
the challenge c∗ for each query. We bound this step by a reduction to the skPRF security of
W, where the reduction B3 uses its oracle in place of W(K̃ok, ·, ·). This yields:

Pr[GI.1]− Pr[GI.2] ≤ AdvskPRFW,1 (B3).

We now have in GI.2 that the real and random KEM key output of the IND-CCA game
are both randomly sampled, and so A has no better chance than guessing the challenge bit b:

AdvGI.2

OEINC(A) = 0.

Case II.

This case reduces to the IND-CCA security of the inner OKEM, again proceeding via a series
of game hops.

Game II.0. In GII.0, we replace the key Kin with a uniformly random K̃in.
We bound the adversary A’s difference in advantage by a reduction C1 to the IND-CCA

security of inOKEM. C1 obtains the IND-CCA challenge (pk , c∗,K ∗) and simulates the game
for A as follows. It uses pk , c∗, and K ∗ in place of the inner pk in, cin, and Kin, respectively.
Upon decapsulation queries from A, C1 checks if (in line 20 of Decap) cin = c∗ and if so, uses

K̃in as Kin. Else, it queries its IND-CCA decapsulation oracle and uses the response as Kin.
If K ∗ is the real KEM key than C1 exactly simulates G0 to A; else, it simulates GII.0. Thus:

Pr[G0]− Pr[GII.0] ≤ AdvIND-CCA
inOKEM (C1).

41

Game II.1. Lastly in GII.1, we replace evaluations of W(·,Kin, ·) with a random function.

This replaces K with a uniformly random K̃ . Note that on any decapsulation query, the
third input c to W is distinct from the challenge c∗. We bound this by a reduction C2 to the
skPRF security of W, where C2 uses its oracle in place of calls to W(·,Kin, ·). Therefore:

Pr[GII.0]− Pr[GII.1] ≤ AdvskPRFW,2 (C2).

Now, as before, the real and random KEM key output of the IND-CCA game are both
randomly sampled, and so A has no better chance than guessing the challenge bit b:

AdvGII.1

OEINC(A) = 0.

Collecting the bounds yields the theorem statement.

C.2 Public Key Uniformity

We give the proof of Theorem 3.4 (pk-unif of OEINC).

Proof. Game 0. We start with the security game for pk-unif (Gpk-unif
OEINC(A)).

Game 1. In G1 we replace the outer public key pkout with a uniformly random string from
{0, 1}oloutOKEM . This game hop is bounded by a reduction B1 to pk-unif of outOKEM. We have
that

Pr[G0]− Pr[G1] ≤ Advpk-unifoutOKEM(B1).

Game 2. Now, in G2, we replace pk in with a uniformly random string from {0, 1}olinOKEM ,
bounding by a reduction B2 to the pk-unif security of inOKEM:

Pr[G1]− Pr[G2] ≤ Advpk-unifinOKEM(B2).

Now, pk is a random pair from {0, 1}oloutOKEM × {0, 1}olinOKEM , so A cannot win anymore
and we have

AdvG2

OEINC(A) = 0.

D An OKEM from DHKEM

We provide a construction of an obfuscated KEM based on DHKEM, as defined in the IETF
HPKE standard [BBLW22], when instantiated with a prime-order curve, e.g., P-256 or
Ristretto [NIS23, LHT16],8 and the Elligator2 encoding. Then, we demonstrate that this
achieves the required security properties to be of use in our OKEM combiner.

Consider the OKEM constructed via applying Elligator2 to DHKEM public keys and
ciphertexts, following the keygen/encapsulate-then-encode paradigm defined in [GSV24].
We denote this construction DHKEM-Ell2. Specifically, we use the algorithms described in
Figure 9. In DHKEM, the ciphertext output by Encap is in fact a public key of the underlying
DH group. Therefore, the Elligator2 map applies to both public keys and ciphertexts in the
construction.

8Really, any ECDH scheme can work, so long as its public keys are uniformly distributed. This is not the
case for, e.g., X25519 [Ber06], since scalar clamping ensures that public keys are in the prime-order subgroup,
which is only 1/8 of the curve. There exist modifications to X25519 key generation to recover uniformity of
public keys [Vai21].

42

KGen():

1 repeat

2 sk ←$ [1, p− 1]

3 pk ← gsk

4 p̂k ← Elligator2.Encode(pk)

5 until p̂k ̸= ⊥
6 return (sk , p̂k)

Decap(skR, ĉ):

1 c ← Elligator2.Decode(ĉ)

2 pkE ← DeserializePublicKey(c)

3 dh ← pkE
skR

4 pkRm ← SerializePublicKey(gskR)

5 kem context ← c∥pkRm

6 K ← G(dh, kem context)

7 return K

Encap(pkR):

1 repeat

2 skE ←$ [1, p− 1]

3 pkE ← gskE

4 dh ← pkR
skE

5 c ← SerializePublicKey(pkE)

6 pkRm ← SerializePublicKey(pkRm)

7 kem context ← c∥pkRm

8 K ← G(dh, kem context)

9 ĉ←$ Elligator2.Encode(c)

10 until ĉ ̸= ⊥
11 return (ĉ,K)

Figure 9: DHKEM-Ell2: Keygen/Encapsulate-then-encode OKEM from DHKEM and
Elligator2, where DHKEM is defined over a nominal group G (cf. [ABH+21]) of prime-order
p with generator g. G is a key derivation function.

We can then apply the following results for SPR-CCA and IND-CCA security of the
resulting keygen/encapsulate-then-encode OKEM.

Theorem D.1 (Keygen/encapsulate-then-encode obfuscated KEM IND-CCA security [GSV24]).
Let OKEM be a keygen/encapsulate-then-encode obfuscated KEM based on a regular KEM KEM.
For any adversary A against the IND-CCA security of OKEM, we give an algorithm B such
that

AdvIND-CCA
OKEM (A) ≤ 1/ϵ1kgensuccOKEM · 1/ϵ1encsuccOKEM · AdvIND-CCA

KEM (B).

Theorem D.2 (Keygen/encapsulate-then-encode obfuscated KEM SPR-CCA security [GSV24]).
Let OKEM be a keygen/encapsulate-then-encode obfuscated KEM based on a regular KEM KEM.
For any adversary A against the SPR-CCA security of OKEM, we give algorithms B1, B2
such that

AdvSPR-CCAOKEM (A) ≤ 1/ϵ1kgensuccOKEM · 1/ϵ1encsuccOKEM · AdvSPR-CCAKEM,Sunif (B1)

+ Advreg-ctxt-unifOKEM (B2),

where Sunif samples a fresh key pair (sk , pk) and outputs the ciphertext resulting from
encapsulating against pk.

The terms relating to success probability of encoding (ϵ1kgensuccDHKEM-Ell2, ϵ1encsuccDHKEM-Ell2), are
both ≈ 2−1, following from the fact that approximately half of the x-coordinates of input
curves are quadratic residues. The ciphertext uniformity, Advreg-ctxt-unifDHKEM-Ell2(A), and public key

uniformity, Advpk-unifDHKEM-Ell2(A), similarly depend on the parameters of the underlying curve
and can be computed as was done in [GSV24, §2.1] for X25519 (with aforementioned keygen
modifications). Furthermore, IND-CCA was proven for DHKEM in the context of DHIES
[ABR01].9 Therefore, it only remains to show SPR-CCA security of DHKEM. We do so in

9More precisely, the DH-based KEM used in DHIES resembles DHKEM, but with less domain separation
in its KDF invocations and no input or output validation for public keys and shared secrets.

43

the following, via the PRF-ODH assumption [BFGJ17] on the KDF and group employed in
DHKEM. Specifically, we use the nm-PRF-ODH assumption which allows multiple ODHv

oracle queries (to the group element that will correspond to the DHKEM public key), which
we recap in Definition A.4.10

Theorem D.3 (SPR-CCA Security of DHKEM). Let DHKEM = DHKEM[P,G] be the KEM
described in [BBLW22] over a group G and key derivation function G. For any adversary A
against the SPR-CCA security of DHKEM, we give an algorithm B1 such that

AdvSPR-CCADHKEM,Sunif (A) ≤ Advnm-PRF-ODH
G,G (B1)

where Sunif samples and outputs a random group element.

Proof. Game 0. We start with the SPR-CCA security game GSPR-CCA
DHKEM,Sunif (A).

Game 1. In G1, we replace the real challenge key K ∗1 with a randomly sampled key K̃
from K. We bound the difference by a reduction B1 to the nm-PRF-ODH security of G over
G. Note that in DHKEM, the ciphertext is simply an ephemeral group element gr. The
reduction obtains a nm-PRF-ODH challenge of the form (gu, gv, y∗b), where y∗b is either a
random value or G(guv, x∗) for a challenge label x∗. Therefore, the reduction queries as
label x∗ the KEM context (gu, gv) as per [BBLW22] and uses its nm-PRF-ODH challenge y∗b
in place of K ∗, gu in place of c∗, and gv in place of pk . Upon Decap(c) queries from A, the
reduction queries its nm-PRF-ODH oracle ODHv on group element c and label (c, gv) to
obtain the KEM shared secret. When the challenge is real, B1 exactly simulates G0 to A;
else, B1 exactly simulates G1 to A. It follows that

Pr[G0]− Pr[G1] ≤ Advnm-PRF-ODH
G (B1).

Game 2. In G2, we replace the challenge ciphertext with a ciphertext c∗←$ Sunif , i.e., a
randomly sampled group element. Since the key K̃ is random by G1, the challenge ciphertext
is no longer used to compute the key in Encap. Therefore, this change is unnoticeable to the
adversary.

Pr[G1] = Pr[G2].

At this point, we have that c and K are both random. Hence, the adversary A can only
guess the challenge bit b:

AdvG2

DHKEM,Sunif (A) = 0.

Alternative constructions. A classically secure OKEM can also be constructed using
DHKEM over elliptic curves in combination with Elligator2 [Tib14] in a similar manner.
Compared to Elligator2, the Elligator2 construction has 100% success probability. Naturally,
substituting different encodings and/or elliptic curve groups alters the bounds accordingly.

10The nm-PRF-ODH assumption essentially encodes modeling the KDF as a random oracle and assuming
the strong or gap Diffie–Hellman problem is hard in the underlying group.

44

E Obfuscated Key Exchange Security Model

We repeat the key exchange model introduced in [GSV24]. We specify a key exchange
protocol KE through two algorithms:

• Setup(id , role) $→ (sk , pk , st) generates the public-secret key pair (pk , sk) as well as the
initial user state st for a protocol user with identity id in role role ∈ {initiator, responder}.

• Run(πi
u, stu, sku, pkv,m) $→ (πi

u, stu,m
′) processes a protocol message m delivered to

session πi
u following the protocol specification (along with inputs the session owner’s

state stu and secret key sku, and the session’s peer public key pkv), updates π
i
u and stu

accordingly, and outputs the response message m′.

Further, we write KE.KS to denote the session key space of KE.

E.1 Session and game variables.

Session object πi
u captures the session information for the ith session owned by user u. Each

user u is assigned a role, u.role ∈ {initiator, responder}, and acts accordingly as initiator or
responder in the protocol.

Each session object πi
u holds several variables. The following session variables in italics

font are accessible by the key exchange protocol (i.e., Run):

• πi
u.peerid : the identity of the session’s intended peer.

• πi
u.status: the state of execution (initially running, then set once by the protocol to

accepted or rejected).

• πi
u.skey : the session key.

• πi
u.sid , π

i
u.cid : the session and contributive identifiers.

These following session variables in sans-serif font are accessible by the security game only:

• πi
u.tacc: the time at which the session accepted (initially ∞).

• πi
u.revealed, π

i
u.tested: flags indicating whether the session was revealed or tested, respec-

tively.

The security game further tracks the following game variables:

• time: a logical clock to order queries by the adversary.

• users: the number of users in the game.

• b: the challenge bit.

• sku, pku: the secret and public key of user u.

• revsku, revpku: flags indicating whether the secret or public, key of user u was revealed.

For syntactical convenience, we will interpret variables which are unset or set to ∞ as
false in boolean conditions.

45

E.2 Session identifiers, contributive identifiers, and partnering.

We use session identifiers [BPR00] to determine that two sessions πi
u, π

j
v are partnered if and

only if πi
u.sid = πj

v.sid . Partnering is used to define basic correctness/soundness properties
and to exclude trivial attacks like testing and revealing two partnered sessions that jointly
executed the protocol.

We further use contributive identifiers [DFGS15] to determine when a responder session
has an honest communication partner. Recall that initiators are unauthenticated. Hence, to
avoid trivial attacks, the adversary may test a responder session only if that session honestly
received the values specified in the contributive identifier cid .

E.3 Security Definition

Definition E.1 (Obfuscated key exchange security). Let KE be a key exchange protocol
and GObfKE

KE,S (A) be the obfuscated key exchange security game wrt. a simulator S defined in
Figure 10 for an adversary A. We define the advantage of A in breaking the ObfKE security
of KE as

AdvObfKE
KE,S (A) := 2 · Pr

[
GObfKE
KE,S (A)⇒ 1

]
− 1.

We distinguish two flavors of ObfKE, capturing regular (rObfKE) and strong (sObfKE) obfus-
cation through different ObfFresh predicates (Figure 11); we omit the prefixes if the flavor is
clear from context.

E.4 Single-challenge selective security

For our security analysis, we will establish security in a simpler version of the obfuscated key
exchange game, where the adversary has to commit to winning via either:

1. a single Test query to some pre-declared session, or

2. a single ChallExec query against some pre-declared server.

This variant is denoted as ObfKE-1, and is a weaker versions of the main game, asking only
for selective security in a single-challenge setting. It has been shown in [GSV24] that this
simpler version generically implies full security (per Definition E.1) via a hybrid argument,
for the same type of obfuscation (regular or strong). The hybrid works via guessing which
session or server the adversary will challenge, losing a factor (ns + nrqC) when reducing
ObfKE to ObfKE-1 security, where ns and nr are the number of sessions and servers in the
game and qC the number of ChallExec queries the adversary makes.

F Security Proof for Drivel (Theorem 4.1)

We proceed via a series of game hops. The majority of the proof directly follows the proof
of security of pq-obfs from [GSV24]; we recap these steps here, in part verbatim. Game
hops with significant differences to pq-obfs are underlined. The primary difference is that,
in the final steps, OT-IND$ is applied in GII.6 and GII.7 rather than invoking public key and
ciphertext uniformity.

46

GObfKE
KE,S (A)

Initialize:

1 time← 0; users← 0
2 b←$ {0, 1}
3 Probed← false

NewUser(id , role):

4 u← ++users
5 u.role ← role
6 (pku, sku, stu)←$ Setup(id , role)
7 revsku ←∞ ; revpku ←∞

RevSessionKey(u, i):

8 if πi
u = ⊥ or ¬πi

u.tacc then return ⊥
9 πi

u.revealed← true
10 return πi

u.skey

RevPublicKey(u):

11 if revpku then return ⊥
12 revpku ← ++time
13 return pku

RevSecretKey(u):

14 if revsku then return ⊥
15 revsku ← ++time
16 if ¬revpku then revpku ← time // Consider pku

revealed, too

17 return sku

Test(u, i):

18 if πi
u = ⊥ or ¬πi

u.tacc or πi
u.tested then

19 return ⊥
20 πi

u.tested← true
21 k1 ← πi

u.skey
22 k0←$ KE.KS
23 return kb

Finalize(b′):

24 if ¬Sound then b′ ← b
25 if ¬ExplicitAuth then b′ ← b
26 if Probed then b′ ← b
27 if ¬Fresh then b′ ← 0
28 if ¬ObfFresh then b′ ← 0
29 return Jb = b′K

Send(u, i,m):

30 f ← Jπi
u = ⊥K // First Send to this session?

31 if πi
u = ⊥ and u.role = initiator then

32 πi
u.peerid ← m; m← ε // “Virtual” first message to initiator sets peer id

33 if πi
u.status ∈ {accepted, rejected} then return ⊥

34 (πi
u, stu,m

′)←$ Run(πi
u, stu, sku, pkπi

u.peerid ,m)

35 if πi
u.status = accepted then πi

u.tacc ← ++time
36 if f then // Upon first message sent/received. . .

37 if u.role = initiator then
38 Fπi

u.peerid ← Fπi
u.peerid ∪ {m′} // Record initators’ first messages (per responder)

39 if u.role = responder and m′ ̸= ε then
40 if m /∈ Fu and ¬revpku then Probed ← true // Response to a non–initiator-first message by a non–pk-revelead

responder is a successful probe

41 Fu ← Fu \ {m} // Consider m “consumed”

42 return (πi
u.status,m

′)

ChallExec(u, v):

43 πu ← πv ← ⊥ // Temporary initator and responder sessions

44 if u.role ̸= initiator or v.role ̸= responder then return ⊥
45 trans1 ← (); πu.peerid ← v; p← u; m← ε
46 repeat // Execute entire protocol and collect real transcript

47 (πp, stp,m)←$ Run(πp, stp, skp, pkπp.peerid
,m)

48 trans1 ← trans1∥(m)
49 if p = u then p← v else p← u // Switch parties

50 until πu.status = πv .status = accepted
51 trans0←$ S() // Simulated transcript

52 k1 ← πu.skey; k0←$ KE.KS // Real-or-random session key

53 challv ← true // Mark server v as challenged

54 return (transb, kb)

Figure 10: Obfuscated key exchange security (ObfKE) game capturing key indistinguishability,
explicit server authentication, obfuscation with respect to a simulator S, and probing resis-
tance, via predicates (Figure 11) Fresh, ExplicitAuth, ObfFresh, and flag Probed, respectively.

47

Fresh:

1 for each πi
u : πi

u.tested

2 if πi
u.revealed then

3 return false // tested session may not be revealed

4 if ∃πj
v ̸= πi

u : πj
v .sid = πi

u.sid ∧ (πj
v .tested ∨ πj

v .revealed) then

5 return false // tested session’s partnered session may not be tested or revealed

6 if u.role = initiator ∧ revskπi
u.peerid ≤ πi

u.tacc ∧ ¬∃π
j
v ̸= πi

u : (πi
u.sid = πj

v .sid)

7 return false // initiators: forward secrecy (peer’s sk unrevealed prior to acceptance) or passive execution

8 if u.role = responder ∧ ¬∃πj
v ̸= πi

u : (πi
u.cid = πj

v .cid ∧ v.role = initiator)

9 return false // responders: security only for passive executions (as initiators are unauthenticated)

10 return true

ObfFresh:

1 if ∃v : revpkv ∧ challv then // Regular obfuscation (rObfKE)

if ∃v : revskv ∧ challv then // Strong obfuscation (sObfKE)

2 return false // Challenge pk revealed (fwd-secret: prior to challenge)

3 return true

ExplicitAuth:

// Explicit authentication of responders to initiators

1 ∀πi
u:

(
u.role = initiator ∧ πi

u.tacc < revskπi
u.peerid

=⇒ ∃πj
v : v = πi

u.peerid ∧ πi
u.sid = πj

v .sid
)

Sound:

1 if ∃ distinct πi
u, π

j
v , π

k
w : πi

u.sid = πj
v .sid = πk

w.sid ̸= ⊥ then

2 return false // no triple sid match

3 if ∃πi
u, π

j
v : πi

u.sid = πj
v .sid ̸= ⊥ ∧ u.role = v.role then

4 return false // partnering implies different roles

5 if ∃πi
u, π

j
v : πi

u.sid = πj
v .sid ̸= ⊥ ∧ πi

u.cid ̸= πj
v .cid then

6 return false // partnering implies same contributive identifiers

7 if ∃πi
u, π

j
v : πi

u.sid = πj
v .sid ̸= ⊥ ∧ u.role = initiator ∧ πi

u.peerid ̸= v then

8 return false // partnering implies agreement on responder ID

9 if ∃πi
u, π

j
v : πi

u.sid = πj
v .sid ̸= ⊥ ∧ πi

u.skey ̸= πj
v .skey then

10 return false // partnering implies same key

11 return true

Figure 11: Predicates Fresh, ExplicitAuth, ObfFresh, and flag Probed for the obfuscated key

exchange security (ObfKE) game (Figure 10) with regular (regular (rObfKE)) or strong

(strong (sObfKE)) obfuscation.

48

Game 0. We start with the security game for strong obfuscation (sObfKE), G0 = GsObfKE
Drivel,SDrivel ,

omitting the SDrivel subscript from here on:

AdvsObfKE
Drivel (A) = AdvG0

Drivel(A) = 2 · Pr[G0]− 1.

Game 1 (Exclude KEM public key collisions). We modify Game G0 to abort if two
honest sessions sample the same ephemeral KEM key (pke) or if two servers sample the
same long-term KEM key (pkS). This is bounded by the public key collision probabil-
ity (pkcollKEM, pkcollOKEM) of the ephemeral and static KEM for the at most ns ephemeral
and nr long-term KEM keys (Definition 2.4):

Pr[G0]− Pr[G1] ≤ pkcollKEM(ns) + pkcollOKEM(nr).

Game 2 (KEM correctness). Wemodify Game G1 to abort if for any keys (sk , pk)←$ KGen()
and encapsulation (c,K)←$ Encap(pk), we have that K ̸= Decap(sk , c). The probability
of this happening for any tuple (sk , pk , c) is upper-bounded by the correctness error δKEM,
δOKEM of the ephemeral and obfuscated KEM as defined in Definition 2.3. Since there are
two such tuples per session, we can bound the probability of such an abort by

Pr[G1]− Pr[G2] ≤ ns · (δKEM + δOKEM).

Establishing soundness (Sound). We observe that in Game G2, the adversary cannot
violate soundness anymore (i.e., the predicate Sound cannot be false). Checking the conditions
in Sound (Figure 11), we have:

1. No triple sid match: For three session identifiers to match, two initiator sessions or
two responder sessions would have to sample the same KEM keys. However, G1 aborts
in that case.

2. Partnering implies different roles: For two same-role sessions to be partnered, they
would have to sample the same ephemeral KEM key. Again, G1 aborts in this case.

3. Partnering implies same contributive identifiers: The contributive identifier contains
a subset of entries in the session identifier. Hence, agreement on the latter implies
agreement on the former.

4. Partnering implies agreement on responder ID: The session identifier contains the
responder’s long-term KEM key pkS . As these do not collide by G1, they uniquely
identify the responder.

5. Partnering implies same key: For two partnered sessions to derive a different key,
the inputs to the computation of skey would have to differ. This may occur if the
inputs to Encap (or Decap) are not consistent or if Encap (or Decap) has a correctness
error. The latter case is prevented by G2. For the former, the elements in the session
identifier uniquely determine the inputs; note in particular that it uniquely identifies
the responder (as per above) and hence the NodeID input. Hence agreement on session
identifiers implies that the same key is generated.

49

Game 3 (Prevent Probed being set). In Game G3, we stop setting Probed← true (i.e.,
A cannot win anymore in G3 by breaking probing resistance). We have

Pr[G2]− Pr[G3] ≤ Pr[G2 sets Probed].

Recall that for Probed to be set, a responder session, whose public key (pkS ,NodeID) is
not revealed, must reply to a non-initiator-first message m, with a non-empty message m′.
We will bound this probability via the following, branching game hops G2.1–G2.3.

Game 2.1 (Guess violated server and session). In Game G2.1, we guess a “target
server” v∗, the first server (in order of creation) on which Probed is set to true, as well as the
(first) session π∗ in which this happens. We let the game abort if that guess is incorrect, i.e.,
if Probed is not set to true when the server responds in session π∗ or if Probed is set to true
on a response from a server that was created earlier. This introduces an according loss in
the number of servers times the number of sessions:

Pr[G3 sets Probed] ≤ ns · nr · Pr[G2.1 sets Probed].

Game 2.2 (Random ES). In Game G2.2, we replace ES in any session with the target

server v∗ with a uniformly random value ẼS .
We bound the difference in this step by a reduction to the PRF security of F2. The

reduction B1 does not sample NodeID for v∗ itself, but instead uses its oracle to compute
evaluations of F2(NodeID , ·) in sessions with v∗ by calling its oracle on KS . When the oracle
output is real, reduction B1 exactly simulates G2.1, whereas when the output is random, it
simulates G2.2. Therefore, because NodeID is unrevealed for server v∗,

Pr[G2.1 sets Probed]− Pr[G2.2 sets Probed] ≤ AdvPRFF2
(B1).

Game 2.3 (Random MACC). In Game G2.3, we replace any evaluation of F1 on input

random values ẼS in sessions with the target server v∗ with a random function (per such
value). This in particular replaces MACC in any session with v∗ uniformly random values
MAC ∗C .

We bound the difference in this step by a reduction to the PRF security of F1. The
reduction B2 does not sample ẼS in the target session π∗ itself, but instead uses its oracle
to compute F1(ẼS , ·); in particular for computing MACC . Based on the oracle’s output, B2
correctly simulates either G2.2 or G2.3. Hence,

Pr[G2.2 sets Probed]− Pr[G2.3 sets Probed] ≤ AdvPRFF1
(B2).

Observe that Probed in G2.3 is set if a non–initiator-first message m yields a reply by an
unrevealed responder. Such a message m can be either (1) a replay of an already consumed
message output by an honest initiator for this responder, or (2) one that is different from all
honest initiators’ first messages sent to this responder.

In the first case, m is rejected due to the replay check against the list of seen MAC
values st .SMAC recorded in the server’s state.

In the second case, m = epke∥cS∥PC∥MC∥MACC must be different from any initiator
session’s message sent to this responder. By G2.3, the target client MAC value MAC ∗C that

50

the session π∗ with v∗ that first sets probed is a random fl1-bit value unknown to A. The
adversary A can therefore only guess MAC ∗C with probability

Pr[G2.3 sets Probed] ≤ 1

2fl1
.

This completes the branching game hops bounding

Pr[G2 sets Probed] ≤ nsnr ·
(
AdvPRFF2

(B1) + AdvPRFF1
(B2) +

1

2fl1

)
.

We now continue with the main proof from G3, where Probed is never set.

Game 4 (Prevent ExplicitAuth being violated). In Game G4, we abort the game if
ExplicitAuth is violated (i.e., A cannot win anymore in G4 by breaking explicit authentication).
We have

Pr[G3]− Pr[G4] ≤ Pr[¬ExplicitAuth in G3].

Recall that for ExplicitAuth to be violated, an initiator session must accept with a peer whose
secret key is uncompromised at this point in the game, but for which there is no session of
that peer holding the same session identifier. Formally,

Pr[¬ExplicitAuth in G3] = Pr
[
∃πi

u : u.role = initiator ∧ πi
u.tacc < revskπi

u.peerid
∧

∀πj
v s.t. v = πi

u.peerid : πi
u.sid ̸= πj

v.sid
]
.

We will bound this probability again through a series of branching game hops G3.1–G3.6.

Game 3.1 (Guess violated initiator session and peer). In Game G3.1, we guess a
“target session” π∗, the first session (in order of creation) which makes ExplicitAuth evaluate
to false, as well as that session’s peer, v∗ = π∗.peerid . We let the game abort if that guess
is incorrect, i.e., if ExplicitAuth is not violated when the session π∗ accepts or if v∗ is not
its peer. This introduces an according loss in the number of sessions times the number of
servers:

Pr[¬ExplicitAuth in G3] ≤ ns · nr · Pr[¬ExplicitAuth in G3.1].

Game 3.2 (Long-term KEM IND-CCA). Let

(cS ,KS)←$ OKEM.Encap(pkS)

be the encapsulation computed at session π∗ with the long-term public key of v∗. In
Game G3.2, we replace the long-term KEM key KS with a uniformly random K̃S in π∗. All
values derived from KS in π∗ use the randomized value K̃S .

We bound the adversary A’s difference in advantage by a reduction B3 to the IND-CCA
security of OKEM. B3 obtains the IND-CCA challenge (pk , c∗,K ∗) and simulates the game
for A as follows. It uses pk as the long-term public key of v∗. In π∗, B3 uses c∗ as the
ciphertext cS . In any session of v∗, if the ciphertext cS received is not c∗, then B3 queries
its IND-CCA decapsulation oracle and uses the response as KS ; else, if cS = c∗, then B3 uses
K ∗ as KS . Note that by the definition of ExplicitAuth, skS is not revealed to the adversary
prior to π∗ violating ExplicitAuth and thus B3 does not need to answer a RevSecretKey

51

call on v∗. If K ∗ is the real KEM key then B3 has exactly simulated G3.1 to A; else, if K ∗ is
random, then B3 has exactly simulated G3.2 to A. Therefore:

Pr[¬ExplicitAuth in G3.1]− Pr[¬ExplicitAuth in G3.2] ≤ AdvIND-CCA
OKEM (B3).

Game 3.3 (Random ES). In Game G3.3, we replace ES with a uniformly random ẼS in
π∗. We bound the difference in this step by a reduction to the swap-PRF security of F2. The
reduction B4 instead of sampling K̃S uses its oracle to compute F2(·, K̃S) in π∗. When the
output is real, reduction B4 exactly simulates G3.2, whereas when the output is random, it
simulates G3.3. Therefore,

Pr[¬ExplicitAuth in G3.2]− Pr[¬ExplicitAuth in G3.3] ≤ Advswap-PRFF2
(B4).

Game 3.4 (Random ES ′). In Game G3.4, we replace evaluations F1(ẼS , ·) in π∗ with

a random function. This in particular replaces ES ′ with a random value ẼS ′. We bound
the difference in this step with the PRF security of F1, via a reduction B5 using its oracle in
place of F1(ẼS , ·):

Pr[¬ExplicitAuth in G3.3]− Pr[¬ExplicitAuth in G3.4] ≤ AdvPRFF1
(B5).

Game 3.5 (Random FS). In Game G3.5, we replace evaluations F2(ẼS ′, ·) in π∗ with a

random function. This in particular replaces FS with a random value F̃S . As in the previous
hops, we can bound the difference by PRF security of F2:

Pr[¬ExplicitAuth in G3.4]− Pr[¬ExplicitAuth in G3.5] ≤ AdvPRFF2
(B6).

Game 3.6 (Random auth). Finally, in Game G3.6, we replace evaluations F1(F̃S , ·) in π∗

with a random function. This in particular replaces auth with a random value auth∗, and
again can be bounded by PRF security of F1:

Pr[¬ExplicitAuth in G3.5]− Pr[¬ExplicitAuth in G3.6] ≤ AdvPRFF1
(B7).

Now, given that auth∗ is a uniformly random value unknown to A, violating ExplicitAuth in
π∗ requires that A correctly guesses the fl1-bit value of auth∗. The probability of A guessing
correctly is

Pr[¬ExplicitAuth in G3.6] ≤
1

2fl1
.

This completes the branching, bounding

Pr[¬ExplicitAuth in G3] ≤nsnr ·
(
AdvIND-CCA

OKEM (B3) + Advswap-PRFF2
(B4)

+ AdvPRFF1
(B5) + AdvPRFF2

(B6) + AdvPRFF1
(B7) +

1

2fl1

)
.

We now continue with the main proof from Game G4, where ExplicitAuth is never violated.

Game 5 (Single-challenge selective security). We now restrict the adversary to a
single-challenge selective (sObfKE-1) version G5 of Game G4, where A has to commit upfront
to winning either

52

(I) via a single Test query (A = Test) on the pre-determined s-th created session, or

(II) via a single ChallExec query (A = ChallExec) on the pre-determined p-th created
server.

Recall that in G4, Sound is never violated, Probed is never set, and ExplicitAuth is never
violated, hence A can only win via Test or ChallExec queries. Applying the hybrid
argument from [GSV24, Theorem 4.3], we have

AdvG4
Drivel(A) ≤ (ns + nr · qC) · AdvG5

Drivel(A).

Let us write GT
5 and GC

5 for the game G5 restricted to the two winning options of A
(A ∈ {Test,ChallExec}). By the union bound,

AdvG5
Drivel(A) ≤ Adv

GT
5

Drivel(A) + Adv
GC
5

Drivel(A).

We will bound each term separately, through the following proof cases I and II.

Case I. Win via Test

In this proof case, A commits to winning via a single Test query on a session π∗. For
the test session to satisfy Fresh, we must have that there is an honest partner—i.e., a
session π∗p holding the same cid or sid (“passive execution”)—or that the responder peer is
uncompromised upon acceptance of the initiator session π∗ (“forward secrecy”). Note that
since ExplicitAuth is ensured to hold (by Game G4), the latter implies that there actually
must be an honest partner π∗p holding the same sid , so we can at this point focus on such
passive executions.

Game I.0. This case begins with Game G5 conditioned on A = Test, where the test
session has an honest (sid or cid) partner:

AdvGI.0
Drivel(A) = Adv

GT
5

Drivel(A).

Game I.1 (Guess the partner session). In Game GI.1, we guess the session π∗p that
is the honest sid partner (if π∗ is an initiator) or cid partner (else) of π∗. Aborting if the
guess is incorrect, this introduces a loss in the number of sessions:

AdvGI.0
Drivel(A) = ns · AdvGI.1

Drivel(A).

Game I.2 (Ephemeral KEM IND-1CCA). Let

(ce,Ke)←$ KEM.Encap(pke)

be the encapsulation computed at session π∗. If π∗ is an initiator then this is the ephemeral
public key pke in sid , and otherwise, it is the ephemeral public key in cid (which must
necessarily be determined by Game GI.1).

In Game GI.2, we replace the ephemeral KEM key Ke with a uniformly random K̃e in π∗.
All values derived from Ke in π∗ use the randomized value K̃e.

53

We bound the adversary A’s difference in advantage by a reduction B8 to the IND-1CCA
security of KEM. B8 obtains the IND-1CCA challenge (pk , c∗,K ∗) and simulates the game
for A as follows. In the protocol run between π∗ and π∗p, B8 uses pk as the ephemeral
public key of the initiator and c∗ as the ciphertext ce. If the initiator session receives a
ciphertext ce ̸= c∗, then B8 queries its IND-1CCA decapsulation oracle (once) and uses the
response as Ke; else, if ce = c∗, then B8 uses K ∗ as Ke. If K

∗ is the real KEM key then B8
has exactly simulated GI.1 to A; else, if K ∗ is random, then B8 has exactly simulated GI.2 to
A. Therefore:

Pr[GI.1]− Pr[GI.2] ≤ AdvIND-1CCA
KEM (B8).

Game I.3 (Random FS). In Game GI.3, we replace evaluations F2(·,K ∗) with a random

function. This in particular replaces FS with a uniformly random value F̃S in π∗. (Note
that if π∗p received the same ciphertext, then it will also use K ∗.)

We bound the difference in this step by a reduction to the swap-PRF security of F2. The
reduction B9 uses its oracle in place of F2(·,K ∗), simulating either GI.2 or GI.3, giving:

Pr[GI.2]− Pr[GI.3] ≤ Advswap-PRFF2
(B9).

Game I.4 (Random skey). Finally, in Game GI.4, we replace evaluations F1(F̃S , ·) with
a random function. This in particular replaces skey with a uniformly random value skey∗ in
π∗. We again bound this game hop by a reduction to the PRF security of F1:

Pr[GI.3]− Pr[GI.4] ≤ AdvPRFF1
(B10).

We now have in Game GI.4 that the real and random session key output of the Test
oracle are both randomly sampled. Also, any non-partnered session keys are independent
of π∗, since the context input when deriving skey is precisely the session identifier sid . Hence,
A has no better chance than guessing the challenge bit b and so

AdvGI.4
Drivel(A) = 0.

Case II. Win via ChallExec

In this proof case, A commits to making a single ChallExec query on the pth-created
server, denoted v∗ here (and not making any Test queries). We assume that A makes
one ChallExec call, as otherwise its advantage is 0, and hence never calls RevSecretKey
on p, as otherwise it would violate ObfFresh and lose.

Game II.0. This case begins with Game G5 conditioned on A = ChallExec:

Pr[GII.0] = Pr[GC
5].

Game II.1 (Long-term KEM SPR-CCA). Let

(cS ,KS)←$ OKEM.Encap(pkS)

54

be the encapsulation computed by the initiator when ChallExec is called.
In Game GII.1, we replace the ciphertext cS , as well as the long-term KEM key KS as

follows. Instead of running OKEM.Encap, the initiator samples cS ←$ {0, 1}cl and KS ←$K
uniformly at random.

We bound the adversary A’s difference in advantage by a reduction B11 to the SPR-CCA
security of OKEM. B11 obtains the SPR-CCA challenge (pk , c∗,K ∗) with respect to a
simulator S$ that samples ciphertexts uniformly at random from {0, 1}cl, and simulates
the game for A as follows. It uses pk as the public key of the pth-created responder v∗

committed to by the adversary. When ChallExec is called, B11 uses c∗ as the ciphertext
cS . In any session of v∗, if the ciphertext cS received is not c∗, then B11 queries its SPR-CCA
decapsulation oracle and uses the response as KS ; else, if cS = c∗, then B11 uses K ∗ as KS .
If (c∗,K ∗) are the real KEM values then B11 exactly simulates GII.0 to A; else, if they are
random, then B11 simulates GII.1. Therefore:

Pr[GII.0]− Pr[GII.1] ≤ AdvSPR-CCAOKEM,S$(B11).

Game II.2 (Random ES). In Game GII.2, we replace ES with a uniformly random ẼS
in the sessions created by the ChallExec call. We bound the difference in this step by a
reduction B12 to the swap-PRF security of F2, using its oracle instead of computing F2(·,KS).
This yields

Pr[GII.1]− Pr[GII.2] ≤ Advswap-PRFF2
(B12)

Game II.3 (Random ES ′, encryption keys, and MAC tags). Next, in Game GII.3,

we replace any evaluations of F1 keyed with ẼS with a random function in the sessions
created by ChallExec. This in particular replaces ES ′, the encryption keys EK 1 and EK 2,
and the MAC tags MACC , MC , MAC S , and MS with uniformly random values ẼS ′, ẼK 1,
ẼK 2, MAC ∗C , M ∗C , MAC ∗S , and M ∗S , respectively. We again bound the difference in this by
a reduction to the PRF security of F1:

Pr[GII.2]− Pr[GII.3] ≤ AdvPRFF1
(B13).

Game II.4 (Random FS). In Game GII.4, we replace FS with a uniformly random F̃S
in the sessions created by the ChallExec call, again bounded by PRF security of F2:

Pr[GII.3]− Pr[GII.4] ≤ AdvPRFF2
(B14).

Game II.5 (Random skey and auth). In Game GII.5, we replace evaluations F1(F̃S , ·)
with a random function in the sessions created by the ChallExec call. This in particular
replaces skey and auth with uniformly random values skey∗ and auth∗, respectively. Bounding
again by PRF security of F1:

Pr[GII.4]− Pr[GII.5] ≤ AdvPRFF1
(B15).

Note that at this point, in the ChallExec sessions, the ephemeral KEM key pair
(ske, pke), the ephemeral KEM ciphertext ce, and the shared secret Ke are not used anymore,
since the values FS , skey , and auth computed from them are sampled at random as per

55

Games GII.4 and GII.5. We will leverage this to replace the ephemeral ciphertext and public
key with random strings in the transcript in the final game hops.

Game II.6 (Random epke). In Game GII.6, we replace epke = SE.Enc(ẼK 1, pke) in the
sessions created by the ChallExec call with a random bitstring epk∗e of the same length.
We can bound the adversary A’s difference in advantage by a reduction B16 to the OT-IND$
security of SE, since ẼK 1 is random by GII.3. We obtain

Pr[GII.5]− Pr[GII.6] ≤ AdvOT-IND$
SE (B16).

Game II.7 (Random ecte). Finally, Game GII.7 replaces ecte = SE.Enc(ẼK 2, ce) in the
sessions created by the ChallExec call with a random bitstring ect∗e of the same length.
Similar to GII.6, we bound the adversary A’s difference in advantage by a reduction B17 to
the OT-IND$ security of SE, since ẼK 2 is random by GII.3:

Pr[GII.6]− Pr[GII.7] ≤ AdvOT-IND$
SE (B17).

Now we have that the response to the ChallExec oracle is distributed independent of
the challenge bit b: In both cases, the returned transcript consists of random strings of length
corresponding to the protocol messages and variable padding, exactly matching the output of
the simulator SDrivel (Section 4.3): epke is random by GII.6, cS by GII.1, ecte by GII.7, PC , PS

are random padding by definition, and MC , MACC , MS , MAC S are replaced by uniformly
random values (by GII.3), as well as the auth tag and the session key skey (by GII.5).

Hence A cannot win in this case anymore and we have

AdvGII.7
Drivel(A) = 0.

Collecting the bounds yields the theorem statement.

56

	Introduction
	Post-quantum Obfuscated Key Exchange and Beyond
	Barriers to Hybrid Obfuscated Key Exchange
	Contributions

	Preliminaries
	Obfuscated KEMs

	OEINC: An OKEM Combiner
	Overview of Security
	IND-CPA and IND-CCA Security
	SPR-CCA Security
	Ciphertext Uniformity
	Public Key Uniformity
	Instantiating the Combiner

	A Hybrid Obfuscated Key Exchange Protocol
	Shortcomings of the pqobfs Protocol
	The Drivel Protocol
	Security
	Additional Features

	Hybrid PAKE with Adaptive Security
	CAKE
	Achieving Hybrid CAKE

	Future Work
	Additional Definitions
	Relations Between Anonymity Notions
	Security Proofs for OEINC
	IND-CPA / IND-CCA Security
	Public Key Uniformity

	An OKEM from DH-KEM
	Obfuscated Key Exchange Security Model
	Session and game variables.
	Session identifiers, contributive identifiers, and partnering.
	Security Definition
	Single-challenge selective security

	Security Proof for Drivel

