
Deterring Certificate Subversion: Efficient

Double-Authentication-Preventing Signatures

Mihir Bellare1 Bertram Poettering2 Douglas Stebila3

October 2016

Abstract

This paper presents highly efficient designs of double authentication preventing signatures
(DAPS). In a DAPS, signing two messages with the same first part and differing second parts
reveals the signing key. In the context of PKIs we suggest that CAs who use DAPS to cre-
ate certificates have a court-convincing argument to deny big-brother requests to create rogue
certificates, thus deterring certificate subversion. We give two general methods for obtaining
DAPS. Both start from trapdoor identification schemes. We instantiate our transforms to ob-
tain numerous specific DAPS that, in addition to being efficient, are proven with tight security
reductions to standard assumptions. We implement our DAPS schemes to show that they are
not only several orders of magnitude more efficient than prior DAPS but competitive with in-use
signature schemes that lack the double authentication preventing property.
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1 Introduction

DAPS. Double authentication preventing signature (DAPS) schemes were introduced by Poettering
and Stebila (PS) [21]. In such a signature scheme, the message being signed is a pair m = (a, p)
consisting of an “address” a and a “payload” p. Let us say that messages (a1, p1), (a2, p2) are
colliding if a1 = a2 but p1 6= p2. The double authentication prevention requirement is that there
be an efficient extraction algorithm that given a public key PK and valid signatures σ1, σ2 on
colliding messages (a, p1), (a, p2), respectively, returns the secret signing key SK underlying PK .
Additionally, the scheme must satisfy standard unforgeability under a chosen-message attack [13],
but in light of the first property we must make the restriction that the address components of all
messages signed in the attack are different.

Why DAPS? PS [21] suggested that DAPS could deter certificate subversion. This is of particular
interest now in light of the Snowden revelations. We know that the NSA obtains court orders
to compel corporations into measures that compromise security. The case we consider here is
that the corporation is a Certificate Authority (CA) and the court order asks it to produce a
rogue certificate. Thus, the CA (eg. Comodo, Go Daddy, ...) has already issued a (legitimate)
certificate cert1 = (example.com,pk1, σ1) for a server example.com. Here pk1 is the public key
of example.com and σ1 is the CA’s signature on the pair (example.com, pk1), computed under
the secret key SK of the CA. Big brother (this is what we will call the subverting adversary) is
targeting clients communicating with example.com. It obtains a court order that requires the CA
to issue another certificate —this is the rogue certificate— cert2 = (example.com,pk2, σ2) in the
name of example.com, where now pk2 is a public key supplied by big brother, so that the latter
knows the corresponding secret key sk2, and σ2 is the CA’s signature on the pair (example.com,
pk2), again computed under the secret key SK of the CA. With this rogue certificate in hand, big
brother could impersonate example.com in a TLS session with a client, compromising security of
example.com’s communications.

The CA wants to deny the order (complying with it only hurts its reputation and business)
but, under normal conditions, has no argument to make to the court in support of such a denial.
Using DAPS to create certificates, rather than ordinary signatures, gives the CA such an argument,
namely that complying with the order (issuing the rogue certificate) would compromise not just the
security of big brother’s target clients communicating with example.com, but would compromise
security much more broadly. Indeed, if big brother uses the rogue certificate with a client, it
puts the rogue certificate in the client’s hand. The legitimate certificate can be viewed as public.
So the client has σ1, σ2. But these are valid signatures on the colliding messages (example.com,
pk1), (example.com,pk2), respectively, which means that the client can extract the CA’s signing
key SK . This would lead to widespread insecurity. The court may be willing to allow big brother
to compromise communications of clients with example.com, but it will not be willing to create
a situation where the security of all TLS hosts with certificates from this CA is compromised.
Ultimately this means the court would have strong incentives to deny big brother’s request for a
court order to issue a rogue certificate in the first place.

Further discussion of this application of DAPS may be found in [21, 22] and also in our Ap-
pendix A. The latter includes comparisons with other approaches such as certificate transparency
and public key pinning.

Prior DAPS schemes. PS [21, 22] give a factoring-based DAPS that we call PS. Its signature
contains n+1 elements in a group Z∗N , where n is the length of the output of a hash function and N
is a (composite) modulus in the public key. With a 2048-bit modulus and 256-bit hash, a signature
contains 257 group elements, for a length of 526,336 bits or 64.25 KiB. This is a factor 257 times
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longer than a 2048-bit RSA PKCS#1 signature. Signing and verifying times are also significantly
greater than for RSA PKCS#1. Ruffing, Kate, and Schröder [24, Appendix A] give a chameleon
hash function (CHF) based DAPS that we call RKS and recall in our Appendix B. Instantiating it
with DLP-based CHFs makes signing quite efficient, but signature sizes and verification times are
about the same as in PS. The large signature sizes in particular of both PS and RKS inhibits their
use in practice.

Goals and contributions. If we want DAPS to be a viable practical option, we need DAPS
schemes that are competitive with current non-DAPS schemes on all cost parameters, meaning
signature size, key size, signing time and verifying time. Furthermore, to not lose efficiency via
inflated security parameters, we need to establish the unforgeability with tight security reductions.
Finally, given the high damage that would be created by certificate forgery, we would prefer these
reductions to be to assumptions that are standard (factoring, RSA, ...) rather than new. This
is what we deliver. We will give two general methods to build DAPS, and thence obtain many
particular schemes that are efficient while having tight security reductions to standard algebraic
assumptions. We begin with some background on our main tool, identification schemes.

Background. By an identification scheme we mean a three-move protocol ID where the prover
sends a commitment Y computed using private randomness y, the verifier sends a random chal-
lenge c, the prover returns a response z computed using y and its secret key isk, and the verifier
computes a boolean decision from the conversation transcript Y ‖c‖z and public key ivk (see Fig. 2
on p. 8). Practical identification schemes are typically Sigma protocols, which means they satisfy
honest-verifier zero-knowledge and special soundness. The latter says that from two accepting con-
versation transcripts with the same commitment but different challenges, one can extract the secret
key. The identification scheme is trapdoor [18, 2] if the prover can pick the commitment Y directly
at random from the space of commitments and then compute the associated private randomness y
using its secret key.

The classic way to get a signature scheme from an identification scheme is via the Fiat-Shamir
transform [11], denoted FS. Here, a signature of a message m is a pair (Y, z) such that the
transcript Y ‖c‖z is accepting for c = H(Y ‖m), where H is a random oracle. This signature scheme
meets the standard unforgeability notion of [13] assuming the identification scheme is secure against
impersonation under passive attack (IMP-PA) [1]. BPS [2] give several alternative transforms of
(trapdoor) identification schemes to unforgeable signature schemes, the advantage over FS being
that in some cases the reduction of unforgeability to the underlying algebraic assumption is tight.
(That of FS is notoriously loose.) No prior transform yields DAPS. Our first transform, described
next, is however an adaptation and extension of the MdCmtCh transform of [2].

Double-hash transform H2. The novel challenge in getting DAPS is to provide the double
authentication prevention property. Our idea is to turn to identification schemes, and specifically
to exploit their special soundness. Recall this says that from two accepting conversations with the
same commitment and different challenges, one can extract the secret key. What we want now is
to create identification-based signatures in such a way that signatures are accepting conversations
and signatures of messages with the same address have the same commitment, but if payloads differ
then challenges differ. This will allow us, from valid signatures of colliding messages, to obtain the
secret key.

To ensure signatures of messages with the same address have the same commitment, we make
the commitment a hash of the address. This, however, leaves us in general unable to complete the
signing, because the prover in an identification scheme relies on having create the commitment Y
in such a way that it knows some underlying private randomness y which is used crucially in the
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identification. To get around this, we use identification schemes that are trapdoor (see above), so
y can be derived from the commitment given a secret key. To ensure unforgeability, we incorporate
a fresh random seed into each signature.

In more detail, our first method to obtain DAPS from a trapdoor identification scheme is via a
transform that we call the double-hash transform and denote H2 (cf. Section 5.1). To sign a message
m = (a, p), the signer specifies the commitment as a hash Y = H1(a) of the address, picks a random
seed s of length sl (a typical seed length would be sl = 256), obtains a challenge c = H2(a‖p‖s),
uses the trapdoor property of the identification scheme and the secret key to compute a response
z, and returns (z, s) as the signature. Additionally the public key is enhanced so that recovery
of the secret identification key allows recovery of the full DAPS secret key. Theorem 2 (on p. 13)
establishes the double-authentication prevention property via the special soundness property of the
identification Sigma protocol, and is unconditional. Theorem 3 shows unforgeability of the DAPS
in the ROM under two assumptions on the identification scheme: (1) CIMP-UU, a notion defined
in [2], and (2) KR, security against key recovery. Specific identification schemes can be shown to
meet both notions under standard assumptions [2], yielding DAPS from the same assumptions. If
typical factoring or RSA based identification schemes are used, DAPS signatures have size k + sl,
where k is the bitlength of the modulus.

Double-ID transform ID2. The signature size k + sl of H2 when instantiated with RSA is
more than the length k of a signature in RSA PKCS#1. We address this via a second transform
of trapdoor identification schemes into DAPS that we call the double ID transform, denoted ID2.
When instantiated with the same identification schemes as above, corresponding DAPS signatures
have length k + 1 bits, while maintaining (up to a small constant factor) the signing and verifying
times of schemes obtained via H2.

The ID2 transform has several novel features. It requires that the identification scheme supports
multiple challenge lengths, specifically challenge lengths 1 and l (think of l = 256). To sign a
message m = (a, p), first we work with the single challenge-bit version of the identification scheme,
computing for this a commitment Y1 = H1(a), picking a random 1-bit challenge c1, and letting z1
be the response, computed using the trapdoor and secret key. Now a random bijection (a public
bijection accessible, in both directions, via oracles) is applied to z1 to get a commitment Y2 for the
l-bit challenge version of the identification scheme. A challenge for this is computed as H2(a, p), and
then a response z2 is produced. The signature is simply (c1, z2). Section 5.2 specifies the transform
in detail and proves the DAP property and unforgeability, modeling the random bijection as ideal.
Notably, the CIMP-UU assumption used for the H2 transform needs to be replaced by the (slightly
stronger) CIMP-UC notion [2].

Instantiations. We discuss three different instantiations of the above in Section 6. The RSA-
based GQ identification scheme [14] is not trapdoor as usually written, but can be made so by
including the decryption exponent in the secret key [2]. Applying H2 and ID2, we get H2[GQ]
and ID2[GQ]. The factoring-based MR identification scheme of Micali and Reyzin [18] is trapdoor,
which we exploit to get H2[MR]. For details see Fig. 16 and Fig. 19. (Both GQ and MR support
multiple challenge lengths and meet the relevant security requirements.) Fig. 1 shows the signing
time, verifying time and signature size for these schemes. In a bit we will discuss implementation
results that measure actual performance.

Reduction tightness. Fig. 1 says the signing time for H2[GQ] isO(lk2+k3), but what this means
in practice depends very much on the choice of k (the length of composite N). Roughly speaking,
we can expect that doubling k leads to an 8-fold increase in runtime, so signing with k = 2048 is
8 times slower than with k = 1024. So we want to use the smallest k for which we have a desired
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Scheme Signing Verifying |sig| (bits)

PS [21, 22] O(nk3) 516.58 ms O(nk3) 161.84 ms nk 528 384

RKS [24] O(n4) 13.48 ms O(n4) 5.99 ms 2n2 131 072

H2[GQ]
O(lk2 + k3)

0.88 ms
O(lk2)

0.41 ms k + sl 2 304

ID2[GQ] 1.80 ms 1.49 ms k + 1 2 049

H2[MR] O(k3) 1.27 ms O(lk2) 0.37 ms k + sl 2 304

Figure 1: DAPS efficiency. We show performance indications for the DAPS obtained by our H2
and ID2 transforms applied to the GQ and MR trapdoor identification schemes. The first two rows
show the prior scheme of PS [21, 22] and the scheme of RKS [24], with n being the length of the
output of a hash function, eg. n = 256. By k we denote the length of a composite modulus N in
the public key, eg. k = 2048. The challenge length of GQ and MR is l, and sl is the seed length,
eg. l = sl = 256. The 4th column is the size of a signature in bits. Absolute runtimes and signature
sizes are for k = 2048-bit moduli and n = l = sl = 256-bit hashes/challenges/seeds; details appear
in Section 6.

level of security. Suppose this is approximately 128 bits. Many keylength recommendations match
the difficulty of breaking a 128-bit symmetric cipher with the difficulty of factoring a 2048-bit
modulus. But this does not generally mean it is safe to use H2[GQ] with k = 2048, because the
reduction of unforgeability to RSA may not be tight: the Fiat-Shamir transform FS has a very loose
reduction, so when signatures are identification based, one should be extra suspicious. Remarkably,
our reductions are tight, so we can indeed get 128 bits of security with k = 2048. This tightness has
two steps or components. First, the reduction of unforgeability to the CIMP-UU/CIMP-UC and
KR security of the identification scheme, as given by Theorem 3 and Theorem 5, is tight. Second,
the reductions of CIMP-UU/CIMP-UC and KR to the underlying algebraic problem (here RSA or
factoring) are also tight (cf. Lemma 1 on p. 10, adapting [2]).

Implementation. The efficiency measures of Fig. 1 are asymptotic, with hidden constants. Imple-
mentation is key to gauge and compare performance in practice. We implement our two GQ based
schemes, H2[GQ] and ID2[GQ], as well as H2[MR]. For comparison we also implement the prior
PS DAPS, and also compare with the existing implementation of RKS. Fig. 21 (on p. 29) shows
the signing time, verifying time, signature size and key sizes for all schemes. H2[GQ] emerges as
around 587 times faster than PS for signing and 394 times faster for verifying while also having
signatures about 229 times shorter. Compared with the previous fastest and smallest DAPS, RKS,
H2[GQ] is 15× faster for both signing and verifying, with signatures 56× shorter. ID2[GQ] is about
a factor two slower than H2[GQ] but with signatures about 15% shorter. H2[MR] has the smallest
public keys of our new DAPS schemes, with signing runtime about halfway between H2[GQ] and
ID2[GQ]. The DAPS by RKS remains the one with the smallest public keys, (640 bits), but the
schemes in this paper have public keys that are still quite reasonable (between 2048 and 6144 bits).
As Fig. 21 shows, H2[GQ], H2[MR], and ID2[GQ] are close to RSA PKCS#1 in all parameters and
runtimes (but with potentially improved security, considering our reductions to RSA and factoring
are tight). This means that DAPS can replace the signatures currently used for certificates with
minimal loss in performance.

Necessity of our assumption. Trapdoor identification schemes may seem a very particular
assumption from which to obtain DAPS. However we show in Section 7 that from any DAPS
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satisfying double authentication prevention and unforgeability, one can build a CIMP-UU and
CIMP-UC secure trapdoor identification scheme. This shows that the assumption we make is
effectively necessary for DAPS.

Further related work and open questions. Ordinary signatures are possible from any one-
way function [23]. Is it possible to obtain DAPS from any one-way function? Or, can one give some
evidence that this will not be true, for example by showing that DAPS implies a primitive like key
exchange that is not likely to be possible based on one-way functions [15]?

The DAPS property that the secret key is recoverable from signatures of colliding messages
is conceptually similar to the recoverability of the spender’s identity from double-spending of an
e-coin in offline e-cash [7]. Interestingly, the RKS DAPS emerges from designing double-spending
resistant e-cash.

2 Preliminaries

Notation. By ε we denote the empty string. If X is a finite set, then x←$X denotes selecting
an element of X uniformly at random and |X| denotes the size of X. We use a1‖a2‖ · · · ‖an
as shorthand for (a1, a2, . . . , an), and by a1‖a2‖ · · · ‖an ← x we mean that x is parsed into its
constituents. If A is an algorithm, y ← A(x1, . . . ; r) denotes running A on inputs x1, . . . with
random coins r and assigning the result to y, and y←$A(x1, . . . ) means we pick r at random and
let y ← A(x1, . . . ; r). By [A(x1, . . . )] we denote the set of all y that have positive probability of
being returned by A(x1, . . . ).

Our proofs use the code-based game playing framework of BR [5]. In these proofs, Pr[G] denotes
the event that game G returns true. When we speak of running time of algorithms, we mean worst
case. For adversaries playing games, this includes the running time of the adversary and that of
the game, i.e., the time taken by game procedures to respond to oracle queries is included. Boolean
flags (like bad) in games are assumed initialized to false.

In our constructions, we will need random oracles with different ranges. For example we may
want one random oracle returning points in a group Z∗N and another returning strings of some
length l. To provide a single unified notation, following [2], we have the game procedure H take not
just the input x but a description Rng of the set from which outputs are to be drawn at random.
Thus y ← H(x,Z∗N ) will return a random element of Z∗N , and so on.

Our ID2 transform also relies on a random bijection. In the spirit of a random oracle, a random
bijection is an idealized unkeyed public bijection to which algorithms and adversaries have access
via two oracles, one for the forward direction and one for the backward direction. Cryptographic
constructions that build on such objects include the Even-Mansour cipher and the SHA3 hash
function. We denote by Π+(·,Dom,Rng) a bijection from Dom to Rng, and we denote its inverse
with Π−1. Once Dom and Rng are fixed, our results view Π+1(·,Dom,Rng) as being randomly
sampled from the set of all bijections from Dom to Rng. We discuss instantiation of a random
bijection in Section 6.

For simplicity, we typically omit idealized primitives (random oracles, random bijections) from
the games defining security, with the understanding that if a scheme is defined relative to an
idealized primitive, then the adversary has access to this primitive. Algorithms of the scheme of
course also have such access as indicated by the scheme description.

Signature schemes. A signature scheme DS specifies the following. The signer runs key genera-
tion algorithm DS.Kg to get a verification key vk and a signing key sk. A signature of message m is
generated via σ←$ DS.Sig(vk, sk,m). Verification is done by v ← DS.Vf(vk,m, σ), which returns
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Prover

Input: ivk, isk, cl

(Y, y)←$ ID.Cmt(ivk, cl)

z ← ID.Rsp(ivk, isk, c, y)

Y-
c�
z-

Verifier

Input: ivk, cl

c←$ {0, 1}cl

v ← ID.Vf(ivk, Y ‖c‖z)

Game Gex
ID(A)

(ivk, isk, itk)←$ ID.Kg
(Y, c1, z1, c2, z2)←$A(ivk, isk, itk)
T1 ← Y ‖c1‖z1 ; T2 ← Y ‖c2‖z2

v1 ← ID.Vf(ivk, T1) ; v2 ← ID.Vf(ivk, T2)
If ¬v1 ∨¬v2 ∨ (|c1| 6= |c2|)∨ (c1 = c2): Return false
isk∗←$ ID.Ex(ivk, T1, T2)
Return (isk∗ 6= isk)

Game Gzk
ID,cl(A)

(ivk, isk, itk)←$ ID.Kg ; b←$ {0, 1}
(Y1, y1)←$ ID.Cmt(ivk, cl)
c1←$ {0, 1}cl
z1 ← ID.Rsp(ivk, isk, c1, y1)
Y0‖c0‖z0←$ ID.Sim(ivk, cl)
b′←$A(ivk, cl, Yb‖cb‖zb)
Return (b = b′)

Figure 2: Top: Message flow of an identification scheme ID. Bottom: Games defining extractabil-
ity and HVZK of an identification scheme ID.

a boolean v. DS is correct if for all (vk, sk) ∈ [DS.Kg], all messages m ∈ {0, 1}∗ and all signatures
σ ∈ [DS.Sig(vk, sk,m)], we have DS.Vf(vk,m, σ) = true.

3 Identification schemes

Identification schemes are our main tool. Here we give the necessary definitions and results.

Identification. An identification (ID) scheme ID is a three-move protocol between a prover and
a verifier, as shown in Fig. 2. A novel feature of our formulation (which we exploit for the ID2
transform) is that identification schemes support challenges of multiple lengths. Thus, associated to
ID is a set ID.clS ⊆ N of admissible challenge lengths. At setup time the prover runs key generation
algorithm ID.Kg to generate a public verification key ivk, a private identification key isk, and a
trapdoor itk. To execute a run of the identification scheme for a challenge length cl ∈ ID.clS, the
prover runs ID.Cmt(ivk, cl) to generate a commitment Y and a private state y. The prover sends
Y to the verifier, who samples a random challenge c of length cl and returns it to the prover. The
prover computes its response z ← ID.Rsp(ivk, isk, c, y). The verifier checks the response by invoking
ID.Vf(ivk, Y ‖c‖z) which returns a boolean value. We require perfect correctness. For any ivk, cl we
denote with ID.CS(ivk, cl) and ID.RS(ivk, cl) the space of commitments and responses, respectively.

In basic ID schemes, key generation only outputs ivk and isk. The inclusion of itk was given
by [2] in their definition of trapdoor ID schemes. Following [2] (and extending to multiple chal-
lenge lengths) we say ID is trapdoor if it specifies an additional algorithm ID.Cmt−1 that can
compute y from any Y using trapdoor itk. The property required of ID.Cmt−1 is that the fol-
lowing two distributions on (Y, y) are identical for any admissible challenge length cl: (1) Let
(ivk, isk, itk)←$ ID.Kg ; (Y, y)←$ ID.Cmt(ivk, cl) and return (Y, y), and (2) Let (ivk, isk, itk)←$

ID.Kg ; Y ←$ ID.CS(ivk, cl) ; y←$ ID.Cmt−1(ivk, itk, Y, cl) and return (Y, y).

Further properties. We give several further identification-related definitions we will use. First
we extend honest-verifier zero-knowledge (HVZK) and extractability to identification schemes with
variable challenge length.

HVZK of ID asks that there exists an algorithm ID.Sim (called the simulator) that given the
verification key and challenge length, generates transcripts which have the same distribution as
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Game Gcimp-xy
ID (P)

i← 0 ; j ← 0

(ivk, isk, itk)←$ ID.Kg
(k, z)←$ PTr,Ch(ivk)
If not (1 ≤ k ≤ j): Return false
T ← CTk‖z
Return ID.Vf(ivk, T )

Game Gkr-pa
ID (I)

i← 0 ; (ivk, isk, itk)←$ ID.Kg
isk∗←$ ITr(ivk)
Return ID.KVf(ivk, isk∗)

Tr(cl)

If not cl ∈ ID.clS: Return ⊥
i← i+ 1 ; cli ← cl
(Yi, yi)←$ ID.Cmt(ivk, cli) ; ci←$ {0, 1}cli
zi ← ID.Rsp(ivk, isk, ci, yi)
Ti ← Yi‖ci‖zi
Return Ti

Ch(l) // xy=uu

If not (1 ≤ l ≤ i): Return ⊥
j ← j + 1 ; c←$ {0, 1}cll
CTj ← Yl‖c ; Return c

Ch(l, c) // xy=uc

If not (1 ≤ l ≤ i): Return ⊥
If (c = cl or |c| 6= cll): Return ⊥
j ← j + 1
CTj ← Yl‖c ; Return c

Figure 3: Games defining security of identification scheme ID against constrained impersonation
(CIMP-UU and CIMP-UC) and against key recovery under passive attack.

honest ones. Formally, if A is an adversary and cl ∈ ID.clS is an admissible challenge length,
let Advzk

ID,cl(A) = 2 Pr[Gzk
ID,cl(A)] − 1 where the game is shown in Fig. 2. Then ID is HVZK if

Advzk
ID,cl(A) = 0 for all (even computationally unbounded) adversaries A and all cl ∈ ID.clS.

Extractability of ID asks that there exists an algorithm ID.Ex (called the extractor) which from
any two (valid) transcripts that have the same commitment but different same-length challenges can
recover the secret key. Formally, if A is an adversary, let Advex

ID(A) = Pr[Gex
ID(A)] where the game

is shown in Fig. 2. Then ID is perfectly extractable if Advex
ID(A) = 0 for all (even computationally

unbounded) adversaries A. Perfect extractability is sometimes called special soundness. We say
that an identification scheme is a Sigma protocol [8] if it is both HVZK and perfectly extractable.

We define three further notions that are not standard, but sometimes needed and true of
typical schemes (cf. Section 6). For instance, at times we require that ID includes a key-verification
algorithm ID.KVf for which ID.KVf(ivk, isk) = true iff (ivk, isk, itk) ∈ [ID.Kg] for some itk. We
say that ID is commitment recovering if ID.Vf verifies a transcript Y ‖c‖z by recovering Y from c, z
and then comparing. More precisely, we require that there exist an efficient algorithm ID.Rsp−1

that takes a verification key, a challenge, and a response, and outputs a commitment, such that
ID.Vf(ivk, Y ‖c‖z) = true iff Y = ID.Rsp−1(ivk, c, z). Finally, ID is said to have unique responses
if for any commitment Y and any challenge c there is precisely one response z such that we have
ID.Vf(ivk, Y ‖c‖z) = true.

Security of identification. A framework of notions of security under constrained imperson-
ation was given in [2]. We reproduce and use their CIMP-UU and CIMP-UC notions but extend
them to support multiple challenge lengths. The value of these notions as starting points is that
they can be proven to be achieved by typical identification schemes with tight reductions to stan-
dard assumptions, following [2], which is not true of classical notions like IMP-PA (impersonation
under passive attack [1]). The formalization relies on the games Gcimp-xy

ID (P) of Fig. 3 associated to
identification scheme ID and adversary P, where xy ∈ {uu,uc}. The transcript oracle Tr returns
a fresh identification transcript Yi‖ci‖zi each time it is called, for a challenge length passed in by
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the adversary. This models a passive attack. In the xy = uu case, the adversary can call Ch with
the index l of an existing transcript Yl‖cl‖zl to indicate that it wants to be challenged to produce
a response for a fresh challenge against the commitment Yl. The index j records the session for
future reference. In the xy = uc case, the adversary continues to call Ch with the index l of an
existing transcript, but this time provides its own challenge c, indicating it wants to be challenged
to find a response. The game allows this only if the provided challenge is different from the one in
the original transcript. The adversary can call Tr and Ch as many times as it wants, in any order.
The adversary terminates by outputting the index k of a challenge session against which it hopes
its response z will verify. Define the advantage via Advcimp-xy

ID (P) = Pr[Gcimp-xy
ID (P)].

We also define a metric of security of the identification scheme against key recovery under
passive attack. The formalization considers game Gkr-pa

ID (I) of Fig. 3 associated to identification
scheme ID and kr adversary I. The transcript oracle Tr is as before. Adversary I aims to
find a private key isk∗ that is functionally equivalent to isk in the sense that ID.KVf(ivk, isk∗) =

true. (In particular, it certainly succeeds if it recovers the private key isk.) We let Advkr-pa
ID (I)

= Pr[Gkr-pa
ID (I)] be the probability that it succeeds. The notion of KR security from [20, 2] did

not give the adversary a Tr oracle (excluding even passive attacks) and required that for success it
find the target key isk (rather than, as here, being allowed to get away with something functionally
equivalent).

Achieving the notions. For typical identification schemes that are HVZK, security against
key recovery under passive attack corresponds exactly to the standard assumption underlying the
scheme, for example the one-wayness of RSA for GQ. The following says that under the assump-
tion of security against key recovery under passive attack, we can establish both CIMP-UC and
CIMP-UU for identification schemes that are extractable. In the second case, however, we require
that the challenge-lengths used be large.

The identification schemes we will use to build DAPS are Sigma protocols, meaning perfectly
extractable, and hence for these schemes Advex

ID(A) below will be 0. We give a more general result
because we will use it in Section 7. We omit the proof as it uses standard arguments [2].

Lemma 1 Let ID be an identification scheme. Then for any adversary P against CIMP-UC we
construct a key recovery adversary I and extraction adversary A such that

Advcimp-uc
ID (P) ≤ Advkr-pa

ID (I) + Advex
ID(A) . (1)

Also for any adversary P against CIMP-UU that makes qc queries to its Ch oracle, each with
challenge length at least cl, we construct a key recovery adversary I such that

Advcimp-uu
ID (P) ≤ Advkr-pa

ID (I) + Advex
ID(A) + qc · 2−cl . (2)

In both cases, the running times of I and A are about that of P plus the time for one execution of
ID.Ex.

Above, CIMP-UU was established assuming long challenges. We note that this is necessary,
meaning CIMP-UU does not hold for short challenges, such as one-bit ones. To see this, assume
cl ∈ ID.clS and q ≥ 1 is a parameter. Consider the following attack (adversary) P. It makes a
single query Y ‖c‖z←$ Tr(cl). Then for i = 1, . . . , q it queries ci←$ Ch(1). If there is a k such
that ck = c then it returns (k, z) and wins, else it returns ⊥. We have

Advcimp-uu
ID (P) = 1−

(
1− 1

2cl

)q

≈ q

2cl
. (3)

Thus, roughly, the attack succeeds in time 2cl, so if the latter is small, CIMP-UU security will not
hold. Our H2 transform will use long challenges and be able to rely only on CIMP-UU, but our
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Game Guf
DS(A)

(vk, sk)←$ DS.Kg
A,M ← ∅
(m,σ)←$ASign(vk)
d← DS.Vf(vk,m, σ)
Return (d ∧ (m /∈M))

Sign(m)

(a, p)← m
If a ∈ A: Return ⊥
A← A ∪ {a}
M ←M ∪ {m}
σ←$ DS.Sig(vk, sk,m)
Return σ

Game Gdap
DS (A)

(vk, sk)←$ DS.Kg
(m1,m2, σ1, σ2)←$A(vk, sk)
v1 ← DS.Vf(vk,m1, σ1)
v2 ← DS.Vf(vk,m2, σ2)
If ¬v1 ∨ ¬v2: Return false
(a1, p1)← m1 ; (a2, p2)← m2

If a1 6= a2 ∨ p1 = p2: Return false
sk∗←$ DS.Ex(vk,m1,m2, σ1, σ2)
Return (sk∗ 6= sk)

Figure 4: Games defining unforgeability and the DAP property of signature scheme DS.

ID2 transform will require security on both long and short (1-bit) challenges, and thus will rely
on CIMP-UC in addition to CIMP-UU. We note that given Lemma 1, we could use CIMP-UC
throughout, but for the reductions it is simpler and more convenient to work with CIMP-UU when
possible.

4 DAPS definitions

Let DS be a signature scheme. When used as a DAPS [21, 22], a message m = (a, p) for DS is a pair
consisting of an address a and a payload p. We require (1) the double authentication prevention
(DAP) property and (2) a restricted form of unforgeability, as defined below.

The DAP property. Call messages m1 = (a1, p1) and m2 = (a2, p2) colliding if a1 = a2 but
p1 6= p2. Double authentication prevention (DAP) [21, 22] requires that possession of signatures
on colliding messages allow anyone to extract the signing key. It is captured formally by the
advantage Advdap

DS (A) = Pr[Gdap
DS (A)] associated to adversary A, where game Gdap

DS (A) is in Fig. 4.
The adversary produces messages m1,m2 and signatures σ1, σ2, and an extraction algorithm DS.Ex
associated to the scheme then attempts to compute sk. The adversary wins if the key sk∗ produced
by DS.Ex is different from sk yet extraction should have succeeded, meaning the messages were
colliding and their signatures were valid. The adversary has sk as input to cover the fact that
the signer is the one attempting —due to coercion and subversion, but nonetheless— to produce
signatures on colliding messages. (And thus it does not need access to a Sign oracle.) We note
that we are not saying it is hard to produce signatures on colliding messages —it isn’t, given sk—
but rather that doing so will reveal sk. We also stress that extraction is not required just for
honestly-generated signatures, but for any, even adversarially generated signatures that are valid,
again because the signer is the adversary here.

Unforgeability. Let Advuf
DS(A) = Pr[Guf

DS(A)] be the uf-advantage associated to adversary A,
where game Guf

DS(A) is in Fig. 4. This is the classical notion of [13], except that addresses of the
messages the signer signs must be all different, as captured through the set A in the game. This is
necessary because the double authentication prevention requirement precludes security if the signer
releases signatures of two messages with the same address. In practice it means that the signer
must maintain a log of all messages it has signed and make sure that it does not sign two messages
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with the same address. A CA is likely to maintain such a log in any case so this is unlikely to be
an extra burden.

Discussion. Regarding the dap property, asking that the key sk∗ returned by the extractor DS.Ex
be equal to sk may seem unnecessarily strong. It might suffice if sk∗ was “functionally equivalent”
to sk, allowing computation of signatures that could not be distinguished from real ones. Such a
property is considered in PS [22]. Formalizing it would require adding another security game based
on indistinguishability. As our schemes (as well as the ones from [21, 22]) achieve the simpler and
stronger property we have defined, we adopt it in our definition.

The dap game chooses the keys vk, sk honestly. Allowing these to be adversarially chosen would
result in a stronger requirement, also formalized in PS [21, 22]. Our view is that our (weaker)
requirement is appropriate for the application we envision because the CA does not wish to create
rogue certificates and has no incentive to create keys allowing it, and the court order happens after
the CA and its keys are established, so that key establishment is honest. If the choice of keys
is considered a potential source of vulnerability, one might generate them via secure computation
between a few different parties.

5 Our ID to DAPS transforms

We specify and analyze our two generic transformations, H2 and ID2, of trapdoor identification
schemes to DAPS. Both deliver efficient DAPS, signature sizes being somewhat smaller in the
second case.

5.1 The double-hash transform

The construction. Let ID be a trapdoor identification scheme. Our H2 (double hash) transform
associates to it, a supported challenge length cl ∈ ID.clS, and a seed length sl ∈ N, a DAPS
DS = H2[ID, cl, sl]. The algorithms of DS are defined in Fig. 5. We give some intuition on the
design. In the signing algorithm, we specify the commitment Y as a hash of the address, i.e.,
messages with the same address result in transcripts with the same commitment. We then specify
the challenge c as a hash of the message (i.e., address and payload) and a random seed. Signatures
consist of the seed and the corresponding response. Concerning the extractability property, observe
that the ID.Ex algorithm, when applied to colliding signature transcripts, reveals isk but not itk,
whereas DAPS extraction needs to recover both, i.e., the full secret key sk = (isk, itk). We resolve
this by putting in the verification key a particular encryption, denoted ITK , of itk, under isk (we
assume itk can be encoded in tl bits).

The scheme uses random oracles H(·, {0, 1}tl), H(·, ID.CS(ivk, cl)) and H(·, {0, 1}cl). For sim-
plicity it is assumed that the three range sets involved here are distinct, which makes the random
oracles independent. If the range sets are not distinct, the scheme must be modified to use domain
separation [4] in calling these oracles. This can be done simply by prefixing the query to the i-th
oracle with i (i = 1, 2, 3 for our three oracles).

DAP security of our construction. The following confirms that double authentication pre-
vention is achieved. This is quite straightforward given the construction. We model H as a random
oracle. Per our conventions, the number of (distinct) queries q to H(·, {0, 1}cl), referred to below,

reflects the overall number of queries made to this oracle in the execution of the game Gdap
DS (A),

including queries made by A directly and queries made by game procedures; as a result it will
always be the case that q ≥ 2.
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H2[ID, cl, sl].KgH

(ivk, isk, itk)←$ ID.Kg
ITK ← itk ⊕H(isk, {0, 1}tl)
vk ← (ivk, ITK ) ; sk ← (isk, itk)
Return (vk, sk)

H2[ID, cl, sl].ExH(vk,m1,m2, σ1, σ2)

(ivk, ITK )← vk
For i = 1, 2 do

(ai, pi)← mi ; (zi, si)← σi
Yi ← H(ai, ID.CS(ivk, cl))
ci ← H(ai‖pi‖si, {0, 1}cl)

isk∗ ← ID.Ex(ivk, Y1‖c1‖z1, Y2‖c2‖z2)
itk∗ ← H(isk∗, {0, 1}tl)⊕ ITK
sk∗ ← (isk∗, itk∗) ; Return sk∗

H2[ID, cl, sl].SigH(vk, sk,m)

(ivk, ITK )← vk ; (isk, itk)← sk
(a, p)← m ; s←$ {0, 1}sl
Y ← H(a, ID.CS(ivk, cl))
y←$ ID.Cmt−1(ivk, itk, Y, cl)
c← H(a‖p‖s, {0, 1}cl)
z ← ID.Rsp(ivk, isk, c, y)
σ ← (z, s) ; Return σ

H2[ID, cl, sl].VfH(vk,m, σ)

(ivk, ITK )← vk ; (a, p)← m ; (z, s)← σ
Y ← H(a, ID.CS(ivk, cl))
c← H(a‖p‖s, {0, 1}cl)
Return ID.Vf(ivk, Y ‖c‖z)

Figure 5: Our construction of a DAPS H2[ID, cl, sl] from a trapdoor identification scheme ID, a
challenge length cl ∈ ID.clS, and a seed length sl ∈ N.

Theorem 2 Let DAPS DS = H2[ID, cl, sl] be obtained from trapdoor identification scheme ID,
challenge length cl, and seed length sl as above. Let A be an adversary making q ≥ 2 distinct
H(·, {0, 1}cl) queries. If ID has perfect extractability then

Advdap
DS (A) ≤ q(q − 1)/2cl+1 . (4)

Proof of Theorem 2: In game Gdap
DS (A) of Fig. 4, consider the execution of the algorithm

DS.ExH of Fig. 5 on vk,m1,m2, σ2, σ2 where (m1,m2, σ1, σ2)←$AH(vk, sk). Let Y1‖c1‖z1, Y2‖c2‖z2
be the transcripts computed within. Assume σ1, σ2 are valid signatures of m1,m2, respectively,
relative to vk = (ivk, ITK ). As per the verification algorithm DS.VfH of Fig. 5 this means that
the transcripts Y1‖c1‖z1, Y2‖c2‖z2 are valid under the ID scheme, meaning ID.Vf(ivk, Y1‖c1‖z1)
= ID.Vf(ivk, Y2‖c2‖z2) = true. If the messages m1 = (a1, p1) and m2 = (a2, p2) output by A
are colliding then we also have Y1 = Y2. This is because a1 = a2 and verification ensures that
Y1 = H(a1, ID.CS(ivk, cl)) and Y2 = H(a2, ID.CS(ivk, cl)). So if c1 6= c2 then the extraction property
of ID ensures that isk∗ = isk. If so, we also can obtain itk∗ = itk, so that the full secret key
sk = (isk, itk) is recovered. So Advdap

DS (A) is at most the probability that the challenges are equal
even though the payloads are not. But the challenges are outputs of H(·, {0, 1}cl), to which the game
makes at most q queries. So the probability that these challenges collide is at most q(q−1)/2cl+1.

We note this proof does not essentially rely on H being a random oracle, and could be adapted
to rely solely on the collision resistance of H.

Unforgeability of our construction. The following shows that the restricted unforgeability
of our DAPS tightly reduces to the cimp-uu plus kr security of the underlying ID scheme. As before
we model H as a random oracle.

Theorem 3 Let DAPS DS = H2[ID, cl, sl] be obtained from trapdoor identification scheme ID,
challenge length cl, and seed length sl as in Fig. 5. Let A be a uf adversary against DS and suppose
the number of queries that A makes to its H(·, {0, 1}tl), H(·, ID.CS(ivk, cl)), H(·, {0, 1}cl), Sign
oracles are, respectively, q1, q2, q3, qs. Then from A we can construct cimp-uu adversary P and kr
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Game G0/ G1

(ivk, isk, itk)←$ ID.Kg
ITK ← itk ⊕H(isk, {0, 1}tl)
vk ← (ivk, ITK )
(m,σ)←$ASign,H(vk)
Return DS.VfH(vk,m, σ)

H(x,Rng)

If (not HT[x,Rng]):
HT[x,Rng]←$ Rng

Return HT[x,Rng]

Sign(m)

(a, p)← m ; s←$ {0, 1}sl
Y ← H(a, ID.CS(ivk, cl))
y←$ ID.Cmt−1(ivk, itk, Y, cl)
If (not HT[a‖p‖s, {0, 1}cl]):

HT[a‖p‖s, {0, 1}cl]←$ {0, 1}cl
Else

bad← true
HT[a‖p‖s, {0, 1}cl]←$ {0, 1}cl

c← HT[a‖p‖s, {0, 1}cl]
z ← ID.Rsp(ivk, isk, c, y)
σ ← (z, s) ; Return σ

Game G2 /G3

(ivk, isk, itk)←$ ID.Kg
ITK ←$ {0, 1}tl
vk ← (ivk, ITK )
(m,σ)←$ASign,H(vk)
Return DS.VfH(vk,m, σ)

H(x,Rng)

If (not HT[x,Rng]):
HT[x,Rng]←$ Rng
If ((Rng = {0, 1}tl) ∧ (x = isk)):

bad← true ; HT[x,Rng]← ITK ⊕ itk
Return HT[x,Rng]

Sign(m)

(a, p)← m ; s←$ {0, 1}sl
Y ← H(a, ID.CS(ivk, cl))
y←$ ID.Cmt−1(ivk, itk, Y, cl)
c←$ {0, 1}cl
HT[a‖p‖s, {0, 1}cl]← c
z ← ID.Rsp(ivk, isk, c, y)
σ ← (z, s) ; Return σ

Figure 6: Games for proof of Theorem 3. Games G1,G2 include the boxed code and games G0,G3

do not.

adversary I such that

Advuf
DS(A) ≤ Advcimp-uu

ID (P) + Advkr-pa
ID (I) +

qs(2q3 + qs − 1)

2sl+1
. (5)

Adversaries P, I make q2 + qs + 1 queries to Tr. Adversary P makes q3 queries to Ch. The
running time of adversary P is about that of A. The running time of adversary I is that of A plus
the time for q1 executions of ID.KVf.

Proof of Theorem 3: We assume that A avoids certain pointless behavior that would only cause
it to lose. Thus, we assume that, in the messages it queries to Sign, the addresses are all different.
Also we assume it did not query to Sign the message m in the forgery (m,σ) that it eventually
outputs. The two together mean that the sets A,M in game Guf

DS(A), and the code and checks
associated with them, are redundant and can be removed. We will work with this simplified form
of the game, that we call G0.

Identical-until-bad games G0,G1 of Fig. 6 move us to allow picking a random seed in responding
to a Sign query, regardless of whether the corresponding hash table entry was defined or not. We
have

Advuf
DS(A) = Pr[G0] = Pr[G1] + Pr[G0]− Pr[G1]

≤ Pr[G1] + Pr[G0 sets bad] , (6)
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Game G4

(ivk, isk, itk)←$ ID.Kg
ITK ←$ {0, 1}tl
vk ← (ivk, ITK )
For i = 1, . . . , q2 + qs + 1 do

(Yi, yi)←$ ID.Cmt(ivk, cl)
ci←$ {0, 1}cl
zi ← ID.Rsp(ivk, isk, ci, yi)

i2 ← 0
(m,σ)←$ASign,H(vk)
(a, p)← m ; (z, s)← σ
Y ← H(a, ID.CS(ivk, cl))
c← H(a‖p‖s, {0, 1}cl)
Return ID.Vf(ivk, Y ‖c‖z)
Game G5

(ivk, isk, itk)←$ ID.Kg
ITK ←$ {0, 1}tl
vk ← (ivk, ITK )
For i = 1, . . . , q2 + qs + 1 do

(Yi, yi)←$ ID.Cmt(ivk, cl)
ci←$ {0, 1}cl
zi ← ID.Rsp(ivk, isk, ci, yi)

i2 ← 0 ; T ← ∅
(m,σ)←$ASign,H(vk)
Return (isk ∈ T )

Sign(m) // G4,G5

(a, p)← m ; s←$ {0, 1}sl
Y ← H(a, ID.CS(ivk, cl))
i← Ind2(a)
HT[a‖p‖s, {0, 1}cl]← ci
σ ← (zi, s) ; Return σ

H(x,Rng) // G4

If (not HT[x,Rng]):
HT[x,Rng]←$ Rng
If (Rng = {0, 1}cl):

HT[x,Rng]←$ {0, 1}cl
If (Rng = ID.CS(ivk, cl)):
i2 ← i2 + 1 ; HT[x,Rng]← Yi2 ; Ind2(x)← i2

Return HT[x,Rng]

H(x,Rng) // G5

If (not HT[x,Rng]):
HT[x,Rng]←$ Rng
If (Rng = {0, 1}tl):
T ← T ∪ {x}

If (Rng = ID.CS(ivk, cl)):
i2 ← i2 + 1 ; HT[x,Rng]← Yi2 ; Ind2(x)← i2

Return HT[x,Rng]

Figure 7: More games for the proof of Theorem 3.

where the inequality is by the Fundamental Lemma of Game Playing of [5]. The random choice
of s made by procedure Sign ensures

Pr[G0 sets bad] ≤
qs−1∑
i=0

q3 + i

2sl
=
qs(2q3 + qs − 1)

2sl+1
. (7)

Now we need to bound Pr[G1]. We start by considering whether the ciphertext ITK = itk ⊕
H(isk, {0, 1}tl) helps A over and above access to Sign. Consider the games G2,G3 of Fig. 6. They
pick ITK directly at random rather than as prescribed in the scheme. However, via the boxed
code that it contains, game G2 compensates, replying to H(·, {0, 1}tl) queries in such a way that
ITK = itk⊕H(isk, {0, 1}tl). Thus G2 is equivalent to G1. Game G3 omits the boxed code, but the
games are identical-until-bad. So we have

Pr[G1] = Pr[G2] = Pr[G3] + Pr[G2]− Pr[G3]

≤ Pr[G3] + Pr[G3 sets bad] , (8)

where again the inequality is by the Fundamental Lemma of Game Playing of [5]. Now we have
two tasks, namely to bound Pr[G3] and to bound Pr[G3 sets bad]. The first corresponds to showing
A cannot forge if ciphertext ITK is random, and the second corresponds to showing that changing
the ciphertext to random makes little difference. The first relies on the cimp-uu security of ID, the
second on its kr security.

To bound Pr[G3], consider game G4 of Fig. 7. It moves us towards using cimp-uu by generating
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Adversary PTr,Ch(ivk)

ITK ←$ {0, 1}tl
vk ← (ivk, ITK )
For i = 1, . . . , q2 + qs + 1 do

(Yi, ci, zi)←$ Tr(cl)
i2 ← 0 ; j ← 0
(m,σ)←$ASign,H(vk)
(a, p)← m ; (z, s)← σ
Y ← H(a, ID.CS(ivk, cl))
c← H(a‖p‖s, {0, 1}cl)
k ← Ind3(a‖p‖s)
Return (k, z)

Adversary ITr(ivk)

ITK ←$ {0, 1}tl
vk ← (ivk, ITK )
For i = 1, . . . , q2 + qs + 1 do

(Yi, ci, zi)←$ Tr(cl)
i2 ← 0 ; T ← ∅ ; j ← 0
(m,σ)←$ASign,H(vk)
For all x ∈ T do

If ID.KVf(ivk, x):
Return x

Return ⊥

Sign(m) // P, I
(a, p)← m ; s←$ {0, 1}sl
Y ← H(a, ID.CS(ivk, cl))
i← Ind2(a)
HT[a‖p‖s, {0, 1}cl]← ci
σ ← (zi, s) ; Return σ

H(x,Rng) // P
If (not HT[x,Rng]):

HT[x,Rng]←$ Rng
If (Rng = {0, 1}cl):
a‖p‖s← x ; Y ← H(a, ID.CS(ivk, cl))
l← Ind2(a) ; j ← j + 1 ; c←$ Ch(l)
Ind3(x)← j ; HT[x,Rng]← c

If (Rng = ID.CS(ivk, cl)):
i2 ← i2 + 1 ; HT[x,Rng]← Yi2 ; Ind2(x)← i2

Return HT[x,Rng]

H(x,Rng) // I
If (not HT[x,Rng]):

If (Rng = {0, 1}tl): T ← T ∪ {x}
If (Rng = ID.CS(ivk, cl)):
i2 ← i2 + 1 ; HT[x,Rng]← Yi2 ; Ind2(x)← i2

Return HT[x,Rng]

Figure 8: Adversaries for proof of Theorem 3.

conversation transcripts Yi‖ci‖zi and having Sign use these. We have

Pr[G3] = Pr[G4] . (9)

We build cimp-uu adversary P so that

Pr[G4] ≤ Advcimp-uu
ID (P) . (10)

The construction of P is described in detail in Fig. 8. The idea is as follows. Adversary P uses its
transcript oracle Tr to generate the transcripts that G4 generates directly. It can then simulate
A’s Sign oracle as per game G4. Simulation of H(·,Rng) is done directly as in the game for
Rng = {0, 1}tl and Rng = ID.CS(ivk, cl). When a query x is made to H(·, {0, 1}cl), adversary P
parses x as a‖p‖s, sends the index of the corresponding Tr query to its challenge oracle Ch to get
back a challenge, and returns this challenge as the response to the oracle query. Finally when A
produces a forgery, the response in the corresponding signature is output as an impersonation that
is successful as long as the forgery was valid.

To bound Pr[G3 setsbad], consider game G5 of Fig. 7. It answers Sign queries just like G4, and the
only modification in answering H queries is to keep track of queries to H(·, {0, 1}tl) in the set T .
The game ignores the forgery, returning true if isk was queried to H(·, {0, 1}tl). We have

Pr[G3 sets bad] = Pr[G5] . (11)

We build I so that

Pr[G5] ≤ Advkr-pa
ID (I) . (12)

The idea is simple, namely that if the adversary queries isk to H(·, {0, 1}tl) then we can obtain
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ID2[ID, cl].KgH,Π±1

(ivk, isk, itk)←$ ID.Kg
ITK ← itk ⊕H(isk, {0, 1}tl)
vk ← (ivk, ITK ) ; sk ← (isk, itk)
Return (vk, sk)

ID2[ID, cl].ExH,Π±1

(vk,m1,m2, σ1, σ2)

(ivk, ITK )← vk
For i = 1, 2 do

(ai, pi)← mi // a1 = a2 ∧ p1 6= p2

(c1,i, z2,i)← σi ; c2,i ← H2(ai, pi)
Y2,i ← ID.Rsp−1(ivk, c2,i, z2,i)
T2,i ← Y2,i‖c2,i‖z2,i

z1,i ← Π−1(Y2,i)
Y1,i ← ID.Rsp−1(ivk, c1,i, z1,i)
T1,i ← Y1,i‖c1,i‖z1,i

If Y2,1 = Y2,2:
If c2,1 = c2,2: Return ⊥
isk∗←$ ID.Ex(ivk, T2,1, T2,2)

Else: // Y1,1 = Y1,2 ∧ c1,1 6= c1,2
isk∗←$ ID.Ex(ivk, T1,1, T1,2)

itk∗ ← H(isk∗, {0, 1}tl)⊕ ITK
sk∗ ← (isk∗, itk∗) ; Return sk∗

ID2[ID, cl].SigH,Π±1

(vk, sk,m)

(ivk, ITK )← vk ; (isk, itk)← sk
(a, p)← m
Y1 ← H1(a) ; c1←$ {0, 1}
y1←$ ID.Cmt−1(ivk, itk, Y1, 1)
z1 ← ID.Rsp(ivk, isk, c1, y1)
Y2 ← Π+1(z1) ; c2 ← H2(a, p)
y2←$ ID.Cmt−1(ivk, itk, Y2, cl)
z2 ← ID.Rsp(ivk, isk, c2, y2)
σ ← (c1, z2) ; Return σ

ID2[ID, cl].VfH,Π±1

(vk,m, σ)

(ivk, ITK )← vk ; (a, p)← m
(c1, z2)← σ ; c2 ← H2(a, p)
Y2 ← ID.Rsp−1(ivk, c2, z2)
z1 ← Π−1(Y2)
Y1 ← ID.Rsp−1(ivk, c1, z1)
Return (Y1 = H1(a))

Figure 9: Our construction of a DAPS ID2[ID, cl] from a trapdoor identification scheme ID, where
{1, cl} ⊆ ID.clS.

isk by watching the oracle queries of A. The difficulty is that, to run A, one first has to simulate
answers to Sign queries using transcripts, and it is to enable this that we moved to G5. Again
the game was crafted to make the construction of adversary I quite direct. The construction is
described in detail Fig. 8. The simulation of the Sign oracle is as before. The simulation of H is
more direct, following game G5 rather than invoking the Ch oracle. When A returns its forgery,
the set T contains candidates for the identification secret key isk. Adversary I now verifies each
candidate using the key-verification algorithm of the identification scheme, returning a successful
candidate if one exists in its list.

5.2 The double-id transform

Our ID2 transform roughly maintains signing and verifying time compared to H2 but signatures
are shorter, consisting of an ID response plus one bit. Since the verifier can try both possibilities
for this bit, if one is willing to double the verification time, even this bit is expendable.

The construction. Our construction assumes two main ingredients: The first is a trapdoor
identification scheme ID that is commitment recovering, has unique responses, and simultaneously
supports challenge lengths 1 and cl � 1. For the choice of cl we further assume |ID.RS(ivk, 1)| =
|ID.CS(ivk, cl)| for all ivk, i.e., the response space for 1-bit challenges has the same cardinality
as the commitment space for cl-bit challenges. The second component is a random bijection Π
(cf. Section 2) between sets ID.RS(ivk, 1) and ID.CS(ivk, cl), i.e., oracle Π+1 implements a random
mapping from ID.RS(ivk, 1) to ID.CS(ivk, cl) and oracle Π−1 implements its inverse. In Section 6
we discuss trapdoor ID schemes that fulfill these requirements and show how random bijections
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with the required domain and range can be obtained.
The details of the ID2 transform are specified in Fig. 9. We write H1(·) shorthand for

H(·, ID.CS(ivk, 1)), and H2(·, ·) shorthand for H((·, ·), {0, 1}cl). As in Section 5.1 we assume these
random oracles are independent. Key generation is as in H2. Signing works as follows: First
a commitment Y1 ← H1(a) is derived from the address using a random oracle that maps to the
commitment space ID.CS(ivk, 1), then a random 1-bit challenge c1 is picked and the correspond-
ing response z1 of the ID scheme computed. Using bijection Π+1, response z1 is mapped to a
commitment Y2 ∈ ID.CS(ivk, cl). A corresponding cl-bit challenge is derived from the address and
the payload per c2 ← H2(a, p). The DAPS signature consists of the response z2 corresponding to
Y2 and c2, together with the one-bit challenge c1. Signatures are verified using the commitment
recovery algorithm ID.Rsp−1 to recover Y2 from z2, computing z1 ← Π−1(Y2), recovering Y1 from c1
and z1 (again using the commitment recovery algorithm), and comparing with H1(a). Extraction
algorithm DS.Ex works in the obvious way.

DAP security. The ID2 construction achieves double authentication prevention, as the following
result confirms. The proof relies on the extractability property of the ID scheme twice: once for
each challenge length. We model H as a random oracle as usual. Nothing is assumed of Π other
than it being a bijection.

Theorem 4 Let DAPS DS = ID2[ID, cl] be obtained from trapdoor identification scheme ID and
challenge length cl as above. Let A be an adversary making at most q queries to the H2(·) =

H(·, {0, 1}cl) oracle. If ID has unique responses and perfect extractability, then Advdap
DS (A) ≤ q(q−

1)/2cl+1.

Proof of Theorem 4: Assume, in experiment Gdap
DS (A), that the adversary outputs message-

signature pairs (m1, σ1) and (m2, σ2) such that for i ∈ {1, 2} we have DS.Vf(vk,mi, σi) = true. The
latter implies for mi = (ai, pi) and σi = (c1,i, z2,i) that for recoverable values z1,i, Y2,i and the corre-
sponding transcripts T1,i = H1(ai)‖c1,i‖z1,i and T2,i = Y2,i‖H2(ai, pi)‖z2,i we have ID.Vf(ivk, T1,i) =
ID.Vf(ivk, T2,i) = true and Y2,i = Π+1(z1,i). Assume a1 = a2 and p1 6= p2. We have either c1,1 6= c1,2
or c1,1 = c1,2. In the former case, the two transcripts T1,1, T1,2 have the same commitment but
different challenges. This allows us to extract the secret key via the extractability property of ID;
further, by decrypting ITK we can recover itk, as required. Consider thus the case c1,1 = c1,2 which
implies z1,1 = z1,2 and Y2,1 = Y2,2 by the unique response property of ID. If H2(a1, p1) 6= H2(a2, p2)
we can extract isk, itk from the two transcripts T2,1, T2,2 as above. As p1 6= p2 and H is a random
oracle, the probability for H2(a1, p1) = H2(a2, p2) is q(q − 1)/2cl+1.

Unforgeability. The following establishes that if the ID scheme offers cimp-uc and kr security,
then ID2 transforms it into an unforgeable DAPS. Here we model H as a random oracle and Π as
a public random bijection.

Theorem 5 Let DAPS DS = ID2[ID, cl] be obtained from trapdoor identification scheme ID as in
Fig. 9. Let N = min |ID.CS(ivk, cl)| where the minimum is over all (ivk, isk, itk) ∈ [ID.Kg]. Let A
be a uf adversary against DS and suppose the number of queries that A makes to its H(·, {0, 1}tl),
H(·, ID.CS(ivk, 1)), H(·, {0, 1}cl), Π±1, Sign oracles are, respectively, q1, q2, q3, q4, qs. Then from A
we can construct dap adversary A′, kr adversary I and cimp-uc adversaries P1,P2 such that

Advuf
DS(A) ≤ Advdap

DS (A′) + Advkr-pa
ID (I)

+ 2Advcimp-uc
ID (P1) + 2Advcimp-uc

ID (P2) +
(q4 + qs)

2

2N
.

18



Game G0 / G1

(ivk, isk, itk)←$ ID.Kg
ITK ← itk ⊕H(isk, {0, 1}tl)
vk ← (ivk, ITK )

(m,σ)←$ASign,H,Π±1

(vk)

Return DS.VfH,Π±1

(vk,m, σ)

H(x,Rng)

If HT[x,Rng]: Return HT[x,Rng]
HT[x,Rng]←$ Rng
Return HT[x,Rng]

Π+1(z1)

If z1 ∈ dom(PT): Return PT+1(z1)
Y2←$ ID.CS(ivk, cl)
If Y2 ∈ rng(PT): bad← 1
Y2←$ ID.CS(ivk, cl) \ rng(PT)

PT← PT ∪ {(z1, Y2)}
Return PT+1(z1)

Sign(m)

(a, p)← m
Y1 ← H1(a) ; c1←$ {0, 1}
y1←$ ID.Cmt−1(ivk, itk, Y1, 1)
z1 ← ID.Rsp(ivk, isk, c1, y1)
Y2 ← Π+1(z1) ; c2 ← H2(a, p)
y2←$ ID.Cmt−1(ivk, itk, Y2, cl)
z2 ← ID.Rsp(ivk, isk, c2, y2)
σ ← (c1, z2) ; Return σ

Π−1(Y2)

If Y2 ∈ rng(PT): Return PT−1(Y2)
z1←$ ID.RS(ivk, 1)
If z1 ∈ dom(PT): bad← 1
z1←$ ID.RS(ivk, 1) \ dom(PT)

PT← PT ∪ {(z1, Y2)}
Return PT−1(Y2)

Figure 10: Games G0,G1 for proof of Theorem 5. Game G0 includes the boxed code and game G1

does not.

Adversaries I,P1,P2 make q2 + q3 + q4 + qs queries to Tr, and adversaries P1,P2 make one query
to Ch. Beyond that, the running time of A′,P1,P2 is about that of A, and the running time of I
is that of A plus the time for q1 executions of ID.KVf.

Proof of Theorem 5: In the proof, we handle queries to the random bijection Π (with oracles
Π+1 and Π−1) via lazy sampling and track input-output pairs using a table PT. Notation-wise
we consider PT ⊆ ID.RS(ivk, 1) × ID.CS(ivk, cl) a binary relation to which a mapping of the form
Π+1(α) = β or, equivalently, Π−1(β) = α can be added by assigning PT← PT ∪ {(α, β)}. We use
functional expressions for table look-up, e.g., whenever (α, β) ∈ PT we write PT+1(α) = β and
PT−1(β) = α. We annotate the domain of PT with dom(PT) = {α : (α, β) ∈ PT for some β}, and
its range with rng(PT) = {β : (α, β) ∈ PT for some α}.
Without loss of generality we assume from A the following behavior: (a) if A outputs a forgery
attempt (m,σ) then σ was not returned by Sign on input m; (b) A does not query Sign twice on
the same address; (c) for all messages m = (a, p), A always queries H1(a) before H2(a, p); further,
A always queries H2(a, p) before querying Sign(m); (d) before outputting a forgery attempt, A
makes all random oracle and random bijection queries required by the verification algorithm to
verify the signature. We further may assume that A does not forge on an address a for which it
queried a signature before: Otherwise, by DAP security, the adversary could extract the secret key
and forge also on a fresh address; this is accounted for by the Advdap

DS (A′) term in the theorem
statement. The correspondingly simplified form of the Guf

DS(A) game is given as G0 in Fig. 10.
(Note that queries to Π+1 and Π−1 are expected to be answered with elements drawn uniformly
at random from ID.CS(ivk, cl) \ rng(PT) and ID.RS(ivk, 1) \ dom(PT), respectively, and that our
implementation does precisely this, though in an initially surprising form).

Observe that in G0 the flag bad is set when resampling is required in the processing of Π+1 and
Π−1. The probability that this happens is at most (0 + 1 + . . .+ (q4 + qs − 1))/N , where N is the
minimum cardinality of the commitment space for challenge length cl, as defined in the theorem
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Game G2

(ivk, isk, itk)←$ ID.Kg
ITK ←$ {0, 1}tl ; vk ← (ivk, ITK )

(m,σ)←$ASign,H,Π±1

(vk)

Return DS.VfH,Π±1

(vk,m, σ)

H(x,Rng)

If HT[x,Rng]: Return HT[x,Rng]
HT[x,Rng]←$ Rng
If Rng = {0, 1}tl:

If ID.KVf(ivk, x): bad1 ← 1
If x = isk: HT[x,Rng]← ITK ⊕ itk

If Rng = ID.CS(ivk, 1):
Y1[x]‖c1[x]‖z1[x]←$ Transc(1)
HT[x,Rng]← Y1[x]

If Rng = {0, 1}cl:
Y2[x]‖c2[x]‖z2[x]←$ Transc(cl)
HT[x,Rng]← c2[x]

Return HT[x,Rng]

Algorithm Transc(cl)
(Y, y)←$ ID.Cmt(ivk, cl)
c←$ {0, 1}cl
z ← ID.Rsp(ivk, isk, c, y)
Return Y ‖c‖z

Sign(m)

(a, p)← m
If ∃z ∈ dom(PT) s.t.
ID.Vf(ivk, Y1[a]‖0‖z) or
ID.Vf(ivk, Y1[a]‖1‖z): bad2 ← 1

If z1[a] ∈ dom(PT):
Y2 ← PT+1(z1[a]) ; c2 ← H2(a, p)
y2←$ ID.Cmt−1(ivk, itk, Y2, cl)
z2 ← ID.Rsp(ivk, isk, c2, y2)

Else:
Y2 ← Y2[a, p] ; z2 ← z2[a, p]
PT← PT ∪ {(z1[a], Y2)}

σ ← (c1[a], z2) ; Return σ

Π+1(z1)

If z1 ∈ dom(PT): Return PT+1(z1)
Y2[z1]‖c2[z1]‖z2[z1]←$ Transc(cl)
PT← PT ∪ {(z1, Y2[z1])}
Return PT+1(z1)

Π−1(Y2)

If Y2 ∈ rng(PT): Return PT−1(Y2)
z1←$ ID.RS(ivk, 1)
PT← PT ∪ {(z1, Y2)}
Return PT−1(Y2)

Figure 11: Game G2 for proof of Theorem 5.

statement. We define game G1 like G0 but with the resampling steps in the Π+1 and Π−1 oracles
removed. We obtain

Pr[G0] = Pr[G1] +
(q4 + qs)

2 − (q4 + qs)

2N
. (13)

Consider next game G2 from Fig. 11. It is obtained from G1 by applying the following rewriting
steps. First, instead of computing ITK by evaluating itk ⊕H(isk, {0, 1}tl) it picks ITK at random
and programs random oracle H such that relation ITK = itk⊕H(isk, {0, 1}tl) is maintained. Second,
the way random oracle queries of the form H(x, ID.CS(ivk, 1)) and H(x, {0, 1}cl) are processed is
changed: Now, the internal Transc algorithm is invoked to produce full identification transcripts
for the corresponding challenge length; the H oracle outputs one component of these transcripts
and keeps the other components for itself. Also the implementation of Π+1 is modified to use the
Transc algorithm.

Concerning the Sign oracle, observe that G1 samples challenge c1 and derives corresponding y1
and z1 values by itself. In G2, as we assume that H1(a) is always queried before Sign(a, p), and as
the H1(a) implementation now internally prepares a full transcript, the c1, y1, z1 values from this
transcript generation can be used within the Sign oracle. That is, we replace the first invocations
of ID.Cmt−1 and ID.Rsp in Sign of G1 by the assignments Y1 ← Y1[a], y1 ← y1[a], c1 ← c1[a], and
z1 ← z1[a] in G2. (Note that this works only because we also assume that Sign is not queried
more than once on the same address.) Consider next the assignment Y2 ← Π+1(z1) of Sign in G1

(which now would be annotated Y2 ← Π+1(z1[a])) and the fact that Y2 is completed by Sign to
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Adversary ITr(ivk)

ITK ←$ {0, 1}tl ; vk ← (ivk, ITK )

(m,σ)←$ASign,H,Π±1

(vk)
Output ⊥ and stop

H(x,Rng)

If HT[x,Rng]: Return HT[x,Rng]
HT[x,Rng]←$ Rng
If Rng = {0, 1}tl: // only I

If ID.KVf(ivk, x): // only I
Output x and stop // only I

If Rng = ID.CS(ivk, 1):
as in G2

If Rng = {0, 1}cl:
as in G2

Return HT[x,Rng]

Algorithm Transc(cl)
Y ‖c‖z←$ Tr(cl)
Return Y ‖c‖z

Adversary PTr,Ch
1 (ivk)

ITK ←$ {0, 1}tl ; vk ← (ivk, ITK )

(m,σ)←$ASign,H,Π±1

(vk)
Output ⊥ and stop

Sign(m)

(a, p)← m
If ∃z ∈ dom(PT) s.t. // only P1

ID.Vf(ivk, Y1[a]‖0‖z) or // only P1

ID.Vf(ivk, Y1[a]‖1‖z): // only P1

Ch(#Y1[a], 1− c1[a]) // only P1

Output (1, z) and stop // only P1

Y2 ← Y2[a, p] ; z2 ← z2[a, p]
PT← PT ∪ {(z1[a], Y2)}
σ ← (c1[a], z2) ; Return σ

Π+1(z1)/Π−1(Y2)

as in G2

Figure 12: Adversaries for proof of Theorem 5. The oracles and the Transc implementation are
shared by both adversaries. In Sign, we write #Y1[a] for the number of the Tr query in which the
value of Y1[a] was established.

a transcript with challenge c2[a, p]. In the evaluation of Π+1(z1), two cases can be distinguished:
either the query is ‘old’, i.e., z1 ∈ dom(PT), in which case Sign proceeds its computations using
the stored commitment Y2 = PT+1(z1), or the query is ‘fresh’, i.e., z1 /∈ dom(PT), in which case a
new value Y2 is sampled from ID.CS(ivk, cl). In both cases Sign completes Y2 to a full transcript
with challenge H2(a, p) = c2[a, p]. As we assume that each Sign(a, p) query is preceded by a
H2(a, p) query, and the latter internally generates a full transcript with challenge c2[a, p], similarly
to what we did for the values Y1, y1, c1, z1 above, in the case of a ‘fresh’ Π+1(z1) query game G2 sets
Y2 ← Y2[a, p], y2 ← y2[a, p], c2 ← c2[a, p], and z2 ← z2[a, p]. The two described cases correspond
with the two branches of the second If-statement in Sign of Fig. 11.

The remaining changes between G1 and G2 concern the two added flags bad1 and bad2 and can be
ignored for now. Thus all changes between games G1 and G2 are pure rewriting, so we obtain

Pr[G1] = Pr[G2] . (14)

Consider next in more detail the flags bad1 and bad2 that appear in game G2. The former is set
whenever a value is queried to H(·, {0, 1}tl) that is a valid secret identification key for verification
key ivk, and the latter is set when Sign is queried on some address a and the domain of PT
contains an element that is a valid response for commitment Y1[a] and one of the two possible
challenges c1 ∈ {0, 1}. Observe that any use of itk in H is preceded by setting bad1 ← 1, and that
any execution of the first branch of the second If-statement of Sign in G2 is preceded by setting
bad2 ← 1.

We would like to proceed the proof by bounding the probabilities Pr[G2 sets bad1] and Pr[G2 sets bad2]
(based on the hardness of key recovery and cimp-uc impersonation, respectively). However, the
following technical problem arises: While in the two corresponding reductions we would be able
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Game G3

(ivk, isk, itk)←$ ID.Kg
ITK ←$ {0, 1}tl ; vk ← (ivk, ITK )

(m,σ)←$ASign,H,Π±1

(vk)
(a, p)← m ; (c1, z2)← σ
Y2 ← ID.Rsp−1(ivk, c2[a, p], z2)
z1 ← Π−1(Y2)
Y1 ← ID.Rsp−1(ivk, c1, z1)
If Y1 6= Y1[a]: Return false
If c1 6= c1[a]: bad← 1
Return true

Sign(m)

(a, p)← m
If ∃z ∈ dom(PT) s.t.
ID.Vf(ivk, Y1[a]‖0‖z) or
ID.Vf(ivk, Y1[a]‖1‖z): bad2 ← 1

PT← PT ∪ {(z1[a], Y2[a, p])}
σ ← (c1[a], z2[a, p]) ; Return σ

H(x,Rng)

If HT[x,Rng]: Return HT[x,Rng]
HT[x,Rng]←$ Rng
If Rng = {0, 1}tl:

If ID.KVf(ivk, x): bad1 ← 1
If Rng = ID.CS(ivk, 1):
Y1[x]‖c1[x]‖z1[x]←$ Transc(1)
HT[x,Rng]← Y1[x]

If Rng = {0, 1}cl:
Y2[x]‖c2[x]‖z2[x]←$ Transc(cl)
HT[x,Rng]← c2[x]

Return HT[x,Rng]

Π+1(z1)/Π−1(Y2)

as in G2

Algorithm Transc(cl)
as in G2

Adversary PTr,Ch
2 (ivk)

ITK ←$ {0, 1}tl ; vk ← (ivk, ITK )

(m,σ)←$ASign,H,Π±1

(vk)
(a, p)← m ; (c1, z2)← σ
Y2 ← ID.Rsp−1(ivk, c2[a, p], z2)
z1 ← Π−1(Y2)
Y1 ← ID.Rsp−1(ivk, c1, z1)
If Y1 6= Y1[a]: Return ⊥
If c1 6= c1[a]:
Ch(#Y1[a], c1)
Output (1, z1) and stop

Return ⊥
Algorithm Transc(cl)
Y ‖c‖z←$ Tr(cl)
Return Y ‖c‖z

Sign(m)

(a, p)← m
PT← PT ∪ {(z1[a], Y2[a, p])}
σ ← (c1[a], z2[a, p]) ; Return σ

H(x,Rng)

If HT[x,Rng]: Return HT[x,Rng]
HT[x,Rng]←$ Rng
If Rng = ID.CS(ivk, 1):

as in G3

If Rng = {0, 1}cl:
as in G3

Return HT[x,Rng]

Π+1(z1)/Π−1(Y2)

as in G3

Figure 13: Top: Game G3 for proof of Theorem 5. Bottom: One more adversary for proof of
Theorem 5. We write #Y1[a] for the number of the Tr query in which the value of Y1[a] was
established.

to simulate the Transc algorithm with the Tr oracle, when aiming at bounding the probability
of bad1 ← 1 it would be unclear how to simulate the Sign oracle (that uses isk and itk in the
first If-branch), and when aiming at bounding the probability of bad2 ← 1 it would be unclear
how to simulate the H oracle (that uses itk in the Rng = {0, 1}tl branch). We help ourselves by
defining the following three complementary events: (a) neither bad1 nor bad2 is set, (b) bad1 is
set before bad2 (this includes the case that bad2 is not set at all), and (c) bad2 is set before bad1
(this includes the case that bad1 is not set at all). In Fig. 12 we construct a kr adversary I and a
cimp-uc adversary P1 from A such that

Pr[G2 sets bad1 first] = Advkr-pa
ID (I) (15)
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GQ.Kg

(N, p, q, e, d)←$ RSA
x←$ Z∗N
X ← xe mod N
Return ((N, e,X), x, d)

Prover

Input: (N, e,X), x, cl

y←$ Z∗N
Y ← ye mod N

z ← yxc mod N

Y-
c�
z-

Verifier

Input: (N, e,X), cl

c←$ {0, 1}cl

v ← (ze ≡ Y Xc (mod N))

GQ.Ex((N, e,X), Y1, c1, z1, Y2, c2, z2)

If ze1 6≡ Y1X
c1 ∨ ze2 6≡ Y2X

c2 : Return ⊥
If Y1 6= Y2 ∨ |c1| 6= |c2| ∨ c1 = c2: Return ⊥
z ← z1z

−1
2 mod N

c← c1 − c2 // w.l.o.g. c > 0
(a, b)← egcd(e, c)
x← Xazb mod N
Return x

GQ.KVf((N, e,X), x)

Return (xe mod N = X)

GQ.Cmt−1((N, e,X), d, Y, cl)

y ← Y d mod N
Return y

Figure 14: Trapdoor identification scheme GQ associated to RSA generator RSA.

and

Pr[G2 sets bad2 first] = 2Advcimp-uc
ID (P1) . (16)

The strategy for constructing the adversaries is clear: We derive I from G2 by stripping off all code
that is only executed after bad2 is set, and we construct P1 by removing all code only executed
after bad1 is set. The P1-related code in Sign deserves further explanation. The reduction obtained
commitment Y1[a] via H from the Tr oracle of the cimp-uc game, together with challenge c1[a] and
response z1[a]. As at the time the bad2 flag is set in G2 no information on c1[a] was used in the game
or exposed to the adversary, for the challenge c∗ for which ID.Vf(ivk, Y1[a]‖c∗‖z) = true we have that
c∗ 6= c1[a] with probability 1/2. The reduction thus tries to break cimp-uc security with challenge
1 − c1[a] and response z. Whenever this challenge is admissible (i.e., with probability 1/2), the
response is correct. That is, P1 is successful with breaking impersonation with half the probability
of A having flag bad2 be set first.

In Fig. 13 we define game G3 which behaves exactly like G2 until either bad1 or bad2 is set. Thus
we have

Pr[G2 sets neither bad1 nor bad2] = Pr[G3] . (17)

In G3 we expand the DS.Vf algorithm, i.e., the steps where the forgery attempt of A is verified.
If signature σ = (c1, z2) is identified as valid, the game sets flag bad to 1 if c1 6= c1[a], i.e., if the
challenge c1 included in the signature does not coincide with the one simulated in the H oracle for
address a. Using the assumption that A does not forge on addresses a for which it posed a Sign(a, ·)
query, observe that the game did not release any information on c1[a], so by an information theoretic
argument, c1 6= c1[a] and thus bad← 1 with probability 1/2.

In Fig. 13 we construct a cimp-uc adversary P2 from A that is successful whenever bad is set in
game G3. We obtain

Pr[G3] = 2Advcimp-uc
ID (P2) . (18)

Taken together, the established bounds imply the theorem statement.

23



6 Instantiation and implementation

We illustrate how to instantiate our H2 and ID2 transforms, using the GQ and MR identification
schemes as examples, to obtain H2[GQ], ID2[GQ], and H2[MR]. We implement these to get per-
formance data. Similar instantiations and implementations are possible with many other trapdoor
identification schemes.

6.1 GQ-based schemes
Game OWARSA
(N, p, q, e, d)←$ RSA
x←$ Z∗N ; X ← xe mod N
x′←$A(N, e,X)
Return (x′ = x)

Figure 15: Game defining one-wayness
of RSA generator RSA.

GQ. An RSA generator for modulus length k is an algo-
rithm RSA that returns a tuple (N, p, q, e, d) where p, q are
distinct odd primes, N = pq is the modulus in the range
2k−1 < N < 2k, encryption and decryption exponents e, d
are in Z∗ϕ(N), and ed ≡ 1 (mod ϕ(N)). The assumption
is one-wayness, formalized by defining the ow-advantage of
an adversary A against RSA by Advow

RSA(A) = Pr[OWA
RSA]

where the game is in Fig. 15. Let L be a parameter and
RSA be such that gcd(e, c) = 1 for all 0 < c < 2L. (For instance, RSA may select encryption
exponent e as an L+ 1 bit prime number.) If egcd denotes the extended gcd algorithm that given
relatively-prime inputs e, c returns a, b such that ea+cb = 1, the GQ identification scheme associated
to RSA is shown in Fig. 14. Any challenge length up to L is admissible, i.e., ID.clS ⊆ {1, . . . , L},
and for all cl ∈ ID.clS the commitment and response space is ID.CS(ivk, cl) = ID.RS(ivk, cl) = Z∗N .
Extraction works because of identity Xazb = xeax(c1−c2)b = x. Algorithm GQ.Cmt−1 shows that
the scheme is trapdoor; that it also is commitment recovering and has unique responses follows
from inspection of the ze = Y Xc condition of the verification algorithm. Finally, it is a standard
result, and in particular follows from Lemma 1 (p. 10), that KR, CIMP-UU, CIMP-UC security of
GQ tightly reduce to the one-wayness of RSA (note the CIMP-UU case requires a restriction on the
deployed challenge lengths).

H2[GQ]. Fig. 16 shows the algorithms of the H2[GQ] DAPS scheme derived by applying our H2
transform to the GQ identification scheme of Fig. 14. To estimate security for a given modulus
length k we use Theorem 2, Theorem 3, and the reductions between CIMP-UU and KR security
of GQ and the one-wayness of RSA from Lemma 1. The reductions are tight and so we need to
estimate the advantage of an adversary against the one-wayness of RSA. We do this under the
assumption that the NFS is the best factoring method. Thus, our implementation uses a 2048-bit
modulus and 256-bit hashes and seeds. See below and Fig. 21 for implementation and performance
information.

ID2[GQ]. Fig. 16 also shows the algorithms of the DAPS scheme derived by applying the ID2
transform to GQ. Reductions continue to be tight so instantiation and implementation choices
are as for H2[GQ]. Concerning the random permutation Π on Z∗N that the scheme requires, it
effectively suffices to construct one that maps ZN to ZN , and we propose one way to instantiate it
in the following.

A random permutation Π on ZN can be constructed from a random permutation Γ on {0, 1}k,
where 2k−1 < N < 2k, by cycle walking [6, 19]: if x is the input, let c← Γ(x); if c ∈ ZN , return c;
else recurse on c; the inverse is analogous. A Feistel network can be used to construct a random per-
mutation Γ on {0, 1}2n from a set of public random functions F1, . . . , Fr on {0, 1}n. In other words,
for input x0‖x1 ∈ {0, 1}2n, return xr‖xr+1 where xi+1 = xi−1⊕Fi(xi). Dai and Steinberger [9] give
an indifferentiability result for 8 rounds, under the assumption that the Fi are independent public
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H2[GQ].KgH

((N, e,X), x, d)←$ GQ.Kg ; ITK ← d⊕H(x, {0, 1}k)
Return ((N, e,X, ITK ), (x, d))

H2[GQ].SigH((N, e,X, ITK ), (x, d),m)

(a, p)← m ; s←$ {0, 1}sl ; Y ← H(a,Z∗N ) ; y ← Y d mod N
c← H(a‖p‖s, {0, 1}cl) ; z ← yxc mod N ; σ ← (z, s) ; Return σ

H2[GQ].VfH((N, e,X, ITK ),m, σ)

(a, p)← m ; (z, s)← σ ; Y ← H(a,Z∗N ) ; c← H(a‖p‖s, {0, 1}cl)
Return (ze ≡ Y Xc (mod N))

H2[GQ].ExH((N, e,X, ITK ),m1,m2, σ1, σ2)

For i = 1, 2 do
(ai, pi)← mi ; (zi, si)← σi
Yi ← H(ai,Z∗N ) ; ci ← H(ai‖pi‖si, {0, 1}cl)

x← GQ.Ex((N, e,X), Y1, c1, z1, Y2, c2, z2)
d← H(x, {0, 1}k)⊕ ITK ; Return (x, d)

ID2[GQ].KgH,Π±1

((N, e,X), x, d)←$ GQ.Kg ; ITK ← d⊕H(x, {0, 1}k)
Return ((N, e,X, ITK ), (x, d))

ID2[GQ].SigH,Π±1

((N, e,X, ITK ), (x, d),m)

(a, p)← m ; Y1 ← H(a,Z∗N ) ; c1←$ {0, 1} ; y1 ← Y d
1 mod N

z1 ← y1x
c1 mod N ; Y2 ← Π+1(z1) ; y2←$ Y d

2 mod N
c2 ← H(a‖p, {0, 1}cl) ; z2 ← y2x

c2 mod N
σ ← (c1, z2) ; Return σ

ID2[GQ].VfH,Π±1

((N, e,X, ITK ),m, σ)

(a, p)← m ; (c1, z2)← σ ; c2 ← H(a‖p, {0, 1}cl)
Y2 ← (z2)eX−c2 ; z1 ← Π−1(Y2) ; Y1 ← (z1)eX−c1

Return (Y1 = H(a,Z∗N ))

ID2[GQ].ExH,Π±1

((N, e,X, ITK ),m1,m2, σ1, σ2)

For i = 1, 2 do
(ai, pi)← mi ; (c1,i, z2,i)← σi ; c2,i ← H(ai‖pi, {0, 1}cl)
Y2,i ← (z2,i)

eX−c2,i ; z1,i ← Π−1(Y2,i)
Y1,i ← (z1,i)

eX−c1,i

If Y2,1 = Y2,2: x← GQ.Ex((N, e,X), Y2,1, c2,1, z2,1, Y2,2, c2,2, z2,2)
Else: x← GQ.Ex((N, e,X), Y1,1, c1,1, z1,1, Y1,2, c1,2, z1,2)
d← H(x, {0, 1}k)⊕ ITK ; Return (x, d)

Figure 16: DAPS schemes H2[GQ, cl, sl] and ID2[GQ, cl] derived via our transforms from ID scheme
GQ.
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CF.Kg

(ek, ik)←$ FG.Kg
Return (ek, ik, ε)

Prover

Input: ek, ik, cl

Y ←$ FG.D(ek)

z ← FG.Ev−1
ik,c(Y )

Y-
c�
z-

Verifier

Input: ek, cl

c←$ {0, 1}cl

v ← (FG.Evek,c(z) = Y )

CF.Ex(ek, Y1, c1, z1, Y2, c2, z2)

If FG.Evek,c1(z1) 6= Y1∨FG.Evek,c2(z2) 6= Y2: Return ⊥
If Y1 6= Y2 ∨ |c1| 6= |c2| ∨ c1 = c2: Return ⊥
z1 ← FG.Evek,0(z1) ; z2 ← FG.Evek,0(z2)
For i = 1, . . . , |c1| do
z′1 ← FG.Evek,c1[i](z1) ; z′2 ← FG.Evek,c2[i](z2)
If (c1[i] 6= c2[i]) ∧ (z′1 = z′2):

If (c1[i], c2[i]) = (0, 1): Return FG.Ex(ek, z1, z2)
If (c1[i], c2[i]) = (1, 0): Return FG.Ex(ek, z2, z1)

z1 ← z′1 ; z2 ← z′2
Return ⊥

CF.KVf(ek, x)

Return FG.KVf(ek, x)

CF.Cmt−1(ek, ε, Y, cl)

Return ε

Figure 17: Identification scheme CF associated to claw-free function generator FG.

random functions. We construct Fi on {0, 1}n as Fi(x) = H(i‖1‖x)‖ . . . ‖H(i‖`‖x) using H =
SHA-256, where ` = n/256 (assuming for simplicity n is a multiple of 256), and the inputs to SHA-
256 are encoded to the same length to avoid length extension attacks that make Merkle–Damg̊ard
constructions differentiable from a random oracle. Our implementation uses r = 20 rounds of the
Feistel network as a safety margin for good indifferentiability and to avoid the non-tightness of the
result [9] for r = 8.

6.2 CF-based schemes

Game CFAFG
(ek, ik)←$ FG.Kg
(x0, x1)←$A(ek)
y0 ← FG.Evek,0(x0)
y1 ← FG.Evek,1(x1)
Return (y0 = y1)

Figure 18: Game defining
claw-freeness of claw-free func-
tion generator FG.

CF. Our definition of a claw-free function generator follows the one
of [13]. The generator FG specifies the following. Key-generation
algorithm FG.Kg returns a pair (ek, ik) consisting of an evalua-
tion key ek and an inversion key ik. Associated to ek is finite set
FG.D(ek). Also specified are deterministic evaluation and inversion
algorithms FG.Ev and FG.Ev−1. For d ∈ {0, 1}, these in turn spec-
ify permutations FG.Evek,d: FG.D(ek) → FG.D(ek) with inverse
FG.Ev−1ik,d: FG.D(ek) → FG.D(ek). The assumption is claw-freeness, formalized by defining the cf-

advantage of an adversary A against FG by Advcf
FG(A) = Pr[CFAFG] where the game is in Fig. 18.

There is an extraction algorithm FG.Ex that takes ek, x0, x1 such that FG.Evek,0(x0) = FG.Evek,1(x1)
—x0, x1 is referred to as a claw— and returns ik. There is a key-verification algorithm FG.KVf that
takes ek, x and returns true iff (ek, x) ∈ [FG.Kg].

For a string w = w[1] . . . w[n] ∈ {0, 1}n, let FG.Evek,w : FG.D(ek) → FG.D(ek) and FG.Ev−1ik,w :
FG.D(ek)→ FG.D(ek) be defined by

Function FG.Evek,w(x)

For i = 1, . . . , n do x← FG.Evek,w[i](x)

Return x

Function FG.Ev−1ik,w(y)

For i = n, . . . , 1 do y ← FG.Ev−1ik,w[i](y)

Return y
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Prover

Input: N, (p, q, u), cl

Y ′←$ Z∗N
Y ← {±1,±2}Y ′ ∩QR(N)

z ← Y 2−cl

uc mod N

Y ′-
c�
z-

Verifier

Input: N, cl

c←$ {0, 1}cl

Y ← z2cl

4c

v ← (Y ∈ {±1,±2}Y ′)

H2[MR].KgH

(N, p, q)←$ Wil

u← 1/42−cl

mod N
Return (N, (p, q, u))

H2[MR].ExH(N,m1,m2, σ1, σ2)

For i = 1, 2 do
(ai, pi)← mi ; (zi, si)← σi
ci ← H(ai‖pi‖si, {0, 1}cl)
Y ′ ← H(ai,Z∗N )
With help of zi, ci:
Yi ← {±Y ′,±2Y ′} ∩QR(N)

(p, q)← MR.Ex(N,Y1, c1, z1, c2, z2)

u← 1/42−cl

mod N ; Return (p, q, u)

H2[MR].SigH(N, (p, q, u),m)

(a, p)← m ; s←$ {0, 1}sl
Y ′ ← H(a,Z∗N )
Y ← {±Y ′,±2Y ′} ∩QR(N)
c← H(a‖p‖s, {0, 1}cl)
z ← Y 2−cl

uc mod N
σ ← (z, s) ; Return σ

H2[MR].VfH(N,m, σ)

(a, p)← m ; (z, s)← σ
c← H(a‖p‖s, {0, 1}cl)
Y ← z2cl

4c mod N
Y ′ ← H(a,Z∗N )
Return (Y ∈ {±Y ′,±2Y ′})

Figure 19: Top left: MR identification scheme; remainder: DAPS scheme H2[MR, cl, sl] derived
via our H2 transform from ID scheme MR.

Fig. 17 shows the CF identification scheme associated to FG. It supports arbitrary challenge
lengths, i.e., ID.clS = N. The commitment and response spaces are ID.CS(ivk, cl) = ID.RS(ivk, cl) =
FG.D(ek) for all cl. The scheme is trivially trapdoor, with CF.Cmt−1 returning ε. Likewise, it is
commitment recovering. The key-verification algorithm ID.KVf is the same as that of FG. Lemma 1
immediately shows that CF offers CIMP-UU and CIMP-UC security (the perfect extractability of
FG implies perfect extractability of CF, and KR tightly reduces to claw-freeness).

H2[CF] and ID2[CF]. Our H2[CF] and ID2[CF] DAPS schemes can be derived by applying the
respective transforms to the CF identification scheme of Fig. 17, where the latter is based on
a function generator FG. Due to tight reductions, security will amount to that of the function
generator.

The classic claw-free function generator is the one by GMR [13] where evaluation keys ek co-
incide with RSA moduli N and FG.D(ek) = QR(N). Unfortunately, publicly deciding QR(N) is
assumed hard, and so is sampling elements from QR(N) without knowing a square root. As instan-
tiating the H2 and ID2 transforms with CF would require a random oracle that maps into com-
mitment space QR(N), ID2 in addition requires a random permutation on response space QR(N),
and the unique response property required by ID2 does not necessarily hold for GMR’s function
generator, all in all it is not clear how to practically implement the schemes. We suggest two ways
out: The first is to switch to the claw-free function generator suggested in [22] (their 2:1 trapdoor
functions are similar in spirit to the function generator of GMR, but have samplable and decidable
domains), and the second is to tweak H2[CF] a bit so that hashing into QR(N) is avoided. How
to do this will become clear in Section 6.3.

6.3 CF-based schemes using MR

We next discuss our H2[MR] DAPS. While it does not entirely follow the generic approach of
the previous sections, it can be seen as a close variant of H2[CF] instantiated with a squaring-
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based construction of claw-free functions. It will become clear that by giving a direct construction
we obtain a highly efficient scheme without sacrificing security. From the technical perspective,
amongst others we show how to resolve the challenge of hashing into QR(N).

A Williams integer has the form N = pq where p, q are prime numbers of about the same size
and p ≡ 3 (mod 8) and q ≡ 7 (mod 8). We have +1,+4 ∈ QR(N) (trivially) and −1,+2,−2 /∈
QR(N) (by the constraints put on p, q). Further, for any x ∈ Z∗N precisely one element of
{+x,−x,+2x,−2x} is an element of QR(N). Williams integers are a special case of Rabin in-
tegers and thus each x ∈ QR(N) has a total of four square roots in Z∗N , precisely one of which
finds itself in QR(N). Publishing N makes squaring an efficient public permutation on QR(N); its
inverse, taking square roots, is however known to require knowledge of (secret) factors p, q.

Following [13], define functions F0, F1 : QR(N) → QR(N) such that F0(x) = x2 and F1(x) =
4x2. Generalize this definition to any c ∈ {0, 1}∗ by setting Fc(x) = Fc1...cl(x) = Fcl(Fc1...cl−1

(x)) =

x2
l
4c mod N (where in the last term we write c to denote the integer represented by string c).

As suggested in [12], if u = 1/42
−|c|

is precomputed, F−1c (y) = y2
−|c|

uc. The following extraction
property is reported in [18]: From any colliding quadruple x, c, x′, c′, i.e., Fc(x) = Fc′(x

′) and
|c| = |c′| and c 6= c′, one can efficiently compute p and q. The hardness of finding such tuples
can be (tightly) reduced to the hardness of factoring, the latter formalized by factoring advantage
Advfac

Wil(A) = Pr[FACAWil] of an adversary A against a Williams modulus generator Wil, where the
game is in Fig. 20.

Game FACAWil

(N, p, q)←$ Wil
r←$A(N)
Return (r ∈ {p, q})

Figure 20: Game defining
factoring security of Williams
modulus generator Wil.

This setup suggests a (trapdoor) ID scheme where the commit-
ment Y is a random value in QR(N), the challenge c is picked from
{0, 1}cl, and the response is obtained per z ← F−1c (Y ); verifying a
transcripts means checking Y = Fc(z). Unfortunately, for reasons
discussed above, having ID.CS = QR(N) as a commitment space
is not compatible with our transformations. We correspondingly
tweak the ID scheme as follows. We recall that for each Y ′ ∈ Z∗N
precisely one element Y ∈ {+Y ′,−Y ′,+2Y ′,−2Y ′} is in QR(N),
and thus set ID.CS = Z∗N , let the prover pick commitment Y ′ ∈ Z∗N ,
identify Y ∈ QR(N) corresponding to Y ′ (the prover can do this for knowing p, q), and complete
the transcript, for challenge c, by computing response z ← F−1c (Y ). The specification of this ID
scheme, that we call MR, is in Fig. 19, where with u we denote the (cl-dependent) precomputed
value from above. The corresponding extraction algorithm, detailed in [18], we denote with MR.Ex.

H2[MR]. Taking the MR scheme and applying the H2 transform to it yields the DAPS scheme
H2[MR] shown in Fig. 19. Deriving Y during signing is efficient because p, q are known; further, the
extractor can find the right values Yi by evaluating the squaring chain of the verification algorithm
on signature components zi, ci. Given the tightness of the reductions we can again pick the modulus
based on the assumption that the NFS is the best factoring method.

6.4 Implementation and performance

Implementation. We implemented H2[GQ], H2[MR], and ID2[GQ]. For comparison purposes
we also implemented the original PS and the standard RSA PKCS#1v.5 currently used by CAs for
creating certificates. Our implementation is in C, using OpenSSL’s BIGNUM library for number
theoretic operations.1 We use the Chinese remainder theorem to speed-up secret key operations
whenever possible. ForGQ, we use encryption exponent e = nextprime(2cl); for RSA public key

1The source code can be downloaded from https://github.com/dstebila/daps.
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k = 2048-bit modulus, n = l = 256-bit hash

Scheme
Operation count Runtime (ms) Size (bits)

sign verify sign verify pub. sig.

PS [22] n expk
k n expk

k 516.58 ±15.3 161.84 ±7.96 2 048 528 384

RKS [24] 2k grp exp 2k grp dbl exp 13.48 5.99 640 131 072

H2[GQ] (Fig. 16) 2 exp
k/2
k/2 + expl

k expl
k 0.88 ±0.04 0.41 ±0.02 6 144 2 304

ID2[GQ] (Fig. 16) 4 exp
k/2
k/2 +2 expl

k 3 expl
k 1.80 ±0.14 1.49 ±0.26 6 144 2 049

H2[MR] (Fig. 19) 2 exp
k/2
k/2 + expl

k 1.5lmulk 1.27 ±0.16 0.37 ±0.01 2 048 2 304

RSA PKCS#1v1.5 2 exp
k/2
k/2 exp

|e|
k 0.53 ±0.08 0.02 ±0.00 2 048 2 048

Figure 21: Operation count, average runtime in milliseconds, and public key/signature sizes of
DAPS schemes and RSA signatures. By expx

m we denote the cost of a computing a modular
exponentiation with modulus of bitlength m and exponent of bitlength x. See text for more
information.

encryption we use OpenSSL’s default public key exponent, e = 65537. We compared against the
RKS DAPS implementation.

Performance. We measured timings of our implementations on an Intel Core i7 (6700K “Sky-
lake”) with 4 cores each running at 4.0 GHz. The tests were run on a single core with TurboBoost
and hyper-threading disabled. Software was compiled for the x86 64 architecture with -O3 opti-
mizations using llvm 8.0.0 (clang 800.0.38). The OpenSSL version used was v1.0.2j. We use RKS’
implementation of their DAPS, which relies on a different library for the secp256k1 elliptic curve.
Table 21 shows mean runtimes in milliseconds (with standard deviations) and key sizes using 2048-
bit modulii and 256-bit hashes. For DAPS schemes, address is 15 bytes and payload is 33 bytes;
for RSA PKCS#1v1.5, message is 48 bytes. Times reported are an average over 30 seconds. The
table omits runtimes for key generation as this is a one-time operation.

Compared with the existing PS, our H2[GQ], ID2[GQ], and H2[MR] schemes are several orders
of magnitude faster for both signing and verification. When using 2048-bit modulii, H2[GQ] sig-
natures can be generated 587× and verified 394× faster, and ID2[GQ] signatures can be generated
287× and verified 108× faster; moreover our signatures are 229× and 257× shorter, respectively,
compared with PS, and ours are nearly the same size as RSA PKCS#1v1.5 signatures. Compared
with the previous fastest and smallest DAPS, RKS, H2[GQ] signatures can be generated and ver-
ified 15× faster; ID2[GQ] generated 7× and verified 4× faster; and H2[MR] generated 10× and
verified 16× faster. H2[GQ] and H2[MR] signatures are 56× shorter compared with RKS; H2[GQ]
and ID2[GQ] public keys are 9.6× larger, though still under 1 KiB total, and H2[MR] keys are only
3.2× larger than RKS.

Signing times for our schemes are competitive with RSA PKCS#1v1.5: using H2[GQ], ID2[GQ],
or H2[MR] for signatures in digital certificates would incur little computational or size overhead
relative to currently used signatures.
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ID.Kg

(vk, sk)←$ DS.Kg
Return (vk, sk, ε)

Prover

Input: vk, sk, cl

Y ←$ {0, 1}cl

z ← DS.Sig(vk, sk, (Y, c))

Y-
c�
z-

Verifier

Input: vk, cl

c←$ {0, 1}cl

v ← DS.Vf(vk, (Y, c), z)

ID.Cmt−1(ivk, itk, Y )

Return Y

ID.Ex(ivk, Y1‖c1‖z1, Y2‖c2‖z2)

Return DS.Ex(ivk, (Y1, c1), (Y2, c2), z1, z2)

Figure 22: Our construction of a trapdoor identification scheme ID = DAPS2ID[DS] from a DAPS
DS.

7 From DAPS to trapdoor ID

Here we show that DAPS implies trapdoor identification that is CIMP-UC and CIMP-UU secure,
which shows that the assumptions we make to obtain DAPS are necessary.

Construction. Let DS be a DAPS, meaning a signature scheme satisfying double authentication
prevention and unforgeability. We build from it the identification scheme ID = DAPS2ID[DS] de-
picted in Fig. 22. The set ID.clS of admissible challenge lengths is the set of positive integers. Key
generation algorithm ID.Kg lets (vk, sk)←$ DS.Kg and returns (ivk, isk, itk) = (vk, sk, ε). The com-
mitment is a random cl-bit string, meaning ID.Cmt(ivk, cl) picks Y ←$ {0, 1}cl and returns (Y, Y ).
The response is a signature of the commitment and challenge, meaning ID.Rsp(vk, sk, c, Y ) returns
z←$ DS.Sig(vk, sk, (Y, c)). This identification scheme is trivially trapdoor, ID.Cmt−1(vk, ε, Y, cl)
returning Y .

Properties. We have already shown that ID = DAPS2ID[DS] is trapdoor. We want to show it is
CIMP-UC and CIMP-UU secure. In fact we will show something stronger, namely that it satisfies
extractability and security against key recovery under passive attack. CIMP-UC and CIMP-UU
will then follow from Lemma 1.

Theorem 6 Let DS be a DAPS and let ID = DAPS2ID[DS]. Let A be an ex-adversary against

ID. From A we construct dap-adversary A1 such that Advex
ID(A) ≤ Advdap

DS (A1). The running time
of A1 is that of A.

Proof: Adversary A1 is shown in Fig. 23. A1 directly calls A which is an ex adversary against the
identification scheme ID. Note that, for ID = DAPS2ID[DS], the trapdoor key is itk = ε, so this is
a perfect simulation of Gex

ID(A). If A returns two accepting transcripts Y ‖c1‖z1 and Y ‖c2‖z2 with
c1 6= c2, then (Y, c1) and (Y, c2) are a pair of colliding messages for DS and z1 and z2, respectively,
are valid signatures. ID.Ex fails to return the correct secret key from this part of transcripts exactly
when DS.Ex fails. The bound in the theorem statement follows.

Theorem 7 Let DS be a DAPS and let ID = DAPS2ID[DS]. Let I be a kr-adversary against ID.

From I we construct uf-adversary A2 such that Advkr-pa
ID (I) ≤ Advuf

DS(A2). The running time of
A2 is that of I.
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Adversary A1(vk, sk)

(Y, c1, z1, c2, z2)←$A(vk, sk, ε)
Return ((Y, c1), (Y, c2), z1, z2)

Figure 23: Adversary for proof of Theorem 6.

Adversary ASign
2 (vk)

L← ∅
isk∗←$ ITr∗

(vk)
Pick some m with |m| /∈ L
σ←$ DS.Sig(ivk, isk∗,m)
Return (m,σ)

Tr∗(cl)

Y ←$ {0, 1}cl ; c←$ {0, 1}cl
z←$ Sign(Y ‖c)
T ← Y ‖c‖z ; L← L ∪ {|Y ‖c|}
Return T

Figure 24: Adversary for proof of Theorem 7.

Proof: Adversary A2 is shown in Fig. 24. To create transcripts, A2 uses its Sign oracle. It stores
the lengths of all messages that are signed. When I returns a signing key, A2 uses it to sign a
message and create a forgery. To avoid this message m having been a Sign query, it picks it to
have a length different from the length of any message queried to Sign.
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A Applicability of DAPS

Applicability of DAPS. As a reader may justifiably point out, various issues must be addressed
for PS’s application of DAPS to the deterrence of certificate subversion, that we sketched above, to
be a full solution. For example, there may be legitimate reasons for a CA to issue a new certificate
in the name of example.com (the old one may have expired or been revoked) which at first glance
is precluded by DAPS. Or, big brother might approach a different CA. (Indeed, the DAPS idea is
inherently restricted to a single CA environment.) There are various answers to these questions
which in particular are discussed to some extent by PS [22].

One might also ask why a CA would want, or agree, to use DAPS. Recently, we have seen
Internet corporations opposing court orders asking them to compromise security of their products
(Apple vs. FBI) or taking steps to make subversion harder (Google’s push for end-to-end encryption
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or the information that Apple “reworked its encryption in a way that prevents the company ... from
getting access to the ... user data stored on smartphones and tablet computers” [25]). A CA might
similarly see espousing DAPS.

We will not however attempt to address application issues in full here. Whether DAPS as
a concept has true practical utility remains to be seen, but our sense is that DAPS is a tool
of sufficient technical interest and potential applicability to merit research and exposure of this
research. Efficient schemes, such as the ones we provide, are a necessary (even if not sufficient)
condition for application.

Comparing DAPS and other PKI technologies. Other recent developments aim to deter,
detect, or mitigate the risks from rogue certificates. Certificate Transparency (CT) [17] involves a
network of public logs and monitors with the goal of ensuring that all server certificates observed
by clients are eventually visible in public logs; monitors, acting on behalf of domain owners, can
then watch for rogue certificates. For a malicious CA issuing rogue certificates, CT implies that
their malicious actions are more likely to be detected. However, the result of their malicious action
remains uncertain: depending on the policy of the relying parties (such as browser vendors), a
few rogue certificates, with plausible excuses for their issuance, may be tolerated. With DAPS,
no such luck: a single double-issued certificate is enough to ruin the CA. In fact, CT could work
hand-in-hand with DAPS to ensure greater visibility of colliding messages, and thus even greater
deterrence to CAs.

Public key pinning [10] allows a web server to indicate to clients that future connections should
involve certain certificates: clients can “pin” the server’s cryptographic identity. This can be used
by a web server to restrict which CAs should be trusted to issue certificates for this domain; since
browsers trust many CAs by default, this allows a server to reduce its attack surface by drastically
reducing the number of CAs clients should trust for this domain. (Pinning is “trust-on-first-use”,
so its promises only apply if the first connection is uncompromised.) Pinning and DAPS could work
together: a server uses pinning to restrict certificate issuance to one CA (or a handful of CAs), and
then DAPS prevents that CA from issuing rogue certificates for that domain.

B Details on prior DAPS construction of RKS

We reproduce some details of the DAPS suggested by RKS [24, Appendix A] and assess its efficiency.
In a nutshell, the scheme builds a Merkle tree from a chameleon hash function and associates leaf
nodes with DAPS addresses. The size of signatures is linear in the height of the tree.

A chameleon hash function (CHF, [16]) is a randomized hash function where collisions are
hard to find unless some trapdoor information is known. Technically, a CHF consist of algorithms
ChGen,ChHash,ChCol where ChGen outputs a public hashing key hk and a secret collision-finding
key cfk , ChHash implements a (public) randomized hash function in the sense that any value
h = ChHashhk (m; r) is considered a hash value of message m (with randomness r), and ChCol is a
(secret) collision finding algorithm that for any m, r,m′ finds a randomness r′ = ChColcfk (m, r,m′)
such that ChHashhk (m; r) = ChHashhk (m′; r′). The important security notion is collision resistance:
given hk (but not the trapdoor cfk), it should be hard to find colliding (m; r), (m′; r′). Further, a
CHF is extractable if from any two colliding (m; r), (m′; r′) the trapdoor cfk can be recovered. Many
constructions of CHF are known [3], and a standard one in the DLP setting is based on Pedersen
commitments, setting hk = h = gx, cfk = x, and ChHash(m; r) = gmhr, and implementing ChCol
by solving the equation m+ xr = m′ + xr′ for r′.

We give a brief overview of the DAPS scheme of RKS; for details we refer to [24]. The scheme
combines a CHF, a pseudo-random function (PRF), and a regular hash function H to build a
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Merkle tree, as follows. Let l, n ∈ N be parameters defining the height of the tree and the arity of
its inner nodes, respectively. A DAPS signing key sk consists of a CHF collision-finding key cfk
and a PRF key K, and a DAPS verification key vk consists of the hash value of the root node, the
CHF hashing key hk , and an encryption H(cfk) ⊕ K of the PRF key under the collision-finding
key. To the root and all inner nodes we assign values of the form z = H(y1, . . . , yn) where inputs yi
are associated to the node’s n children and computed per yi = ChHash(xi; ri) with values xi, ri
computed using the PRF on input a string encoding the position of the respective child node in
the tree. Note this construction allows for computing the DAPS verification key in O(n) time, i.e.,
without considering all nl nodes of the tree individually.

The idea of RKS is to associate DAPS addresses with the tree’s leaf nodes: For signing a message
m = (a, p), the leaf node corresponding to a is identified, a value z = H(p) is computed for it,
and the ChCol algorithm is invoked to find r′ such that (z; r′) and the node’s PRF-generated pair
(x; r) hash, under hk , to the same value y. The DAPS signature σ consists of this value r′, plus,
as is common for Merkle tree based signatures, for each intermediate node on the path from the
leaf to the root one vector (y1, . . . , yn) (actually, with one element missing) and a randomness r′′

such that z′′ = H(y1, . . . , yn) and r′′ hash, under hk , to the next level’s y value. It is not difficult
to see that the DAP property of this construction reduces to the extractability of the CHF, and
the unforgeability to its collision resistance.

Efficiency We assess the efficiency of the RKS scheme with respect to key sizes, signature sizes,
signing costs, and verification costs. We assume the underlying CHF is the DLP-based one described
above as it promises shortest keys and signatures, and fastest signing and verification times. This
choice was also made in [24]. Due to generic attacks, targeting a security level of k (e.g., k = 128)
implies that group elements and exponents have size at least 2k bits. Assuming that PRF keys
have length k, we obtain that DAPS verification keys have size 2k+ 2k+ k = 5k, signing keys have
size 2k + k = 3k, and signatures have size 2k + (l − 1)((n − 1)2k + 2k) ≈ 2nlk (all sizes in bits).
Signing requires n− 1 exponentiations per node on the path connecting the leaf with the root (for
simplicity we do not count PRF and ChCol invocations), plus one exponentiation for the leaf node,
i.e., a total of about (n− 1)l exponentiations. Verification requires one double-exponentiation per
path node, and one for the leaf, i.e., a total of l double-exponentiations.

To get concrete numbers for security level k = 128 we plug in some combinations of parameters
(n, l). Observe that the number of leaf nodes is given by nl and determines the cardinality of the
DAPS address space; we thus require nl ≥ 22k. If we work with a binary tree, i.e., have n = 2, we
obtain l = 2k and thus signatures of size 2nlk = 16 KiB; a verification would involve 256 double-
exponentiations. For trees with arity n = 4 (and n = 8) we obtain l = k (and l = d2k/3e), i.e.,
signatures have size 16 KiB (22 KiB) and require 128 (resp. 85) exponentiations to be verified.
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