
On the Security of TLS Renegotiation

(full version) ∗†

Florian Giesen1 Florian Kohlar1 Douglas Stebila2

1 Horst Görtz Institute for IT-Security, Ruhr-University Bochum, Bochum, Germany

florian.giesen@rub.de, florian.kohlar@rub.de
2 Science and Engineering Faculty, Queensland University of Technology, Brisbane, Australia

stebila@qut.edu.au

August 22, 2013

Abstract

The Transport Layer Security (TLS) protocol is the most widely used security protocol on the Internet.
It supports negotiation of a wide variety of cryptographic primitives through different cipher suites, various
modes of client authentication, and additional features such as renegotiation. Despite its widespread use,
only recently has the full TLS protocol been proven secure, and only the core cryptographic protocol with
no additional features. These additional features have been the cause of several practical attacks on TLS.
In 2009, Ray and Dispensa demonstrated how TLS renegotiation allows an attacker to splice together its
own session with that of a victim, resulting in a man-in-the-middle attack on TLS-reliant applications
such as HTTP. TLS was subsequently patched with two defence mechanisms for protection against this
attack.

We present the first formal treatment of renegotiation in secure channel establishment protocols. We
add optional renegotiation to the authenticated and confidential channel establishment model of Jager et
al., an adaptation of the Bellare–Rogaway authenticated key exchange model. We describe the attack
of Ray and Dispensa on TLS within our model. We show generically that the proposed fixes for TLS
offer good protection against renegotiation attacks, and give a simple new countermeasure that provides
renegotiation security for TLS even in the face of stronger adversaries.

Keywords: Transport Layer Security (TLS); renegotiation; security models; key exchange

∗The research leading to these results has received funding from the European Community (FP7/2007-2013) under grant
agreement number ICT-2007-216646 - European Network of Excellence in Cryptology II (ECRYPT II), the Australian Technology
Network–German Academic Exchange Service (ATN-DAAD) Joint Research Co-operation Scheme, and the Australian Research
Council (ARC) Discovery Project scheme.
†This is the full version of an extended abstract published in the Proceedings of the 20th ACM Conference on Computer and

Communications Security (CCS) 2013 [16].

1

mailto:florian.giesen@rub.de
mailto:florian.kohlar@rub.de
mailto:stebila@qut.edu.au

Contents

1 Introduction 3
1.1 The TLS Renegotiation Issue . 4
1.2 Countermeasures Added to TLS . 4
1.3 Contributions . 5

2 Security Definitions for Multi-Phase and Renegotiable ACCE 7
2.1 Overview . 7
2.2 Execution Environment . 7
2.3 Security Definitions . 10

2.3.1 Confidentiality. 11
2.3.2 Secure multi-phase ACCE. 11
2.3.3 Secure renegotiable ACCE. 12
2.3.4 Weakly secure renegotiable ACCE. 12

3 Renegotiation (In)security of TLS 13
3.1 TLS without countermeasures is not a (weakly) secure renegotiable ACCE 13

4 Renegotiation Security of TLS with SCSV/RIE Countermeasures 14
4.1 TLS with SCSV/RIE is not a secure renegotiable ACCE . 14
4.2 Tagged-ACCE model and tagged TLS . 15

4.2.1 Tagged-ACCE security model . 15
4.2.2 Tagged-ACCE-fin security model . 15
4.2.3 Tagged TLS . 16
4.2.4 Proof of Lemma 1: εclient . 17
4.2.5 Proof of Lemma 1: εserver . 20
4.2.6 Proof of Confidentiality . 23

4.3 TLS with SCSV/RIE is multi-phase-secure . 25
4.4 TLS with SCSV/RIE is a weakly secure renegotiable ACCE 28

5 Renegotiation Security of TLS with a New Countermeasure 30

6 Conclusion 31

References 32

A Additional Definitions 33
A.1 Matching Conversations . 33
A.2 Stateful Length-Hiding Authenticated Encryption (sLHAE) 34
A.3 The PRF-Oracle-Diffie-Hellman Assumption . 34

B Protocols without Forward Security 35
B.1 Model . 35
B.2 On Renegotiation Security of TLS RSA with SCSV/RIE . 36

C TLS DHE DSS WITH 3DES EDE CBC SHA Protocol with Renegotiation Extensions 37

D Generic TLS Protocol with Renegotiation Extensions 38

2

1 Introduction

The Transport Layer Security (TLS) protocol, the successor of the Secure Sockets Layer (SSL) protocol,
provides secure channel establishment on the Internet. It is commonly used to protect information sent via
the Hypertext Transfer Protocol (HTTP) on the web, and many other application layer protocols such as
email and file transfer. TLS consists of a handshake protocol, used to agree on security parameters, establish
a secret key, and authenticate the parties; and a record layer protocol, used to send encrypted data.

Despite the importance of TLS, progress on formally modelling the security of TLS has been slow. A
technicality of TLS prevents it from being proven secure in standard authenticated key exchange (AKE)
models: in AKE, the session key must be indistinguishable from a random key of the same length. However,
the final handshake message of the TLS protocol is encrypted under the session key, so an adversary can
distinguish the session key from a random key by trying to verify the final handshake message. Some
analyses [20, 27] have shown that a truncated form of the TLS handshake is AKE-secure. Others [14] deal
with a substantially weaker security requirement, namely unauthenticated key agreement. Krawczyk [22]
analyzed a variant of the TLS record layer.

Only very recently have analyses of unmodified TLS functionality appeared. Paterson et al. [28] showed
that TLS’s MAC-then-encode-then-encrypt record layer when used with CBC encryption (with certain
length restrictions) satisfies length-hiding authenticated encryption (LHAE). Jager et al. [18] gave the first
full proof of the security of (one ciphersuite of) unmodified TLS in a strong security model. Jager et al.
introduced a variant of the Bellare–Rogaway authenticated key exchange model, called authenticated and
confidential channel establishment (ACCE). They proved that the TLS 1.2 protocol using the TLS DHE DSS

WITH 3DES EDE CBC SHA ciphersuite (which we shorten to TLS DHE DSS) is a secure ACCE protocol, under
standard assumptions on the cryptographic components. Ciphersuites based on RSA key transport and static
Diffie–Hellman have since been shown ACCE-secure by both Kohlar et al. [21] and Krawczyk et al. [24]. (An
alternative modular approach to proving the full security of TLS was given by Brzuska et al. [7].)

But TLS is not just a basic secure channel: it consists of hundreds of variants with many optional complex
functionalities. Alert messages report various error conditions. Previous sessions can be resumed with a
shortened handshake. As of August 2013, over 300 ciphersuites—combinations of cryptographic primitives—
have been standardized. Client authentication is optional, and can be certificate-based or password-based.
Various additional options can be specified via extensions and optional fields. Record layer communication
can be compressed. And most importantly for this paper, after a TLS handshake has been completed and
transmission on the record layer has started, parties can renegotiate the handshake. There have been many
attacks on TLS over the years, such Bleichenbacher’s attack [6] and others involving padding, and Ray and
Dispensa’s renegotiation attack [29], all of which exploit flaws outside the core cryptographic primitives of
TLS.

In this paper, we focus on renegotiation, which allows two parties to either (a) obtain a fresh session key,
(b) change cryptographic parameters, or (c) change authentication credentials. For example, if a client needs
to authenticate using a client certificate but wishes to not reveal her identity over a public channel, she could
first authenticate anonymously (or with pseudonymous credentials), then renegotiate using her real certificate;
since the renegotiation messages are transmitted within the existing record layer, the transmission of her
certificate is encrypted, and thus she obtains privacy for her identity. We will examine TLS renegotiation in
detail, especially in light of previously identified practical attacks related to TLS renegotiation.

Despite the utility of renegotiation in real-world protocols—beyond TLS, renegotiation, rekeying, or
reauthentication is also used in the Secure Shell (SSH) protocol, Internet Key Exchange version 2, the Tor
anonymity protocol, and others—there has been almost no research in the literature on the security of
protocols involving renegotiation, with the exception of a brief note on the TLS renegotiation attack by
Farrell [12] and the recent thesis of Gelashvili [15], which uses the Scyther tool to automatically identify
the TLS renegotiation attack. Bhargavan et al. [4] implement TLS supporting a variety of ciphersuites and
define an application programming interface for TLS which differentiates between renegotiated phases; using
typechecking, the implementation is shown secure according to a formal specification, albeit with a restricted
adversary who cannot corrupt session keys.

3

Alice Eve Bob
(TLS server)

Bob
(application)

handshakeEB

record layerEB

m0 m0

handshakeAB

d
e
la
y
e
d

b
y
E
v
e

record layerAB

m1 m1 m0‖m1

Figure 1: Ray and Dispensa’s man-in-the-middle renegotiation attack on TLS-reliant applications

1.1 The TLS Renegotiation Issue

All versions of TLS [9, 10, 11], and SSL v3 [13] before it, support optional renegotiation. After the initial
handshake is completed and secure communication begins in the record layer, either party can request
renegotiation. The client can request renegotiation by sending a new ClientHello message in the current
record layer (i.e., encrypted under the current session key); the server can request renegotiation by sending a
HelloRequest message in the record layer, which triggers the client to send a new ClientHello message.

In November 2009, Ray and Dispensa [29] described a man-in-the-middle attack that exploits how certain
TLS-reliant applications—such as HTTP over TLS [30]—process data across renegotiations. The attack is
shown in Figure 1. The attacker Eve observes Alice attempting to establish a TLS session with Bob. Eve
delays Alice’s initial ClientHello and instead establishes her own TLS session with Bob and transmits a
message m0 over that record layer. Then Eve passes Alice’s initial ClientHello to Bob over the Eve–Bob
record layer. Bob views this as a valid renegotiation and responds accordingly; Eve relays the handshake
messages between Alice and Bob, who eventually establish a new record layer to which Eve has no access.
Alice then transmits a message m1 over the Alice–Bob record layer.

This is not strictly speaking an attack on TLS but on how some applications process TLS-protected data.
It results from some applications, including HTTPS [29] and SMTPS [34], concatenating m0 and m1 and
treating them as coming from the same party in the same context. For example, if Eve sends the HTTP
request m0 and Alice sends the HTTP request m1, where

m0 = “GET /orderPizza?deliverTo=123-Fake-St←↩
X-Ignore-This: ”

m1 = “GET /orderPizza?deliverTo=456-Real-St←↩
Cookie: Account=111A2B”

(where ←↩ denotes new-line character), then the concatenated request (across multiple lines for readability) is

m0‖m1 = “GET /orderPizza?deliverTo=123-Fake-St←↩
X-Ignore-This: GET /orderPizza?deliverTo=456-Real-St←↩
Cookie: Account=111A2B”

The “X-Ignore-This:” prefix is an invalid HTTP header, and since this header, without a new line character,
is concatenated with the first line of Alice’s request, so this line is ignored. However, the following line, Alice’s
account cookie, is still processed. Eve is able to have the pizza delivered to herself but paid for by Alice.

It should be noted that Ray and Dispensa’s attack works for both server-only authentication and mutual
authentication modes of TLS: the use of client certificates in general does not prevent the attack [29, 34].

1.2 Countermeasures Added to TLS

The immediate recommendation due to this attack was to disable renegotiation except in cases where it
was essential. Subsequently, the Internet Engineering Task Force (IETF) TLS working group developed
RFC 5746 [31] to provide countermeasures to this attack, with the goal of applicability to SSLv3.0 and TLS

4

versions 1.0–1.2. Two countermeasures were standardized: the Signalling Ciphersuite Value (SCSV) and the
Renegotiation Information Extension (RIE). These were adopted by major TLS implementation providers
and web browsers and servers, including Apache, Apple, Google, Microsoft, Mozilla, and OpenSSL. In RIE,
the parties include the key confirmation value from the previous handshake in a ClientHello/ServerHello
extension [5], demonstrating they have the same view of the previous handshake, or a distinguished null value
if not renegotiation. SCSV is a slight modification that is more compatible with buggy implementations. A
diagram showing the message flow for a generic TLS ciphersuite with SCSV/RIE countermeasures appears in
Figure 5 in Appendix D. According to one survey [33], as of July 2013, 82% of TLS-enabled websites support
SCSV/RIE, with 9% still supporting insecure renegotiation and 9% not supporting renegotiation.

Renegotiation Information Extension (RIE). This countermeasure essentially provides handshake
recognition, confirming that when renegotiating both parties have the same view of the previous handshake.
With this countermeasure, each client or server always includes a renegotiation information extension in
its respective ClientHello or ServerHello message. This extension contains one of three values. If the
party is not renegotiating, then it includes a fixed “empty” string which denotes that the party supports
and understands the renegotiation extension, and the party is in fact not renegotiating. If the party is
renegotiating, then it includes the handshake/key confirmation value from the previous handshake: the
client sends the previous client verify data value while the server sends the concatenation of the previous
client verify data and server verify data values. Intuitively, by including the verify data from the
previous handshake, the parties can be assured that they have the same view of the previous handshake, and
thus the attack in Figure 1 is avoided.

Signalling Ciphersuite Value (SCSV). SCSV was designed to avoid interoperability problems with TLS
1.0 and SSL 3.0 implementations that did not gracefully ignore extension data at the end of ClientHello
and ServerHello messages. With SCSV, the client uses an alternative method in its initial handshake—an
extra, fixed, distinguished ciphersuite value (byte codes 0x00,0xFF) including in its ciphersuite list—to
indicate that it knows how to securely renegotiate. Old servers will ignore this extra value; new servers will
recognize that the client supports secure renegotiation, and the server will use the RIE in the remainder of
the session. In other words, the only difference between SCSV and RIE is in the ClientHello message of
the initial handshake: with RIE, the client sends an empty extension, whereas with SCSV the client sends a
distinguished value in the list of supported ciphersuites.

1.3 Contributions

Security model for renegotiable channel establishment protocols. In Section 2, we present a new
security model for renegotiable protocols. Since our goal is to analyze the security of TLS, we start from
the ACCE model, rather than AKE security models. The primary difference in our model for renegotiable
protocols is that each party’s oracle (session) can have multiple phases; each new phase corresponds to a
renegotiation in that session, and can involve the same or different long-term keys.1 This is qualitatively
different than simply having multiple sessions, since short-term values from one phase of a session may be
used in the renegotiation for the next phase, whereas multiple sessions only share long-term values. Each
oracle maintains state and encryption/MAC keys for each phase. Like in TLS, our formalism allows control
messages to be sent on the encrypted channel. Our extension to the ACCE model also models server-only
authentication in addition to mutual authentication.

The basic goals of a secure renegotiable ACCE protocol are that (a) the adversary should not be able to
read or inject messages on the encrypted channel, and (b) whenever parties successfully renegotiate, they
should have exactly the same view of all previous negotiations and all encrypted messages sent in all previous
phases of that session, even when values from previous phases have been compromised.

Analysis of TLS without and with SCSV/RIE countermeasures. Based on the TLS renegotiation
attack of Ray and Dispensa, we see in Section 3 that TLS without countermeasures is not secure in our

1Note that TLS standards use different words. We say a single session can have multiple phases; the TLS standards refer to
a single connection having multiple sessions.

5

model for renegotiation. We subsequently show in Section 4 that, generically, TLS with the SCSV/RIE
countermeasures of RFC 5746 [31] is a weakly secure renegotiable ACCE protocol. In this slightly weaker—but
still quite reasonable—model, the adversary is slightly restricted in the previous secrets she is allowed to
reveal.

Our approach for proving the renegotiable security of TLS with SCSV/RIE countermeasures is modular.
We cannot generically prove that an ACCE-secure TLS ciphersuite is, with SCSV/RIE, a weakly secure
renegotiable ACCE, because the protocol itself is modified by including SCSV/RIE and hence a black-box
approach does not work. Instead, we consider tagged TLS where an arbitrary tag can be provided as an
extension. Via a chain of results and models, we show that if a tagged TLS ciphersuite is secure in an ACCE
variant where Finished messages are revealed, then that TLS ciphersuite with SCSV/RIE is a weakly secure
renegotiable ACCE protocol. This provides a generic justification for the security of SCSV/RIE. Proving
that TLS ciphersuite secure in this tagged variant model seems to be almost no harder than a proof that it is
ACCE-secure; we only needed to change a few lines from the ACCE security proof of TLS DHE DSS [18].

Current formulations of ACCE focus on protocols with forward secrecy. Although ephemeral Diffie–
Hellman TLS ciphersuites are not currently as widely used as RSA key transport-based ciphersuites, they are
growing in use, for example with Google’s 2011 announcement that their default ciphersuite is ephemeral
elliptic curve Diffie–Hellman [25]. We also describe how our approach to renegotiation could be extended if
and when ciphersuites without forward secrecy, such as RSA key transport, are shown ACCE-like-secure.

New countermeasure for TLS. TLS with SCSV/RIE cannot meet our strongest notion of renegotiable
security, only the weaker notion described above. In the strong definition, even if the adversary learns the
session key of one phase, parties who later renegotiate still should detect any earlier message injections by
the adversary. Though the ability to learn session keys of phases while the protocol is still running makes
the adversary quite powerful, this may be realistic in scenarios with long-lived session keys, for example
with session resumption. We present in Section 5 a simple adjustment to the renegotiation information
extension—adding a fingerprint of the transcript of the previous phase’s record layer—so TLS can achieve this
stronger security notion. This countermeasure can be seen as providing record layer recognition, confirming
that both parties have the same view of all communicated messages, rather than just handshake recognition
as in the SCSV/RIE countermeasure.

Table 1 summarizes our results on TLS and renegotiation countermeasures. While our theorems are
specific to TLS, our definitional framework is suitable for any channel establishment protocol that involves
renegotiation, and could for example be used to check if renegotiation in the Secure Shell (SSH) protocol
really is secure [26].

On composability and the choice of ACCE. It would be desirable to prove the security of the TLS
renegotiation countermeasures via some kind of composability framework, such as universal composability
or the game-based composability framework of Brzuska et al. [7]. Unfortunately, this is not possible with
existing security definitions for TLS. The TLS renegotiation countermeasures are not achieved by composing
in a black-box manner one protocol or primitive with another. Instead, the SCSV/RIE countermeasure looks
inside the protocol and changes it in a white-box way: it modifies the messages sent by the protocol, and
re-uses an internal value. Thus we cannot make use of existing security results in a black-box compositional
way. Our approach is the “next best thing”: we modify an existing security definition (ACCE) in what seems
to be a minimal way, adding just enough “hooks” to get at the internal values needed to modify and re-use
the required values for the SCSV/RIE countermeasure. We are then able to prove in a fully generic way that
any TLS protocol that satisfies this slightly modified ACCE notion with hooks is, when using the SCSV/RIE
countermeasure, secure against renegotiation attacks. Since the hooks added are quite small, it is not much
work to change a proof that a TLS ciphersuite is ACCE secure to show that it satisfies this slightly modified
ACCE notion as well.

Of the two existing definitional approaches for proving the full security of the TLS protocol [18, 7], we
chose the ACCE approach over the game-based composability approach because renegotiation in TLS makes
extensive use of the interplay between the handshake and record layer.

Moreover, the modifications we make to the execution environment to enable analysis of renegotiable
ACCE protocols can be adapted to capture renegotiation and rekeying in other types of protocols such as
authenticated key exchange.

6

2 Security Definitions for Multi-Phase and Renegotiable ACCE

In this section we describe what a multi-phase authenticated and confidential channel establishment (ACCE)
protocol is and our various renegotiation security notions. Essentially, a multi-phase protocol can have many
key exchanges—each called a phase—linked to a single session. Our definition builds on the ACCE definition
of Jager et al. [18], which combined the Bellare–Rogaway model for authenticated key exchange [2] with a
Jager et al.’s stateful variant of Paterson et al.’s length-hiding authenticated encryption [28] , described in
detail in Appendix A.2 .

Notation. If S is a set, x
$← S denotes sampling a value x uniformly at random from S. x

$← A(y) denotes
the output x of the probabilistic algorithm A when run on input y and randomly chosen coins. AO(·) means
A is run with access to oracle O(·). The notation [1, n] denotes the set {1, 2, . . . , n}; phases[`] denotes the `th
entry in the 1-indexed array phases and |phases| denotes the number of entries in the array. πsA.x denotes
variable x stored in oracle instance πsA.

2.1 Overview

The first security notion, a secure multi-phase ACCE protocol, is a straightforward extension of the ACCE
model to allow multiple, independent phases per session; notably, we require essentially no link between
phases:

• An adversary breaks (multi-phase) authentication if a party accepts in a phase with uncorrupted
long-term keys, but no matching phase exists at the peer.

• An adversary breaks confidentiality/integrity if it can guess the bit b involved in a confidentiality/integrity
experiment similar to stateful length-hiding authenticated encryption.

Our main security definition is a secure renegotiable ACCE protocol, which strengthens the authentication
notion: parties should successfully renegotiate only when they have exact same view of everything that
happened before.

• An adversary breaks renegotiation authentication if a party accepts in a phase where long-term keys
have not been corrupted, but either no matching phase exists at the peer or some previous handshake
or record layer transcript does not match.

However, it is not possible to prove that TLS with the SCSV/RIE countermeasures is a secure renegotiable
ACCE protocol: as we will see in Section 3, the strong definition requires that the views of parties match
when successfully renegotiating, even when previous sessions’ long-term secret keys or session keys were
revealed. TLS’s SCSV/RIE countermeasures do not fully protect against the case when these secret values
are revealed.

As a result, we introduce the weaker, though still quite reasonable, notion of a weakly secure renegotiable
ACCE protocol, and prove in Section 3 that the SCSV/RIE countermeasure for TLS generically provides it:

• An adversary breaks weak renegotiation authentication if a party accepts in a phase with uncorrupted
long-term keys and session keys for each earlier phase were not revealed while that phase was active,
but either no matching phase exists at the peer or some previous handshake or record layer transcript
does not match.

We proceed by describing the execution environment for adversaries interacting with multi-phase ACCE
protocols, then define the various security notions described above.

2.2 Execution Environment

Parties. The environment consists of npa parties, {P1, . . . , Pnpa
}. Each party PA is a potential protocol

participant, and has a list of nke long-term key pairs (pkA,1, skA,1), . . . , (pkA,nke
, skA,nke

). We assume that
each party PA is uniquely identified by any one of its public keys pkA,∗. In practice, there may be other
identities that are bound to these public keys, e.g. by using certificates, but this is out of scope of this paper.
It is common in AKE security models to assume ideal distribution of long-term public keys for simplicity
[2, 8, 18].

7

Sessions. Each party PA can participate in up to nse sessions, which are independent executions of the
protocol and can be concurrent or subsequent; all of a party’s sessions have access to the same list of its
long-term key pairs, as well as a trusted list of all parties’ public keys. Each session s ∈ [1, nse] is presented
to the environment as an oracle πsA. Each oracle πsA records in a variable πsA.d the oracle corresponding to
the intended communication partner, e.g.πsA.d = πtB. As well, the variable ρ ∈ {Client,Server} records the
role of the oracle. Parties can play the role of the client in some sessions and of the server in other sessions,
but their role is fixed across all phases within a session.

Phases. Each session can consist of up to nph phases. Each phase consists of two stages: a pre-accept,
or “handshake”, stage, which is effectively an AKE protocol that establishes a session key and performs
mutual or server-only authentication; and a post-accept, or “record layer”, stage, which provides a stateful
communication channel with confidentiality and integrity. A list πsA.phases of different phase states is

maintained; we sometimes use the notation πs,`A for πsA.phases[`]. There can be at most nph phases per oracle.
The last entry of πsA.phases contains the state of the current phase, which may still be in progress. Each
entry πsA.phases[`] in the log contains:

• pk, the public key used by πsA in that phase,
• pk′, the public key that πsA observed as being used for its peer in that phase2,
• ω ∈ {0, 1}, denoting the authentication mode used, where 0 indicates that server-only authentication is

used in that phase and 1 indicates mutual authentication,
• ∆, a counter used to keep track of the current status of the protocol execution,
• α, either accept, reject, or ∅ (for in-progress),
• k, the encryption and/or MAC key(s) established by πsA in that phase,
• T , the transcript of all (plaintext) messages sent and received by πsA during the pre-accept stage of that

phase,
• RTs and RTr, the transcripts of all ciphertexts sent and received (respectively) in the post-accept phase

by πsA encrypted under the key established in that phase,
• b, a random bit sampled by the oracle at the beginning of the phase, and
• st, some additional temporary state (which may, for instance, be used to store ephemeral Diffie–Hellman

exponents for the handshake, or state for the sLHAE scheme for the record layer).

The internal state is initialized to d ← ∅, pk ← ∅, pk′ ← ∅, ω ← ∅, ∆ ← 1, α ← ∅, k ← ∅, T ← ∅,
RT ← ∅, b $← {0, 1}, and st← ∅. When describing a protocol, we will enumerate the protocol messages. The
oracles keep track of the protocol execution by setting the counter state equal to the message number that
the oracles expect to receive next, and update the counter on each message sent (∆ ← ∆ + 1). Once a
phase of a protocol accepts (that is, an encryption key has been negotiated and authentication is believed
to hold), then α is set to accept. If the protocol rejects and the oracle wishes to discontinue operation,
the counter ∆ can be set to the special symbol reject. Whenever a new handshake initialization message
is received, the oracle adds a new entry to its phases list. The variable ω is set at some point during (or
before) the protocol execution, depending on the protocol specification (e.g.in case of TLS, the server can
send the message CertificateRequest to request client, i.e. mutual, authentication, otherwise server-only
authentication is used). Application data messages sent and received encrypted under a newly established
encryption key (e.g. messages sent in the TLS record layer) will be appended to variables RTs and RTr in
the latest entry of the log. If handshake messages for the renegotiation of a new phase are encrypted under
the previous phase’s session key (as they are in TLS), the plaintext messages are appended to variable T in
the new entry of the phase log, and ciphertexts are appended to RT in the previous phase.

Remark 1. The introduction of multiple phases is the main difference compared to previous AKE and
ACCE models. We need to allow multiple authentications and key exchanges within one oracle to capture
the functionality of renegotiation. When limited to a single phase and when each party has only one long-
term key pair, our execution environment/security experiment is equivalent to the original ACCE model of
Jager et al. [18].

2One of the public keys may remain empty, if no client authentication is requested.

8

Adversarial interaction. The adversary interacts with oracles by issuing the following queries, which
allow her to control (forward/alter/create/drop) all communication on the public channel (Send), learn
parties’ long-term secret keys (Corrupt), learn session keys (Reveal), and control sending and receiving of
arbitrary messages on the encrypted record layer (Encrypt/Decrypt) using a stateful symmetric encryption
scheme StE (Appendix A.2).

• Send(πsA,m): The adversary can use this query to send any (plaintext) message m of its choosing
to (the current phase of) oracle πsA. The oracle will respond according to the protocol specification,
depending on its internal state. Some distinguished control messages have special behaviour:

– m = (newphase, pk, ω) triggers an oracle to initiate renegotiation of a new phase (or new session if
first phase). Note that the action here may vary based on the role of the party: for example, when
renegotiating in TLS, a client would prepare a new ClientHello message, encrypt it by calling
the Encrypt oracle below, and then return the ciphertext to the adversary for delivery; a server
would correspondingly prepare an encrypted ServerHelloRequest message.

– m = (ready, pk, ω) activates a (server) oracle to use the public key pk in its next phase.

For the above control messages, pk indicates the long-term public key pk the oracle should use in the
phase and ω indicates the authentication mode to use; the oracle returns ⊥ if it does not hold the secret
key for pk. Since the control messages do not specify the identity of the peer, this is instead learned
during the run of the protocol: we are using a post-specified peer model [8]. Delivery of encrypted
messages in the post-accept stage are handled by the Decrypt query below. For protocols such as TLS
that perform renegotiation within the encrypted channel, the oracle may reply with an error symbol ⊥
if it has at least one entry in phases and m 6= (newphase, ·) or (ready, ·).

• Corrupt(PA, pk): Oracle π1
A responds with the long-term secret key skA,i corresponding to public key

pk = pkA,i of party PA, or ⊥ if there is no i such that pk = pkA,i. This is the weak corruption model,
meaning we do not allow the adversary to obtain the party’s internal state nor register rogue keys.

• Reveal(πsA, `): Oracle πsA responds with the key(s) πsA.phases[`].k used in phase `, or ∅ if no such value
exists. Since the TLS record layer is unidirectional, there are both encryption and decryption keys, and
for most ciphersuites also MAC keys, so all 4 keys (KC→S

enc ,KS→C
enc ,KC→S

mac ,KS→C
mac) would be revealed,

though one could refine if desired.
• Encrypt(πsA, ctype,m0,m1, len, hd): This query takes as input a content type ctype, messages m0 and
m1, a length len, and header data hd. Content type control is used for handshake messages. The
adversary cannot query this oracle with ctype = control. Through an abuse of notation, we allow the
party itself to call this oracle with control to encrypt protocol messages that must be sent encrypted;
this abuse of notation allows the party to construct encrypted protocol messages while all aspects of
the security experiment remain synchronized. Content type data is used for record layer messages; in
this case, one of the two messages (chosen based on bit b) is encrypted for the adversary to distinguish.
Encrypt depends on the random bit b sampled by πsA at the beginning of the current phase. It maintains
a counter u initialized to 0 and an encryption state ste, and proceeds as follows:

1. usA ← usA + 1
2. If (ctype = control) and caller is not πsA, then return ⊥
3. (C(0), st

(0)
e)

$← StE.Enc(k, len, hd, ctype‖m0, ste)

4. (C(1), st
(1)
e)

$← StE.Enc(k, len, hd, ctype‖m1, ste)
5. If (C(0) = ⊥) or (C(1) = ⊥), then return ⊥
6. (CsA[usA], ste)← (C(bAs), st

(bsA)
e)

7. Return CsA[usA]

• Decrypt(πsA, C, hd): This query takes as input a ciphertext C and header data hd. If πsA has not
accepted in the current phase, then it returns ⊥. Decrypt maintains a counter v and a switch diverge,
both initialized to 0, and a decryption state std, and proceeds as described below. If the decryption
of C contains a control message, then the oracle processes the message according to the protocol
specification, which may include updating the state of the oracle and/or creating a new phase, and
returns any protocol response message to the adversary, which may or may not be encrypted by calling
Encrypt according to the protocol specification. Technically it proceeds as follows:

1. (B, t)← πsA.d, vsA ← vsA + 1, m′ ← ∅

9

2. (ctype‖m, std) = StE.Dec(k, hd, C, std)
3. If (vsA > utB) or (C 6= CtB [vsA]), then diverge← 1
4. If (bsA = 1) and (diverge = 1), then m′ ← m
5. If ctype = control, then r′ ← protocol response for m
6. Else r′ ← ⊥
7. Return (m′, r′)

Remark 2. Note that k may be a ‘multi-part’ key with different parts for encryption, decryption, and MAC;
we assume StE.Enc and StE.Dec know which parts to use. Also note that the ‘protocol response for m′ may be
encrypted by the party internally making an Encrypt call.

The behaviour of the Decrypt oracle in this combined definition for confidentiality and integrity can be
somewhat difficult to understand. It extends that of stateful length-hiding authenticated encryption , for
which we give the definition and an explanation in Appendix A.2.

Let us review how an adversary would use the oracles to carry out a normal TLS negotiation and
renegotiation. First the adversary uses the Send query to deliver newphase and ready messages to the
client and server. The client responds to the Send query with a ClientHello message; the server responds
with ⊥. The adversary delivers the first message from the client to the server by calling the server’s Send
oracle, which returns the next message from the server to the client (ServerHello, ServerKeyExchange,
etc.). The adversary delivers these to the client via a Send query. The client responds with several plain
text messages (such as ClientKeyExchange) as well as a ChangeCipherSpec message. There is one more
message, the client’s Finished message, which the client first encrypts using an internal Encrypt call. The
plaintext messages are delivered by the adversary to the server using Send and the encrypted message is
delivered using Decrypt. The response by the server from Send will be a ChangeCipherSpec message and
the response by the server from Decrypt will the server’s Finished message, which the server first encrypts
using an internal Encrypt oracle call. The encrypted message is delivered by the adversary using Decrypt.
The parties set α = accept and are now ready to use the record layer, which the adversary can make use of
by matching Encrypt/Decrypt queries. When the adversary wants to trigger client-initiated renegotiation,
it sends a newphase message via a Send query to the client, who responds with a ClientHello message
encrypted via an internal Encrypt call. The adversary delivers this to the server by a Decrypt call; the server
responds with an encrypted protocol message, and so on. Note that the plaintext handshake messages are
appended to the new phase’s transcript T and the ciphertext handshake messages are also appended to the
current existing phase’s transcript RT . When the parties accept in the phase, they begin using the encryption
keys for the new phase.

2.3 Security Definitions

In the original security definition for ACCE protocols, security is defined by requiring that (i) the protocol is
a secure authentication protocol, thus any party πsA reaches the post-accept state only if there exists another
party πtB such that πsA has a matching conversation (in the sense of [18] , reproduced in Appendix A.1) to
πtB , and (ii) data transmitted in the post-accept stage over a secure channel is secure (in a sense similar to
sLHAE).

We extend this notion to include security when a session has multiple phases that can be renegotiated. We
will give several security definitions with different levels of security against renegotiation attacks, as described
in the introduction to Section 2.

Each security notion is formally defined as a game played between an adversary A and a challenger C,
with the same overall setup but different winning conditions. In each game, the challenger implements the
collection of oracles {πsA : A ∈ [1, npa], s ∈ [1, nse]}. At the beginning of the game, the challenger generates
nke long-term key pairs (pkA,1, skA,1), . . . , (pkA,nke

, skA,nke
) for each party PA; we assume that, within a

party, all public key pairs are distinct. (That distinct parties have distinct key pairs comes as a consequence
of the protocol being secure.) The adversary receives all parties’ public keys as input. The adversary may
issue Send, Corrupt, Reveal, Encrypt, and Decrypt queries to the oracles and eventually terminates.

Table 1 at the end of the section provides a comparative summary of the various security notions introduced
in this section, as well as a summary of the results on TLS that appear in the rest of this paper.

10

Definition 1 (Correct multi-phase ACCE). We say Π is a correct multi-phase ACCE protocol if, for
all oracles πsA with destination address πsA.d = πtB, and for all `, `′ ∈ [1, nph] for which πsA.phases[`].T
and πtB .phases[`′].T are matching conversations, it holds that πsA.phases[`].α = πtB .phases[`′].α = accept,
πsA.phases[`].ω = πtB .phases[`].ω and πsA.phases[`].k = πtB .phases[`′].k.

2.3.1 Confidentiality.

All of our notions for secure ACCE protocols will require confidentiality/integrity of the post-accept stage
record layer in each uncorrupted phase. Intuitively, an adversary should not be able to guess the bit b used
in the Encrypt/Decrypt oracles in a phase where she has not impersonated the parties (i.e., corrupted the
long-term secret keys before the phase accepted) or revealed the session key of the party or its peer. As with
the ACCE notion of Jager et al. [18], this notion ensures forward security: corrupting long-term secret keys
after completion of a session should not impact confidentiality/integrity of messages. (We discuss how these
definitions could be extended to the non-forward-secure case in Appendix B.)

Definition 2 (Confidentiality/integrity). Suppose an algorithm A with running time τ interacts with a
multi-phase ACCE protocol Π in the above execution environment and returns a tuple (A, s, `, b′). If

C1. πsA.phases[`].α = accept; and
C2. A did not query Corrupt(PA, π

s
A.phases[`].pk) before πsA accepted in phase `; and

C3. A did not query Corrupt(PB , π
s
A.phases[`].pk′) before πsA accepted in phase `, where πsA.d = πtB; and

C4. A did not query Reveal(πsA, `); and
C5. A did not query Reveal(πtB , `

′), where πtB = πsA.d is πsA’s intended communication partner, and `′ is any
phase for which πtB .phases[`′].T is a matching conversation to πsA.phases[`].T ; and

C6. |Pr [πsA.phases[`].b = b′]− 1/2| ≥ ε,
then we say A (τ, ε)-breaks confidentiality/integrity of Π.

2.3.2 Secure multi-phase ACCE.

First we state a straightforward extension of the ACCE model to protocols with multiple phases, but with
essentially no security condition relating one phase to another. This definition captures the properties of
TLS without any renegotiation countermeasures, and will be used as a stepping stone in our generic result in
Section 4. For this simplest notion of authentication, an adversary should not be able to cause a phase to
accept unless there exists a phase at the peer with a matching pre-accept handshake transcript, provided she
has not impersonated the parties (i.e., corrupted long-term secret keys before the phase accepted).

Definition 3 (Secure multi-phase ACCE). Suppose an algorithm A with running time τ interacts with a
multi-phase ACCE protocol Π in the above execution environment and terminates. If, with probability at least
ε, there exists an oracle πsA with πsA.d = πtB and a phase ` such that

A1. πsA.phases[`].α = accept; and
A2. A did not query Corrupt(PA, π

s
A.phases[`].pk) before πsA accepted in phase `; and

A3. A did not query Corrupt(PB , π
s
A.phases[`].pk′) before πsA accepted in phase `; and

A4. if πsA.phases[`].ω = 0 then πsA.ρ = Client; and
A5. A did not query Reveal(πtB , `

′) before πsA accepted in phase ` for any `′ such that πtB .phases[`′].T is a
matching conversation to πsA.phases[`].T ; and

M. there is no `′ such that πtB .phases[`′].T is a matching conversation to πsA.phases[`].T

then we say that A (τ, ε)-breaks authentication of Π.
A protocol Π is a (τ, ε)-secure multi-phase ACCE protocol if there exists no algorithm A that (τ, ε)-breaks

confidentiality/integrity (Def. 2) or authentication (as above) of Π.

In A1 and M we redefine the NoMatch-condition from [2]. In A2 we exclude leaking of the secret long-term
keys of the accepting party (necessary for example to counter key compromise impersonation attacks [23]).
In A3 we exclude corruptions of the peer. In A4 (only for server-only authentication), we ensure that the
adversary only wins by making a client-oracle maliciously accept. In A5 we exclude trivial attacks that exist
for protocols with explicit key confirmation and probabilistic computations under the negotiated key.

11

The secure multi-phase ACCE definition when limited to a phase per session and a single key pair per
party (nph = nke = 1) collapses to an extension of the original ACCE definition, the extension being support
for server-only authentication.

2.3.3 Secure renegotiable ACCE.

We next strengthen the authentication notion to include renegotiation. Intuitively, an adversary should
not be able to cause a phase to accept unless there exists a phase at the peer with a matching pre-accept
handshake transcript and all previous phases’ handshake and record layer transcripts match, provided she has
not impersonated the parties in the current phase. We will show in Section 5 that TLS with our proposed
countermeasure satisfies this definition.

Definition 4 (Secure renegotiable ACCE). Suppose an algorithm A with running time τ interacts with a
multi-phase ACCE protocol Π in the above execution environment and terminates. If, with probability at least
ε, there exists an oracle πsA with πsA.d = πtB and a phase `∗ such that

A1–A5 as in Definition 3 with `∗, and either
M′(a) πtB .phases[`∗].T is not a matching conversation to πsA.phases[`∗].T or
M′(b) for some ` < `∗, πsA.phases[`].T‖RTs‖RTr 6= πtB .phases[`].T‖RTr‖RTs;
we say A (τ, ε)-breaks renegotiation authentication of Π.

A protocol Π is a (τ, ε)-secure renegotiable ACCE protocol if there exists no algorithm A that (τ, ε)-breaks
confidentiality/integrity (Def. 2) or renegotiation authentication (as defined above) of Π.

2.3.4 Weakly secure renegotiable ACCE.

Unfortunately, TLS with SCSV/RIE does not meet Def. 4 because, as we will see in Section 4.1, revealing
session keys in earlier phases allows the adversary to change the messages on the record layer in earlier phases,
but SCSV/RIE will not detect this.

Of course, revealing earlier phases’ session keys while that phase is active and still expecting detection
when renegotiating later is a strong security property, and the lack of this property does not imply an attack
in most scenarios. Our desire to characterize the renegotiable security of the SCSV/RIE countermeasure
motivates a slightly weaker renegotiation notion: when previous phases’ session keys are not revealed while
that phase is active and the current phase’s long-term secret keys are not corrupted, no adversary should be
able to cause a phase to accept unless there exists a phase at the peer with a matching pre-accept handshake
transcript and all previous phases’ handshake and record layer transcripts match.

Definition 5 (Weakly secure renegotiable ACCE). Suppose an algorithm A with running time τ interacts
with a multi-phase ACCE protocol Π in the above execution environment and terminates. If, with probability
at least ε, there exists an oracle πsA with πsA.d = πtB and a phase `∗ such that all conditions from Def. 4, as
well as the following additional conditions are satisfied:

A6. A did not issue a Reveal(πsA, `) query before πsA accepted in phase `+ 1, for every ` < `∗, and
A7. A did not issue a Reveal(πtB , `) query before πsA accepted in phase `+ 1, for every ` < `∗;

then we say that A (τ, ε)-breaks weak renegotiation authentication of Π.
A protocol Π is a (τ, ε)-weakly secure renegotiable ACCE protocol if there exists no algorithm A that

(τ, ε) breaks confidentiality/integrity (Def. 2) or weak renegotiation authentication (as defined above) of Π.

Remark 3. While conditions A6 and A7 prohibit the adversary from revealing encryption keys of previous
phases while active for the purposes of breaking authentication, the confidentiality/integrity aspect of Def. 5
still places no such restriction on previous encryption keys being revealed.

Remark 4. The chain of implications between Defns. 3–5 is as follows: secure renegotiable ACCE protocol
(Defn. 4) =⇒ weakly secure renegotiable ACCE (Defn. 5) =⇒ secure multi-phase ACCE (Defn. 3) =⇒
ACCE protocol [18]. The separations are strict, as seen in Table 1.

12

Secure
multi-phase

ACCE

Weakly secure
renegotiable

ACCE

Secure
renegotiable

ACCE
(Defn. 3) (Defn. 5) (Defn. 4)

Secure against Ray–Dispensa-type attack × X with query
restrictions A6,A7 X

Authentication
A2. Corrupt pk before acceptance not allowed not allowed not allowed
A3. Corrupt peer’s pk before acceptance not allowed not allowed not allowed
A5. Reveal session keys during active handshake not allowed not allowed not allowed
A6. Reveal session keys of previous phases allowed not allowed allowed
A7. Reveal session keys of previous phases allowed not allowed allowed
M. every phase that accepts has a matching handshake
transcript at some phase of the peer implied

M′(a) every phase that accepts has a matching
handshake transcript at the same phase of the peer implied implied

M′(a) when a phase accepts, handshake and record layer
transcripts in all previous phases equal those at the peer implied implied

Confidentiality/integrity (Defn. 2) implied implied implied

TLS ∗ without countermeasures — × (Sect. 3) × (Sect. 3)

Tagged-ACCE-fin-secure TLS ∗ with SCSV/RIE
countermeasure

— X(Thm. 1) —

TLS RSA with SCSV/RIE countermeasure ?1 × (App. B.2) / ?1 × (Sect. 4.1)

TLS DHE DSS with SCSV/RIE countermeasure X (Cor. 2) X (Cor. 2) × (Sect. 4.1)

Secure multi-phase TLS ∗ with new (Sect. 5)
countermeasure

— — X(Thm. 4)

TLS RSA with new (Sect. 5) countermeasure ?1 × (App. B.2) / ?1 × (App. B.2) / ?1

TLS DHE DSS with new (Sect. 5) countermeasure X (Thm. 4) X (Thm. 4) X (Thm. 4)

Table 1: Summary of security notions and results on TLS
1 TLS RSA key transport ciphersuites may be able to be shown secure under notions with suitable restrictions
on forward security; see discussion in Appendix B.

3 Renegotiation (In)security of TLS

We now discuss how the original TLS protocol, without SCSV/RIE countermeasures, fits into our model, and
show how the attack of Ray and Dispensa is captured in the model.

Jager et al. [18] in their full version [19, Fig. 3] described how to map TLS into the ACCE model. We
highlight a few components of that mapping, and the alterations needed for renegotiation.

Oracles generally respond to Send, Encrypt, and Decrypt queries as specified by the TLS handshake and
record layer protocols. The Send control message m = (newphase, pk) when sent to a client causes the client
to send a new ClientHello message, and when sent to a server causes the server to send a new HelloRequest

message. For the Encrypt and Decrypt queries, we use a content type field ctype that corresponds to the
ContentType field of the TLSPlaintext data type in the TLS record layer specification [11, §6.2.1]:

Packets with ContentType=change cipher spec (20) or handshake (22) are considered in our model
to have ctype = control and packets with ContentType=application data (23) are considered in our
model to have ctype = data. We do not explicitly handle ContentType=alert (21) messages. The Reveal
query reveals the encryption and MAC keys derived from the master secret key, not the master secret key
itself.

3.1 TLS without countermeasures is not a (weakly) secure renegotiable ACCE

Recall the TLS renegotiation attack by Ray and Dispensa [29], as described previously in Figure 1 on
page 4. The attacker Eve observes Alice attempting to establish a TLS session with Bob. Eve delays Alice’s
initial ClientHello and instead establishes her own TLS session with Bob and transmits a message m0 over

13

that record layer. Then Eve passes Alice’s initial ClientHello to Bob over the Eve–Bob record layer. Bob
views this as a valid renegotiation and responds accordingly; Eve relays the handshake messages between
Alice and Bob, who will eventually establish a new record layer to which Eve has no access. Alice then
transmits a message m1 over the Alice–Bob record layer. Intuitively, this is a valid attack: Alice believes this
is the initial handshake, but Bob believes this is a renegotiated handshake.

Formally, this attack is captured in our weakly secure renegotiable ACCE model of Definition 5 as follows.
Assume Alice and Bob each have a single oracle instance, and Eve has carried out the above attack. Then
for Bob’s oracle π1

Bob, the value of `∗ is 2: the last entry in phases where Bob has a matching handshake
transcript to some handshake transcript in Alice’s oracle π1

Alice is the second (and last) phases entry. The
attacker has broken renegotiation authentication at both Alice and Bob’s instances. At Alice by satisfying
condition M′(a) (Alice’s first handshake transcript does not match Bob’s first handshake transcript), and at
Bob by satisfying both M′(a) (Bob’s second handshake transcript does not match Alice’s second handshake
transcript) and M′(b) (for every ` < 2, Bob’s `th handshakes/record layer transcripts do not match Alice’s).
Thus TLS without countermeasures is not a weakly secure or secure renegotiable ACCE.

4 Renegotiation Security of TLS with SCSV/RIE Countermea-
sures

In this section we analyze the security of TLS with the SCSV/RIE countermeasures proposed in RFC 5746 [31].
We first see, in Section 4.1, that the SCSV/RIE countermeasures are not enough to prove that TLS satisfies
our strongest notion, a secure renegotiable ACCE (Defn. 4).

Our goal will be to show that TLS with the SCSV/RIE countermeasures is a weakly secure renegotiable
ACCE. Ideally, we would do so generically, with a result saying something like “If a TLS ciphersuite is a
secure ACCE, then that TLS ciphersuite with SCSV/RIE is a weakly secure renegotiable ACCE.” As noted
in the introduction, we do so generically since the protocol is modified to include the countermeasure values
in the ClientHello and ServerHello messages, and thus we cannot make use of the ACCE security of the
particular TLS ciphersuite in a black-box way. Moreover, we must ensure that revealing the Finished values
from the previous handshake does not impact its security. Although these barriers prevent a generic black-box
result, a white-box examination of the proof details of TLS DHE DSS [18] finds that only small changes are
needed in the proof.

We will provide a sequence of definitions and results that justifies the security of the SCSV/RIE
countermeasure. Figure 2 summarizes our approach.

1. Define a modified ACCE security model, called tagged-ACCE-fin, specific to TLS, in which the adversary
can reveal Finished messages after the handshake completes and supply tags to be used in extensions.

2. Define tagged TLS as a modification of a standard ciphersuite in which arbitrary opaque data can be
placed in an extension field in the ClientHello and ServerHello messages.

3. Explain how the existing proof of that TLS DHE DSS is ACCE secure can be modified in a very minor
way to show that tagged TLS DHE DSS is tagged-ACCE-fin-secure. For completeness, we give a full
proof of this fact in the appendix.

4. Show that, if a TLS ciphersuite is tagged-ACCE-fin secure, then that TLS ciphersuite with SCSV/RIE
is a secure multi-phase ACCE.

5. Show that, if a TLS ciphersuite with SCSV/RIE is a secure multi-phase ACCE, then it is also a weakly
secure renegotiable ACCE.

Combined, these results yield (a) a general result justifying the security of the SCSV/RIE countermeasure,
and (b) that TLS DHE DSS with SCSV/RIE countermeasures is a weakly secure renegotiable ACCE.

4.1 TLS with SCSV/RIE is not a secure renegotiable ACCE

Definition 4 requires that, even when the adversary can reveal previous phases’ session keys, the parties will
not successfully renegotiate if the attacker has manipulated the record layer. The SCSV/RIE countermeasures
do not protect against this type of adversary. They only provide assurance that handshake transcripts from
previous phases match exactly. TLS itself of course provides integrity protection for record layer transcripts
via the message authentication codes, but Definition 4 allows the adversary to reveal the encryption and
MAC keys of previous phases. Thus, an adversary who reveals the current encryption and MAC keys can

14

TLS DHE DSS

ACCE

[18]

TLS DHE DSS
+ tags

tagged-ACCE-fin

Thm. 1, p16

multi-phase ACCE

TLS + SCSV/RIE

Thm. 2, p25

weakly secure renegotiable ACCE

Thm. 3, p28

TLS + new
countermeasure

renegotiable ACCE

Thm. 4, p30

Legend:
Protocol

Model
A B

A is a secure B

C

D

E
If C is a secure D,

then C is also a secure E

Figure 2: Summary of results on TLS and renegotiation

modify record layer messages but Alice and Bob will still successfully renegotiate a new phase (although the
adversary must not alter the number of messages sent, as the number of record layer messages sent in the
previous phase happens to be protected by SCSV and RIE countermeasures).

We emphasize that while this demonstrates a theoretical weakness in TLS renegotiation countermeasures
compared to our very strong security model, it does not translate into an attack on TLS renegotiation
countermeasures when intermediate phases’ encryption and MAC keys are not revealed. SCSV/RIE meets its
original goal of authenticating the previous handshake.

4.2 Tagged-ACCE model and tagged TLS

In this section we introduce a variant of the ACCE model from which we can prove a generic result on the
renegotiable security of TLS with countermeasures. In our models, the tag can be an arbitrary string. For our
purpose of analyzing TLS with SCSV/RIE countermeasures, the tag will be the previous phase’s Finished

messages.

4.2.1 Tagged-ACCE security model

The tagged-ACCE security model is an extension of the ACCE security model to allow arbitrary tags as
follows. Since the original ACCE definition of Jager et al. [18] does not support server-only authentication,
while our definition allows both authentication modes, we extend the ACCE definition implied by limiting
multi-phase ACCE (Definition 3) to a single phase (nph = 1) and at most one public key per party (nke = 1).

The phases log phases is extended with an additional per-phase variable tag.

• Send(πsA,m). The adversary can specify an arbitrary tag during session initialization.

– If m = (newphase, ω, tag), the party sets its internal variable ρ← Client, sets authentication mode
ω, stores tag, and responds with the first protocol message.

– If m = (ready, ω, tag), the party sets ρ← Server, authentication mode ω, stores tag, and responds
with the next protocol message, if any.

The freshness and winning conditions of tagged-ACCE are unchanged from ACCE.

4.2.2 Tagged-ACCE-fin security model

We will work with a further variant, tagged-ACCE-fin, which is not a fully general security model but instead
is tied specifically to generic TLS protocols of the form given in Figure 5. It adds the following query:

• RevealFin(πsA): If α = accept, then return the finC and finS values sent/received by the queried
oracle. Return ∅ otherwise.

The following queries are modified:

15

• Encrypt(πsA, ctype,m0,m1, len, hd): The adversary is not prevented from querying with ctype =
control.

• Decrypt(πsA, C, hd): No semantic meaning is associated with ctype = control messages. In other words,
line 5 of Decrypt is removed.

We extend the Encrypt- and Decrypt-queries to allow the adversary to send and receive messages on the
encrypted channel with content type control. The freshness and winning conditions of tagged-ACCE-fin are
as in ACCE.

Remark 5. Revealing the Finished messages is very specific to the TLS protocol family and is not necessarily
relevant for other protocols. Imagine, for example, a variant of the SCSV/RIE countermeasure where a
separate hash of the complete transcript as it was sent over the channel is used as an authenticator. Since
this value can be computed by any passive adversary, leaking this value could not affect security.

4.2.3 Tagged TLS

Figure 5 shows a generic TLS ciphersuite, along with the SCSV/RIE extensions denoted in green with a
dagger. By tagged TLS, we mean the generic TLS ciphersuite from Figure 5, without any of the SCSV/RIE
extensions shown in green, but where an arbitrary string can be placed in the extC and extS fields. In other
words, it is a normal TLS ciphersuite, but with an arbitrary extension field that just carries strings that are
not being interpreted as having any particular meaning.

As noted in the beginning of this section, we cannot generically prove that, if a TLS ciphersuite is
ACCE-secure, then the tagged version of that ciphersuite is tagged-ACCE- or tagged-ACCE-fin-secure, as
we have made white-box modifications to the TLS protocol in introducing the SCSV/RIE countermeasure.
Thus we cannot use its security results in a black-box manner. However, in most cases, a white-box approach,
where the actual security proof is modified or extended, should be possible, and even very easy. This was
indeed the case when we examined tagged TLS DHE DSS .

For completeness, we will show that TLS DHE DSS is a secure tagged-ACCE-fin protocol. The proof follows
almost exactly the proof by Jager et al. [18] that TLS DHE DSS is a secure ACCE protocol. The intuition
that leaking the Finished messages does not affect security is as follows. The ACCE proof of TLS DHE DSS

exploits the fact that the pseudo-random function is keyed with a value chosen uniformly at random; the
proof then replaces the application keys and Finished messages with uniformly random values, which are
then completely independent of any information exchanged during the handshake. We can use the same
technique to show that no adversary having access to the plaintext Finished messages can break the security
of the sLHAE scheme used in the record layer. Including arbitrary extra data in the handshake messages
does not impact security.

Theorem 1 (Tagged TLS DHE DSS is a secure tagged-ACCE-fin). Let µ be the output length of PRF and let
λ be the length of the nonces rC and rS. Assume that the pseudo-random function PRF is (τ, εprf)-secure, the
signature scheme is (τ, εsig)-secure, the DDH-problem is (τ, εddh)-hard in the group G used to compute the TLS
premaster secret, the hash function is (τ, εH)-collision resistant, and the PRFODH-problem is (τ, εprfodh)-hard
with respect to G and PRF. Suppose that the stateful symmetric encryption scheme is (τ, εsLHAE)-secure.

For any adversary that (τ ′, εtls)-breaks the tagged TLS DHE DSS in the sense of Definition 3 in the tACCE
execution environment with τ ≈ τ ′ it holds that

εtls ≤
(npanse)

2

2λ−2
+ npanse ·

(
4npaεsig + 3εddh + (npanse + 2)

(
εPRFODH + εprf + εH +

1

2µ
+ εsLHAE

))
Recall that npa and nse are the maximum number of parties and sessions per party; in tagged-ACCE-fin, the
number of phases nph and number of keypairs nke are both at most 1.

To prove Theorem 1, we closely follow the approach of Jager et al. [19] and divide the set of all adversaries
into two categories:

1. Adversaries that succeed in making an oracle accept maliciously. We call such an adversary an
authentication-adversary.

2. Adversaries that do not succeed in making any oracle accept maliciously, but which answer the
encryption/integrity challenge. We call such an adversary an encryption-adversary.

16

Note that our proof proceeds exactly as the proof of Jager et al. to enable comparison, thus we also prove
Theorem 1 by two lemmas. Lemma 1 bounds the probability εauth that an authentication-adversary succeeds,
Lemma 2 bounds the probability εenc that an encryption-adversary succeeds. Then we have

εtls ≤ εauth + εenc .

Lemma 1. For any adversary running in time τ ′ ≈ τ , the probability that there exists an oracle πsi that
accepts maliciously is at most

εauth ≤
(npanse)

2

2λ−1
+ npanse ·

(
2npaεsig + εddh + (npanse + 2)

(
εPRFODH + εprf + εH +

1

2µ
+ εsLHAE

))
where all quantities are defined as stated in Theorem 1.

Note that εauth ≤ εclient + εserver, where εclient is an upper bound on the probability that there exists an
oracle with ρ = Client that accepts maliciously in the sense of Definition 3, and εserver is an upper bound on
the probability that there exists an oracle with ρ = Server that accepts maliciously. Also note that as εServer

is an upper bound, this implicitly covers the case of performing server-only authentication in all phases (and
by definition no server oracle can then accept maliciously, resulting in εServer = 0).

We claim that

εclient ≤
(npanse)

2

2λ
+ npanse ·

(
npaεsig + npanse

(
εPRFODH + εprf + εH +

1

2µ
+ εsLHAE

))
εserver ≤

(npanse)
2

2λ
+ npanse ·

(
npaεsig + εddh + 2εprf + εH +

1

2µ
+ εsLHAE

)
and thus

εauth ≤ εclient + εserver

≤ (npanse)
2

2λ−1
+ npanse ·

(
2npaεsig + εddh + (npanse + 2)

(
εPRFODH + εprf + εH +

1

2µ
+ εsLHAE

))
.

4.2.4 Proof of Lemma 1: εclient

Proof. We first show, that the probability that there exists an oracle with ρ = Client that accepts maliciously
in the sense of Definition 3 is negligible. The proof proceeds in a sequence of games, following [3, 32]. The first
game is the real security experiment. We then describe several intermediate games that modify the original
game step-by-step, and argue that our complexity assumptions imply that each game is computationally
indistinguishable from the previous one. We end up in the final game, where no adversary can break the
security of the protocol.

Let break
(1)
δ be the event that occurs when the first oracle that accepts maliciously in the sense of

Definition 3 with ρ = Client in Game δ.

Game 0. This game equals the multi-phase ACCE security experiment used in Section 2.2. Thus, for some
εclient we have

Pr[break
(1)
0] = εclient .

Game 1. In this game we add an abort rule. The challenger aborts if there exists any oracle πsi that
chooses a random nonce rC or rS which is not unique. More precisely, the game is aborted if the adversary
ever makes a first Send query to an oracle πsi , and the oracle replies with random nonce rC or rS such that

there exists some other oracle πs
′

i′ which has previously sampled the same nonce.
In total less than npanse nonces rC and rS are sampled, each uniformly random from {0, 1}λ. Thus, the

probability that a collision occurs is bounded by (npanse)
2 · 2−λ, which implies

Pr[break
(2)
0] ≤ Pr[break

(2)
1] +

(npanse)
2

2λ
.

Note that now each oracle has a unique nonce rC or rS , which is included in the signatures. We will use this
to ensure that each oracle that accepts with non-corrupted partner has a unique partner oracle.

17

Game 2. We try to guess which client oracle will be the first oracle to accept maliciously and the phase in
which this happens. If our guess is wrong, i.e., if there is another (Client or Server) oracle that accepts before
or if they accept in a different phase, then we abort the game.

Technically, this game is identical, except for the following. The challenger guesses two random indices

(i∗, s∗)
$← [npa]× [nse]. If there exists an oracle πsi that accepts maliciously, and (i, s) 6= (i∗, s∗) and πsi has

ρ 6= Client, then the challenger aborts the game. Note that if the first oracle πsi that accepts maliciously has
ρ = Client, then with probability 1/(npa · nse) we have (i, s) = (i∗, s∗), and thus

Pr[break
(2)
1] = npanse · Pr[break

(2)
2] .

Note that in this game the attacker can only break the security of the protocol if oracle πs
∗

i∗ is the first oracle
that accepts maliciously and has ρ = Client; otherwise the game is aborted.

Game 3. Again the challenger proceeds as before, but we add an abort rule. We want to make sure that
πs
∗

i∗ receives as input exactly the Diffie–Hellman value TS that was selected by some other uncorrupted oracle
that received the nonce rC chosen by πs

∗

i∗ as first input (note that there may be several such oracles, since
the attacker may send copies of rC to many oracles).

Technically, we abort and raise event abortsig, if oracle πs
∗

i∗ ever receives as input a message m3 = certS
indicating intended partner Π = j and message m4 = (p, g, TS , σS) such that σS is a valid signature over
rC‖rS‖p‖g‖TS , but there exists no oracle πtj which has previously output σS . Clearly we have

Pr[break
(1)
2] ≤ Pr[break

(1)
3] + Pr[abortsig] .

Note that the experiment is aborted, if πs
∗

i∗ does not accept maliciously, due to Game 2. This means that
party Pj must not be corrupted when πs

∗

i∗ accepts (as otherwise πs
∗

i∗ does not accept maliciously). To show
that Pr[abortsig] ≤ npa · εsig, we construct a signature forger as follows. The forger receives as input a public

key pk∗ and simulates the challenger for A. It guesses index φ
$← [npa], sets pkφ = pk∗, and generates all

long-term public/secret keys as before. Then it proceeds as the challenger in Game 3, except that it uses its
chosen-message oracle to generate a signature under pkφ when necessary.

If φ = j and the corresponding public key is pkj , which happens with probability 1/(npa), then the forger
can use the signature received by πs

∗

i∗ to break the EUF-CMA security of the signature scheme with success
probability εsig. Therefore we gain that Pr[abortsig]/(npa) ≤ εsig; if Pr[abortsig] is not negligible, then εsig is
not negligible as well and we have

Pr[break
(1)
2] ≤ Pr[break

(1)
3] + npaεsig .

Note that in Game 3 oracle πs
∗

i∗ receives as input a Diffie–Hellman value TS such that TS was chosen by
another oracle, but not by the attacker. Note also that there may be multiple oracles that issued a signature
σS containing rC , since the attacker may have sent several copies of rC to several oracles.

Game 4. In this game we want to make sure that we know the oracle πtj which will issue the signature

σS that πs
∗

i∗ receives. Note that this signature includes the random nonce rS , which is unique due to
Game 1. Therefore the challanger in this game proceeds as before, but additionally guesses two indices

(j∗, t∗)
$← [npa]× [nse]. It aborts, if the attacker does not make a Send-query containing rC to πt

∗

j∗ and πt
∗

j∗

responds in this phase with messages containing σS such that σS is forwarded to πs
∗

i∗ .
We know that there must exist at least one oracle that outputs σS in some phase such that σS is forwarded

to πs
∗

i∗ , due to Game 3. Thus we have

Pr[break
(1)
3] ≤ npanse Pr[break

(1)
4] .

Note that in this game we know exactly that oracle πt
∗

j∗ chooses the Diffie–Hellman share TS that πs
∗

i∗ uses to
compute its premaster secret.

18

Game 5. Recall that πs
∗

i∗ computes the master secret as ms = PRF(T tcS , label1‖rC‖rS), where TS denotes
the Diffie–Hellman share received from πt

∗

j∗ , and tc denotes the Diffie–Hellman exponent chosen by πs
∗

i∗ . In this

game we replace the master secret ms computed by πs
∗

i∗ with an independent random value m̃s. Moreover, if
πt
∗

j∗ receives as input the same Diffie–Hellman share TC that was sent from πs
∗

i∗ , then we set the master secret

of πt
∗

j∗ equal to m̃s. Otherwise we compute the master secret as specified in the protocol. We claim that

Pr[break
(1)
4] ≤ Pr[break

(1)
5] + εPRFODH .

Suppose there exists an adversary A that distinguishes Game 5 from Game 4. We show that this implies an
adversary B that solves the PRFODH problem.

Adversary B outputs (label1‖rC‖rS) to its oracle and receives in response (g, gu, gv, R), where either

R = PRF(guv, label1‖rC‖rS) or R
$← {0, 1}µ. It runs A by implementing the challenger for A, and embeds

(gu, gv) as follows. Instead of letting πs
∗

i∗ choose TC = gtC for random tC
$← Zq, B defines TC := gu. Similarly,

the Diffie–Hellman share TS of πt
∗

j∗ is defined as TS := gv. Finally, the master secret of πs
∗

i∗ is set equal to R.

Note that πs
∗

i∗ computes the master secret after receiving TS from πt
∗

j∗ , and then it sends m8 = TC . If

the attacker decides to forward m8 to πt
∗

j∗ , then the master secret of πt
∗

j∗ is set equal to R. If πt
∗

j∗ receives
TC′ 6= TC , then B queries its oracle to compute ms′ = PRF(T vC′ , label1‖rC‖rS), and sets the master secret of
πt
∗

j∗ equal to ms′.

Note that in any case algorithm B knows the master secret of πs
∗

i∗ and πt
∗

j∗ , and thus is able to compute
all further protocol messages (in particular the finished messages finC and finS) and answer a potential
Reveal-query to πt

∗

j∗ as required (note that there is no Reveal-query to πs
∗

i∗ , as otherwise the experiment is
aborted, due to Game 2). If R = PRF(guv, label1‖rC‖rS), then the view of A is identical to Game 4, while if

R
$← {0, 1}µ then it is identical to Game 5, which yields the above claim.

Game 6. In this game we replace the function PRF(m̃s, ·) used by πs
∗

i∗ with a random function F . If πt
∗

j∗

uses the same master secret m̃s as πs
∗

i∗ (cf. Game 5), then the function PRF(m̃s, ·) used by πt
∗

j∗ is replaced as
well. Of course the same random function is used for both oracles sharing the same m̃s. In particular, this
function is used to compute the Finished messages by both partner oracles.

Distinguishing Game 6 from Game 5 implies an algorithm breaking the security of the pseudorandom
function PRF, thus

Pr[break
(1)
5] ≤ Pr[break

(1)
6] + εprf .

Game 7. In Game 6 we have replaced the function PRF(m̃s, ·) with a random function. We now want to
make sure, that the Server Finished message still cannot be predicted by an attacker. Remember that the
Server Finished is computed as

fin∗C = F (label4||H(m1|| · · · ||m12)),

where m1|| · · · ||m12 denotes the transcript of all messages sent and received by πs
∗

i∗ .
Before we can do so, we need to make sure that the only other oracle potentially having access to F ,

which is πt
∗

j∗ , never evaluates the function F on any input label4||H(m′) with

m′ 6= m1|| · · · ||m12 and H(m′) = H(m1|| · · · ||m12).

We now abort the game, if oracle πt
∗

j∗ ever evaluates the conditions hold. Since that directly implies a
collision for the hash function H, we have

Pr[break
(1)
6] ≤ Pr[break

(1)
7] + εH

19

Game 8. Now we use that the full transcript of all messages sent and received (including the tags) is used
to compute the Finished messages, and that Finished messages are computed by evaluating a truly random
function that is only accessible to πs

∗

i∗ and (possibly) πt
∗

j∗ due to Game 7.
The Finished messages are computed by evaluating a truly random function Fm̃s, so they are completely

independent of the master secret of the current phase. This allows us to show that any adversary has
probability at most 2−µ of learning the Finished messages. We have

Pr[break
(1)
7] ≤ Pr[break

(1)
8] +

1

2µ
.

Also note, that leaking the Finished messages now does not reveal any information about this phase to
the adversary.

Game 9. Finally we use that the key material KC→S
enc ‖KS→C

enc ‖KC→S
mac ‖KS→C

mac used by πs
∗

i∗ and πt
∗

j∗ in the
stateful symmetric encryption scheme is drawn uniformly at random and independent of all TLS handshake
messages. This game proceeds exactly like the previous game, except that the challenger now aborts if oracle

πs
∗

i∗ accepts without having a matching conversation to πt
∗

j∗ . Thus we have Pr[break
(1)
9] = 0.

The only remaining way for an adversary to make the client oracle πs
∗

i∗ maliciously accept and win is to
output a fresh, valid encryption of the Finished message finS , which must be distinct from the ciphertext
output by πt

∗

j∗ . If the adversary now outputs such a ciphertext, we can directly use it to break the security of
the sLHAE scheme, thus

Pr[break
(1)
8] ≤ Pr[break

(1)
9] + εsLHAE = εsLHAE .

4.2.5 Proof of Lemma 1: εserver

Proof. We now show that the probability that there exists an oracle with ρ = Server that accepts maliciously

in the sense of Definition 3 is negligible. Let break
(2)
δ be the event that occurs when the first oracle that

accepts maliciously in the sense of Definition 3 with ρ = Server in Game δ.

Game 0. This game equals the ACCE security experiment described in Definition 3. Thus, for some εserver

we have
Pr[break

(2)
0] = εserver .

Game 1. In this game we add an abort rule. The challenger aborts, if there exists any oracle πsi that
chooses a random nonce rC or rS which is not unique. With the same arguments as in Game 1 of the first
proof we have

Pr[break
(2)
0] ≤ Pr[break

(2)
1] +

(npanse)
2

2λ
.

Game 2. This game is identical, except for the following. The challenger guesses three random indices

(i∗, s∗)
$← [npa]× [nse]. If there exists an oracle πsi that accepts maliciously, and (i, s) 6= (i∗, s∗) and πsi has

ρ 6= Server, then the challenger aborts the game. Note that if the first oracle πsi that accepts maliciously has
ρ = Server, then with probability 1/(npanse) we have (i, s) = (i∗, s∗), and thus

Pr[break
(2)
1] = (npanse) · Pr[break

(2)
2] .

Note that in this game the attacker can only break the security of the protocol if oracle πs
∗

i∗ is the first oracle
that accepts maliciously and has ρ = Server; otherwise the game is aborted.

20

Game 3. The challenger proceeds as before, but we add an abort rule. We want to make sure that πs
∗

i∗

receives as input exactly the Diffie–Hellman value m8 = TC that was selected by some other uncorrupted
oracle.

Technically, we abort and raise event abortsig, if oracle πs
∗

i∗ ever receives as input a message m7 = certC
indicating intended partner Π = j and message m9 = σC = SIG.Sign(skC ,m1‖ . . . , ‖m8) such that σC is a
valid signature but there exists no oracle πtj which has previously output σC . Clearly we have

Pr[break
(2)
2] ≤ Pr[break

(2)
3] + Pr[abortsig] .

Note that the experiment is aborted if πs
∗

i∗ does not accept maliciously, due to Game 2. This means that
party Pj must not be corrupted when πs

∗

i∗ accepts. To show that Pr[abortsig] ≤ (npa) · εsig, we construct a
signature forger as follows. The forger receives as input a public key pk∗ and simulates the challenger for A.

It guesses index φ
$← [npa], sets pkφ = pk∗, and generates all long-term public/secret keys as before. Then it

proceeds as the challenger in Game 3, except that it uses its chosen-message oracle to generate a signature
under pkφ when necessary.

If φ = j and the corresponding public key is pkj , which happens with probability 1/(npa), then the forger
can use the signature received by πs

∗

i∗ to break the EUF-CMA security of the signature scheme with success
probability εsig, so Pr[abortsig]/(npa) ≤ εsig. Therefore if Pr[abortsig] is not negligible, then εsig is not negligible
as well and we have

Pr[break
(2)
2] ≤ Pr[break

(2)
3] + npaεsig .

Note that in Game 3 oracle πs
∗

i∗ receives as input a Diffie–Hellman value TC such that TC was chosen in
some phase by another oracle, but not by the attacker. Note also that this phase of this oracle is unique,
since the signature includes the client nonce rC , which is unique due to Game 1. From now on we denote this
unique oracle and phase with πt

∗

j∗ .

Note also that πs
∗

i∗ and πt
∗

j∗ share a premaster secret pms = T tSC = T tCS , where TC = gtC and TS = gtS for

random exponents tS and tC chosen by πs
∗

i∗ and πt
∗

j∗ , respectively.

Game 4. In this game, we replace the premaster secret pms = gtCtS shared by πs
∗

i∗ and πt
∗

j∗ with a random

value gr, r
$← Zq. The fact that the challenger has full control over the Diffie–Hellman shares TC and TS

exchanged between πs
∗

i∗ and πt
∗

j∗ , due to the modifications introduced in the previous games, provides us with
the ability to prove indistinguishability under the Decisional Diffie–Hellman assumption.

Technically, the challenger in Game 4 proceeds as before, but when πs
∗

i∗ and πt
∗

j∗ compute the premaster

secret as pms = gtCtS , the challenger replaces this value with a uniformly random value p̃ms = gr, r
$← Z∗p,

which is in the following used by both partner oracles.
Suppose there exists an algorithm distinguishing Game 4 from Game 3. Then we can construct an algorithm

B solving the DDH problem as follows. Algorithm B receives as input a DDH challenge (g, gu, gv, gw). The
challenger defines TC := gu and TS := gv for the Diffie–Hellman shares chosen by πs

∗

i∗ and πt
∗

j∗ , respectively.
Instead of computing the Diffie–Hellman key as in Game 3, it sets pms = gw both for the client and the
server oracle. Now if w = uv, then this game proceeds exactly like Game 3, while if w is random then this
game proceeds exactly like Game 4. Thus,

Pr[break
(2)
3] ≤ Pr[break

(2)
4] + εddh .

Note that in Game 4 the premaster secret of πs
∗

i∗ and πt
∗

j∗ is uniformly random and independent of TC and
TS . This will provide us with the ability to replace the function PRF(p̃ms, ·) with a truly random function in
the next game.

Game 5. In Game 5 we make use of the fact that the premaster secret p̃ms of πs
∗

i∗ and πt
∗

j∗ is chosen
uniformly at random, independently of TC and TS . We thus replace the value ms = PRF(p̃ms, label1‖rC‖rS)
with a random value m̃s.

Distinguishing Game 5 from Game 4 implies an algorithm breaking the security of the pseudorandom
function PRF, thus

Pr[break
(2)
4] ≤ Pr[break

(2)
5] + εprf .

21

Game 6. In this game we replace the function PRF(m̃s, ·) used by πs
∗

i∗ and πt
∗

j∗ with a random function F .

Of course the same random function is used for both oracles πs
∗

i∗ and πt
∗

j∗ . In particular, this function is used
to compute the Finished messages by both partner oracles.

Distinguishing Game 6 from Game 5 again implies an algorithm breaking the security of the pseudorandom
function PRF, thus

Pr[break
(2)
5] ≤ Pr[break

(2)
6] + εprf .

Game 7. In Game 6 we have replaced the function PRF(m̃s, ·) with a random function F . We now want to
make sure, that the Client Finished message still cannot be predicted by an attacker. Remember that the
Client Finished is computed as

fin∗S = F (label3||H(m1|| · · · ||m10)),

where m1|| · · · ||m10 denotes the transcript of all messages sent and received by πs
∗

i∗ .
Before we can do so, we need to make sure that the only other oracle potentially having access to F ,

which is πt
∗

j∗ , never evaluates the function F on any input label3||H(m′) with

m′ 6= m1|| · · · ||m10 and H(m′) = H(m1|| · · · ||m10).

We now abort the game, if oracle πt
∗

j∗ ever evaluates the conditions hold. Since that directly implies a
collision for the hash function H, we have

Pr[break
(2)
6] ≤ Pr[break

(2)
7] + εH

Game 8. Finally we use that the full transcript of all messages sent and received (including the tags) is
used to compute the Finished messages, and that Finished messages are computed by evaluating a truly
random function that is only accessible to πs

∗

i∗ and (possibly) πt
∗

j∗ due to Game 7.
The Finished messages are computed by evaluating a truly random function Fm̃s, so they are completely

independent of the master secret of the current phase. This allows us to show that any adversary has
probability at most 2−µ of learning the Finished messages.

Thus we have

Pr[break
(2)
7] ≤ Pr[break

(2)
8] +

1

2µ
.

Also note, that leaking the Finished messages now does not reveal any information about this phase to
the adversary.

Game 9. Finally we use that the key material KC→S
enc ‖KS→C

enc ‖KC→S
mac ‖KS→C

mac used by πs
∗

i∗ and πt
∗

j∗ in the
stateful symmetric encryption scheme is drawn uniformly at random and independent of all TLS handshake
messages. Thus, this game proceeds exactly like the previous game, except that the challenger now aborts if

oracle πs
∗

i∗ accepts without having a matching conversation to πt
∗

j∗ . Thus we have Pr[break
(2)
9] = 0.

The only remaining way for an adversary to make the server oracle πs
∗

i∗ maliciously accept and win is
to output a fresh, valid encryption of the Client Finished message finC , which must be distinct from the
ciphertext output by πt

∗

j∗ . If the adversary now outputs such a ciphertext, we can directly use it to break the
security of the sLHAE scheme, thus

Pr[break
(2)
8] ≤ Pr[break

(2)
9] + εsLHAE = εsLHAE .

Collecting probabilities of both previous sections yields Lemma 1. We obtain that

εauth ≤ εclient + εserver

≤ (npanse)
2

2λ−1
+ npanse ·

(
2npaεsig + εddh + (npanse + 2)

(
εPRFODH + εprf + εH +

1

2µ
+ εsLHAE

))
.

22

4.2.6 Proof of Confidentiality

Lemma 2. For any adversary A running in time τ ′ ≈ t, the probability that A answers the encryption-
challenge correctly is at most 1/2 + εenc with

εenc ≤ εauth + npanse (εddh + 2εprf + εsLHAE) ,

where εauth is an upper bound on the probability that there exists an oracle that accepts maliciously in the
sense of Definition 3 (cf. Lemma 1) and all other quantities are defined as stated in Theorem 1.

Proof. Assume without loss of generality that A always outputs (i, s, b′) such that all conditions in Property 2

of Definition 3 are satisfied. Let break
(3)
δ denote the event that b′ = b in Game δ, where b is the random bit

sampled by the Test-query, and b′ is either the bit output by A or (if A does not output a bit) chosen by

the challenger. Let Advδ := Pr[break
(3)
δ]− 1/2 denote the advantage of A in Game δ. Consider the following

sequence of games.

Game 0. This game equals the ACCE security experiment used in Section 4.2.1. For some εenc we have

Pr[break
(3)
0] =

1

2
+ εenc =

1

2
+ Adv0 .

Game 1. The challenger in this game proceeds as before, but it aborts and chooses b′ uniformly random if
there exists any oracle that accepts maliciously in any phase in the sense of Definition 5. Thus we have

Adv0 ≤ Adv1 + εauth ,

where εauth is an upper bound on the probability that there exists an oracle that accepts maliciously in the
sense of Definition 3 (cf. Lemma 1).

Recall that we assume that A always outputs (i, s, b′) such that all conditions in Property 2 of Definition 3
are satisfied. In particular it outputs (i, s, b′) such that πsi accepts with intended partner Π = j, and Pj is
not corrupted. Note that in Game 1 for any such phase πsi there exists a unique partner phase πtj such that
πsi .phases[1].T has a matching conversation to πtj .phases[1].T , as the game is aborted otherwise.

Game 2. The challenger in this game proceeds as before, but in addition guesses indices (i∗, s∗)
$←

[npa]× [nse]. It aborts and chooses b′ at random if the attacker outputs (i, s, b′) with (i, s) 6= (i∗, s∗). With
probability 1/(npanse) we have (i, s) = (i∗, s∗), and thus

Adv1 ≤ npanseAdv2 .

Note that in Game 2 we know that A will output (i∗, s∗, b′). Note also that πs
∗

i∗ has a unique partner due
to Game 1. In the sequel we denote with πt

∗

j∗ the unique oracle and phase such that πs
∗

i∗ has a matching

conversation to πt
∗

j∗ , and say that πt
∗

j∗ is the partner of πs
∗

i∗ .

Game 3. The challenger in this game proceeds as before, but replaces the premaster secret pms of πs
∗

i∗

and πt
∗

j∗ with a random group element p̃ms = gw, w
$← Zq. Note that both gu and gv are chosen by oracles

πs
∗

i∗ and πt
∗

j∗ , respectively, as otherwise πs
∗

i∗ would not have a matching conversation to πt
∗

j∗ and the game
would be aborted. Thus, both oracles compute the premaster secret as pms = guv. Let Ti∗,s∗ = gu denote
the Diffie–Hellman share chosen by πs

∗

i∗ , and let Tj∗,t∗ = gv denote the share chosen by its partner πt
∗

j∗ .
Suppose that there exists an algorithm A distinguishing Game 3 from Game 2. Then we can construct

an algorithm B solving the DDH problem as follows. B receives as input (g, gu, gv, gw). It implements the
challenger for A as in Game 2, except that it sets Ti∗,s∗ := gu and Tj∗,t∗ := gv, and the premaster secret
of πs

∗

i∗ and πt
∗

j∗ equal to pms := gw. Note that B can simulate all messages exchanged between πs
∗

i∗ and πt
∗

j∗

properly, in particular the finished messages using knowledge of pms = gw. Since all other oracles are not
modified, B can simulate these oracles properly as well.

If w = uv, then the view of A when interacting with B is identical to Game 2, while if w
$← Zq then it is

identical to Game 3. Thus,
Adv2 ≤ Adv3 + εddh .

23

Game 4. In Game 4 we make use of the fact that the premaster secret p̃ms of πs
∗

i∗ and πt
∗

j∗ is chosen
uniformly random. We thus replace the value ms = PRF(p̃ms, label1‖rC‖rS) with a random value m̃s.

Distinguishing Game 4 from Game 3 implies an algorithm breaking the security of the pseudorandom
function PRF, thus

Adv3 ≤ Adv4 + εprf .

Game 5. In this game we replace the function PRF(m̃s, ·) used by πs
∗

i∗ and πt
∗

j∗ with a random function

Fm̃s. Of course the same random function is used for both oracles (in their respective phases) πs
∗

i∗ and πt
∗

j∗ .
In particular, this function is used to compute the key material as

KC→S
enc ‖KS→C

enc ‖KC→S
mac ‖KS→C

mac := Fm̃s(label2‖rC‖rS) .

Distinguishing Game 5 from Game 4 again implies an algorithm breaking the security of the pseudorandom
function PRF. Moreover, in Game 5 the adversary always receives a random key in response to a Test query,
and thus receives no information about b′, which implies Adv5 = 0 and

Adv4 ≤ Adv5 + εprf = εprf .

Note that in Game 5 the key material KC→S
enc ‖KS→C

enc ‖KC→S
mac ‖KS→C

mac of oracles πs
∗

i∗ and πt
∗

j∗ is uniformly
random and independent of all TLS handshake messages exchanged in the pre-accept phase.

Game 6. Now we use that the key material KC→S
enc ‖KS→C

enc ‖KC→S
mac ‖KS→C

mac used by πs
∗

i∗ and πt
∗

j∗ in the
stateful symmetric encryption scheme is drawn uniformly at random and independent of all TLS handshake
messages.

In this game we construct a simulator B that uses a successful ACCE attacker A to break the security
of the underlying sLHAE secure symmetric encryption scheme. By assumption, the simulator B is given
access to an encryption oracle Encrypt and a decryption oracle Decrypt. B embeds the sLHAE experiment by
simply forwarding all Encrypt(πs

∗

i∗ , ·) queries to Encrypt, and all Decrypt(πt
∗

j∗ , ·) queries to Decrypt. Otherwise
it proceeds as the challenger in Game 5.

Observe that the values generated in this game are exactly distributed as in the previous game. We thus
have

Adv5 = Adv6 .

If A outputs a triple (i∗, s∗, b′), then B forwards b′ to the sLHAE challenger. Otherwise it outputs a random
bit. Since the simulator essentially relays all messages it is easy to see that an attacker A having advantage
ε′ yields an attacker B against the sLHAE security of the encryption scheme with success probability at least
1/2 + ε′.

Since by assumption any attacker has advantage at most εsLHAE in breaking the sLHAE security of the
symmetric encryption scheme, we have

Adv6 ≤ 1/2 + εsLHAE .

Adding up probabilities from Lemmas 1 and 2, we obtain that

εtls ≤ εauth + εenc

≤ 2εauth + npanse (εddh + 2εprf + εsLHAE)

≤ (npanse)
2

2λ−2
+ npanse ·

(
4npaεsig + 3εddh + (npanse + 2)

(
εPRFODH + εprf + εH +

1

2µ
+ εsLHAE

))
which yields Theorem 1.

Note, that we do lose some tightness compared to the original ACCE proof of TLS DHE DSS . For the
authentication game, we additionally have to guess the phase in which the adversary makes an oracle
maliciously accept, and for the encryption game we also have to guess the phase to which we input the
challenge keys.

24

4.3 TLS with SCSV/RIE is multi-phase-secure

We begin by showing that including the SCSV/RIE countermeasure does not weaken security: putting the
Finished messages in the ClientHello and ServerHello does not introduce any vulnerabilities. Having
done so, in the next subsection we will show how including the SCSV/RIE countermeasure yields a weakly
secure renegotiable ACCE.

Theorem 2. Let Π be a generic tagged TLS ciphersuite as described in Section 4.2. Assume that Π is
(τ, εtagged)-tagged-ACCE-fin-secure. Let Π′ denote Π with SCSV/RIE countermeasures as described in Figure 5.
For any adversary that (τ ′, εmp)-breaks the multi-phase ACCE security of Π′ with τ ≈ τ ′, it holds that εmp ≤ 2ε′,
where ε′ is obtained from ε by replacing all instances of npa in ε with npa · nke and replacing all instances of
nse in ε with nse · nph. (Recall that npa, nse, nph, and nke are the maximum number of parties, sessions per
party, phases per session, and keypairs per party, respectively.)

Proof. The basic idea of the proof is as follows. We will construct a multi-phase ACCE simulator S for Π′

that makes use of an tagged-ACCE-fin challenger C for Π. S will simulate every (party, public-key) pair and
every (session, phase) pair with distinct parties and sessions in C. For the most part, S will relay queries
down to C and return the result. However, for queries that relate to renegotiation (Send, Decrypt), S needs
to carefully manage the handshake messages and transition one session in C to another.

First, consider when the adversary is causing two honest parties to negotiate their first phase in a session.
The simulator will pass these queries down to the tagged-ACCE-fin challenger and pass the responses back
up to the adversary. Eventually these sessions may switch to using the encrypted channel, in which case the
simulator will also pass the encrypted channel queries down to the tagged-ACCE-fin challenger.

Now the adversary may eventually ask the two honest parties to renegotiate. The simulator will construct
the RIE extension by obtaining the Finished messages issuing a RevealFin query to the tagged-ACCE-fin
challenger. Then the simulator will ask the parties to start a new session with those RIE extension values
as the arbitrary data. Finally, it will encrypt those handshake messages using the Encrypt oracle of the
existing session and give those ciphertexts to the adversary. If the adversary delivers the exact ciphertexts,
then even though the simulator cannot decrypt the ciphertexts it can still carry out the handshake because
it knows they are the right ciphertexts. If the adversary delivers modified ciphertexts, then the simulator
rejects. This is the correct behaviour unless the adversary managed to forge ciphertexts in the underlying
tagged-ACCE-fin.

Second, consider when the adversary is playing the role of a corrupted party with an honest party. In
other words, the adversary has issued a Corrupt query for a long-term key of some party (which the simulator
answered by issuing a Corrupt query to the corresponding party in the tagged-ACCE-fin challenger). For
the initial handshake, the simulator simply relays the handshake messages down to the tagged-ACCE-fin
challenger and returns the responses. However, once the handshake completes, the multi-phase ACCE
simulator has no clue whether a ciphertext it receives contains a data message or a control (handshake)
message, yet it needs to start a new handshake if it receives a control message. Fortunately, as soon as the
initial handshake completes, the multi-phase ACCE simulator can issue a Reveal query to the underlying
session in the ACCE challenger. And because the adversary is the peer in this phase, it will never be a valid
session for the multi-phase ACCE authentication game or the multi-phase ACCE confidentiality/integrity
game, and thus the simulator does not violate any freshness condition in the underlying tagged-ACCE-fin
game by issuing a Reveal query.

The simulator S. The details of the simulation follow. For each (party, public key) pair (A, pk) in the
multi-phase ACCE experiment, S will allocate a distinct party, abstractly denoted A|pk, in the tagged-ACCE-
fin experiment run by C. Similarly, each phase ` in a session s in the multi-phase ACCE experiment will
correspond to a session, abstractly denoted s|`, in the tagged-ACCE-fin experiment.
S answers the adversary’s multi-phase ACCE queries as follows. In all of the following, let ` be the current

phase of πsA, let pk denote πsA.phases[`].pk, pk∗ denote πsA.phases[`+ 1].pk, and suppose πsA.d = πtB .

• Send(πsA,m): The behaviour of S’s simulator of the Send oracle depends on whether the initial handshake
or a renegotiation is occurring. First we consider the initial handshake:

– If m = (newphase, pk, ω) and πsA.phases is empty: S issues a Send(π
s|1
A|pk, (newphase, ω, empty))

query to C and returns the result.

25

– If m = (ready, pk, ω) and πsA.phases is empty: S issues a Send(π
s|1
A|pk, (ready, ω, empty) query to

C; no result is received or returned.
– If m = m1 = (rC , cs-list, extC) in Figure 5, S aborts if extC 6= empty. Otherwise, S sends issues

a Send(π
s|1
A|pk, (rC , cs-list)) query to C and returns the result.

– Ifm = m2‖ . . . ‖m6 andm2 = (rC , cs-list, extS) in Figure 5, S aborts if extS 6= empty. Otherwise,

S sets m′2 = (rC , cs-list) and issues a Send(π
s|1
A|pk,m

′
2‖ . . . ‖m6) query to C and returns the result.

– If m = m7‖ . . . ‖m11 or m = m12‖m13, S relays the query to C and returns the result.

Now consider renegotiation handshakes. For renegotiation handshakes, the only Send queries issued
will involve newphase or ready messages.

– If m = (newphase, pk∗, ω), πsA.phases is not empty, and πsA.ρ = Client: S issues a RevealFin(π
s|`
A|pk)

query to C to obtain finC‖finS . S starts in phases a new phase ` + 1 of πsA with authentica-

tion mode ω and public key pk∗. S obtains handshake message m∗1 by issuing a Send(π
s|`+1
A|pk∗ ,

(newphase, ω, finC)) query to C. S then issues an Encrypt(π
s|`
A|pk, control,m

∗
1,m

∗
1, len, hd) query

to C and returns the result.
– If m = (newphase, pk∗, ω), πsA.phases is not empty, and πsA.ρ = Server: S starts in phases a new

phase `+1 of πsA with authentication mode ω and public key pk∗, sets m∗0 = ServerHelloRequest,

issues an Encrypt(π
s|`
A|pk, control,m

∗
0,m

∗
0, len, hd) query to C, and returns the result.

– If m = (ready, pk∗, ω) and πsA.phases is not empty: S starts in phases a new phase `+ 1 of πsA
with authentication mode ω and public key pk∗. S issues a RevealFin(π

s|`
A|pk) query to C to obtain

finC‖finS . S issues a Send(π
s|`+1
A|pk∗ , (ready, ω, finS)) query to C; no result is received or returned.

The actual handshake messages in renegotiation handshakes are delivered using Decrypt queries.
• Corrupt(PA, pk): S issues a Corrupt(PA|pk) query to C and returns the result.

• Reveal(πsA, `): S issues a Reveal(π
s|`
A|pk) query to C and returns the result.

• Encrypt(πsA, ctype,m0,m1, len, hd): S aborts if ctype = control. Otherwise, S issues an Encrypt(π
s|`
A|pk,

m0,m1, len, hd) query to C and returns the result.
• Decrypt(πsA, C, hd): First suppose that all of conditions C2–C5 of Definition 2; namely that neither

the phase’s owner public key pk nor the peer’s public key pk′ has been corrupted, nor have the session
keys been revealed. Now we explain each part of the renegotiation handshake:

– Suppose πsA.ρ = Server and the last query that πsA received was Send(πsA, (ready, . . .)) or Send(πsA,
(newphase, . . .)). If C does not equal the last ciphertext that was sent by πtB, then abort.

Otherwise, S issues a Decrypt(π
s|`
A|pk, C, hd) query to C. (Note this returns ⊥.) Then S issues a

Send(π
s|`+1
A|pk∗ ,m

∗
1) query to C, where m∗1 is the handshake message obtained by S from C in the

Send(πtB , (newphase, . . .)) query above. S receives m∗2‖ . . . ‖m∗6 from C, encrypts them by issuing

an Encrypt(π
s|`
A|pk, control,m

∗
2‖ . . . ‖m∗6, . . .) query, and returns the resulting ciphertext C ′.3

– Suppose πsA.ρ = Client and the last query that πsA received was Send(πsA, (ready, . . .)). If C
does not equal the last ciphertext that was sent by πtB, then abort. Otherwise, S issues

a Decrypt(π
s|`
A|pk, C, hd) query to C. (Note this returns ⊥.) Then S issues a Send(π

s|`+1
A|pk∗ ,

m∗2‖ . . . ‖m∗6) query to C, where m∗2‖ . . . ‖m∗6 are the handshake messages obtained by S from C in the
Decrypt(πtB , . . .) query in the bullet point immediately preceding this one. S receives m∗7‖ . . . ‖m∗11
from C, encrypts m∗7‖ . . . ‖m∗10 by issuing an Encrypt(π

s|`
A|pk, control,m

∗
7‖ . . . ‖m∗10, . . .) query, and

returns the resulting ciphertext C ′ along with m∗11.
– Suppose πsA.ρ = Server and the last query that πsA received was the Decrypt query in the first

bullet point in this list. If C does not equal the last ciphertext that was sent by πtB, then

abort. Otherwise, S splits the ciphertext as C∗‖m∗11 and issues a Decrypt(π
s|`
A|pk, C

∗, hd) query.

3Note that here, and throughout the Decrypt query, our simulator S is not disadvantaged by its call to C.Decrypt not returning
plaintext because, in this first part, it “knows” what the plaintext handshake message is from having simulated the other side;
and in the second part, it can reveal the session key and become able to decrypt the ciphertext itself.

26

(Note this returns ⊥.) Then S issues a Send(π
s|`+1
A|pk∗ ,m

∗
7‖ . . . ‖m∗11) query to C, where m∗7‖ . . . ‖m∗10

are the handshake messages obtained by S from C in the Decrypt(πtB , . . .) query in the bullet
point immediately preceding this one. S receives m∗12‖m∗13 from C, encrypts m∗12 by issuing an

Encrypt(π
s|`
A|pk, control,m

∗
12, . . .) query, and returns the resulting ciphertext C ′ along with m∗13.

– Suppose πsA.ρ = Client and the last query that πsA received was the Decrypt query in the second
bullet point in this list. If C does not equal the last ciphertext that was sent by πtB, then abort.

Otherwise, S splits the ciphertext as C∗‖m∗13 and issues a Decrypt(π
s|`
A|pk, C

∗, hd) query. (Note this

returns ⊥.) Then S issues a Send(π
s|`+1
A|pk∗ ,m

∗
12‖ . . . ‖m∗13) query to C, where m∗12 is the handshake

message obtained by S from C in the Decrypt(πtB , . . .) query in the bullet point immediately
preceding this one.

– All other Decrypt(πsA, . . .) queries: S issues a Decrypt(π
s|`
A|pk, C, hd) query to C and returns the

result.

Now suppose otherwise, namely that one or more of conditions C2–C5 of Defintion 2 is violated,
so either the phase owner’s public key pk or the peer’s public key pk′ has been corrupted, or either
Reveal(πtB , `

′) or Reveal(πtB , `
′) has been called.

If it has not already done so, S issues a Reveal(π
s|`
A|pk) query to C and obtains session key k containing

encryption and MAC keys KC→S
enc ||KS→C

enc ||KC→S
mac ||KS→C

mac . Using the appropriate encryption key, S
steps through all previous calls to Decrypt(πsA, . . .) to bring the decryption state std up-to-date. Now
we explain each part of the renegotiation handshake:

– Suppose πsA.ρ = Server and the last query that πsA received was Send(πsA, (ready, . . .)) or Send(πsA,
(newphase, . . .)). S uses KC→S

enc and std to decrypt C and obtain m∗1 or ⊥, in which case S
aborts. S issues a Decrypt(π

s|`
A|pk, C, hd) query to C. (Note this returns ⊥.) Then S issues

a Send(π
s|`+1
A|pk∗ ,m

∗
1) query to C. S receives m∗2‖ . . . ‖m∗6 from C, encrypts them by issuing an

Encrypt(π
s|`
A|pk, control,m

∗
2‖ . . . ‖m∗6, . . .) query, and returns the resulting ciphertext C ′.

– Suppose πsA.ρ = Client and the last query that πsA received was Send(πsA, (ready, . . .)). S uses
KS→C

enc and std to decrypt C and obtain m∗2‖ . . . ‖m∗6 or ⊥, in which cases S aborts. S issues a

Decrypt(π
s|`
A|pk, C, hd) query to C. (Note this returns ⊥.) Then S issues a Send(π

s|`+1
A|pk∗ ,m

∗
2‖ . . . ‖m∗6)

query to C. S receives m∗7‖ . . . ‖m∗11 from C, encrypts m∗7‖ . . . ‖m∗10 by issuing an Encrypt(π
s|`
A|pk,

control,m∗7‖ . . . ‖m∗10, . . .) query, and returns the resulting ciphertext C ′ along with m∗11.
– Suppose πsA.ρ = Server and the last query that πsA received was the Decrypt query in the first

bullet point in this list. S splits the ciphertext as C∗‖m∗11. S uses KC→S
enc and std to decrypt C∗

and obtain m∗7‖ . . . ‖m∗10 or ⊥, in which case S aborts. S issues a Decrypt(π
s|`
A|pk, C

∗, hd) query

to C. (Note this returns ⊥.) Then S issues a Send(π
s|`+1
A|pk∗ ,m

∗
7‖ . . . ‖m∗11) query to C. S receives

m∗12‖m∗13 from C, encrypts m∗12 by issuing an Encrypt(π
s|`
A|pk, control,m

∗
12, . . .) query, and returns

the resulting ciphertext C ′ along with m∗13.
– Suppose πsA.ρ = Client and the last query that πsA received was the Decrypt query in the second

bullet point in this list. S splits the ciphertext as C∗‖m∗13. S uses KS→C
enc and std to decrypt C∗

and obtain m∗12 or ⊥, in which case S aborts. S issues a Decrypt(π
s|`
A|pk, C

∗, hd) query. (Note this

returns ⊥.) Then S issues a Send(π
s|`+1
A|pk∗ ,m

∗
12‖ . . . ‖m∗13) query to C.

– All other Decrypt(πsA, . . .) queries: S issues a Decrypt(π
s|`
A|pk, C, hd) query to C and returns the

result.

Correctness of the simulator. The simulation presented by S is perfect except in its handling of Decrypt
queries when the peer’s public key πsA.pk has not been corrupted. During renegotiation, the simulator S
rejects any ciphertext C that is not exactly equal to the ciphertext C(−1) sent by the peer in the previous
query. It is possible that C is in fact a valid ciphertext. However, at the time the improper simulator occurred,
all of conditions C1–C5 of Definition 2 were satisfied. And under the assumption that C is a valid ciphertext,
if S was to make a query Decrypt(πsA, C, hd) to C, then S would receive either ⊥ if C’s secret challenge bit b in

27

π
s|`
A|pk is 0, or m 6= ⊥ if the secret challenge bit b = 1. In other words, S can (τ ′, ε′)-break the confidentiality

of Π in the tagged-ACCE-fin experiment, with τ ≈ τ ′ and ε′ ≥ εtagged.

Attack on a correct simulator. Finally, suppose no failure event happens as described above, and
suppose the adversary breaks the multi-phase ACCE security of Π′. We show how to translate this attack
into an attack on the ACCE-tag-fin security of Π in C.

Confidentiality/integrity. First suppose that the multi-phase ACCE adversary for Π′ succeeds in breaking
confidentiality/integrity (Definition 2), namely by outputting a tuple (A, s, `, b′) for which b′ = πsA.phases[`].b,
and that adversary never violated conditions C1–C6 of Definition 2. Let pk denote πsA.phases[`].pk. Since S
only violates conditions C1–C6 for π

s|`
A|pk.phases[1] when the adversary violates them for πsA.phases[`], S has

not violated these conditions either. The simulator S outputs the tuple ((A|pk), (s|`), 1, b′); it holds that b′ =

π
s|`
A|pk.phases[1].b in Π. Thus, we have that S (τ ′, εc)-breaks the (tagged-ACCE-fin) confidentiality/integrity

of Π, where τ ≈ τ ′ and εc is obtained from ε by replacing all instances of npa in ε with npa · nke and replacing
all instances of nse in ε with nse · nph.

Authentication. Now suppose that the multi-phase ACCE adversary for Π′ succeeds in breaking authenti-
cation (as in Definition 3, namely by causing to exist a phase πsA.phases[`] which has accepted (condition A1),
have not been trivially compromised (conditions A2–A5), and have no phase with a matching handshake

transcript at the peer (condition M). Since S only violates conditions A2, A3, or A5 for π
s|`
A|pk.phases[1] when

the adversary violates them for πsA.phases[`], S has not violated these conditions either. Moreover, condition

A4 for π
s|`
A|pk.phases[1] is satisfied precisely when πsA.phases[`] is. Thus, we have that S (τ ′, εa)-breaks the

(tagged-ACCE-fin) authentication of Π, where τ ≈ τ ′ and εa is obtained from ε by replacing npa and nse in ε
as in the previous paragraph.

The result follows.

Remark 6. A simulation similar to the one in the proof allows us to prove that TLS with SCSV/RIE
countermeasures is a multi-phase ACCE protocol, even when different ciphersuites are used in different phases.
The simulator interacts with a different tagged-ACCE-fin challenger for each ciphersuite; when a renegotiation
inside one ciphersuite will result in a new ciphersuite, the simulator uses the Encrypt/Decrypt queries in the
old ciphersuite to encrypt the Send messages from the handshake of the new ciphersuite. Unfortunately, for
this multi-ciphersuite simulation to work, it is essential that public keys not be shared across ciphersuites:
this technique could show that switching between an RSA-based ciphersuite and an ECDSA-based ciphersuite
is safe. However, to analyze using the same RSA public key in two different ciphersuites, one would have to
take an alternative approach, as it may not be possible to generically prove that re-using the same public key
in two ACCE protocols is safe.

4.4 TLS with SCSV/RIE is a weakly secure renegotiable ACCE

We are now in a position to show that the use of the SCSV/RIE countermeasure in TLS results in a weakly
secure renegotiable ACCE. We will do so generically, starting from the consequence of the previous theorem:
that TLS with SCSV/RIE is a secure multi-phase ACCE.

Theorem 3. Let Π be a TLS ciphersuite with SCSV/RIE countermeasures, as described in Figure 5. If Π is
a (τ, εmp)-secure multi-phase ACCE protocol, and PRF is a (τ, εprf)-secure pseudorandom function, then Π is
a (τ, ε)-weakly secure renegotiable ACCE, with ε = εmp + εprf .

Intuitively, the use of the RIE countermeasure guarantees that each party who renegotiates has the same
view of (a) whether they are renegotiating, and (b) which handshake is the “previous” handshake. We can
chain these together to obtain the property of a secure renegotiable ACCE: parties who renegotiate have the
same view of all previous handshakes. If this is violated, either the non-renegotiable aspects of TLS have
been broken, or a collision has been found in the computation of the renegotiation indication extension.

Proof. Suppose A breaks the weak renegotiable ACCE security of the protocol Π. We will show that either
A breaks the multi-phase ACCE security of Π or A can be used to construct another algorithm that breaks
either the security of the PRF or the multi-phase ACCE security of Π.

28

We approach the proof in three cases: either A has broken the confidentiality/integrity of the weakly
secure renegotiable ACCE, or A has broken the weak renegotiation authentication of the weakly secure
renegotiable ACCE, the latter by meeting either condition M′(a) or M′(b).

Confidentiality/integrity. Since the winning conditions for the confidentiality/integrity part of the
security game are the same for both definitions, every adversary who breaks confidentiality/integrity in the
weakly secure renegotiable ACCE security game for Π breaks confidentiality/integrity in the multi-phase
ACCE security game for Π.

Authentication — M′(a). Suppose A wins the weak renegotiable ACCE security experiment for Π using
condition M′(a). Either there is no ` at all such that πtB .phases[`].T matches πsA.phases[`∗].T , or there is
such an ` but ` 6= `∗.

First consider the case where there is no ` at all such that πtB .phases[`].T matches πsA.phases[`∗].T . That
meets condition M of Definition 3 for Π.

Now consider the case where there is an ` such that πtB .phases[`].T matches πsA.phases[`∗].T but ` 6= `∗.
Assume without loss of generality ` < `∗ (otherwise we could swap the oracles).

There must exist some value j ∈ [1, ` − 1] such that πsA.phases[`∗ − j].T 6= πtB .phases[` − j].T . In
particular, j ≤ ` − 1, since in πtB’s first phase its outgoing message m1 contains extC = empty but πsA
received a message m1 with extc 6= empty. Let j be minimal. Then πtB .phases[` − j + 1].T matches
πsA.phases[`∗ − j + 1].T . In particular, messages m1 of those two transcripts are equal, and so are messages

m2 of those two transcripts. Since RIE is being used, m1 and m2 contain fin
(−1)
C and fin

(−1)
S , and since

πs,`
∗−j+1

A accepted, both πs,`
∗−j+1

A and πt,`−j+1
B used the same fin

(−1)
C and fin

(−1)
S values. But at each party,

fin
(−1)
C and fin

(−1)
S are the hash (using a PRF) of the handshake transcripts from phases πs,`

∗−j
A and πt,`−jB ,

and we know that these handshake transcripts are not equal. This means a collision has occurred in PRF,
which happens with negligible probability.

Assuming PRF is secure and Π is a secure multi-phase ACCE, no A can achieve conditions M′(a) and
A1–A7.

Authentication — M′(b). Now suppose A wins the weak renegotiable ACCE security experiment for Π
using condition M′(b) but not M′(a). In particular, for every `′ < `∗, πsA.phases[`′].T = πtB .phases[`′].T
but there is some ` < `∗ such that πsA.phases[`].RTs‖RTr 6= πtB .phases[`].RTr‖RTs. Choose ` minimal. Let
v be the smallest index such that the vth ciphertext Cv of πsA.phases[`].RTs‖RTr is not equal to the vth
ciphertext of πtB .phases[`].RTr‖RTs.

Assume without loss of generality that Cv was received by πsA as the vth ciphertext but was not sent
by πtB as the vth ciphertext. (The alternative is that Cv was sent by πsA as the vth ciphertext but was not
received by πtB as the vth ciphertext. However, we could then focus on everything from πtB ’s perspective and
apply the same argument.)

This means that when A called Decrypt(πsA, Cv, hd), if b = 0 then Decrypt returned (⊥, ·), whereas if b = 1
then Decrypt returned (m′, ·) where m′ 6=⊥. Our simulator can thus output (A, s, `, b′) for its guess of b′ as
above, and this will equal b with probability at least ε, making condition C6 hold in Definition 3. We need
to show that conditions C1–C5 also hold for (A, s, `).

Since A wins the weak renegotiable ACCE experiment using condition M′(b), we have that A1–A7 all
hold. We want to show that, at the time that πsA accepted in phase `+ 1, conditions C1–C5 also hold for
(A, s, `).

• C1: A1 implies C1, since if πsA has rejected in any phase prior to `∗ then it would not have a phase `∗.
• C2 and C3: Conditions A2 and A3 of Definition 5 do not imply that A did not ask Corrupt queries

prohibited by C2 and C3. However, we do have that πsA.phases[`].T = πtB .phases[`].T ; in other words,
A was not active in the handshake for phase `. Thus, A is equivalent to an adversary who did not ask
any Corrupt queries for public keys used in phase ` until after πsA accepts in phase `.

• C4: A6 implies C4, at the time that πsA accepted.
• C5: Since πsA chooses nonce rC (if a client) or rS (if a server) randomly, except with negligible

probability there is no `′ < ` such that πsA.phases[`′].T = πsA.phases[`].T . By A7, A did not issue

29

Reveal(πtB , `) before πsA accepted in phase `+ 1. Thus at the time that πsA accepted, A did not issue
Reveal(πtB , `

′) to any phase with πtB .phases[`′].T = πsA.phases[`].T , satisfying condition C5.

Thus, assuming Π is a secure multi-phase ACCE no A can achieve conditions M′(b) and A1–A7.

We can combine Theorems 2 and 3 to obtain the central results of the paper, justifying the security of the
SCSV/RIE countermeasure:

Corollary 1. If a tagged TLS ciphersuite Π as described in Section 4.2 is a secure tagged-ACCE-fin protocol
and PRF is a secure pseudorandom function, then that TLS ciphersuite Π with SCSV/RIE countermeasures
as described in Figure 5 is a weakly secure renegotiable ACCE.

Corollary 2. Under the same assumptions as in Theorem 1, TLS DHE DSS with SCSV/RIE countermeasures
is a weakly secure renegotiable ACCE protocol.

5 Renegotiation Security of TLS with a New Countermeasure

We now present a new TLS renegotiation countermeasure that provides integrity protection for the record
layer transcript upon renegotiation (even when previous phases’ session keys are leaked while the phase is still
active), thereby achieving the full security of Definition 4. This countermeasure is quite straightforward: by
including a hash of all record layer messages in the renegotiation information extension, parties can confirm
that they share the same view of their previous record layers.

The renegotiation information extension already contains a fingerprint of the previous phrase’s handshake

transcript via the client verify data (fin
(−1)
C) and server verify data (fin

(−1)
S) values. We modify the

renegotiation information extension to include an additional value, the fingerprint of the encrypted messages
sent over the previous phase’s record layer. In particular, if negotiating:

extC ← fin
(−1)
C ‖ PRF(ms(−1), label5‖H(RT (−1)

s ‖RT (−1)
r)) (1)

where ms(−1) is the previous phase’s master secret, H is a collision-resistant hash function, and RT
(−1)
s ‖RT (−1)

r

is the client’s view of the previous phase’s record layer transcript; the server uses RT
(−1)
r ‖RT (−1)

s instead.
Appropriate checks are performed by the server. With this additional information, the two parties will now
not complete renegotiation unless they have matching views of the record layer transcripts from the previous
phase.

Remark 7. Note that the proof does not require the server to also send its view of the record layer transcript;
the server simply checks what it receives from the client and stops if it is not what it expects. The same is
actually true as well of the RIE countermeasure, and the proof of Theorem 3 would go through if only extC
contained fin

(−1)
S . However, if the security model is altered to allow Corrupts of the current phase’s public

keys but not Reveals of the previous phase’s session keys, then having both extC and extS include each party’s
view of the the transcript is required to achieve security.

In practice, it is not difficult to, on an incremental basis, compute hashes of the ciphertexts sent and
received over the record layer in that phase. In particular, it is not necessary to store all record layer
messages to input to the hash function all at once, as common programming APIs for hash functions allow
the hash value to be provided incrementally. However, the cost of the MAC computation can dominate
the cryptographic cost of record layer computations [17]. The new countermeasure is only suitable for TLS
communications over a reliable channel and could not be used with DTLS communications over an unreliable
channel.

Alternatively, if the sLHAE scheme for the record layer is implemented as encrypt-then-MAC or MAC-
then-encrypt, it should be possible to use MAC contained in the last encrypted message of the sLHAE scheme
instead of the hash value computed above; this would result in no additional performance impact and would
be easier to implement.

Theorem 4. Let Π be a TLS ciphersuite with the original RIE countermeasures as in Figure 5 but using
extC as in equation (1). If Π is a (τ, εmp)-secure multi-phase ACCE protocol, H is a (τ, εh)-collision-resistant
hash function, and PRF is a (τ, εprf)-secure pseudorandom function, then Π is a (τ, ε)-secure renegotiable
ACCE, where ε = εmp + εh + εprf .

30

The proof proceeds similarly to that of Theorem 3. The main difference is that, in one case, the removal
of restrictions A6 and A7 means we can no longer reduce down to a violation of confidentiality/integrity in
the multi-phase security of Π, and instead have to rely on the new countermeasure to detect non-matching
record layer transcripts and reduce to the security of the PRF and hash function.

Proof. The proof proceeds similarly to that of Theorem 3. Suppose A breaks the renegotiable ACCE security
of the protocol Π. We will show that either A directly breaks the multi-phase ACCE security of Π or A can
be used to construct another algorithm that breaks either the security of the PRF, the collision resistance of
H, or the multi-phase ACCE security of Π.

As before, we approach the proof in three cases: either A has broken the confidentiality/integrity of the
secure renegotiable ACCE, or A has broken the renegotiation authentication of the secure renegotiable ACCE,
and the latter can happen by meeting either condition M′(a) or M′(b). The first two cases, confidentiality
and authentication for M′(a), proceed exactly as in the proof of Theorem 3.

Authentication — M′(b). Suppose A wins the renegotiable ACCE security experiment for Π using
condition M′(b) but not M′(a).

When conditions A1–A7 hold, then the same argument as in the proof for case M′(b) of Theorem 3 still
holds, in which case conditions C1–C6 hold and A can be used to break the confidentiality/integrity of Π in
the multi-phase ACCE experiment.

However, in the secure renegotiable ACCE experiment, the adversary is no longer constrained by conditions
A6 and A7, so it can make Reveal queries while the phase is active. This means that conditions C4 and C5
are no longer satisfied, so we cannot reduce to the confidentiality/integrity of Π in the multi-phase ACCE
experiment when such Reveal queries are issued. Instead, we make use of the new countermeasure, and apply
an argument similar to that for case M′(a) of Theorem 3.

IfA wins using condition M′(b) but not M′(a), then, for every `′ < `∗, πsA.phases[`′].T = πtB .phases[`′].T .
But there is some ` < `∗ such that πsA.phases[`].RTs‖RTr 6= πtB .phases[`].RTr‖RTs. Choose ` maximal.
Then πtB .phases[`+ 1].T matches πsA.phases[`+ 1].T . In particular, messages m1 of those two transcripts
are equal, and so are messages m2 of those two transcripts. Since the new countermeasure is being used, m2

contains extC , which contains PRF(ms(−1), label5‖H(RT
(−1)
s ‖RT (−1)

r)). Since πs,`+1
A accepted, both πs,`+1

A

and πt,`+1
B used the same value in extC . But at each party, this value is the value of the PRF applied to the

hash of the record layer transcripts from phases πs,`A and πt,`B , which we know are not equal. This means a
collision has occurred either in H or PRF, which happens with negligible probability.

Thus, assuming PRF is secure, H is collision-resistant, and Π is a secure multi-phase ACCE, no A can
achieve conditions M′(a) and A1–A5.

6 Conclusion

Although two-party protocols for establishing secure communication have been extensively studied in the
literature and are widely used in practice, this is the first work to consider the important practical issue of
renegotiation, in which parties update one or more aspects of their connection — authentication credentials,
cryptographic parameters, or simply refresh their session key. The importance of correctly implementing
renegotiation was highlighted by the 2009 attack of Ray and Dispensa on how certain applications process
data from renegotiable TLS connections.

We have developed a formal model for describing the security of renegotiable cryptographic protocols,
focussing on authenticated and confidential channel establishment (ACCE) protocols. We have specifically
analyzed renegotiation in the TLS protocol, identifying the original attack of Ray and Dispensa in our
model. We have provide a generic proof that the SCSV/RIE countermeasure offers good protection against
renegotiation attacks, and give a new countermeasure that provides renegotiation security even in the face of
slightly stronger adversaries. In practice, the SCSV/RIE countermeasure may be good enough.

Renegotiation, reauthentication, and rekeying are important features of many other applied cryptographic
protocols. Future applied work includes examining the security of rekeying in protocols such as SSH or IKEv2
in our model. Open theoretical questions include how to adapt our approach for defining secure renegotiation
to other primitives, in particular authenticated key exchange protocols. The overall security of TLS still has

31

many important open questions, including the security of other TLS ciphersuites and the formal analysis of
other complex functionality such as alerts and error messages. TLS session resumption [11, §F.1.4] is another
important functionality of TLS, and it appears that our multi-phase ACCE model may be the right model in
which to analyze its security, another interesting open problem. Given that attacks continue to be found
outside the core key agreement component of TLS, further research into modelling the security of TLS in
increasingly realistic scenarios is well-motivated.

Acknowledgements

The authors gratefully acknowledge discussions with Colin Boyd, Cas Cremers, Kenny Paterson, Jörg Schwenk,
and the authors of the SCSV/RIE countermeasure [31], and the advice of anonymous reviewers. The research
was supported by an Australian Technology Network–German Academic Exchange Service (ATN-DAAD)
joint research cooperation scheme grant. D.S. was supported by an Australian Research Council (ARC)
Discovery Project.

References

[1] Michel Abdalla, Mihir Bellare, and Phillip Rogaway. The oracle Diffie-Hellman assumptions and an analysis
of DHIES. In David Naccache, editor, Topics in Cryptology – CT-RSA 2001, volume 2020 of Lecture Notes in
Computer Science, pages 143–158. Springer, April 2001.

[2] Mihir Bellare and Phillip Rogaway. Entity authentication and key distribution. In Douglas R. Stinson, editor,
Advances in Cryptology – CRYPTO’93, volume 773 of Lecture Notes in Computer Science, pages 232–249.
Springer, August 1994.

[3] Mihir Bellare and Phillip Rogaway. The security of triple encryption and a framework for code-based game-playing
proofs. In Serge Vaudenay, editor, Advances in Cryptology – EUROCRYPT 2006, volume 4004 of Lecture Notes
in Computer Science, pages 409–426. Springer, May / June 2006.

[4] Karthikeyan Bhargavan, Cédric Fournet, Markulf Kohlweiss, Alfredo Pironti, and Pierre-Yves Strub. Implementing
tls with verified cryptographic security. In IEEE Symposium on Security & Privacy, 2013. http://mitls.rocq.

inria.fr/.

[5] Simon Blake-Wilson, Magnus Nystroem, David Hopwood, Jan Mikkelsen, and Tim Wright. Transport Layer
Security (TLS) extensions, June 2003. RFC 3546.

[6] Daniel Bleichenbacher. Chosen ciphertext attacks against protocols based on the RSA encryption standard
PKCS #1. In Hugo Krawczyk, editor, Advances in Cryptology – CRYPTO’98, volume 1462 of Lecture Notes in
Computer Science, pages 1–12. Springer, August 1998.

[7] Christina Brzuska, Mark Fischlin, Nigel P. Smart, Bogdan Warinschi, and Stephen C. Williams. Less is more:
Relaxed yet composable security notions for key exchange. International Journal of Information Security,
12(4):267–297, August 2013.

[8] Ran Canetti and Hugo Krawczyk. Security analysis of IKE’s signature-based key-exchange protocol. In Moti
Yung, editor, Advances in Cryptology – CRYPTO 2002, volume 2442 of Lecture Notes in Computer Science,
pages 143–161. Springer, August 2002. http://eprint.iacr.org/2002/120/.

[9] Tim Dierks and Christopher Allen. The TLS protocol version 1.0, January 1999. RFC 2246.

[10] Tim Dierks and Eric Rescorla. The Transport Layer Security (TLS) protocol version 1.1, April 2006. RFC 4346.

[11] Tim Dierks and Eric Rescorla. The Transport Layer Security (TLS) protocol version 1.2, August 2008. RFC
5246.

[12] Stephen Farrell. Why didn’t we spot that? IEEE Internet Computing, 14(1):84–87, Jan.–Feb. 2010.

[13] Alan O. Freier, Philip Karlton, and Paul C. Kocher. The Secure Sockets Layer (SSL) protocol version 3.0, August
2011. RFC 6101; republication of original SSL 3.0 specification by Netscape of November 18, 1996.

[14] Sebastian Gajek, Mark Manulis, Olivier Pereira, Ahmad-Reza Sadeghi, and Jörg Schwenk. Universally composable
security analysis of TLS. In Joonsang Baek, Feng Bao, Kefei Chen, and Xuejia Lai, editors, ProvSec 2008: 2nd
International Conference on Provable Security, volume 5324 of Lecture Notes in Computer Science, pages 313–327.
Springer, October / November 2008.

[15] Rati Gelashvili. Attacks on re-keying and renegotiation in key exchange protocols, April 2012. Bachelor’s thesis,
ETH Zurich.

32

http://mitls.rocq.inria.fr/
http://mitls.rocq.inria.fr/
http://eprint.iacr.org/2002/120/

[16] Florian Giesen, Florian Kohlar, and Douglas Stebila. On the security of TLS renegotiation. In Proc. 20th ACM
Conference on Computer and Communications Security (CCS) 2013. ACM, 2013. doi:10.1145/2508859.2516694.

[17] Vipul Gupta, Douglas Stebila, Stephen Fung, Sheueling Chang Shantz, Nils Gura, and Hans Eberle. Speeding up
secure web transactions using elliptic curve cryptography. In ISOC Network and Distributed System Security
Symposium – NDSS 2004. The Internet Society, February 2004.

[18] Tibor Jager, Florian Kohlar, Sven Schäge, and Jörg Schwenk. On the security of TLS-DHE in the standard
model. In Reihaneh Safavi-Naini and Ran Canetti, editors, Advances in Cryptology – CRYPTO 2012, volume
7417 of Lecture Notes in Computer Science, pages 273–293. Springer, August 2012. Full version available as
http://eprint.iacr.org/2011/219.

[19] Tibor Jager, Florian Kohlar, Sven Schäge, and Jörg Schwenk. On the security of TLS-DHE in the standard model
(full version). Cryptology ePrint Archive, Report 2011/219, last revised 2013. http://eprint.iacr.org/2011/219.

[20] Jakob Jonsson and Burton S. Kaliski Jr. On the security of RSA encryption in TLS. In Moti Yung, editor,
Advances in Cryptology – CRYPTO 2002, volume 2442 of Lecture Notes in Computer Science, pages 127–142.
Springer, August 2002.

[21] Florian Kohlar, Sven Schäge, and Jörg Schwenk. On the security of TLS-DH and TLS-RSA in the standard
model, 2013. http://eprint.iacr.org/2013/367.

[22] Hugo Krawczyk. The order of encryption and authentication for protecting communications (or: How secure
is SSL?). In Joe Kilian, editor, Advances in Cryptology – CRYPTO 2001, volume 2139 of Lecture Notes in
Computer Science, pages 310–331. Springer, August 2001.

[23] Hugo Krawczyk. HMQV: A high-performance secure Diffie-Hellman protocol. In Victor Shoup, editor, Advances
in Cryptology – CRYPTO 2005, volume 3621 of Lecture Notes in Computer Science, pages 546–566. Springer,
August 2005.

[24] Hugo Krawczyk, Kenneth G. Paterson, and Hoeteck Wee. On the security of the tls protocol: A systematic
analysis. In CRYPTO, 2013.

[25] Adam Langley. Google online security blog: Protecting data for the long term with forward secrecy, November
2011. http://googleonlinesecurity.blogspot.com/2011/11/protecting-data-for-long-term-with.html.

[26] Damien Miller. SSL vulnerability and SSH, November 2009. http://lists.mindrot.org/pipermail/

openssh-unix-dev/2009-November/028003.html.

[27] Paul Morrissey, Nigel P. Smart, and Bogdan Warinschi. A modular security analysis of the TLS handshake
protocol. In Josef Pieprzyk, editor, Advances in Cryptology – ASIACRYPT 2008, volume 5350 of Lecture Notes
in Computer Science, pages 55–73. Springer, December 2008.

[28] Kenneth G. Paterson, Thomas Ristenpart, and Thomas Shrimpton. Tag size does matter: Attacks and
proofs for the TLS record protocol. In Dong Hoon Lee and Xiaoyun Wang, editors, Advances in Cryptology –
ASIACRYPT 2011, volume 7073 of Lecture Notes in Computer Science, pages 372–389. Springer, December 2011.

[29] Marsh Ray and Steve Dispensa. Renegotiating TLS, November 2009. http://extendedsubset.com/

Renegotiating_TLS.pdf.

[30] Eric Rescorla. HTTP over TLS, May 2000. RFC 2818.

[31] Eric Rescorla, Marsh Ray, Steve Dispensa, and Nasko Oskov. Transport Layer Security (TLS) renegotiation
indication extension, February 2010. RFC 5746.

[32] Victor Shoup. Sequences of games: a tool for taming complexity in security proofs. Cryptology ePrint Archive,
Report 2004/332, Nov 2004.

[33] Trustworthy Internet Movement. SSL Pulse, July 2013. https://www.trustworthyinternet.org/ssl-pulse/.

[34] Thierry Zoller. TLS & SSLv3 renegotiation vulnerability. Technical report, G-SEC, 2009. http://www.g-sec.

lu/practicaltls.pdf.

A Additional Definitions

A.1 Matching Conversations

Bellare and Rogaway [2] introduced the notion of matching conversations to help define correctness and
security of an AKE protocol. Later Jager et al. [18, 19] modified the original definition to take into account
which party sent the last message. The asymmetry of the definition — the fact that we have to distinguish

33

http://dx.doi.org/10.1145/2508859.2516694
http://eprint.iacr.org/2011/219
http://eprint.iacr.org/2011/219
http://eprint.iacr.org/2013/367
http://googleonlinesecurity.blogspot.com/2011/11/protecting-data-for-long-term-with.html
http://lists.mindrot.org/pipermail/openssh-unix-dev/2009-November/028003.html
http://lists.mindrot.org/pipermail/openssh-unix-dev/2009-November/028003.html
http://extendedsubset.com/Renegotiating_TLS.pdf
http://extendedsubset.com/Renegotiating_TLS.pdf
https://www.trustworthyinternet.org/ssl-pulse/
http://www.g-sec.lu/practicaltls.pdf
http://www.g-sec.lu/practicaltls.pdf

which party has sent the last message — is necessary since protocol messages may be sent sequentially. For
instance, in the TLS handshake protocol (see Figure 4) the last message the client sends is the ‘client finished’
message finC , and then it waits for the ‘server finished’ message finS before acceptance. The server, however,
sends finS after receiving finC . Therefore the server has to accept without knowing whether its last message
was received by the client correctly. Since an active adversary may simply drop the last protocol message,
this must be considered in the definition of matching conversations.

Definition 6 (Matching conversations). Let transcripts TA and TB be two sequences of messages sent and
received, in chronological order, by parties PA and PB respectively. We say that TA is a prefix of TB, if
TA contains at least one message, and the messages in TA are identical to and in the same order as the
first |TA| messages of TB. We say that transcript TA is a matching conversation to TB if (i) TB is a pre-
fix of TA and party PA has sent the last message(s), or (ii) TA = TB and party PB has sent the last message(s).

We say that TA and TB are matching conversations, if TA is a matching conversation to TB and vice versa.
Likewise we say that PA and PB have matching conversations, if TA and TB are matching conversations.

A.2 Stateful Length-Hiding Authenticated Encryption (sLHAE)

Length-hiding authenticated encryption (LHAE) was originally introduced by Paterson et al. [28]. Here we
describe the variant stateful LHAE (sLHAE), stated by Jager et al. [18].

A stateful symmetric encryption scheme is a pair of algorithms StE = (StE.Enc,StE.Dec). Algorithm

(C, st′e)
$← StE.Enc(k, len, hd,m, ste) takes as input a secret key k ∈ {0, 1}κ, an output ciphertext length

len ∈ N, some header data hd ∈ {0, 1}∗, a plaintext m ∈ {0, 1}∗, and the current state ste ∈ {0, 1}∗, and
outputs a ciphertext C ∈ {0, 1}∗ and an updated state st′e. Algorithm (m′, st′d) = StE.Dec(k, hd, C, std) takes
as input a key k, header data hd, a ciphertext C, and the current state std ∈ {0, 1}∗, and returns an updated
state st′d and a value m′ which is either the message encrypted in C, or a distinguished error symbol ⊥
indicating that C is not a valid ciphertext. Both encryption state ste and decryption state std are initialized
to the empty string ∅. Algorithm StE.Enc may be probabilistic, while StE.Dec is always deterministic.

Definition 7. A stateful symmetric encryption scheme StE = (StE.Enc,StE.Dec) is (τ, εsLHAE)-secure, if
Pr[b = b′] ≤ εsLHAE for all adversaries A running in time at most τ in the following experiment:

1. Choose b
$← {0, 1} and k

$← {0, 1}κ, and set ste ← ∅ and std ← ∅.
2. Run b′

$← AEncrypt,Decrypt.

Oracle Encrypt(m0,m1, len, hd) takes as input two messages m0 and m1 and a length len, and keeps a counter
i which is initialized to 0. Oracle Decrypt(C, hd) takes as input a ciphertext C and header hd, and keeps a
counter j and a switch diverge, both initialized to 0. Both oracles proceed as defined in Figure 3.

This behaviour of the Decrypt oracle in this combined definition for confidentiality and integrity can be
somewhat difficult to understand, so we give a brief explanation. From a high level, when b = 0, the adversary
always receives ⊥ from Decrypt queries. When b = 1, if the adversary successfully manipulates the integrity
of the scheme — either by injecting a new valid ciphertext or messing around with the order of ciphertexts
but still getting them to successfully decrypt — then Decrypt outputs the message m which is not equal to ⊥,
so the adversary learns that b = 1 not 0.

Note that diverge is stateful, so if it is ever set to 1 it remains 1. If the adversary ever calls Decrypt with
“not just the next ciphertext sent by the other party”, then diverge is set. In other words, if the adversary
tries to inject a new ciphertext, or mess around with the order in which ciphertexts are delivered, diverge
is set. In an ideal stateful encryption scheme, decryption should now fail. But if decryption succeeds, the
adversary receives something other than ⊥ (when b = 1), allowing it to learn the challenge bit b, and thus
the scheme should be considered insecure.

A.3 The PRF-Oracle-Diffie-Hellman Assumption

The PRF-Oracle-Diffie-Hellman (PRFODH) assumption presented by Jager et al. [18] is a variant of the
ODH assumption introduced by Abdalla, Bellare and Rogaway [1], adapted from hash functions to PRFs.
Jager et al. allow a single oracle query, in contrast to a polynomial number of queries as in the original

34

Encrypt(m0,m1, len, hd): Decrypt(C, hd):

1. i← i+ 1 1. j ← j + 1

2. (C(0), st
(0)
e)

$← StE.Enc(k, len, hd,m0, ste) 2. (m, std) = StE.Dec(k, hd, C, std)

3. (C(1), st
(1)
e)

$← StE.Enc(k, len, hd,m1, ste) 3. If (j > i) or (C 6= Cj), then diverge← 1
4. If (C(0) = ⊥) or (C(1) = ⊥), then return ⊥ 4. If (b = 1) and (diverge = 1), then return m

5. (Ci, ste)← (C(b), st
(b)
e) 5. Else return ⊥

6. Return Ci

Figure 3: Encrypt and Decrypt oracles in the stateful LHAE security experiment.

assumption [1]. Abdalla et al. point out that the ODH assumption is heuristically reasonable: in the random
oracle model, the strong DH assumption implies the ODH assumption.

Let G be a group with generator g. Let PRF be a deterministic function PRF : G × {0, 1}∗ → {0, 1}µ.
Consider the following security experiment played between a challenger C and an adversary A.

1. The adversary A outputs a value m.
2. The challenger chooses u, v ∈ [1, q], sets z0 = PRF(guv,m) and samples z1 ∈ {0, 1}µ uniformly at

random. Then it tosses a coin b ∈ {0, 1} and returns (zb, g
u, gv) to the adversary.

3. The adversary may query a pair (X,m′) with X 6= gu to the challenger. The challenger replies with
PRF(Xv,m′).

4. Finally the adversary outputs a guess b′ ∈ {0, 1}.

Definition 8. We say that the PRFODH problem is (τ, εprfodh)-hard with respect to G and PRF, if for all
adversaries A that run in time τ it holds that |Pr [b = b′]− 1/2| ≤ εprfodh.

B Protocols without Forward Security

The ACCE notion of Jager et al. [18] requires confidentiality/integrity of ciphertexts to hold even when the
long-term secret keys are corrupted after the handshake completes. As a result, RSA key transport-based
ciphersuites cannot be proven secure in this model: they do not have forward security, since corrupting the
long-term secret keys allows the adversary to compute the session key.

It is plausible that a non-forward-secure notion of ACCE could be defined in which an RSA key transport-
based ciphersuite could be proven secure. While that is beyond the scope of this document, we do comment
on how the notions we have introduced in this paper may be modified to consider protocols without forward
security.

B.1 Model

For renegotiation authentication, public keys used in phase ` cannot be Corrupted while the post-accept
stage of phase ` is still active, as it could allow the adversary to compute the session key and thus inject
messages undetectably. One could add the following restrictions to Def. 5 to consider protocols without
forward security:

A7. A did not query Corrupt(PA, π
s
A.phases[`].pk) before πsA accepted in phase `+ 1, for every ` < `∗; and

A8. A did not query Corrupt(PB , π
s
A.phases[`].pk′) before πsA accepted in phase ` + 1, for every ` < `∗,

where πsA.d = πtB .

For confidentiality/integrity, public keys used in phase ` can never be Corrupted, as it could allow the
adversary to compute the session key and distinguish ciphertexts. One could replace the following restrictions
in Def. 2 to consider protocols without forward security:

C2′. A did not query Corrupt(PA, π
s
A.phases[`].pk); and

C3′. A did not query Corrupt(PB , π
s
A.phases[`].pk′).

35

B.2 On Renegotiation Security of TLS RSA with SCSV/RIE

As mentioned in Section 2, TLS ciphersuites without forward security, such as RSA key transport, cannot be
proven to be secure ACCE protocols, since the compromise of a party’s long-term secret key after the phase
accepts allows the adversary to compute the master secret. Hence RSA key transport-based ciphersuites
can also not be shown to be secure or weakly secure renegotiable ACCE protocols. However, it is plausible
that the ACCE definition can be modified to consider protocols without forward security, in which case RSA
key transport may be able to proven secure. In such a scenario, it should be possible to show that such
ciphersuites, when using SCSV/RIE, also satisfy a non-forward-secure notion of weak renegotiation security;
or when using the new countermeasure in Section 5, also satisfy a non-forward-secure notion of renegotiation
security.

36

C TLS DHE DSS WITH 3DES EDE CBC SHA Protocol with Renegotiation
Extensions

C S

(IC = pkC , skC)(IC = pkC , skC) (IS = pkS , skS)
pre-accept stage

rC
r←− {0, 1}λ1

†extC ←

{
empty, if initial,

fin
(−1)
C , if reneg

m1 : rC , cs-list,
†extC

rS
r←− {0, 1}λ1

†If extC 6= fin
(−1)
C : α← reject

†extS ←

{
empty, if initial,

fin
(−1)
C ‖fin(−1)

S , if reneg

tS
r←− Zq, TS = gtS mod p

σS ← SIG.Sign(skS , rC‖rS‖p‖g‖TS)
m2 : rS , sid, cs-choice,

†extS

m3 : certS

m4 : p, g, TS , σS

m5 : get-cert

m6 : done

†If extS 6= fin
(−1)
C ‖fin(−1)

S : α← reject

If SIG.Vfy(pkS , σS , rC‖rS‖p‖g‖TS) = 0 : α← reject

tC
r← Zq, TC = gtC mod p

σC ← SIG.Sign(skC ,m1‖ . . . ‖m8)

pms← T tCS mod p

ms← PRF(pms, label1‖rC‖rS)

KC→S
enc ‖KS→C

enc ‖KC→S
mac ‖KS→C

mac ← PRF(ms, label2‖rC‖rS)

finC ← PRF(ms, label3‖H(m1‖ . . . ‖m10))

†store fin
(−1)
C ← finC

m7 : certC

m8 : TC

m9 : σC

m10 : flagenc

m11 : (C11, ste) = StE.Enc(KC→S
enc ‖KC→S

mac , `,H, finC , ste)

If SIG.Vfy(pkC , σC ,m1‖ . . . ‖m8) = 0 : α← reject

pms← T tSC mod p

ms← PRF(pms, label1‖rC‖rS)

KC→S
enc ‖KS→C

enc ‖KC→S
mac ‖KS→C

mac ← PRF(ms, label2‖rC‖rS)

If finC 6= PRF(ms, label3‖H(m1‖ . . . ‖m10)) : α← reject

finS ← PRF(ms, label4‖H(m1‖ . . . ‖m12))

†store fin
(−1)
S ← finS

†store fin
(−1)
C ← finC

α← accept

m12 : flagenc

m13 : (C13, ste) = StE.Enc(KS→C
enc ‖KS→C

mac , `,H, finS , ste)

If finS 6= PRF(ms, label4‖H(m1‖ . . . ‖m12)) : α← reject

†store fin
(−1)
S ← finS

α← accept

post-accept stage

StE.Enc(KC→S
enc ‖KC→S

mac , `,H, data, ste)

StE.Enc(KS→C
enc ‖KS→C

mac , `,H, data, ste)

Figure 4: TLS handshake for TLS DHE DSS WITH 3DES EDE CBC SHA ciphersuite with client authentication
†and SCSV / RIE renegotiation countermeasures

37

D Generic TLS Protocol with Renegotiation Extensions

C S

(IC = pkC , skC) (IS = pkS , skS)
pre-accept stage

rC
r←− {0, 1}λ1

†extC ←

{
empty, if initial,

fin
(−1)
C , if reneg

m1 : rC , cs-list,
†extC

rS
r←− {0, 1}λ1

†If extC 6= fin
(−1)
C : α← reject

†extS ←

{
empty, if initial,

fin
(−1)
C ‖fin(−1)

S , if reneg

keyexS ← . . .
m2 : rS , sid, cs-choice,

†extS

m3 : certS

m4 : keyexS

m5 : get-cert

m6 : done

†If extS 6= fin
(−1)
C ‖fin(−1)

S : α← reject

If ¬verify(keyexS) : α← reject

keyexC ← . . .

σC ← SIG.Sign(skC ,m1‖ . . . ‖m8)

pms← . . .

ms← PRF(pms, label1‖rC‖rS)

KC→S
enc ‖KS→C

enc ‖KC→S
mac ‖KS→C

mac ← PRF(ms, label2‖rC‖rS)

finC ← PRF(ms, label3‖H(m1‖ . . . ‖m10))

†store fin
(−1)
C ← finC

m7 : certC

m8 : keyexC

m9 : σC

m10 : flagenc

m11 : (C11, ste) = StE.Enc(KC→S
enc ‖KC→S

mac , `, hd, finC , ste)

If SIG.Vfy(pkC , σC ,m1‖ . . . ‖m8) = 0 : α← reject

pms← . . .

ms← PRF(pms, label1‖rC‖rS)

KC→S
enc ‖KS→C

enc ‖KC→S
mac ‖KS→C

mac ← PRF(ms, label2‖rC‖rS)

If finC 6= PRF(ms, label3‖H(m1‖ . . . ‖m10)) : α← reject

finS ← PRF(ms, label3‖H(m1‖ . . . ‖m12))

†store fin
(−1)
S ← finS

†store fin
(−1)
C ← finC

α← accept
m12 : flagenc

m13 : (C13, ste) = StE.Enc(KS→C
enc ‖KS→C

mac , `, hd, finS , ste)

If finS 6= PRF(ms, label3‖H(m1‖ . . . ‖m12)) : α← reject

†store fin
(−1)
S ← finS

α← accept post-accept stage

StE.Enc(KC→S
enc ‖KC→S

mac , `, hd, data, ste)

StE.Enc(KS→C
enc ‖KS→C

mac , `, hd, data, ste)

Figure 5: Generic TLS handshake protocol with †SCSV/RIE renegotiation countermeasures

38

	Introduction
	The TLS Renegotiation Issue
	Countermeasures Added to TLS
	Contributions

	Security Definitions for Multi-Phase and Renegotiable ACCE
	Overview
	Execution Environment
	Security Definitions
	Confidentiality.
	Secure multi-phase ACCE.
	Secure renegotiable ACCE.
	Weakly secure renegotiable ACCE.

	Renegotiation (In)security of TLS
	TLS without countermeasures is not a (weakly) secure renegotiable ACCE

	Renegotiation Security of TLS with SCSV/RIE Countermeasures
	TLS with SCSV/RIE is not a secure renegotiable ACCE
	Tagged-ACCE model and tagged TLS
	Tagged-ACCE security model
	Tagged-ACCE-fin security model
	Tagged TLS
	Proof of Lemma 1: client
	Proof of Lemma 1: server
	Proof of Confidentiality

	TLS with SCSV/RIE is multi-phase-secure
	TLS with SCSV/RIE is a weakly secure renegotiable ACCE

	Renegotiation Security of TLS with a New Countermeasure
	Conclusion
	References
	Additional Definitions
	Matching Conversations
	Stateful Length-Hiding Authenticated Encryption (sLHAE)
	The PRF-Oracle-Diffie-Hellman Assumption

	Protocols without Forward Security
	Model
	On Renegotiation Security of TLS_RSA_ with SCSV/RIE

	TLS_DHE_DSS_WITH_3DES_EDE_CBC_SHA Protocol with Renegotiation Extensions
	Generic TLS Protocol with Renegotiation Extensions

