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Abstract: The conventional public key infrastructure (PKI) model, which powers most of the Internet,
suffers from an excess of trust into certificate authorities (CAs), compounded by a lack of trans-
parency which makes it vulnerable to hard-to-detect targeted stealth impersonation attacks. Existing
approaches to make certificate issuance more transparent, including ones based on blockchains,
are still somewhat centralized. We present decentralized PKI transparency (DPKIT): a decentral-
ized client-based approach to enforcing transparency in certificate issuance and revocation while
eliminating single points of failure. DPKIT efficiently leverages an existing blockchain to realize
an append-only, distributed associative array, which allows anyone (or their browser) to audit and
update the history of all publicly issued certificates and revocations for any domain. Our technical
contributions include definitions for append-only associative ledgers, a security model for certificate
transparency, and a formal analysis of our DPKIT construction with respect to the same. Intended
as a client-side browser extension, DPKIT will be effective at fraud detection and prosecution, even
under fledgling user adoption, and with better coverage and privacy than federated observatories,
such as Google’s or the Electronic Frontier Foundation’s.

Keywords: certificate transparency; blockchain; digital certificates

1. Introduction

By far, the predominant approach for securing data in transit over the Internet is
based on a hierarchical public-key infrastructure (PKI), powered by the Transport Layer
Security (TLS) protocol [1], with the use of X.509 certificates [2], rooted in a few hundred
of certificate authorities (CAs), themselves anointed or excluded by a mere handful of
dominant operating-system and web-browser vendors. Communication security under
this model requires the safe distribution and identification of public keys, allowing users to
verify their counterpart or the site they connect to.

Unfortunately, this model introduces many single points of failure, whereby any one of
the hundreds of browser-trusted CAs is able to mount a man-in-the-middle impersonation
attack against any domain, using their ability to issue valid but unauthorised certificates
for the intended target. Without user vigilance, this type of attack can remain undetected
for a long time, especially when performed sporadically against specific users, or against
users in unfamiliar environments.

These threats are not idle speculation: there have been several high-profile cases of
mis-issued certificates being used to spoof legitimate websites, eventually resulting in the
eviction of the offending CAs in most popular web browsers. In 2011, a prominent Dutch
certificate authority, DigiNotar [3], was hacked, and the attackers managed to issue them-
selves a valid certificate for the domain google.com and its sub-domains, compromising
Google’s identity retention. Similar cases that happened more recently involved CAs by
the Comodo group, Turktrust, Thawte, Trustwave and WoSign [4–6].

Though those cases were popularised, many more may have flown under the radar.
As a domain can be bound by several digital certificates, it is challenging for clients to
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differentiate between legitimate ones, and unauthorised forgeries that portend man-in-
the-middle attacks. Another issue with the PKI model is the inefficiency of its revocation
mechanism, especially with the recent surge of HTTPS-enabled web sites—“Let’s Encrypt”
being a particularly prolific CA with over 380 million issued certificates in its three-year
existence. Traditional revocation mechanisms, from offline Certificate Revocation Lists [7],
to Online Certificate Status Protocol (OCSP) and OCSP Stapling [8,9], are simply not effi-
cient or reliable enough to handle a large scale attack; and while identity-based-encryption
approaches may theoretically fare better in that regard [10], they would constitute a big
step backward in terms of the decentralisation of trust.

Mitigation strategies against those issues fall into two categories: incompatible PKI
redesigns, and compatible PKI add-ons. Our objective in this paper falls in the latter
category. We seek to create a client-driven, fully decentralised certificate transparency
mechanism, that any interested user can privately run in their own browser, in order to
catch and deter CA trust abuse. Compared with prior proposals, ours features a better
combination of decentralisation, privacy, and compatibility with existing infrastructure
and reluctant participants.

1.1. Our Contribution

We propose decentralised PKI transparency (DPKIT), a fully decentralised approach to
“certificate transparency”, that seeks to rectify PKI trust issues on a user-driven voluntary
basis, without requiring any change to the underlying hierarchical PKI. There are two
reasons to stick with PKI: (1) compatibility with existing systems; and (2) the recognition
that traditional CAs play a valuable role in vetting and vouching for the identity of domain
owners “in the real world”.

To achieve this, DPKIT provides a strongly immutable record of all issued and revoked
certificates, as seen by the worldwide community of users, that efficiently supports all
modern use cases of certificates in actual web protocols (including revocations, multiple
certificates per domain, multiple domains per certificates, and so on). The reporting func-
tion of DPKIT allows participating users to record any and all valid certificate or revocation
that is presented to them, in order to provide a global audit. By design, the audit function
of DPKIT also doubles as a verifier-local freshness and revocation checking mechanism,
with much greater privacy than the industry-standard OCSP online certificate validation.

Abstractly, DPKIT can be thought of as an associative distributed ledger, resulting
from the subornation of an associative array to a secure ledger in the blockchain sense,
combined with efficient proofs of membership as in Merkle trees.

Note that our intention is to describe the data structures, algorithms, and security of
our scheme only, and we do not provide an implementation. It is also not our intention
to consider the security of distributed ledgers, and hence we model them with an ideal
functionality which may be replaced with a secure ledger of choice.

1.1.1. Properties and Design Goals

Our purpose is to design a secure decentralised system to provide maximum trans-
parency to an existing public-key infrastructure. Our main design goals are:

• Transparency: Provide a publicly auditable system that enables anyone who connects
to verify certificates or detect misbehaviour.

• Multiple certificates: Allow an entity to register multiple certificates per domain, map-
ping one identity to multiple public keys.

• Multiple domain names: Handle multiple domain names on a single certificate.
• No single point of failure: No centralisation or federation of any kind.
• Scalability: Remain efficient as more and more identities are recorded.
• Efficiency: Have low impact on TLS servers and minimal client storage/processing.
• Client privacy: Keep end-user browsing habits maximally private from observers and

third parties.
• Revocation: Provide a reliable revocation system.
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1.1.2. Overview of Our Construction

Our construction is essentially a scheme for indexing and proving membership of
certificates and their associated revocations, if applicable. This is done through three data
structures, as described below and depicted in Figure 1:

• Certificate trees: A set of Merkle binary search trees (described in Section 2.1)—one
per subject name—that stores all certificates associated with that subject name. Re-
vocations are stored alongside the associated certificate. Certificates are indexed by
the fingerprint and revocations are indexed by the fingerprint of the certificate they
revoke. These structures provide short proofs of membership. Since revocations are
stored alongside certificates, a proof of membership for a certificate reveals whether a
revocation exists in the store.

• Primary tree: A Merkle Binary Search tree which stores pointers to certificate trees,
indexed by subject names. Note that it is possible to paste together membership proofs
from these two trees to prove the membership of a certificate in the overall store.

• A distributed ledger (described in Section 2.2) which is used to store updates to the
trees in the form of the new root hash of the primary tree, along with any certificates
and revocations that have been added since the last ledger entry.

Figure 1. Overview of our construction. The primary tree uses subject names as keys, and each key
points to a secondary tree. Each secondary tree stores (certificate, revocation) pairs with certificate
fingerprints as keys. The ledger stores a (certificate, hash) for each certificate as they are added,
where the hash is the root hash of the primary tree.

The ledger’s role is to store the list of certificates and root hashes. In principle, the
store could be implemented solely by recording certificates on the ledger, certificates are
stored in both the ledger and the trees. However, storing the root hashes on the ledger
and maintaining the trees allows for fast searching and short proofs of membership, which
can be verified without access to the entire ledger. Given a certificate and a certificate
membership proof—obtained from a server—and the most recent entry in the ledger—
obtained from a trusted peer—a client can verify that the certificate exists in the store, and
determine whether there are any revocations for the certificate. Since tree construction
is deterministic, a peer with a copy of the ledger can reconstruct and verify the trees by
adding the certificates and revocations from the ledger in order, after which the root hash
can be verified.

1.2. Background and Related Work

We first discuss some of the literature that aims to improve PKI security. We split
this into three groups: PKI transparency, which aims to improve the security of tradi-
tional PKI by logging certificates, blockchain-based PKI schemes, which replace CAs
with a decentralised system, and schemes which augment the traditional CA-based PKI
with blockchains.
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1.2.1. PKI Transparency

The purpose of certificate transparency (CT), is to improve a PKI’s transparency in
order to catch and publicly expose misdeeds, allowing stakeholders such as domain holders
to take action against misbehaving CAs.

Classic log-based PKI extensions allow domain owners to learn when fraudulent
certificates are issued for their domains. The foundations of log-based PKI are public logs
that wield append-only databases of X.509 certificates, to facilitate public auditing and
provide efficient proofs on the presence of a specific entry in the log. These logs can then be
monitored by a third party such as a domain owner to verify that no fraudulent certificates
have been issued for their domains, and, in some cases, prevent browsers from accepting
otherwise valid certificates that have not been logged.

The SSL Observatory [11] by the Electronic Frontier Foundation (EFF) is perhaps the
first large-scale deployment of this concept, whereby a browser extension enables users
to report previously unseen certificates to the EFF, which published anonymised versions
of those logs. While the integrity of the EFF is widely acknowledged, this approach still
remains based on a central repository.

Google’s Certificate Transparency (CT) project [12,13] is an experimental protocol
standardised by the Internet Engineering Task Force (IETF) that likewise aims to mitigate
the threat of maliciously issued certificates by publicly logging certificates. Google’s CT is a
rather complex federated ecosystem, which introduces several new entities to the existing
web PKI, starting with individual Submitters, who report certificates to vetted Loggers,
who maintain a public append-only log periodically reviewed by Monitors, who can then
report suspicious behavior, all under the watchful eye of Auditors, standalone or integrated
into web clients.

Although trust in Google’s CT is decentralised among the loggers, monitors and
auditors, this protocol is unfortunately not as decentralised as one would like. For example,
a misbehaving log server could create critical issues and lead to a single point-of-failure [14].
Another problem is the heavy reliance on third parties that monitor logs, combined with a
near-total lack of incentives for third parties to actually do so. Further technical issues with
Google’s CT involve the lack of consistency if a particular domain decides to have multiple
certificates (as Google itself does), and the absence of a mechanism for revoking certificates.

Other approaches akin to CT with log-based certificate management include ARPKI [15],
AKI [16] and DTKI [17], with varying levels of centralisation.

1.2.2. Blockchain-Based PKI

A large proportion of recent projects seeking to rectify PKI trust issues are based on full
redesigns, almost always involving a blockchain structure toward greater decentralisation.
Unlike CT-based approaches, PKI redesigns will often be incompatible with existing
infrastructure. Here, we mention several of these schemes. A comparison, including
several other schemes, can be found in [18].

The notion of blockchain was first introduced as a public ledger of transactions in
the Bitcoin cryptocurrency [19]. Unique combinations of properties make blockchains
suitable for a variety of applications. For one, while the ledger itself is not distributed (it
is replicated), its affirmation mechanism is based on a heavily decentralised consensus
mechanism that makes it increasingly unfeasible to alter or delete previously time-stamped
records. In principle, blockchains would provide ideal environments for decentralised
PKIs—except that the replicated nature of a blockchain can make it impractical for large
data sets. This is not expected to be a huge issue for DPKIT, as only the Merkle hash
values are stored in the blockchain. (There are two distinct “extremely costly” aspects
to cryptocurrencies such as Bitcoin: (1) there is the computational cost of the distributed
consensus mechanism, often based on competitive proofs of work, needed to ensure
permanence of the records; (2) there is also a storage cost, collectively borne by the users
who dutifully replicate and keep a local copy of the entire ledger, to ensure the availability
of those records).
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Certcoin [20] is a decentralised PKI that builds PGP-like web-of-trust (WoT) identity
retention on top of the Namecoin cryptocurrency for consistency enforcement. The proto-
col provides mechanisms for key registration, update, revocation, recovery, verification
and lookup. However, it does not focus on fighting malicious users or verification and
authentication of users. The lack of external identity validation might also be problematic
when implemented in the real world.

Authcoin [21] is a proposal that focuses on the validation and authentication of public
keys, rather than identity retention. It is based on a fault tolerant, replicated and transparent
blockchain that aims to make it difficult for adversaries to introduce malicious certificates
into the system. However, its reliance on interactive challenges and responses could be
costly in performance, and raises credibility questions on the party to carry out validation
and authentication.

Fredriksson’s master’s thesis [22] proposes a novel proof-of-stake protocol to build a
decentralised PKI, with mappings between public keys and domains stored in a Merkle
tree. Integrity is achieved by recording Merkle tree hashes in a blockchain, and having
domain owners cross-sign their certificates. While this approach makes efficient use of
a blockchain and other data structures, its requirement to have two extensions added to
X.509 certificates, may be an insurmountable barrier to its practical adoption.

Another blockchain-based PKI scheme is CeCoin [23], which entirely removes the
need for a trusted third party. Leveraging Merkle–Patricia [24] CeCoin aims to provide
multi-certificates and identity assignment services. However, like its predecessors, CeCoin
lacks a mechanism for external validation of identities, and its tabula rasa approach will
likely preclude any real-world adoption.

Feng et al.’s proposal [25] implements a distributed PKI over a blockchain. New user
registration is handled by a set of supervisory nodes, which are trusted authorities who
validate registration requests. Cryptographic accumulators are used to efficiently construct
identity witnesses for accessing services through third parties.

1.2.3. Traditional PKI Augmented with Blockchain

Several recent proposals, like ours, seek to improve the security of the existing PKI
infrastructure using a blockchain as a decentralised means of publishing information. We
introduce several of these here, and in Section 5.5, we give more details as we compare
these schemes to our own.

CertLedger [26] provides additional functionality compared to our scheme, such
as a mechanism for deciding ownership of a domain, and a centralised mechanism for
determining which CAs are trusted. Madala et al. [27] propose Certificate Transparency
using Blockchaing (CTB), which aims to augment certificate transparency by using a
permissioned blockchain to store certificates. Wang et al. [28] propose blockchain-based
certificate transparency, which is very similar to our scheme, but only domain owners can
publish certificates. Zhao et al. [29] propose the notion of a CA proxy, implemented through
smart contracts on a public blockchain, which serves to publicly broker transactions, like
certificate signing requests. Yakubov et al. [30] propose to use a blockchain to store
issued certificates and revocations, but without efficient or privacy preserving functionality
for clients.

1.2.4. PKI Threat Models

The security of PKI is important enough that threat models have warranted stan-
dardisation of their own. The informational IETF draft “Attack Model for Certificate
Transparency” [31] describes potential attack scenarios in a web context, categorising
the threats into syntactic and semantic errors, and discusses their mitigation through
transparency enhancement mechanisms.

We highlight that, in most cases, compromising a PKI is not the end goal of most
attackers, who typically seek to obtain personal or trade-secret data, or gain control over
a particular organisation for ulterior motives. Compromising the PKI is often a first step
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toward accessing the desired data. The main security property that any PKI must satisfy is
preventing impersonation attacks, as it is one of the most compelling reasons for attacking
a PKI.

1.3. Structure of the Paper

In the remainder of this article, we give the definition and prove the security of
our scheme. In Section 2, we discuss some data structures that are necessary for our
construction. Next, in Section 3, we discuss the various entities and their roles in the
system, followed by a detailed construction for our system. Section 4 defines the security
properties for our system and proves that they are satisfied. Section 5 discusses how our
design goals have been achieved, considers the choice of ledger and how to motivate
participants, and gives a comparison to previous schemes. Finally, Section 6 concludes
the paper.

2. Preliminaries

Notation. We denote by E an ordered list of elements, where [ ] denotes the empty
list. Indexing is 0-based: E = [e0, . . . , en−1], and we write E[i] to denote ei and E[i : j]
to denote the sublist [ei, . . . , ej−1]. |E| = n is the length of E. We adopt the convention
that E[−1] = [ ]. We write e ∈ E to indicate that an entry e is contained in the list E, i.e.,
∃i ∈ Z e = E[i]. For string concatenation, we use the notation s || t, which is also used for
list concatenation, i.e., [a, . . . , z] || [a′, . . . , z′] = [a, . . . , z, a′, . . . , z′].

We use the notation (orange : o, banana : b, apple : a) for dictionaries. If d = (orange :
o, banana : b, apple : a), we will use the notation d.orange to refer to particular entries of
the tuple. I.e., d.orange will equal o is this example. We also assign values to keys in the
dictionary using this notation, as in d.orange← 3. The empty dictionary is denoted by ( ).

Definition 1 (Collision resistance of Hash functions). LetM be a set, let H :M→ {0, 1}λ

be an unkeyed hash function, and let A be a set of algorithms. We say that no A ∈ A finds a pair
(m, m′) such that m 6= m′ and H(m) = H(m′) in time t with a probability higher than ε.

For practical purposes, ε can be set to 2−128.

2.1. Merkle Hash Trees, Binary Search Trees, and Merkle-BST

For our construction, we need an efficient method of indexing certificates and provid-
ing short proofs of membership. Hence we introduce Merkle binary search trees, which
fill a similar role to Patricia tries used in many crypto-currencies, such as Ethereum [32].
In an abstract sense, they implement associative arrays with the additional property of
providing proofs of membership.

2.1.1. Merkle Hash Trees

Ref. [33,34] were first described for authenticating large data sets. A Merkle tree is
a useful cryptographic primitive to prove the existence of a record within a set E. Let
H : {0, 1}∗ → {0, 1}λ be a hash function. The tree is constructed by placing the values
of E in the leaves of a binary tree and hashing each record. Each interior node is built
by hashing the hashes of its two child nodes. The root of the tree, or root hash, acts as a
fingerprint for the set E. One proves that a record exists in a (balanced) n-node tree by
showing the O(log n) sibling hashes along its path, needed to reconstruct the root hash.

2.1.2. Binary Search Trees

(BST) , a.k.a., ordered binary trees, are a type of data structure that stores items sorted
by its key and allows for fast lookup, insertion and removal of items [35]. To look for or
insert a particular key, one traverses the tree from root to leaf, branching to left or right
subtrees based on comparisons between the search key and the stored keys. This has
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expected time complexity O(log n) if the keys were inserted in random order, or the tree is
explicitly balanced.

2.1.3. Merkle-BST and Security Properties

We introduce the Merkle-BST hybrid as a data structure which offers fast search,
insertion, and update (fast removal is also possible, but not used in our application). along
with short proofs of existence, for storing ordered sets of data. As in a BST, a Merkle-BST
stores key-indexed entries in all nodes of a (randomly or explicitly balanced) binary tree,
and overlays a Merkle-like hash structure for authentication; see Figure 2. The Merkle-
BST data structure is useful as it provides a deterministic and remotely verifiable way of
efficiently replicating large indexed sets of (key, value) bindings, across many peers in a
distributed system.

h1, k1, v1

h2, k2, v2

h4, k4, v4H(y‖H(k4)‖H(v4)) = h4 h5, k5, v5

H(y‖H(k2)‖H(v2)‖h4‖h5) = h2 h3, k3, v3

Figure 2. DPKIT Merkle Binary Search Tree. In each node, ki is the search key (the domain name), vi

is a value associated with the key, and hi is the hash associated with the node, computed as shown,
where y is a “domain separation” label based on the node’s position (see Section 2.1).

Nodes of a Merkle-BST have up to two children, and every node n stores a (k, v)
key-value entry, along with a hash H(n). The hash is calculated by hashing the hashes of
the children together with the node’s entry, along with a special “domain-separation” flag
y ∈ {1, 2, 3, 4} describing the node’s local topology (1 for leaves, 2 and 3 for nodes with a
left or right child, and 4 for nodes with two children; unlike the Merkle hash tree, we allow
our Merkle-BSTs to be unbalanced and have single-child nodes). For an interior node n,
let LC(n) and RC(n) denote its left and right child, respectively. For a node with left and
right child nodes, its hash is calculated as (see Figure 2 for the diagram and Figure A2 for
the algorithm),

H(n) = H(4‖H(k)‖H(v)‖H(LC(n))‖H(RC(n)))

Complete algorithms are given in Appendix A.
Like binary search trees, Merkle-BSTs have efficient (O(log n)) search, insert, and

update operations when the keys are inserted in a reasonably random order. In our
application, keys inserted as certificates are discovered, which will be reasonably random.
This same condition means that the length of proofs of membership will be short (O(log n)).

Lemma 1. (Security of membership proofs in Merkle-BST (informal)) Let t be a Merkle-BST. Given
that H is collision resistant, no adversary can efficiently find a proof that (k, v) exists in t if (k, v)
has never been added to t, and k has never had its value updated to v in t.

A rigorous statement is given in Appendix A. The proof, which we omit, is similar to
the analogous security claim for Merkle trees.

2.2. Distributed Ledgers and Blockchains

A distributed ledger (e.g., blockchain), is a mechanism for de-centrally maintaining
an append-only ledger, replicated among peers, and whose immutability of records is
achieved by distributed consensus. The original and most famous example is the Bitcoin
blockchain [19], secured without any central authority by miners competing for rewards
using proofs of work; see, e.g., Ref. [36]. The appeal of work-secured blockchains is
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their ability to resist Sybil attacks (wherein a single user assumes multiple identities to
overwhelm the control of legitimate users) without requiring an enrolment authority;
see [37].

Our application does not require the full power of cryptocurrency blockchains, which
also serve to (permanently) adjudicate mutually exclusive transactions. Rather, we view
blockchains as black-box oracles that let users append small and infrequent amounts of
data on a commonly shared (and replicated) timeline.

We formally define this notion of a distributed append-only ledger as the ideal func-
tionality shown on Figure 3. An ideal functionality merely defines a set of oracles, or
interface functions, with which participants can interact securely.
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discussion to Section 5.2.

3. Decentralised PKI Transparency

In this section, we detail the construction, security, and use of our decentralised
certificate store.

3.1. Entities, Operations and Functionalities

The basic entities of DPKIT are CAs, domain owners, servers, clients and peers. The
impact on current PKI is less than some proposed work that we discussed in Section 1.2.2,
as existing entities kept to handle basic functionalities of the system and only one new
entity—peers—are added. Below, we summarise various interactions of the entities.

1. Certificate authorities: issue certificates for domains, and revocations.
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2. Domain owners: obtain certificates from CAs, control servers, and (optionally) moni-
tor the DPKIT for any suspicious activity.

3. Servers: allow clients to connect, and (optionally, if DPKIT-aware) request proofs of
certificate membership from DPKIT peers.

4. Clients: initiate TLS connections with servers, accept or reject server certificates based
on DPKIT information provided by the server and peers.

5. Peers: maintain the DPKIT data structure, record certificates, supply servers with
proofs of certificate membership, provide auditing functionality.

Additionally, certificates can submitted to peers by any party, although in the honest
case, this will likely be done by domain owners or certificate authorities.

The main functionality, which begins when a certificate is issued and ends with a TLS
connection between a client and server, consists of these steps (see Figure 4):

1. A domain owner requests a certificate from a CA. The CA applies its vetting policies
and issues a certificate to the domain owner (steps A and B).

2. Optionally, the domain owner or the CA sends the certificate to a DPKIT peer, who
adds the certificate to the DPKIT data structure. The domain owner supplies the
certificate to the domain TLS server (steps C and D).

3. A client requests a connection to the server. Optionally, the server requests a proof of
certificate membership for its certificate from the DPKIT peer, which the peer provides.
The server sends its certificate and optionally the proof to the client (steps E, F, G, H, I
and J).

4. The client requests the latest root hash from a DPKIT peer and uses it to check the
proof of certificate membership. It can also obtain the proof itself from the peer if not
provided by the server. Depending on its security policy, the client may then complete
the connection to the server (steps K, L and M).

Additionally, DPKIT provides the following functionalities:

• Revocation certificates may also be submitted to DPKIT peers. The revocation is
recorded, and its presence is noted in proofs of certificate membership. Hence, clients
will be made aware of any relevant revocations when verifying the proof of member-
ship for a certificate.

• Any entity may submit a certificate to a DPKIT peer, and peers should add onto the
DPKIT any missing valid certificates for which a proof is requested. This means that
clients may contribute certificates that they have found which are missing from the
DPKIT, increasing the probability that rare certificates are discovered and recorded.

• DPKIT peers also supply auditing functionality, including enumerations over all
certificates for a domain, or over all domains, and indications whether certificates
have been revoked.

Peer(s)DPKIT structure

Web server/ownerWeb Client CA
(A) CSR

(B) Certificate

(C) Send certSe
nd

C
er

t

(D) AddCert

(E) Request connection (F
) R

eq
. p

ro
of

(G) GetCertProof

(H) Proof

(I
) P

ro
of

(J) Certificate, proof

(K) Get Current

(L) Hash

(M) Complete connection

Figure 4. Overview over the interaction between entities involved in DPKIT scenario. See Section 3.1.

Definition 2. (Certificate scheme) A certificate scheme consists of these algorithms, wherein c
represents either a certificate or a revocation “certificate”:

• SubjectNamesC(c)→ l: returns a list l of subject names for which the certificate c applies.
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• FPC(c)→ {0, 1}λ: returns a fingerprint of the certificate or revocation.
• IsRevocationC(c)→ {0, 1}: returns a bit indicating whether or not c is a revocation certificate.
• RevokedCertC(c) → {0, 1}λ: if c is a revocation, returns the fingerprint of the certificate

being revoked.
• IsValidC(c)→ {0, 1}: returns a bit indicating whether or not this is a proper (e.g., X.509) certificate.

Through the rest of the paper, we will assume that FPC() is collision-resistant. For
X.509 v.3 certificates, used for TLS on the web, SubjectNames() would return the domain
name from “subject common name”, as well as any additional domain names stated in the
“subject alternative names” extension; FPC() would return the hash of the certificate under
a fixed cryptographic hash function.

Definition 3 (Decentralised PKI Transparency). A decentralised PKI transparency scheme
(DPKIT) θ for a certificate scheme consists of these algorithms, where d is a data structure represent-
ing the overall state of the system:

• InitD()→ d: deterministic algorithm that outputs an initial data structure d.
• AddCertD(d, c)→ d′ or⊥: deterministic algorithm taking a certificate c and a data structure

d as input and outputs an updated data structure d′ or ⊥ if not valid.
• SearchD(d, N)→ s or ∅: deterministic algorithm that takes a data structure d and a subject

name N and outputs a data structure representing all certificates for N or ∅ if N is not present.
• SearchCertD(s, F)→ (c, r) or ⊥: deterministic algorithm that takes a data structure s and a

certificate fingerprint F and outputs a certificate and revocation tuple (c, r), either of which
may be ⊥, or ⊥ if both not present.

• GetCertProofD(d, c)→ P or ⊥: deterministic algorithm that takes a certificate c and a data
structure d and outputs a membership proof P or an error ⊥.

• GetAllCertsD(d)→ E or ⊥: deterministic algorithm that takes an object d and outputs an
ordered list of entries or an error symbol ⊥.

• GetFingerprintD(d)→ F: deterministic algorithm that takes a data structure d and returns
a fingerprint F that captures all entries in the structure.

• VerifyCertProofD(P, F, c) → {0, 1}: deterministic algorithm that, given a certificate c,
fingerprint F and membership proof P, outputs a bit b ∈ {0, 1}.

• TestRevokeD(P)→ {0, 1}: deterministic algorithm that takes as input a membership proof
P and outputs a bit b ∈ {0, 1}.

The algorithms defined in the above Definitions 2 and 3 can be used to carry out all
the interactions between peers/clients and the DPKIT structure, as described in Figure 4,
which includes inserting and auditing certificates in the system.

3.2. DPKIT Construction

Now that we have the required associative array and append-only ledger, we can
construct our associative distributed ledger for PKI transparency, DPKIT, as specified
in Figure 5.

The DPKIT of Figure 5 stores domain names as keys and certificates as values in a
Merkle-BST, accessed through the functions defined in Figure A2.

In our application, the main search key k is a domain name, and the value v is a pointer
to its very own data structure; a secondary Merkle-BST (as illustrated in Figure 1). This
certificate tree is unique to every node, and stores all the certificates that pertain to that
particular domain name k.

All these certificate updates contribute to the root hash of the certificate Merkle-BST,
and from there, the hash of the domain-name node in the primary Merkle-BST, and in turn,
the primary root hash.
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InitD()→ d:
1: d← ( )
2: d.ledger ← InitL()
3: d.tree← InitM(FPS, H)
4: return d

SearchD(d, N)→ s:
1: s← SearchM(d.tree, N)
2: return s

SearchCertD(s, F)→ (c, r):
1: q← SearchM(s, F)
2: if q = ⊥ return ⊥
3: (c, r)← q
4: return (c, r)

GetCertProofD(d, c)→ P:
1: N ← SubjectNamesC(c)[0]
2: s← SearchD(d.tree, N)
3: if s = ∅ return ⊥
4: q← SearchCertD(s, FPC(c))
5: if q = ⊥ return ⊥
6: (c′, r)← q
7: if c 6= c′ return ⊥
8: p1 ← GetProofM(d.tree, N)
9: p2 ← GetProofM(s, FPC(c))

10: if r 6= ∅, fr ← FPC(r)
11: else fr ← ∅
12: fc ← FPC(c)
13: fs ← GetFingerprintM(s)
14: return (p1, p2, fr, fc, fs)

GetAllCertsD(d)→ E:
1: E← [ ]
2: L← GetAllL(d.ledger)
3: for n = 0 to Length(L)− 1
4: (F, c)← L[n]
5: E.append(c)
6: return E

GetFingerprintD(d)→ F:
1: (F, c)← GetEntryL(d.ledger, HandleL())
2: return F

FPD(v)→ h:
1: (c, r)← v
2: if (c = ∅) ch = ∅
3: else ch = FPC(c)
4: if (r = ∅) rh = ∅
5: else rh = FPC(r)
6: return FPND(ch, rh)

FPND(ch, rh)→ h:
1: if (ch 6= ∅ ∧ rh 6= ∅) return H(1 || ch || rh)
2: if (ch 6= ∅) return H(2 || ch)
3: if (rh 6= ∅) return H(3 || rh)
4: return ⊥
FPS(s)→ h:

1: return GetFingerprintM(s)

AddCertD(d, c)→ d′:
1: if IsValidC(c) = 0 return ⊥
2: d′ ← d
3: if IsRevocationC(c) = 0
4: k← FPC(c), v← (c, ∅)
5: else
6: k← RevokedCertC(c), v← (∅, c)
7: for N in SubjectNamesC(c)
8: s← SearchD(d, N)
9: if s = ∅

10: s← InitM(FPD, H)
11: InsertM(s, k, v)
12: InsertM(d′.tree, N, s)
13: else
14: q← SearchCertD(s, k)
15: if q = ⊥
16: InsertM(s, k, v)
17: else
18: (c′, r′)← q
19: if IsRevocationC(c) = 0
20: if c′ 6= ∅ return ⊥
21: UpdateM(s, k, (c, r′))
22: else
23: if r′ 6= ∅ return ⊥
24: UpdateM(s, k, (c′, c))
25: d′.tree← UpdateM(d′.tree, N, s)
26: L← AddEntryL(d.ledger, (GetFingerprintM(d′), c))
27: return d′

VerifyCertProofD(P, F, c)→ b:
1: (p1, p2, fr, fc, fs)← P
2: n← SubjectNamesC(c)[0]
3: if VerifyProofM(p1, F, H(n), fs, H) = 0
4: return 0
5: fcr ← FPND( fc, fr)
6: if VerifyProofM(p2, fs, H(FPC(c)), fcr, H) = 0
7: return 0
8: return 1

TestRevokeD(P)→ b:
1: if P. fr 6= ∅ return 1
2: return 0

VerifyL(d, (F, c)):
1: Run lines 1-25 of AddCertD(d, c)
2: if GetFingerprintM(d′.tree) = F
3: return 1
4: return 0

Figure 5. Our construction of a DPKIT scheme (D) from a associative array with membership proofs
(M) and a ledger (L). VerifyL() is used by L to verify entries as part of AddEntry(). H is a hash
function. Note that L (i.e., the peers maintaining the ledger) must maintain a copy of d (which we do
not model here) or reconstruct d from the previous entries in the ledger. The main data structure is
d = (ledger : l, tree : t), where l is a handle for the ledger, and t is a MerkleBST data structure.

Figure 5. Our construction of a DPKIT scheme (D) from a associative array with membership proofs
(M) and a ledger (L). VerifyL() is used by L to verify entries as part of AddEntry(). H is a hash
function. Note that L (i.e., the peers maintaining the ledger) must maintain a copy of d (which we do
not model here) or reconstruct d from the previous entries in the ledger. The main data structure is
d = (ledger : l, tree : t), where l is a handle for the ledger, and t is a MerkleBST data structure.
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Some certificates allow for a primary domain name and additional subject alternative
names in a single certificate. For example, there could be www.gmail.com, www.mail.
google.com etc. for Gmail. These various domain names will be represented by separate
nodes in the main tree. If a certificate has multiple subject names, then it will be stored in
each of their certificate trees. (As an implementation detail, the certificates can be stored
in a separate location, with only pointers stored in the certificate tree. This allows for a
certificate to be stored only once when it has multiple subject names).

Whenever a new certificate is inserted into the trees, the root hash of the primary tree,
along with the added certificate, is added to the ledger.

4. Security Analysis and Evaluation

In this section, we show security results on decentralised PKI transparency, namely
that it satisfies the three properties of entry non-removability, revocation reveal and proof
consistency from Figure 6.

4.1. Security Goals

In DPKIT, the overall security goal is to ensure that information about certificates
(including revocations) is not altered or removed. Thus, we focus on threats where the
attacker presents false information to the “verifier”—which can be a client or a peer in our
terminology—in an attempt to disrupt normal operations.

The three security properties formally specified in Figure 6 capture all the ways in
which a malicious entity may be able to pass conflicting information. We say that the
scheme has a security property of the corresponding security game and cannot be won
with probability more that some security parameter ε by any polynomial time A. We name
and describe the three properties as follows:

Non-removability, per Experiment non-removable, demands that it is hard for an adversary
to remove an entry once logged through honest functionalities.

Proof consistency, per Experiment entry-proof, entails that it is hard for an adversary to
provide a valid membership proof for an entry that is invalid or not
yet logged.

Revocation reveal, per Experiment show-revoke, demands that it is hard for an adversary to
hide an entry’s revocation information if it exists in the log.

A scheme that satisfies the above ensures that a malicious verifier cannot make peers
interpret different things about entries covered by a root hash or a proof.

We consider security in an “ideal-ledger model”, wherein the append-only ledger is
modelled using the oracles of the ideal ledger functionality given in Figure 3. We follow a
provable security game-based approach to define and prove DPKIT security properties.
The three security properties are each formalised as a game against a malicious entity,
which “plays” in a security experiment that acts as the verifier that the attacker is trying
to deceive.

www.gmail.com
www.mail.google.com
www.mail.google.com
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Expentry-proof
θ,L (A):

1: InitL()
2: d← InitLθ ()
3: (P, c)← A()θ∗(d,·),L

4: F ← GetFingerprintLθ (d)
5: if VerifyCertProofθ(P, F, c) = 0 return 0
6: for N in SubjectNames(c);
7: s← SearchLθ (d, N)
8: if s = ∅, return 1
9: (c′, r′)← SearchCertLθ (s, FP(c))

10: if c′ 6= c, return 1
11: return 0

Expshow-revoke
θ,L (A):

1: InitL()
2: d← InitLθ ()
3: (c, r)← A1()

θ∗(d,·),L

4: if RevokedCertC(r) 6= FP(c), return 0
5: d← AddCertLθ (d, r)
6: P← A2()

θ∗(d,·),L

7: F ← GetFingerprintLθ (d)
8: if VerifyCertProofLθ (P, F, c) = 0 return 0
9: if TestRevokeLθ (P) = 1 return 0

10: return 1

Expnon-removable
θ,L (A):

1: InitL()
2: d← InitLθ ()
3: (c, st)← A1()

θ∗(d,·),L

4: d← AddCertLθ (d, c)
5: if (d = ⊥) return 0
6: A2(st)θ∗(d,·),L

7: if c /∈ GetAllCertsLθ (d), return 1
8: for N in SubjectNames(c);
9: s← SearchLθ (d, N)

10: if s = ∅, return 1
11: if IsRevocation(c) = 0
12: q← SearchCertLθ (s, FP(c))
13: if (q = ⊥) return 1
14: (c′, r′)← q
15: if c′ 6= c, return 1
16: else
17: (c′, r′)← SearchCertLθ (s, RevokedCert(c))
18: if (q = ⊥) return 1
19: (c′, r′)← q
20: if r′ 6= c, return 1
21: return 0

Figure 6. Security properties of a DPKIT scheme θ, using append only ledger L, against a malicious
A. θ represents the (possibly restricted) tuple of DPKIT algorithms that the adversary is given access
to. L stands for an instantiation of the ideal append-only ledger functionality defined in Figure 3. We
write θ ∗ (d, .) and θ ∗ (d, .).Alg to indicate that A has oracle access to all or a specific function(s) in θ,
invoked with the data structure d as a fixed parameter. For example, θ ∗ (d, .) = (AddCert, Search, ..).

The parameter d indicates that these are the functions that the adversary can use to
manipulate the global system state d, where it is implied that these manipulations may have
side effects, as the global state can be updated. Note that, since d is anchored to an underly-
ing append-only ledger, and since in our model it is not possible to remove entries from an
append-only ledger, the adversary is not given access to such hypothetical functions.

With these experiments in place, we can now define the security and correctness of a
DPKIT scheme.

Definition 4. Let A be a set of algorithms. We say that a DPKIT scheme θ is ε-secure with respect
to A under the ideal-ledger assumption if, for all A ∈ A,

Pr[Expnon-removable
θ,L (A) = 1] ≤ ε (1)

Pr[Expentry-proof
θ,L (A) = 1] ≤ ε (2)

Pr[Expshow-revoke
θ,L (A) = 1] ≤ ε (3)

where L is an ideal-ledger oracle functionality, as defined in Figure 3.

Definition 5. A DPKIT scheme θ is correct, provided that:

1. If AddCertθ,L(d, c) has not been called on certificate c,
then ∀n ∈ SubjectNames(c)

SearchCertθ,L(Searchθ,L(d, n), FP(c)) 6= (c, ·) (4)

c /∈ GetAllCertsθ,L(d) (5)

2. If AddCertθ,L(d, c) has been called on a certificate c, then we always have

VerifyCertProofθ,L(GetCertProofθ,L(d, c), GetFingerprintθ,L(d), c) = 1.

Figure 6. Security properties of a DPKIT scheme θ, using append only ledger L, against a malicious
A. θ represents the (possibly restricted) tuple of DPKIT algorithms that the adversary is given access
to. L stands for an instantiation of the ideal append-only ledger functionality defined in Figure 3. We
write θ ∗ (d, .) and θ ∗ (d, .).Alg to indicate that A has oracle access to all or a specific function(s) in θ,
invoked with the data structure d as a fixed parameter. For example, θ ∗ (d, .) = (AddCert, Search, ..).

The parameter d indicates that these are the functions that the adversary can use to
manipulate the global system state d, where it is implied that these manipulations may have
side effects, as the global state can be updated. Note that, since d is anchored to an underly-
ing append-only ledger, and since in our model it is not possible to remove entries from an
append-only ledger, the adversary is not given access to such hypothetical functions.

With these experiments in place, we can now define the security and correctness of a
DPKIT scheme.

Definition 4. Let A be a set of algorithms. We say that a DPKIT scheme θ is ε-secure with respect
to A under the ideal-ledger assumption if, for all A ∈ A,

Pr[Expnon-removable
θ,L (A) = 1] ≤ ε (1)

Pr[Expentry-proof
θ,L (A) = 1] ≤ ε (2)

Pr[Expshow-revoke
θ,L (A) = 1] ≤ ε (3)

where L is an ideal-ledger oracle functionality, as defined in Figure 3.

Definition 5. A DPKIT scheme θ is correct, provided that:

1. If AddCertθ,L(d, c) has not been called on certificate c,
then ∀n ∈ SubjectNames(c)

SearchCertθ,L(Searchθ,L(d, n), FP(c)) 6= (c, ·) (4)

c /∈ GetAllCertsθ,L(d) (5)

2. If AddCertθ,L(d, c) has been called on a certificate c, then we always have

VerifyCertProofθ,L(GetCertProofθ,L(d, c), GetFingerprintθ,L(d), c) = 1.
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3. For a certificate c, if AddCertθ,L(d, r) has never been called on any revocation r bearing onto
c, that is, s.t. RevokedCert(r) = FP(c), then we always have

TestRevokeθ,L(GetCertProofθ,L(d, c)) = 0.

4.2. Proofs of Security

We first note that the scheme is correct.

Lemma 2 (Correctness of DPKIT scheme). The DPKIT scheme θ described in Figure 5
is correct.

Lemma 2 follows straightforwardly from the definition of the protocol and the proper-
ties of MBSTs.

Theorem 1. (Non-removability) If hash function H and fingerprint function FPC are collision-
resistant, then in DPKIT scheme θ (with hash function H and fingerprint function FPC) in ideal
ledger model L, no malicious entity can present two different entries for the same fingerprint. More
precisely, no A wins Expnon-removable

θ,L (A), with probability higher than ε. That is,

Pr[Expnon-removable
θ,L (A) = 1] ≤ ε.

Proof. The adversary can only manipulate the data structure through θ and L. The
challenger simulates all functions in the oracle for the adversary. We show that a successful
adversaryA effectively removes an entry after it was added to the Merkle BST, which leads
to a contradiction with append only ledger L or with Lemma 1, or produces a collision in
H or FPC.

First note that the call in line 4 of Expnon-removable succeeds, otherwise A loses in
line 5. Now, suppose A wins Expnon-removable

θ,L (A) from the case in line 7. In line 4, c is
added without error to d and L, meaning that (d.tree.hash, c) exists as an entry somewhere
in L and will again be in the list GetAllCertsLθ (d) as per its algorithm. This produces a
contradiction.

Suppose A wins Expnon-removable
θ,L (A) from the case in line 10. By correctness property

of DPKIT in Definition 5, when AddCert is called, the entry will be added and subsequent
Search will return a value of the entry. However, line 9 implies an empty value. This is a
contradiction on oracle functionalities, meaning that no A will win here either. Similarly,
A cannot win in lines 13 or 18.

Finally, suppose A wins Expnon-removable
θ,L (A) from the case in lines 15 or 20. In the first

case, c′ is in the tree for key FPC(c), which can only happen if FPC(c) = FPC(c′), implying
a collision in FPC. In the second case, c is a revocation which would have been added to s
under the fingerprint of the certificate that it revokes, but it is missing. This cannot happen,
since it was added in line 4.

Theorem 2 (Proof consistency). If hash function H and fingerprint function FPC are collision-
resistant, then in DPKIT scheme θ (with hash function H and fingerprint function FPC) in the
ideal ledger model L, no malicious entity can present a proof for an entry which is invalid or not
logged. More precisely, no A wins Expentry-proof

θ,L (A), with probability higher than ε. That is,

Pr[Expentry-proof
θ,L (A) = 1] ≤ ε.

Proof. We show that if A produces a valid proof for an entry which does not exist in
the log, then this produces a contradiction with Lemma 1. We assume that no hash or
fingerprint collisions are present. This is true except with probability at most ε.

Let P = (p1, p2, fr, fc, fs) as returned in line 3 of Expentry-proof . F is the root hash of a
Merkle-BST tree which, since F is on L and has been verified by Verify, was constructed
honestly. Note that VerifyCertProofD has returned 1, so p1 was verified in line 3 and by
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Lemma 1 n is a key in the primary tree of d with value fs the hash of some secondary tree.
Similarly, since p2 is accepted as a valid proof in line 6 we see that secondary tree with root
hash fs contains a key FPC(c) with value (c, r) for some r.

Now for A to win in line 8, c must have some subject name N that does not exist as a
key in the primary tree. However, from the above discussion, we know that c was indeed
added for at least one subject name, and since the trees were constructed honestly, c would
have been added to all of its subject name subtrees, so those subject names must exist as
keys. Hence, A cannot win here.

Similarly, for A to win in line 10, c must not be entered in some secondary tree for one
of its subject names, but this cannot happen, because the trees were constructed honestly.

In all cases, it is impossible for A to win, except by producing a hash or fingerprint
collision or by forging an Merkle-BST proof, both of which occurs with probability at
most ε.

Theorem 3. (Revocation reveal) If hash function H is collision-resistant, then in DPKIT scheme
θ (with hash function H) in ideal ledger model L, when a client requests a proof for an entry,
revocation information should be included if there exists any corresponding revocation certificate.
In other words, no malicious entity should be able to hide the revocation certificate of a particular
entry. More precisely, no A wins Expshow-revoke

θ,L (A), with probability higher than ε.

Pr[Expshow-revoke
θ,L (A) = 1] ≤ ε.

Proof. First, since any invalid proof is rejected in line 8 of Expshow-revoke, we may assume
that c is indeed logged honestly. We also know that r was logged honestly in line 5.
However, by Lemma 1, in order for the proof to be accepted as valid, the hash fcr must be
correct in line 6 of VerifyCertProofD. fcr is produced by FPND and will only be the correct
value if the correct value of fr appears in the proof. Hence, fr 6= ∅ and TestRevokeD thus
returns 1. Hence, A cannot win, except with probability ε by producing a collision.

5. Discussion
5.1. Design Goals Revisited

Here, we revisit our design goals from Section 1.1.1 and show how each of them is
satisfied by our construction.

• Transparency: When implemented using a public blockchain for the ledger, all in-
formation is publicly available. When proper incentives are used, certificates and
revocations will be aggressively added to the ledger when they begin to circulate,
meaning that maximum information is available in one common, publicly accessible
place. Certificates and revocations cannot be removed from the ledger (non-removable
entry security property). Additionally, participating clients obtain guarantees that
certificates have been logged (proof consistency property).

• Multiple certificates: This is handled by using certificate subtrees for each subject name
• Multiple domain names: This is handled by adding each certificate to the tree under all

of its subject names
• No single point of failure: This is achieved by through the decentralized ledger, and

hence is sensitive to the ledger used.
• Scalability: The efficiency of operations and proofs in Merkle-BSTs allows for efficient

operations. The scalability of the system as a whole thus depends mostly on the ledger
being used. Note that issuing certificates happens at a much slower pace than financial
transactions, so the scalability needs are much more modest than what is required for
crypto-currency ledgers.

• Efficiency: TLS clients and servers need only to process proofs of membership, which
are short. Hence, the impact is low. Servers can cache proofs for greater efficiency.

• Client privacy: The only information revealed by a client to other entities is to peers,
from which they only obtain recent root hashes, and hence only reveal their participa-
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tion in the scheme, and TLS servers, which they need to contact anyways to access
their services.

• Revocation: Revocations are stored, and proofs of membership reveal their existence to
clients (Revocation reveal security property.)

5.2. Considerations around Ledgers and Participants
5.2.1. Participants and Incentives

Let us consider the incentives of the various participants:

• Clients: Clients have two main goals in our model: to avoid impersonation attacks and
to avoid leaking information to third parties. While the first is best served by having
a complete record of certificates and revocations, a client may choose not to log new
certificates that they see to avoid leaking their browsing information to peers.

• Domain owners and servers: Domain owners have an incentive to prevent impersonators
from capturing business or driving away customers. Again, this is served by a com-
plete record, but domain owners are only interested in their own domains, and hence
only have an incentive to report certificates for their domains. In some circumstances,
they may be incentivized to suppress knowledge of successful attacks—possibly to
prevent harm to their reputation—and so may in fact not want false certificates to
be logged. If clients insist on only connecting to sites with logged certificates (much
as today they more or less insist on only connecting to sites with valid certificates),
then domain owners will be strongly incentivized to have their legitimate certificates
logged or lose business.

• Certificate authorities: Certificate authorities, as trusted entities, only stay in business
for as long as they remain trustworthy. While participation in logging schemes may
improve the perception of their security, any evidence of security failures reduces their
perceived trustworthiness and hence disincentivizes logging problematic certificates.
If domain owners insist on having their legitimate certificates logged, then certificate
authorities will be incentivized to do this or lose business.

• Peers: Peers’ main role is to contribute to the storage and computational power required
to maintain the ledger. Although they may also play one of the above roles, the role of
peer does not bring with it any special incentives.

5.2.2. Maintaining the Ledger

In order for our scheme to be useful, we need two main things to happen: the ledger
must be maintained, and certificates must be contributed. Let us concentrate on the latter
first. The path to having legitimate certificates logged is relatively straightforward: clients
can insist that certificates are logged or they will not connect. However, getting illegitimate
certificates logged is more problematic, as clients are the only ones with a strong incentive
to do this, and it is offset by desires for privacy. There are some ways around this, such as
anonymising networks, but this increases the complexity. A better way might be to have
bounties for newly submitted certificates. If using an existing cryptocurrency blockchain
with smart contracts (e.g., Ethereum) to implement the ledger, then smart contracts can be
issued that pay a user when they submit a previously unsubmitted certificate or revocation
to the log. With this type of incentive in place, revocations and fraudulent certificates are
much more likely to be quickly submitted, making it possible to issue revocations or take
action as required. To avoid pathological activity, such as creating certificates in bulk purely
to claim the bounty, in will be necessary to place restrictions on these smart contracts, for
example making them pay out only for certificates signed by certain certificate authorities,
or issued for certain domains.

The remaining question is how to pay for bounties and also how to incentivize peers.
If using an existing blockchain, then the latter is already taken care of, although it will
likely be necessary to pay transaction fees for any changes to the ledger, i.e., when adding
certificates or revocations. Transaction fees are similar to bounties in that they are both
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paid for adding certificates. There are a few possibilities for who might be willing to pay
for certificates to be added:

• Groups of clients, web browser vendors, governments, or other organisations that
have an overall desire for security on (parts of) the Internet

• Domain owners or Certificate authorities who are forced to log their own legitimate
certificates by client policies

• Domain owners who wish to know about fraudulent certificates for their domains so
that they can take necessary security actions

• Certificate authorities who are interested in testing the security claims of their competitors
• Certificate authorities who wish to present a positive security image by advertising

proactive security policies
• Insurance agencies who insure companies against cyber threats, that want to mitigate

damage as quickly as possible, and who want to catch untrustworthy certificate
authorities who increase the chances of security threats against their insurees.

Since bounties need to be public, another possibility arises: if clients insist, not only
that legitimate certificates are logged, but also that bounties exist for all certificates for the
related subject names, then they can force domain owners to create such bounties. Domain
owners may then force certificate authorities to do this on their behalf. In this way, the
cost of maintaining the ledger can be placed with the certificate authorities, likely funded
through fees paid for obtaining certificates. Such a possibility requires a large mass of
clients working together.

If not using an existing ledger, then the ledger must be maintained and this will incur a
cost, especially if proof-of-work is used. This problem is not unique to DPKIT, however, as
all other CT systems still rely on a ledger or centralised servers which must be maintained.
The default stance seems to be that these costs will be covered by various major players,
such as CAs, browser vendors or other large organisations with an interest in keeping the
internet secure. Having a decentralised system such as ours actually makes this type of
funding easier, since anyone with an interest can contribute by becoming a peer, without
needing to collaborate with, or even trust, other parties in the system.

One last service that must be provided is that of providing membership proofs to
servers and clients. These operations do not require ledger transactions, and hence may
be relatively inexpensive, but the infrastructure must still exist. Peers are the natural
entities to provide these services as they already maintain the necessary data. Likely these
services are too frequent and trivial resource-wise to pay for them through mechanisms like
micropayments, but a subscription model would be appropriate, with the domain owners
paying for their servers’ to access peers. Another possibility would be for this service to be
provided by CAs running their own peers and paid for through certificate fees.

5.3. Usage
5.3.1. What Goes on the Ledger?

In order to be useful for security purposes, the certificate store must facilitate the
detection of fraudulent certificates. There are a few scenarios:

• A certificate appears in the store that the domain owner did not apply for. This
check must be done by the domain owner or someone with sufficient knowledge
to recognise certificates that they have requested. In order for the certificate store
to be useful in this manner, as many certificates as possible must be logged, since
those collecting certificates do not typically have the required knowledge to decide
fraudulent certificates from authentic ones.

• A certificate is presented to a client that does not exist on the log. In this case, the
client may decide not to connect. A certificate that is not logged may mean that the
domain owner is not aware of it and hence not able to take appropriate actions against
the certificate, such as seeking a revocation from the issuing CA. Hence, it should be
standard practice to log certificates as soon as they are issued.
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• A certificate is presented to a client whose revocation exists on the log. In this case,
the client should not connect. In order for this to be useful, as many revocations as
possible must be logged, whether or not the corresponding certificate has been. Hence,
it should be standard practice to log revocations soon as they are issued.

Additionally, there is the question of whether only certificates from certain CAs should
be logged, or if all certificates should be logged, regardless of who signed them. While
the latter invites the possibility of denial of service by attackers who create their own
certificates to flood the ledger, the former requires some decision about which CAs to log,
which would be difficult without some kind of centralisation. However, denial of service is
unlikely when an existing ledger such as Ethereum is used where adding certificates incurs
a fee. Assuming that bounties are used to offset this fee, the selectivity of those bounties,
and the fact that CAs control their own certificate issuance, means that flooding will be
unlikely (unless a CA decides to clean up in the short term on bounties paid for by another
party! For this reason, bounties should have limits).

To eliminate the problem almost entirely, at the cost of higher complexity, separate
DPKIT instances could be created for each CA, accepting only valid certificates from that
CA. This may not be difficult to implement if an existing blockchain is used, so that creating
a new instance is relatively inexpensive and there is no cost associated with maintaining
each instance, aside from fees to add certificates. Clients and other parties are then free to
ignore instances for any CA that they are not interested in.

Because of these considerations, we recommend that all certificates are logged, as long
as they are valid, regardless of the signing CA.

5.3.2. Privacy

The privacy property of our scheme is that clients do not need to reveal what domains
they connect to in order to benefit. However, it is still true that security is highest when
as many certificates as possible are logged. Hence, it would be beneficial for clients to
contribute certificates, which are not anonymous in our system. Some considerations for
this problem are:

• In the honest case, which is the vast majority of traffic, certificates will already be
logged and there is no need for clients to submit certificates. Hence, for most clients, it
is rare to encounter an unlogged certificate.

• A client may opt to contribute an unlogged certificate when they find one. The client
may prompt the user to make a decision, and it may be the case that most people will
choose to log the certificate in most scenarios.

• An anonymising layer, similar to TOR, may be added to the communication between
clients and peers. Such a system could be simple to implement, since there is no need
for the client to receive a reply from the peer. It may be that blockchain technologies
will incorporate such anonymous transactions themselves in the near future, with
some already providing some level of anonymity [40].

• If bounties are used, as proposed above, clients may willingly accept the fee for
their breach of privacy, or some clients may go out of their way to collect and report
certificates in order to collect bounties. However, bounty hunters will likely not
encounter certificates that are part of attacks targeted at particular users.

• If a fraudulent certificate is used in a targeted attack on a small set of clients, then the
extent of the attack is necessarily limited. While not ideal, an unlogged certificate in
this scenario will do little immediate damage. However, the more clients are involved,
or the more fraudulent certificates that are issued in the same manner, the more likely
it is that at least one client is willing to log the certificate. So, there is at least a positive
correlation between the scale of an attack and the likelihood that it is detected by
these mechanisms.
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5.3.3. Forks and Out of Date Peers

For our analysis, we have assumed that the ledger operates in an ideal manner, but
this is of course not always the case. In particular, it takes some finite amount of time for a
blockchain to converge so that a transaction is accepted by all peers. Furthermore, because
of network delays, some peers may be behind in their data. In cryptocurrency applications,
two transactions may conflict with each other if they both try to spend the same funds, and
hence a transaction which seems early on to be valid to some peers may later on disappear
from the record as the blockchain converges. For this reason, it is common to wait for some
set period after a transaction is added to the chain to make sure that the chain has well and
truly converged.

In our application, the story is different because there is no conflict between trans-
actions. That is to say, whether a particular certificate has been logged or not has no
bearing on whether other certificates can be logged. In some cases, the order in which
certificates are added may change as the blockchain converges—and this will invalidate
membership proofs—but all certificates can be logged. (The one exception to this is that
only one revocation is stored per certificate, so if a second revocation for a certificate is
issued, then it will not be logged, but this will have little bearing on security, since the
effect is the same for either revocation. If storing multiple revocations per certificate is
desired, then they can be stored in a Merkle-BST, the root hash of which is stored where
the revocation is currently stored). Similarly, if there is a fork in the blockchain, then all
the certificates from one fork can be copied over to the other fork. This property actually
makes attacks against our application much harder than for cryptocurrencies. If an attacker
successfully creates a fork in an attempt to exclude a certificate that was logged, and this
fork becomes accepted, then peers could still re-add all the certificates that they know
about, including the certificate that was specifically being excluded. Hence, these types
of attacks will be largely fruitless. The attacker would need to continuously subvert the
consensus process to exclude the certificate any time that it was later added.

Nevertheless, there is still a practical issue with peers being out of sync, which is that
clients and servers may not agree on what the most recent root hash is. In these cases,
the client would not accept the proof offered by the server. To solve this problem, first
suppose that it takes t seconds for the blockchain to converge with high probability, so that
all peers agree about all blocks that are t or more seconds old (as measured by the peer
who submitted the block). Now, we introduce the following additional behaviours:

• Each peer keeps copies of the trees for all recent blocks back to the most recent block
that is more than t seconds old (according to the peer). Note that this can be done
efficiently: most nodes in a tree do not change with the addition of a certificate,
and hence these nodes can be kept in common for all the blocks’ trees if pointers or
references are used. Only O(log n) nodes along the path from the root to the new
certificate need to be changed with the addition of a new certificate, and these are
what needs to be stored for each block.

• The client will keep a list of root hashes, including all root hashes that are, at most, 2t
seconds old (according to its peer(s)), plus the next most recent root hash.

• The server requests a proof from a peer from the peer’s oldest data structure and offers
it to the client

With these behaviours, the proof offered by the server uses the most recent root hash
F that is (according to its peer) t or more seconds old, so by assumption, all other peers
will have F on their copy of the blockchain, including the peer(s) that the client contacts. If
F is at most 2t seconds old according to the client’s peer(s), or is the next most recent, then
the client can check the server’s proof.

So now suppose that F is more than 2t seconds old according to the client’s peer(s)
and that there is some other root hash F′ that is more recent but still more than 2t seconds
old according to the client’s peer(s), so that F′ is the last on client’s list. Then, t seconds ago,
F′ was more than t seconds old and hence known to the server’s peer at that time. This
means that F′ must now be more than t seconds old (according to the server’s peer), and



Cryptography 2021, 5, 14 20 of 27

more recent than F (because the order of blocks is fixed). This contradicts the choice of F,
hence this case cannot happen.

With this mechanism, network delays can be accommodated with high probability.
Note that it is also efficient: peers have the highest burden, essentially keeping differences
between successive data structures for the last t seconds. Clients must store a list of root
hashes from the last 2t seconds, and the server has no additional burden. Note that in
typical blockchain implementations, new blocks are created on a timescale of minutes (10
minutes per block for Bitcoin, for example [41]) so for reasonable values of t, a very small
number of data structures and root hashes need to be stored.

5.4. What Ledger to Use

There are three main possibilities for how append-only ledgers can be implemented:
trusted third party, private blockchain, and public blockchain. Since we are aiming for
maximum transparency and decentralization, public blockchains are the most reasonable
choice. While it is possible to implement a new blockchain for our application, it is likely
more convenient to make use of an already-existing blockchain, such as Ethereum [32],
which will also allow for additional functionality by providing monetary incentives for
certain behaviours.

When speaking of blockchains, the question of which consensus mechanism to use
will always come up. Since we are considering public blockchains only, the two main
contenders are proof-of-work and proof-of-stake. The former is very costly, but requires
little additional consideration other than to make sure that incentives are high enough
that honest peers dominate, making the cost of a successful attack high. There are a few
ways in which this might be done. One way would be to incorporate a cryptocurrency
and reward peers with coins as is typically done in cryptocurrencies. In order for this to
survive speculation bubbles, though, the currency needs to be given real value by someone
offering some other currency in exchange. This offers one mechanism for paying peers:
buy the coins that they mine.

Proof-of-stake is perhaps more nuanced in this application. What exactly is the stake?
If a cryptocurrency is incorporated with the ledger, then the answer is obviously coins.
Those with the largest stake will be those that have contributed most to the maintenance
of the ledger by buying coins, presumably with real money. There are other possibilities,
though. For example, a CA’s stake might relate to the number of certificates logged that
they have signed, or a peer’s stake might relate to the number of certificates that they
have contributed. However, all of these options leave open the possibility of a de facto
centralisation by a small cabal with a large stake. Such a cabal might exclude new CAs by
refusing to add their certificates, or refuse to add certificates that cast the cabal in a bad
light, such as mistakenly issued certificates by CAs in the cabal.

Given the difficulties of maintaining a separate ledger, such as maintaining a cryp-
tocurrency to incentivise peers, using a pre-existing ledger is likely the most practical
option. The existing cryptocurrency can be used in incentive schemes, and the certificate
log can be implemented through smart contracts. Since the ledger exists in its own right,
there is no need to pay for its maintenance, only its use when new certificates are added. It
also makes it much easier to support multiple DPKIT instances.

5.5. Comparison to Other Schemes

In Section 1.2, we mentioned several proposals for improving PKI security, including
three broad approaches: logging mechanisms, PKI redesigns utilising blockchains, and
schemes that augment traditional PKI with blockchains. Here, we compare the security
properties of these schemes to our own.

First, consider PKI transparency systems, such as certificate transparency and the
SSL observatory. Our system is similar to these systems, in that they are all backwards-
compatible with the existing PKI infrastructure, leading to easier adoption. As well, they all
keep the existing system of semi-trusted certificate authorities for real-world identification
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verification. However, our proposal is fully decentralised once a certificate has been
issued, reducing the number of single points of failure (of trust as well as functionality).
Furthermore, our proposal supports certificate revocation, which is absent from CT.

On the other hand, fully decentralised PKI redesigns are not backwards compat-
ible with existing the PKI, and hence this is a barrier to adoption. Furthermore, be-
cause they are fully decentralised, there is no means of checking online identities against
real world identities. Feng et al.’s proposal [25] deals with this problem by introduc-
ing supervisory nodes, which play an analogous role for CAs, resulting in a mixed cen-
tralised/decentralised system that is in some ways similar to ours, but not backwards-
compatible with existing systems.

CertLedger [26] is very similar to our scheme in many ways and includes more
functionality, but at the cost of increased centralisation. The CertLedger board, for example,
has control over which CAs are considered trusted, so this choice is taken away from clients.
In particular, CertLedger offers no additional security to a client using a CA that has not
been endorsed by the CertLedger board. Revocations in CertLedger are handled through a
signed request to CertLedger rather than through a revocation certificate. This means that
additional information needs to be handled through the ledger, namely the ownership of
domains, as domain owners can request a revocation. Certificates are also added by domain
owners only, meaning that problematic certificates are not logged. Hence, CertLedger is
much less transparent than our scheme, or other schemes like CT. These choices mean that
CertLedger assumes a large amount of control over PKI processes, sacrificing flexibility and
adoptability. Our scheme, by contrast, still has value as a certificate store that clients can
consult when making security decisions, even if domain owners and CAs are not involved.

Like our scheme and CT, CTB [27] aims primarily to provide a public certificate store.
However, it is more centralised that our scheme, using a permissioned blockchain operated
by CAs. Having the CAs as the central authorities for the ledger introduces the possibility
that they will attempt to block certificates from being logged if they would damage their
reputation, although competing CAs might be able to publish such certificates anyway,
depending on the specifics of the consensus mechanism. As well, the participation of CAs
is required for adoption. CTB does not provide a privacy-preserving method of checking
whether a certificate has been logged as our scheme does. Instead, clients query the ledger
directly. Revocations are supported by recording the revocation status of each certificate.

Blockchain-based certificate transparency [28] is very similar to our scheme, with
privacy preserving proofs of membership for clients, and revocations. However, it only logs
certificates that have been published by the domain owner through the use of publishing
keys. This considerably reduces the transparency in much the same way as CertLedger:
problematic certificates are not logged, only valid certificates, and no certificates are logged
for a domain if the owner does not participate. Domain owners’ publishing keys are
valid once certified by a group of trusted certifiers. This re-introduces some degree of
centralisation, although certifiers are chosen based on their historical behaviour on the
blockchain, rather than by a centralised authority.

CA proxies [29] have a different goal from the previous examples, instead focusing
on making the processes of issuing and revoking more transparent certificates by posting
certificate signing requests publicly along with issued certificates and revocations. These
goals are largely orthogonal to ours. For example, CA proxies have no mechanism to track
problematic certificates, only certificates that the CA wishes to be published. Nor is there a
mechanism for clients to efficiently discover whether a certificate has been published or
revoked through CA proxy.

The proposal by Yakubov et al. [30] uses a blockchain to store certificates and revoca-
tions, much like our scheme. However, it is not clear what functionality the proposal offers
to clients. Certificates are stored in an array, meaning that efficient searching or proofs of
membership are unlikely. Validation of a certificate is made via a call to a smart contract on
the blockchain (which does not change the blockchain and hence incurs no cost to run), and
hence is unlikely to be privacy-preserving. Validation does not appear to include checks
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for revocations, only verification of the certificate and intermediate CA certificates on the
path to the relevant root CA.

Since DPKIT also provides a mechanism for discovering if a certificate is revoked,
we can reasonably compare it to other revocation mechanisms. Certificate revocation lists
are problematic as single points of failure, vulnerable to denial of service attacks, and
are also inefficient, requiring clients to frequently download lists from multiple sources.
DPKIT, on the other hand, is efficient, since the client only receives information pertaining
to a particular certificate, and is decentralised leading to greater robustness against denial
of service attacks. OSCP is an improvement on CRLs, but introduces privacy concerns,
since the client must reveal which certificates it is interested in a to third party. In DPKIT,
the client receives the proof from the server and does not need to contain a third party,
protecting privacy. OSCP stapling works similarly, so that the client receives the OSCP
response from the server, not a third party. However, some types of attacks may not be
detected through OSCP stapling that would be detected by using DPKIT. In particular, if a
CA private key is compromised, then this could be used to create a valid OSCP response
that would be accepted by the client. With DPKIT, the existence of a revocation cannot be
hidden from the client, even with a compromised CA private key, since its existence in the
store is independent of any CA signatures.

6. Conclusions

We have proposed, modelled, and instantiated a new decentralised approach to certifi-
cate transparency based on generic blockchains augmented with efficient data structures.
It is compatible with existing PKI, as customary entities are kept to manage basic function-
alities. DPKIT is expected to be highly effective at catching and deterring trust abuses by
malicious certificate authorities.

Public key infrastructures enable users to look up and verify each other’s public
keys based on identities. An identity, to the greatest possible extent, should only be
issued, updated or revoked after the permission from the owner of that identity. The
traditional PKI model does not effectively prevent one user from registering another’s
already registered public key as their own. Lately, various approaches [20,23] have been
proposed to guarantee strong identity retention properties which do not rely on a trusted
third party. As for now, we have not incorporated an identity retention mechanism in
DPKIT, which could be obtained by us having certificate updates (issuance and/revocation)
cross-signed by the domain owner’s signature. Certificate mis-issuance problem can also
be solved by Certification Authority Authorization [42], which is an Internet security policy
mechanism that allows a DNS domain name holder to specify one or more CAs authorized
to issue certificates for that domain.

Constructing a blockchain-based PKI is a feasible alternative method for the main-
stream issues related to conventional and log-based approaches. We present DPKIT as
a platform that offers more transparency and decentralization than existing PKI. Based
on the security notions that we formalized, we have shown that our scheme prevents
the misbehaviour of entities involved. Having certificate revocation built in our system
is a benefit that is not provided by current PKI schemes. As revocation information is
included in the proof of certificate itself, it mitigates the need for centrally administered
OCSP servers run by CAs.
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Appendix A. Construction of Merkel-BST

Definition A1 (associative array with Membership Proofs). An associative array with mem-
bership proofs consists of the following algorithms, where t is a data structure representing the overall
state of the system. The first few algorithms are used to manage entries in the associative array.

• InitM(FP, H)→ t: deterministic algorithm that give a value fingerprinting hash function FP
and a hash function H, outputs an initial data structure t.

• InsertM(t, k, v) → e : deterministic algorithm that takes a key-value entry (k, v), a data
structure t, and returns 1 if successful or 0 on error.

• UpdateM(t, k, v) → e : deterministic algorithm that takes a key-value entry (k, v), a data
structure t, and returns 1 if successful or 0 on error.

• SearchM(t, k) → v or ⊥: A deterministic algorithm that takes an entry key k and a data
structure t, and outputs a value v or ⊥.

The next algorithms are used to test various properties of the associative array:

• GetFingerprintM(t)→ F: deterministic algorithm that takes a data structure t and outputs
a fingerprint F, representing the complete list of entries.

• GetAllM(t) → (E): deterministic algorithm that takes a data structure t and outputs an
ordered list of entries E.

The last few algorithms generate and verify membership proofs:

• GetProofM(t, k)→ P or ⊥: deterministic algorithm that takes as inputs an entry key k and a
data structure t and outputs a membership proof P or ⊥ if the key is not present.

• VerifyProofM(P, F, kh, vh, H)→ {0, 1}: A deterministic algorithm that takes as inputs an
entry key hash kh, a value fingerprint vh, a data-structure fingerprint F, a membership proof
P, and a hash function H and outputs a bit b ∈ {0, 1}.

Now, we define the correctness properties of our associative array with membership proofs.

Definition A2. (Correctness of an associative array with membership proofs) An associative array
with membership proofs is correct if,

1. If InsertM(t,k,v) is called, InsertM(t,k,v′) has not been called previously, and UpdateM(t,k,v′) has
not been called since, then any subsequent call GetAllM(t) will return a list that contains the
pair (k, v).

2. If InsertM(t, k, v) is called, UpdateM(t, k, v′) is called, and UpdateM(t, k, v′′) has not
been called since, then any subsequent call GetAllM(t) will return a list that contains the
pair (k, v′).

3. Any call SearchM(t, k) will return the value v corresponding to the first call InsertM(t, k, v)
or the most recent call to UpdateM(t, k, v) after a call to InsertM with matching key k, or an
error symbol ⊥ if no such call had been made.

4. Under the same conditions as above, it is always the case that
VerifyProofM(GetProof(t, k), GetFingerprintM(t)) = 1.

Definition A3. (Security of proofs of membership for associative array with membership proofs)
We say that an associative array with membership proofs scheme θ using hash function H and

fingerprint function FP is ε-secure with respect to A, for all A ∈ A,

P(Expprooof-unforgability
θ (A, H, FP) = 1) < ε

where Expprooof-unforgability is given in Figure A1.



Cryptography 2021, 5, 14 24 of 27Cryptography 2021, 1, 0 24 of 27

Expprooof-unforgability
θ (A, H, FP):

1: t← Initθ(FPM, H)

2: (P, k, v)← A()θ∗(t,·)

3: if (k, v) /∈ GetAllθ(t), return 0
4: return VerifyProofθ(P, t.root.hash, H(k), FP(v), H)

Figure A1. Experiment for security of membership proofs.

InitM(FP, H)→ t:
1: t← ( )
2: t.root← ∅
3: t. f p← FP
4: t.hash← H
5: return t

CreateNodeM(t, k, v, p)→ n:
1: n← ( )
2: n.k← k, n.v← v, n.parent← p
3: n.right← ∅, n.le f t← ∅
4: n.hash← NodeHashM(t, n)
5: return n

InsertM(t, k, v)→ e:
1: if (t.root = ∅)
2: t.root← CreateNodeM(t, k, v, ∅)
3: return 1
4: else
5: return InsertNodeM(t.root, k, v)

InsertNodeM(n, k, v)→ e:
1: if (k = n.k) return 0
2: if (k < n.k)
3: if (n.le f t = ∅)
4: n.le f t← CreateNodeM(t, k, v, n)
5: r ← 1
6: else
7: r ← InsertM(n.le f t, k, v)
8: else
9: if (n.right = ∅)

10: n.right← CreateNodeM(t, k, v, n)
11: r ← 1
12: else
13: r ← InsertM(n.right, k, v)
14: if (r = 0) return 0
15: n.hash← NodeHashM(t, n)
16: return 1

SearchM(t, k)→ v:
1: n← SearchNodeM(t.root, k)
2: if (n = ⊥) return ⊥
3: return n.v

SearchNodeM(n, k)→ n′:
1: if (n = ∅) return ⊥
2: if (k = n.k) return n
3: if (k < n.k)
4: return SearchNodeM(n.le f t, k)
5: return SearchNodeM(n.right, k)
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Lemma A1 (Unforgability of Merkle-BST memberships proofs). If H and FP are ε-collision
resistant with respect to adversaries A, then Merkle-BST instantiated with H and FP is ε-secure
with respect to A.
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5: if (k < n.k)
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14: if (P = ⊥) return ⊥
15: return P || [(t.hash(n.k), t. f p(n.v), lh, ∗)]

Figure A3. Algorithm GetProof of Merkel-BST. A proof is a list of tuples (kh, vh, lh, rh) where kh is
the hash of a key, vh is the fingerprint of a value, lh is the hash of a node, and rh is the hash of a node.
∗ is used where a hash must be calculated by the verifier from available information. ∅ is used in
place of lh or rh to indicate that a child is absent.

VerifyProofM(P, F, kh, vh, H)→ b:
1: if (VerifyProofNM(P, kh, vh, H) = F) return 1
2: return 0

VerifyProofNM(P, kh, vh, H)→ h:
1: (kh′, vh′, lh, rh)← P[|P| − 1]
2: if (|P| = 1)
3: if (lh = ∗ ∨ rh = ∗ ∨ kh′ 6= ∗ ∨ vh′ 6= ∗) return ⊥
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7: if (lh = ∗)
8: lh← VerifyProofNM(P[0 : |P| − 1], kh′, vh′, H)
9: else

10: rh← VerifyProofNM(P[0 : |P| − 1], kh′, vh′, H)
11: return NodeHashNM(kh′, vh′, lh, rh, H)

Figure A4. Algorithm VerifyProof of Merkle BST.

The proof of this fact is similar to that for Merkle trees, and hence is left as an exercise.
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