
From Stateless to Stateful:
Generic Authentication and Authenticated

Encryption Constructions with Application to
TLS

Colin Boyd1 Britta Hale1 Stig Frode Mjølsnes1 Douglas Stebila2 †

1 Norwegian University of Science and Technology, NTNU, Trondheim, Norway
{colin.boyd,britta.hale,stig.mjolsnes}@item.ntnu.no
2 Queensland University of Technology, Brisbane, Australia

stebila@qut.edu.au

Abstract. Authentication and authenticated encryption with associ-
ated data (AEAD) are applied in cryptographic protocols to provide
message integrity. The definitions in the literature and the constructions
used in practice all protect against forgeries, but offer varying levels of
protection against replays, reordering, and drops. As a result of the lack
of a systematic hierarchy of authentication and AEAD security notions,
gaps have arisen in the literature, specifically in the provable security
analysis of the Transport Layer Security (TLS) protocol. We present a
hierarchy of authentication and AEAD security notions, interpolating
between the lowest level of protection (against forgeries) and the highest
level (against forgeries, replays, reordering, and drops). We show gener-
ically how to construct higher level schemes from a basic scheme and
appropriate use of sequence numbers, and apply that to close the gap in
the analysis of TLS record layer encryption.

Keywords: authentication, authenticated encryption with associated data (AEAD),
Transport Layer Security (TLS) protocol, secure channels

1 Introduction
Message integrity is a vital security service demanded of cryptographic protocols,
and is usually provided either by a message authentication code (MAC) or by a
combined authenticated encryption scheme. The standard security property for
a MAC is existential unforgeability under a chosen message attack.

There has been an extensive line of research on security notions and con-
structions for authenticated encryption schemes, with initial definitions given by
Katz and Yung [14], Bellare and Namprempre [4], and Krawczyk [17]. For mes-
sage confidentiality, an authenticated encryption scheme could achieve indistin-
guishability under either an adaptive chosen plaintext (IND-CPA) or an adaptive
chosen ciphertext (IND-CCA a.k.a. IND-CCA2) attack. For message integrity,
an authenticated encryption scheme could achieve either integrity of plaintexts

†Supported by the Australian Research Council (ARC) Discovery Project, grant
DP130104304

(INT-PTXT) or of ciphertexts (INT-CTXT). Shrimpton [29] combined the sep-
arate INT-CTXT and IND-CCA experiments into a single experiment which he
called IND-CCA3.

Bellare and Namprempre [4] and Krawczyk [17] also investigated how to
construct authenticated encryption schemes from MACs and symmetric encryp-
tion, evaluating three construction paradigms: encrypt-and-MAC, MAC-then-
encrypt, and encrypt-then-MAC.

Rogaway [26] defined the notion of authenticated encryption with associated
data (AEAD), to capture the common real-world scenario in which some data
(such as packet headers) needs to be sent authentically alongside a ciphertext,
but need not be encrypted, and AEAD has taken prominence over plain authen-
ticated encryption in recent years.

Despite the utility of authenticated encryption and AEAD, it is not enough
to realize the secure channel property expected of cryptographic protocols for
two reasons. First, secure channel protocols are often expected to perform an
initial establishment of the encryption key using a key exchange protocol; see
for example the original paper on secure channels by Canetti and Krawczyk [6]
(and the follow-up by Namprempre [22]) as well as recent realizations such as the
authenticated and confidential channel establishment (ACCE) model of Jager et
al. [13]. (In this paper, we will not focus on the key exchange establishment phase
of secure channels.) Second, and more important for this paper, applications
often expect reliable delivery of a sequence of messages: that no attacker can
replay messages, deliver them in a different order in which they were sent, or
drop some messages without later detection.

To capture the notion of delivery of a sequence of messages, Bellare et al. [3]
introduced stateful authenticated encryption, with two security properties: state-
ful integrity of ciphertexts (INT-SFCTXT) and stateful indistinguishability of
ciphertexts (IND-SFCCA). Kohno et al. [16] extended the statefulness to AEAD
schemes, and gave a hierarchy of 5 integrity notions: type 1) security against forg-
eries; type 2) type 1 plus security against replays; type 3) type 2 plus security
against reordering; type 4) type 3 plus detection of previous drops but still ac-
cepting subsequent messages; type 5) type 4 plus but not accepting subsequent
messages. The type 5 notion of Kohno et al. [16] is equivalent to the stateful
authenticated encryption notion of Bellare et al. [3].

Paterson et al. [23] revisit AEAD definitions in the context of the Transport
Layer Security (TLS) protocol. They present a combined AEAD security notion
called length-hiding authenticated encryption (LHAE), which provides message
integrity and confidentiality similar to the type-5 security of Kohno et al. [16],
even for messages of different length (hence “length-hiding”), and in a single
combined security property (following Shrimpton [29]). Paterson et al. then go on
to show that, under appropriate length conditions on the message authentication
tag, a simplified form of the encode-then-MAC-then-encrypt form of encryption
in the TLS record layer in ciphersuites that use a block cipher in CBC mode
is a secure length-hiding authenticated encryption scheme. The simplification is
that the statefulness aspects (sequence numbers) are not considered.

Jager et al. [13] and Krawczyk et al. [18], in their provable security analyses
of the full TLS protocol (covering both the authenticated key exchange in the
TLS handshake and the TLS record layer), rely on an extension of the work
of Paterson et al. [23], namely a form of stateful length-hiding authenticated
encryption (sLHAE). Unfortunately, the work of Paterson et al. did not show
that TLS encode-then-MAC-then-encrypt satisfies sLHAE, only LHAE. To our
knowledge, this gap remains in the literature until now.

1.1 Our contributions
In this work, we construct a hierarchy of authentication and AEAD security
notions, show how to construct schemes with higher levels of security from a
scheme with the lowest level of security combined with sequence numbers, and
apply these techniques to TLS record layer encryption to bridge the gap between
LHAE [23] and sLHAE [13].

First, we construct a hierarchy of authentication levels:
1. protection against forgeries,
2. protection against forgeries and replays,
3. protection against forgeries, replays, and reordering of messages, and
4. protection against forgeries, replays, reordering of messages, and dropped

messages.

We give a similar hierarchy of definitions for AEAD, with single-experiment
AEAD notions that combine integrity and indistinguishability, following Shrimp-
ton [29]. In both cases, these hierarchy levels can be viewed as interpolating
between existing stateless notions at our level 1 and existing stateful notions at
our level 4.

Continuing, we show how to construct level 2, 3, and 4 schemes from level
1 schemes. The constructions are not surprising: by appropriate incorporation
and checking of sequence numbers, the receiver can ensure it is receiving a valid
sequence of sent messages. However, our constructions incorporate a degree of
generality: rather than fixing how the sequence numbers are incorporated, we
allow an encoding scheme to include them either implicitly or explicitly. For
example, in an explicit encoding scheme, the sequence number might be authen-
ticated and then transmitted alongside the ciphertext, in the manner of DTLS.
Alternatively, in an implicit encoding scheme, the sequence number might be
incorporated into the authentication calculation but not actually transmitted
across the wire (since the receiving party ought to know what packet number to
expect); this is how TLS works, for example.

We use this generic construction to close the gap in the provable security
analysis of TLS record layer encryption. Paterson et al.’s analysis of a simplified
form of TLS encode-then-MAC-then-encrypt (ΠPRS) shows that it satisfies the
LHAE notion, equivalent to our level 1. We can formulate TLS’s use of sequence
numbers as an encoding scheme in our generic construction, and then see that
the full form of TLS encode-then-MAC-then-encrypt (ΠTLS) is equivalent to
our level-4 generic construction applied to ΠPRS , and thus ΠTLS achieves level-
4 AEAD security, equivalent to sLHAE. Fig. 1 illustrates the connection between

Length-hiding AEAD Level 1 TLS AEAD

Level 4 TLS AEAD ACCE security for TLS

PRS11

JKSS12
KPW13

Thm. 3

Fig. 1: TLS channel analysis.

our work and that of Paterson et al., Jager et al., and Krawczyk et al., depicting
how the construction from level-1 AEAD to level-4 AEAD builds a missing and
necessary bridge in the analysis of TLS.
Relation with existing work. The work most closely related to ours is the manu-
script of Kohno et al. [16], who gave a hierarchy of AEAD notions. Our AEAD
hierarchy maps on to theirs: our levels 1, 2, 3, and 4 correspond to their types
1, 2, 3, and 5, respectively. There are several differences with our work. They
give constructions of higher level schemes directly from encryption and MAC
schemes in the encrypt-and-MAC, MAC-then-encrypt, and encrypt-then-MAC
paradigms, whereas we show how to construct higher levels generically from lower
level schemes. Their AEAD hierarchy uses separate integrity and indistinguisha-
bility experiments at each level, whereas we use a single combined experiment
at each level. We also give a hierarchy of authentication notions, not just AEAD
notions, and thereby expand applicability to schemes outside of the AEAD con-
text. Finally, we connect the hierarchy and our generic constructions with TLS
record layer encryption.
Connection with secure channel definitions. One motivation of our work was to
understand the difference between the original CK01 secure channel definition
of Canetti and Krawczyk [6] and the ACCE model of Jager et al. [13]. The con-
fidentiality and integrity notions in CK01 and their NetAut protocol correspond
with level 1 of our AEAD hierarchy – stateless authenticated encryption. A com-
ment in their paper does require that the receiver “check for uniqueness of the
incoming message”, which would upgrade to level 2 in our hierarchy, and this is
the notion that was used in a subsequent work by Namprempre [22]. In contrast,
Jager et al.’s ACCE notion maps to level 4 of our AEAD hierarchy – sLHAE.

Application to real-world protocols. Each level of our AEAD hierarchy maps to
the requirements expected in some real-world protocols:

– Level 1: DTLS [24, 25]: Datagram TLS provides basic authentication, allows
packets to be dropped, and will receive packets out of order, queuing them
for future processing.

– Level 2: IPsec Authentication Header (AH) [15]: IPsec Authentication Header
protocol provides similar replay detection using a window of recently received
packets combined with dropping packets that are “too old”.

– Level 2: DTLS with optional replay detection: Datagram TLS does allow
optional replay detection [24, 25, §3.3] using a similar technique to IPsec
AH.

– Level 3: 802.11 [12] is designed to preventing reordering and to detect replays
but allows for packet dropping.

– Level 4: TLS [7] is designed to receive a message sequence strictly as a sent,
and will be discussed at greater length in Section 4.

A recent analysis [20] of the QUIC protocol [19] employed an AEAD level
comparable to our level 1 AEAD; however, the replay-detection abilities of QUIC
suggest that a higher authentication level should be achievable.

1.2 Additional related work
There are several additional lines of work on authenticated encryption.

One line of research views data “as a stream”, rather than a discrete sequence
of messages; practical implementations receive data byte-by-byte rather than
as atomic messages in security definitions. Albrecht et al. [1] showed how to
carry out a plaintext recovery attack against the Secure Shell (SSH) protocol
as a result of byte-by-byte processing. This motivated the need for non-atomic
authenticated encryption definitions [5, 8]. The work of Fischlin et al. [8] in
particular is motivated by protocols such as TLS, SSH, and QUIC, and describes
checks that can again be correlated with our level-4 AEAD notion. It would be
interesting to expand stream-based analysis in the direction of our hierarchical
levels for protocols that allow packet dropping. For example, the QUIC protocol
[19] runs over UDP and tolerates a degree of packet loss, making analysis under
a level-4 stream-based notion inappropriate.

Another line of research focuses on the use of nonces in authenticated encryp-
tion [26, 27], and more recently for the specific purposes of protecting implemen-
tations that misuse counters or nonces [28, 9, 11]. Meanwhile, Hoang et al. [10]
define a notion of robust authenticated encryption which incorporates padding
properties similar to the stateless form of LHAE of Paterson et al. [23]. Finally,
additional recent work focuses on defining authenticated encryption results in
the constructive cryptography framework [21, 2].

2 Authentication Hierarchy
In this section, we formalize our 4-tier hierarchy of authentication notions, each
level building on the previous, and show how to achieve higher level notions from
level-1 combined with appropriate checks on sequence numbers.

2.1 Definitions
Definition 1. A stateful authentication scheme Π for a message space M, a
key space K, and an output space C is a tuple of algorithms:
– Kgn() $→ k: A probabilistic key generation algorithm that outputs a key k.
– Snd(k,m, stE) $→ (c, stE): A probabilistic authentication algorithm that takes

as input a key k ∈ K, a message m ∈ M, and an authentication state stE,
and outputs a tagged message c ∈ C and updated state stE.

– Rcv(k, c, stD)→ (m,α, stD): A deterministic verification algorithm that takes
as input a key k ∈ K, a tagged message c ∈ C, and a verification state stD,
and outputs either a message m ∈M or an error symbol ⊥, a bit α ∈ {0, 1},
and an updated state stD.

Expauthi
Π,A ():

1: k $← Kgn()
2: stE ← ⊥, stD ← ⊥
3: u← 0, v ← 0
4: r← 0
5: ASend(·),Recv(·)()
6: return r

Oracle Send(m):
1: u← u+ 1
2: (sentu, stE)← Snd(k,m, stE)
3: return sentu to A

Oracle Recv(c):
1: v ← v + 1
2: rcvdv ← c
3: (m,α, stD)← Rcv(k, c, stD)
4: if (α = 1) ∧ condi then
5: r← 1
6: return r from experiment
7: return ⊥ to A

1. Basic authentication:
cond1 = (@w : c = sentw)

2. Basic authentication, no replays:
cond2 = (@w : c = sentw) ∨ (∃w < v : c = rcvdw)

3. Basic authentication, no replays, strictly increasing:
cond3 = (@w : c = sentw) ∨ (∃w, x, y : (w < v) ∧ (sentx = rcvdw) ∧ (senty =
rcvdv) ∧ (x ≥ y))

4. Basic authentication, no replays, strictly increasing, no drops:
cond4 = (u < v) ∨ (c 6= sentv)

Fig. 2: Stateful authentication experiment authi with authentication condition
condi for stateful authentication scheme Π = (Kgn,Snd,Rcv) and adversary A.

On first use, stE and stD are initialized to ⊥.

Correctness is defined in the natural way: for all m ∈M, all k $← Kgn(), all
stE and stD defined in any sequence of encryptions and decryptions respectively,
and all c such that (c, st′E) ← Snd(k,m, stE), we have that Rcv(k, c, stD) =
(m, 1, st′D).

Note that in the case of a Rcv (message authentication check) failure, the
receive algorithm outputs a failure symbol ⊥, α = 0 to denote a failed receipt,
and an updated state stD: (⊥, 0, stD)← Rcv(k, c, stD). Otherwise, the algorithm
outputs the correctly received message m, α = 1 to denote successful receipt,
and an updated state stD: (m, 1, stD)← Rcv(k, c, stD).

Formally we define a stateful authentication security experiment that can be
parameterized with different authentication conditions to capture various levels
of authentication. Four graded levels of authentication are defined for the experi-
ment, correlated to different conditions, condi, under which an adversary A wins,
as shown in Fig. 2. Note that cond4 is strongly linked to authentication demands
in analyses of TLS [23, 13], a protocol with strict authentication requirements.

Definition 2. Let Π be a stateful authentication scheme and let A be an ad-
versary algorithm. Let i ∈ {1, . . . , 4}. The stateful authentication experiment for
Π with authentication condition condi is given by Expauthi

Π,A in Fig. 2. We define
Advauthi

Π (A) = Pr
[
Expauthi

Π (A) = 1
]
.

Remark 1. If the authenticated message c takes the form of a ciphertext, then
level-1 authentication is equivalent to INT-CTXT. If c is such that c = (m,MAC(m)),
where MAC is a message authentication code, then level-1 authentication is
equivalent to SUF-CMA. In order to maximize the application potential of our
results, we provide the generality for either application.

2.2 Relations among authentication notions
Each of the authentication notions sequentially implies the security of the levels
below it. In the following theorem, the security implications between levels are
formalized, with security at Level 2 implying security at Level 1, etc.

Theorem 1 (Level-(i+1) authentication implies level-i authentication).
Let Π = (Kgn,Snd,Rcv) be an authentication scheme and let i ∈ {1, 2, 3}. For
any adversary A, Advauthi

Π (A) ≤ Advauthi+1
Π (A).

The proof of Theorem 1 can be found in the full version and is omitted here
due to space restrictions.

2.3 Constructing higher level authentication schemes
In this section, we generically show how to build higher level authentication
schemes based on lower level authentication schemes and the inclusion of se-
quence numbers with appropriate checks. Since currently implemented protocols
use both implicit and explicit sequence numbers, we generalize our model for an
arbitrary encoding scheme which captures both implicit and explicit sequence
numbers.

Definition 3 (Authentication encoding scheme). An (authentication) en-
coding scheme Coding for a sequence number space S and message space M is
a pair of algorithms:

– Ecd(sqn,m)→ mecd: A deterministic encoding algorithm that takes as input
a sequence number sqn ∈ S and a message m ∈M, and outputs an encoded
message mecd ∈Mecd, whereMecd is the encoded version ofM.

– Dcd(sqnlist,mecd) → (sqn,m, α): A deterministic decoding algorithm that
takes as input a sequence number list sqnlist ⊂ S and an encoded message
mecd ∈ Mecd, and outputs a sequence number sqn ∈ S, a message m ∈ M
or an error symbol ⊥, and a status variable α = 1 if decoding was successful
or α = 0 otherwise.

In our construction of higher level authentications, we will require that Ecd
is collision-resistant.

We can construct schemes that use either implicit or explicit sequence num-
bers using Definition 3. For example, the scheme with Ecd(sqn,m) := sqn‖m
has an explicit sequence number, and may be very applicable in practice since
sqn is sent explicitly with the message. An alternative scheme with implicit se-
quence numbers would be Ecd(sqn,m) := m‖MAC(sqn). Thus elements of the
space Mecd may take various forms, contingent on the properties desirable for

Coding. We will see in Section 4.2 that the TLS record layer protocol uses an
encoding scheme based on the second example above. We formally distinguish
explicit and implicit sequence numbers as follows:

Definition 4. We say that authentication encoding scheme Coding uses explicit
sequence numbers if Dcd(∅, Ecd(sqn,m)) = (sqn,m, 1) for all sqn and all m, and
that Coding uses implicit sequence numbers otherwise.

We now present our generic constructions of level-i authentication schemes
from a level-1 authentication scheme. The heart of our construction is a se-
quence number check TESTi that will correspond to the authentication condi-
tion condi. Our constructions can accommodate any collision-resistant encoding
scheme Coding, with either implicit or explicit sequence numbers; this require-
ment is specifically important in implicit authentication where the sequence
number is not physically present on receipt. For conciseness, the notation Π ′i for
P (Π, Ecd, TESTi) will be generally employed.

Definition 5 (P construction). Let Π be a (level-1) authentication scheme,
Coding be an encoding scheme, and let TESTi be one of the conditions specified in
Fig. 3. Define Π ′i := P (Π, Coding, TESTi) as the authentication scheme resulting
from apply construction P in Fig. 3.

In this construction, the check TEST2 corresponds to the condition for level-
2 authentication. Basic level-1 authentication is assumed, so TEST2’s protec-
tion against replays implies replay protection for condition cond2. Namely, if
∃w < v : c = rcvdw then ∃j : sqn = stD.sqnlistj , since identical authenticated
messages must contain identical sequence numbers. Similar connections exist
between TEST3 and cond3 and TEST4 and cond4. Note that to check TEST2 it is
necessary to maintain a record of all previously received sqn; thus stD.sqnlist
must be a complete record. However, for TEST3 and TEST4, it is strictly only
necessary for stD.sqnlist to contain the last received sqn.

The following theorem shows that the P construction with TESTi achieves
level-i authentication. Notably Theorem 2 depends on the collision-resistance
of Ecd. For many encoding schemes, this follows immediately. For example, the
simple concatenation scheme Ecd(ctr,m) = ctr‖m is clearly collision-resistant
when assuming unambiguous concatenation. When such a scheme is used, the
advantage of A is then directly reducible to the advantage of F . Due to space
restrictions, the proof of Theorem 2 can be found in the full version of this paper.

Theorem 2. Let Π be a secure level-1 authentication scheme and Coding be
an authentication encoding scheme with collision-resistant encoding. Let i ∈
{2, 3, 4}. Then Π ′i = P (Π, Coding, TESTi), constructed as in Fig. 3, is a se-
cure level-i authentication scheme. Specifically, let A be an adversary algorithm
that runs in time t and asks qs Send queries and qr Recv queries, and let
q = qs + qr. Then there exists an adversary B that runs in time tB ≈ t and
asks no more than qB = 1

2qs(qs − 1) queries, and an adversary F that runs
in time tF ≈ t and asks qF = q queries, such that Advauthi

P (Π,Coding,TESTi)(A) ≤
Advauth1

Π (F) + Advcollision
Ecd (B).

Π ′i.Kgn():
1: return Π.Kgn()

Π ′i.Snd(k,m, st′E):
1: (c, st′E.subst)
← Π.Snd(k, Ecd(st′E.ctr,m), st′E.subst)

2: st′E.ctr← st′E.ctr + 1
3: return (c, st′E)

Π ′i.Rcv(k, c, st′D):
1: if st′D.status = failed then
2: return (⊥, 0, stD)
3: (mΠ , α, st

′
D.subst)

← Π.Rcv(k, c, st′D.subst)
4: if α = 1 then
5: (sqn,m, α)← Dcd(st′D.sqnlist,mΠ)
6: if (α = 0) ∨ TESTi then
7: st′D.status = failed
8: return (⊥, 0, st′D)
9: st′D.sqnlist = st′D.sqnlist||sqn
10: return (m,α, st′D)

Sequence number tests for building Π ′, correlated to authentication levels:

– Basic authentication, no replays:
TEST2 = (∃j : sqn = st′D.sqnlistj)

– Basic authentication, no replays, strictly increasing:
TEST3 = (∃j : sqn ≯ st′D.sqnlistj)

– Basic authentication, no replays, strictly increasing, no drops:
TEST4 = (∃j : sqn ≯ st′D.sqnlistj) ∨ (sqn 6= max{st′D.sqnlistj}+ 1)

Description of states st′E and st′D:

– st′E.subst := stE, where stE is the state in Π
– st′E.ctr. When Π ′.Snd is initialized, st′E.ctr← 0.
– st′D.subst := stD, where stD is the state in Π
– st′D.status. Once st′D.status = failed it is not reset and all subsequently received

messages are also immediately aborted.
– st′D.sqnlist, an ordered list of sequence numbers previously received. It is required

that |st′D.sqnlist| ≥ 1 after the first received sqn; i.e. the size of the ordered set is
maintained at 1 or greater. When Π ′.Snd is initialized, st′D.sqnlist← ⊥.

Fig. 3: Construction P of a level-i authentication scheme Π ′i from a level-1 au-
thentication scheme Π and encoding scheme Coding = (Ecd, Dcd).

The time-cost for checking using implicit sequence numbers could be con-
siderable when using a Level 2 or Level 3 authentication notion due to the
need to check against all previously received messages. However, to our knowl-
edge, there are no real-world implementations using implicit sequence numbers
at these levels. Implicit sequence numbers have been used in instances where
Level 4 authentication is desired, but explicit sequence numbers are usually em-
ployed at the lower levels. Logically, this also corresponds to desirable real-world
instantiation formats; if a protocol allows packets to be dropped then it would
be inconvenient to base authentication upon information that is not explicitly
sent in each packet. Alternatively, if no drops are allowed, authentication can be
checked against explicit or implicit information.

3 Authenticated Encryption Hierarchy
In this section, we build equivalent notions for authenticated encryption with as-
sociated data (AEAD) schemes. AEAD security is typically defined by extending
the authentication notion with a type of left-or-right encryption game.

3.1 Definitions
Definition 6. A stateful AEAD scheme Π for a message space M, an asso-
ciated data space AD, a key space K, and a ciphertext space C, is a tuple of
algorithms:

– Kgn() $→ k: A probabilistic key generation algorithm that outputs a key k
– E(k, `, ad,m, stE) $→ (c, st′E): A probabilistic encryption algorithm that takes

as input a key k ∈ K, a length ` ∈ Z, associated data ad ∈ AD, a message
m ∈ M, and an encryption state stE, and outputs a ciphertext c ∈ C and
updated state st′E.

– D(k, ad, c, stD)→ (ad,m, α, st′D): A deterministic decryption algorithm that
takes as input a key k ∈ K, associated data ad ∈ AD, a ciphertext c, and
a decryption state stD, and outputs either associated data ad or an error
symbol ⊥, a message m ∈M or an error symbol ⊥, a bit α ∈ {0, 1}, and an
updated state st′D.

Compared with stateful authentication schemes in Definition 1, AEAD schemes
utilize two further fields: ad, which is for associated data (such as authenticated
but unencrypted header data), and an optional length field `.

Correctness is defined in an analogous manner to that of stateful authenti-
cation schemes. Correspondingly we define 4 levels of stateful AEAD security.

Definition 7. Let Π be a stateful AEAD scheme and let A be an PPT adver-
sarial algorithm. Let i ∈ {1, . . . , 4} and let b ∈ {0, 1}. The stateful AEAD exper-
iment for Π with condition condi and bit b is given by Expaeadi−b

Π (A) in Fig. 4.
We define Advaeadi

Π (A) =
∣∣∣Pr
[
Expaeadi−1

Π (A) = 1
]
− Pr

[
Expaeadi−0

Π (A) = 1
]∣∣∣.

The Encrypt and Decrypt oracles in Fig. 4 work together to provide both
an authentication experiment and ciphertext indistinguishability experiment.
When b = 0, the adversary always gets m0 encrypted and never receives any
decryption information. When b = 1, the adversary always gets m1 encrypted
and potentially receives decryption information. If the adversary makes an at-
tempt to forge ciphertexts or violate the sequencing condition (modelled by the
out-of-sync flag), then a secure stateful AEAD scheme should return ⊥ in all
subsequent decryption queries. If the adversary has caused the encryptor and
decryptor to get out of sync (by forging a ciphertext or violating the sequencing
condition) and ever receives non-⊥ from Decrypt, the adversary learns b = 1.

When ` is not used, the level-1 notion aead1 corresponds to IND-CCA and
INT-CTXT security of a stateless AEAD scheme.

When ` is used for length, the level-4 notion aead4 corresponds to the stateful
length-hiding authenticated encryption security notion of Krawczyk et al. [18]
which is a slight modification of that of Jager et al. [13].

Expaeadi−b
Π,A ():

1: k $← Kgn()
2: stE ← ⊥, stD ← ⊥
3: u← 0, v ← 0
4: out-of-sync← 0
5: b′ $← AEncrypt(·),Decrypt(·)()
6: return b′

Oracle Encrypt(`, ad,m0,m1):
1: u← u+ 1
2: (sent.c(0), st

(0)
E)← E(k, `, ad,m0, stE)

3: (sent.c(1), st
(1)
E)← E(k, `, ad,m1, stE)

4: if sent.c(0) = ⊥ or sent.c(1) = ⊥ then
5: return ⊥
6: (sent.adu, sent.cu, stE) := (ad, sent.c(b), st

(b)
E)

7: return sent.cu

Oracle Decrypt(ad, c):
1: if b = 0 then
2: return ⊥
3: v ← v + 1
4: rcvd.cv ← c
5: (ad,m, α, stD)
← D(k, ad, c, stD)

6: if (α = 1) ∧ condi then
7: out-of-sync← 1
8: if out-of-sync = 1 then
9: return m
10: return ⊥

1. Basic authenticated encryption:
cond1 = (@w : (c = sent.cw) ∧ (ad = sent.adw))

2. Basic authenticated encryption, no replays:
cond2 = (@w : (c = sent.cw) ∧ (ad = sent.adw)) ∨ (∃w < v : c = rcvd.cw)

3. Basic authenticated encryption, no replays, strictly increasing:
cond3 = (@w : (c = sent.cw) ∧ (ad = sent.adw)) ∨ (∃w, x, y : (w < v) ∧ (sent.cx =
rcvd.cw) ∧ (sent.cy = rcvd.cv) ∧ (x ≥ y))

4. Basic authenticated encryption, no replays, strictly increasing, no drops:
cond4 = (u < v) ∨ (c 6= sent.cv) ∨ (ad 6= sent.adv)

Fig. 4: Stateful AEAD experiment aeadi with authentication condition condi for
stateful AEAD scheme Π = (Kgn,E,D) and adversary A.

Analogously to Section 2.2, level-(i+1) AEAD security implies level-i AEAD
security. The details are omitted due to space restrictions.

3.2 Constructing higher level AEAD schemes

Similarly to Section 3, we can construct higher level AEAD schemes based on a
level-1 AEAD scheme with the inclusion of sequence numbers with appropriate
checks. We again generalize the approach using an encoding scheme that captures
both implicit and explicit sequence numbers.

Definition 8 (AEAD encoding scheme). An AEAD encoding scheme Coding
for a sequence number space S, a message spaceM, and an associated data space
AD is a pair of algorithms:

– Ecd(sqn, ad,m) → (adecd,mecd): A deterministic encoding algorithm that
takes as input a sequence number sqn ∈ S, associated data ad ∈ AD, and
a message m ∈ M, and outputs an encoded associated data value adecd ∈
ADecd and message mecd ∈ Mecd, where ADecd and Mecd are the encoded
versions of associated data space AD and message spaceM, respectively.

Π ′i.Kgn():
1: return Π.Kgn()

Π ′i.E(k, `, ad,m, st′E):
1: (adΠ ,mΠ)
← Ecd(st′E.ctr, ad,m)

2: (c, st′E.subst)
← Π.E(k,mΠ , adΠ , l, st′E.subst)

3: st′E.ctr← st′E.ctr + 1
4: return (c, st′E)

Π ′i.D(k, ad, c, st′D):
1: if st′D.status = failed then
2: return (⊥, 0, stD)
3: (adΠ ,mΠ , α, st

′
D.subst)

← Π.D(k, ad, c, st′D.subst)
4: if α = 1 then
5: (sqn, ad,m, α)

← Dcd(st′D.sqnlist, adΠ ,mΠ)
6: if (α = 0) ∨ TESTi then
7: st′D.status = failed
8: return (⊥, 0, st′D)
9: st′D.sqnlist = st′D.sqnlist‖sqn
10: return (m,α, st′D)

Description of states st′E and st′D:

– st′E.subst := stE, where stE is the state in Π
– st′E.ctr. When Π ′.E is initialized, st′E.ctr← 0.
– st′D.subst := stD, where stD is the state in Π
– st′D.status. Once st′D.status = failed it is not reset and all subsequently received

messages are also immediately aborted.
– st′D.sqnlist, an ordered list of sequence numbers previously received. It is required

that |st′D.sqnlist| ≥ 1 after the first received sqn; i.e. the size of the ordered set is
maintained at 1 or greater. When Π ′.E is initialized, st′D.sqnlist← ⊥.

Fig. 5: Construction PAEAD of a level-i AEAD scheme Π ′i from a level-1 AEAD
scheme Π and AEAD encoding scheme Coding = (Ecd, Dcd), with TESTi as
shown in Fig. 3.

– Dcd(sqnlist, adecd,mecd) → (sqn, ad,m, α): A deterministic decoding algo-
rithm that takes as input a sequence number list sqnlist ⊂ S, an encoded
associated data value adecd, and an encoded message mecd ∈Mecd, and out-
puts a sequence number sqn ∈ S, associated data ad ∈ AD or an error symbol
⊥, a message m ∈ M or an error symbol ⊥, and a status variable α = 1 if
decoding was successful or α = 0 otherwise.

Definition 9. We say that AEAD encoding scheme Coding uses explicit se-
quence numbers if, for all sqn, ad, and m, when Ecd(sqn, ad,m) = (adecd,mecd),
we have that Dcd(⊥, adecd,mecd) = (sqn, ad,m, 1). Otherwise, we say that Coding
uses implicit sequence numbers.

Definition 10 (PAEAD construction). Let Π be a (level-1) AEAD scheme,
Coding be an AEAD encoding scheme, and let TESTi be a condition specified in
Fig. 3. Define Π ′i := PAEAD(Π, Ecd, TESTi) as the AEAD scheme resulting from
applying construction PAEAD in Fig. 5.

Theorem 3. Let Π be a secure level-1 AEAD scheme and Coding be an AEAD
encoding scheme with collision-resistant encoding. Let TESTi be defined as in
Fig. 3 and i ∈ {2, 3, 4}. Then Π ′i = PAEAD(Π, Coding, TESTi), constructed as
in Fig. 5, is a secure level-i AEAD scheme. Specifically, let A be an adversary

algorithm that runs in time t and asks qe Encrypt queries and qd Decrypt queries,
and let q = qe + qd. Then there exists an adversary B that runs in time tB ≈ t
and asks no more than qB = 1

2qe(qe − 1) queries, and an adversary F that runs
in time tF ≈ t and asks qF = q queries, such that Advaeadi

PAEAD(Π,Coding,TESTi)(A) ≤
Advaead1

Π (F) + Advcollision
Ecd (B).

The proof of Theorem 3 is omitted due to space restrictions.

4 Authenticated Encryption in TLS
The work of Paterson et al. [18] showed that the MAC-then-encode-then-encrypt
mode of CBC encryption in TLS 1.2 (with sufficiently long MAC tags) is a
secure length-hiding authenticated encryption (LHAE) scheme, assuming the
encryption function is a strong pseudorandom permutation and the MAC is
a pseudorandom function. Their definition corresponds to level 1 of our AEAD
hierarchy. Several subsequent work on the provable security of TLS, such as that
of Jager et al. [13] and Krawczyk et al. [18], assume that the TLS record layer
is a secure stateful length-hiding authenticated encryption (sLHAE) scheme,
corresponding to level 4 of our AEAD hierarchy. To our knowledge, there has
as of yet been no formal connection between the LHAE result of Paterson et al.
and the sLHAE requirement of subsequent works; we address that gap in this
section by bringing sequence numbers into the modeling using the framework in
the previous sections.

4.1 TLS sequence numbers and authentication level
The TLS record layer utilizes sequence numbers to ensure detection of deleted
or reordered records [7, p. 94]. Being 64-bits long, sequence number exhaustion
for any given connection is unlikely and the specification demands renegotia-
tion should it occur. Sequence numbers are sent implicitly by inclusion under
the MAC (or AEAD). When instantiated, “the first record transmitted under
a particular connection state MUST use sequence number 0” [7, §6.1] and each
subsequent record increments the sequence number. Sequence numbers are con-
tinuous across record types (application and alert).

When the ciphersuite uses MAC-then-encode-then-encrypt, the MAC tag
is computed as follows, where k is the MAC key (either MAC_write_key or
MAC_read_key, depending on the direction), sqn is the 64-bit sequence number,
and m is the (possibly compressed) TLS plaintext object (called TLSCompressed)
[7]: MAC(k, sqn ‖ m.type ‖ m.version ‖ m.length ‖ m.fragment). Since the
sequence number is implicit, a receiver will check the MAC verification using the
expected sequence number. If the check fails, a bad_record_mac alert (type 20)
will be generated – an alert that is always fatal [7, §7.2.2].

When the ciphersuite is uses a combined AEAD scheme, the sequence num-
ber, as well as several other values, are included in the additional data field
[7]: ad = sqn ‖ m.type ‖ m.version ‖ m.length. The ciphertext is then c ←
Encrypt(k, m.length, ad, m.fragment, stE). The sequence number is not trans-
mitted in the ciphertext. AEAD decryption is applied using the expected se-
quence number. Decryption failure must also result in a bad_record_mac fatal
alert [7, §6.2.3.3].

ΠPRS .E(k, `, ad,m,⊥):
1: (km, ke)← k
2: t← MAC(km, ad,m)
3: c← E(ke, `,m, t)
4: return (c,⊥)

ΠPRS .D(k, ad, c,⊥):
1: (km, ke)← k
2: (m, t, α)← D(ke, c)
3: if MAC(km, ad,m) 6= t then
4: return (⊥, 0,⊥)
5: return (m,α,⊥)

ΠTLS .E(k, `, ad,m, stE):
1: (km, ke)← k
2: t← MAC(km, stE.ctr‖ad,m)
3: c← E(ke, `,m, t)
4: stE.ctr← stE.ctr + 1
5: return (c, stE)

ΠTLS .D(k, ad, c, stD):
1: (km, ke)← k
2: if stD.status = failed then
3: return (⊥, 0, stD)
4: (m, t, α)← D(ke, c)
5: if MAC(km, stD.ctr‖ad,m) 6= t then
6: α← 0
7: if α = 0 then
8: stD.status← failed
9: return (⊥, 0, stD)
10: stD.ctr← stD.ctr + 1
11: return (m,α, stD)

Fig. 6: Construction of AEAD schemes ΠPRS (Paterson et al. [23] variant of
TLS MAC-then-encode-then-encrypt) and ΠTLS (TLS MAC-then-encode-then-
encrypt) from encode-then-encrypt scheme (E,D).

4.2 From TLS Level-1 AEAD to Level-4 AEAD
Paterson et al. [23] show that a simplified version of TLS MAC-then-encode-
then-encrypt, which we call ΠPRS and describe in the top half of Fig. 6, satisfies
level-1 AEAD security. By design, ΠPRS includes the sequence number field
in the ad, but never initializes it as ΠPRS is not stateful. However, the TLS
record layer protocol as actually used is stateful and, as such, ought to achieve a
higher level of AEAD; namely, it should satisfy level-4 AEAD. The bottom half
of Fig. 6 shows the TLS MAC-then-encode-then-encrypt record layer with the
use of sequence numbers as specified in the standard.

Our framework allows us to immediately show that ΠTLS satisfies level-4
AEAD security: we incorporate the sequence numbers in an implicit AEAD
encoding scheme CodingTLS , and then view ΠTLS as the result of applying the
PAEAD construction to ΠPRS and CodingTLS .

Define AEAD encoding scheme CodingTLS = (EcdTLS , DcdTLS) as follows:
– EcdTLS(sqn, ad,m) = (sqn‖ad,m)
– DcdTLS(sqnlist, sqn‖ad,m) = (sqn, ad,m, α)

where α = 1 if and only if sqn and sqnlist satisfy TEST4 in Fig. 3, ad 6= ⊥, and
m 6= ⊥.
Theorem 4. ΠTLS = PAEAD(ΠPRS , CodingTLS , TEST4).

Theorem 4 follows semantically comparing ΠTLS and the scheme resulting
from the construction PAEAD(ΠPRS , CodingTLS , TEST4).

Clearly, EcdTLS is collision-resistant due to the unambiguous parsing of sqn
as a fixed-length 64-bit value. We can thus apply Theorem 3 to obtain Corol-
lary 1.

Corollary 1. The TLS record layer with MAC-then-encode-then-encrypt in CBC
mode satisfies level-4 AEAD security. Specifically, let A be an adversary algo-
rithm that runs in time t against ΠTLS. Then there exists an adversary F that
runs in time tF ≈ t such that Advaead4

ΠT LS
(A) ≤ Advaead1

ΠP RS
(F).

From Paterson et al. [23] we know that the TLS record layer encryption
in MAC-then-encode-then-encrypt CBC mode satisfies AEAD level-1 security
when a secure cipher and message authentication code is used. Combined with
Corollary 1, this means that the sLHAE security definition used by Jager et
al. [13] and Krawczyk et al. [18] in their analyses of full TLS ciphersuites is
achieved, and thus TLS is ACCE secure in this scenario.

References

1. Albrecht, M.R., Paterson, K.G., Watson, G.J.: Plaintext recovery attacks against
SSH. In: 2009 IEEE Symposium on Security and Privacy. pp. 16–26. IEEE Com-
puter Society Press (May 2009)

2. Badertscher, C., Matt, C., Maurer, U., Rogaway, P., Tackmann, B.: Augmented se-
cure channels and the goal of the TLS 1.3 record layer. Cryptology ePrint Archive,
Report 2015/394 (2015), http://eprint.iacr.org/2015/394

3. Bellare, M., Kohno, T., Namprempre, C.: Authenticated encryption in SSH: Prov-
ably fixing the SSH binary packet protocol. In: Atluri, V. (ed.) ACM CCS 02. pp.
1–11. ACM Press (Nov 2002)

4. Bellare, M., Namprempre, C.: Authenticated encryption: Relations among notions
and analysis of the generic composition paradigm. In: Okamoto, T. (ed.) ASI-
ACRYPT 2000. LNCS, vol. 1976, pp. 531–545. Springer, Heidelberg (Dec 2000)

5. Boldyreva, A., Degabriele, J.P., Paterson, K.G., Stam, M.: Security of symmetric
encryption in the presence of ciphertext fragmentation. In: Pointcheval, D., Jo-
hansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 682–699. Springer,
Heidelberg (Apr 2012)

6. Canetti, R., Krawczyk, H.: Analysis of key-exchange protocols and their use for
building secure channels. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol.
2045, pp. 453–474. Springer, Heidelberg (May 2001)

7. Dierks, T., Rescorla, E.: The Transport Layer Security (TLS) Protocol Version 1.2
(2008), https://tools.ietf.org/html/rfc5426, RFC 5426

8. Fischlin, M., Günther, F., Marson, G.A., Paterson, K.G.: Data is a stream: Security
of stream-based channels. In: Gennaro, R., Robshaw, M.J.B. (eds.) CRYPTO 2015,
Part II. LNCS, vol. 9216, pp. 545–564. Springer, Heidelberg (Aug 2015)

9. Fleischmann, E., Forler, C., Lucks, S.: McOE: A family of almost foolproof on-line
authenticated encryption schemes. In: Canteaut, A. (ed.) FSE 2012. LNCS, vol.
7549, pp. 196–215. Springer, Heidelberg (Mar 2012)

10. Hoang, V.T., Krovetz, T., Rogaway, P.: Robust authenticated-encryption: AEZ and
the problem that it solves. Cryptology ePrint Archive, Report 2014/793 (2014),
http://eprint.iacr.org/2014/793

11. Hoang, V.T., Reyhanitabar, R., Rogaway, P., Vizár, D.: Online authenticated-
encryption and its nonce-reuse misuse-resistance. Cryptology ePrint Archive, Re-
port 2015/189 (2015), http://eprint.iacr.org/2015/189

12. IEEE 802.11: Wireless LAN Medium Access Control (MAC) and Physical
Layer (PHY) Specifications (2012), http://dx.doi.org/10.1109/IEEESTD.2012.
6178212

13. Jager, T., Kohlar, F., Schäge, S., Schwenk, J.: On the security of TLS-DHE in the
standard model. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS,
vol. 7417, pp. 273–293. Springer, Heidelberg (Aug 2012)

14. Katz, J., Yung, M.: Unforgeable encryption and chosen ciphertext secure modes of
operation. In: Schneier, B. (ed.) FSE 2000. LNCS, vol. 1978, pp. 284–299. Springer,
Heidelberg (Apr 2001)

15. Kent, S.: IP Authentication Header (2005), https://tools.ietf.org/html/
rfc4302, RFC 4302

16. Kohno, T., Palacio, A., Black, J.: Building secure cryptographic transforms, or
how to encrypt and MAC. Cryptology ePrint Archive, Report 2003/177 (2003),
http://eprint.iacr.org/2003/177

17. Krawczyk, H.: The order of encryption and authentication for protecting commu-
nications (or: How secure is SSL?). In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol.
2139, pp. 310–331. Springer, Heidelberg (Aug 2001)

18. Krawczyk, H., Paterson, K.G., Wee, H.: On the security of the TLS protocol: A
systematic analysis. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I.
LNCS, vol. 8042, pp. 429–448. Springer, Heidelberg (Aug 2013)

19. Langley, A., Chang, W.T.: QUICWire Layout Specification (2015), https://docs.
google.com/document/d/1WJvyZflAO2pq77yOLbp9NsGjC1CHetAXV8I0fQe-B_U

20. Lychev, R., Jero, S., Boldyreva, A., Nita-Rotaru, C.: How secure and quick is
QUIC? Provable security and performance analyses. In: 2015 IEEE Symposium on
Security and Privacy. pp. 214–231. IEEE Computer Society Press (May 2015)

21. Maurer, U., Tackmann, B.: On the soundness of authenticate-then-encrypt: for-
malizing the malleability of symmetric encryption. In: Al-Shaer, E., Keromytis,
A.D., Shmatikov, V. (eds.) ACM CCS 10. pp. 505–515. ACM Press (Oct 2010)

22. Namprempre, C.: Secure channels based on authenticated encryption schemes: A
simple characterization. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501,
pp. 515–532. Springer, Heidelberg (Dec 2002)

23. Paterson, K.G., Ristenpart, T., Shrimpton, T.: Tag size does matter: Attacks
and proofs for the TLS record protocol. In: Lee, D.H., Wang, X. (eds.) ASI-
ACRYPT 2011. LNCS, vol. 7073, pp. 372–389. Springer, Heidelberg (Dec 2011)

24. Rescorla, E., Modadugu, N.: Datagram Transport Layer Security (2006), https:
//tools.ietf.org/html/rfc4347, RFC 4347

25. Rescorla, E., Modadugu, N.: Datagram Transport Layer Security Version 1.2
(2012), https://tools.ietf.org/html/rfc6347, RFC 6347

26. Rogaway, P.: Authenticated-encryption with associated-data. In: Atluri, V. (ed.)
ACM CCS 02. pp. 98–107. ACM Press (Nov 2002)

27. Rogaway, P., Bellare, M., Black, J., Krovetz, T.: OCB: A block-cipher mode of
operation for efficient authenticated encryption. In: ACM CCS 01. pp. 196–205.
ACM Press (Nov 2001)

28. Rogaway, P., Shrimpton, T.: A provable-security treatment of the key-wrap prob-
lem. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 373–390.
Springer, Heidelberg (May / Jun 2006)

29. Shrimpton, T.: A characterization of authenticated-encryption as a form of chosen-
ciphertext security. Cryptology ePrint Archive, Report 2004/272 (2004), http:
//eprint.iacr.org/2004/272

