
An extended abstract version of this work appears in: Proc. 21st ACM Conference on Computer and
Communications Security (CCS) 2014, doi:10.1145/2660267.2660286. This is the full version.

Multi-ciphersuite security

of the Secure Shell (SSH) protocol

Florian Bergsma1 Benjamin Dowling2a Florian Kohlar1 Jörg Schwenk1

Douglas Stebila2a,2b

1 Horst Görtz Institute, Ruhr-Universität Bochum, Bochum, Germany

{florian.bergsma,florian.kohlar,joerg.schwenk}@rub.de
2a School of Electrical Engineering and Computer Science

2b School of Mathematical Sciences
2a,2b Queensland University of Technology, Brisbane, Australia

{b1.dowling,stebila}@qut.edu.au

August 19, 2014

Abstract

The Secure Shell (SSH) protocol is widely used to provide secure remote access to servers,
making it among the most important security protocols on the Internet. We show that the
signed-Diffie–Hellman SSH ciphersuites of the SSH protocol are secure: each is a secure
authenticated and confidential channel establishment (ACCE) protocol, the same security
definition now used to describe the security of Transport Layer Security (TLS) ciphersuites.

While the ACCE definition suffices to describe the security of individual ciphersuites,
it does not cover the case where parties use the same long-term key with many different
ciphersuites: it is common in practice for the server to use the same signing key with both
finite field and elliptic curve Diffie–Hellman, for example. While TLS is vulnerable to attack
in this case, we show that SSH is secure even when the same signing key is used across
multiple ciphersuites. We introduce a new generic multi-ciphersuite composition framework
to achieve this result in a black-box way.

Keywords: Secure Shell (SSH); key agility; cross-protocol security; multi-ciphersuite;
authenticated and confidential channel establishment

The research leading to these results has received funding from the European Community (FP7/2007-2013)
under grant agreement number ICT-2007-216646 - European Network of Excellence in Cryptology II (ECRYPT
II), the Australian Technology Network–German Academic Exchange Service (ATN-DAAD) Joint Research
Co-operation Scheme, and the Australian Research Council (ARC) Discovery Project scheme under grant
DP130104304.

1

http://dx.doi.org/10.1145/2660267.2660286
mailto:florian.bergsma@rub.de
mailto:florian.kohlar@rub.de
mailto:joerg.schwenk@rub.de
mailto:b1.dowling@qut.edu.au
mailto:stebila@qut.edu.au

Contents

1 Introduction 3

2 Preliminaries 7
2.1 Decisional Diffie–Hellman . 7
2.2 Digital signature schemes . 7
2.3 Buffered stateful authenticated encryption . 8
2.4 Pseudo-random functions . 8
2.5 Collision-resistant hash functions . 9

3 Multi-ciphersuite ACCE protocols 9
3.1 Execution environment . 10
3.2 Security definitions . 11

4 The SSH protocol 13
4.1 The SSH PRF . 14

5 ACCE security of SSH 15
5.1 Challenges with security proofs for SSH . 15
5.2 Server-only-authentication mode . 16
5.3 Mutual authentication mode . 19

6 Composition theorem for multi-ciphersuite security 20
6.1 Single ciphersuite security with auxiliary oracle 21
6.2 Multi-ciphersuite composition . 21

7 SSH is multi-ciphersuite secure 23
7.1 Proof of Precondition 2 . 24
7.2 Proof of Precondition 1 . 24
7.3 Security of SSH with auxiliary oracle . 25
7.4 Final result: Multi-ciphersuite SSH . 27

8 TLS is not multi-ciphersuite secure 28
8.1 Attack of Mavrogiannopoulos et al. 28
8.2 The attack in our framework . 29

9 Discussion 29

A Protocol description for SSH signed-Diffie–Hellman ciphersuite 33
A.1 Negotiation . 33
A.2 Signed-DH sub-protocol—all authentication modes 33
A.3 Sub-protocol—no client authentication . 34
A.4 Sub-protocol—password client authentication . 34
A.5 Sub-protocol—public-key client authentication 35

2

1 Introduction

Communication on the Internet is protected by a variety of cryptographic protocols: while the
Transport Layer Security (TLS) protocol (also known as the Secure Sockets Layer (SSL) protocol)
secures web communication, as well as e-mail transfer and many other network protocols, the
Secure Shell (SSH) protocol1 provides secure remote login and rudimentary virtual private
network (VPN) access. It is of paramount importance to have strong cryptographic assurances
of these protocols.

These and other real-world protocols tend to be far more complex than protocols typically
studied in the academic literature. These protocols include both key exchange and secure channel
communication, support negotiation of many combinations of cryptographic algorithms and a
variety of authentication modes, and have additional functionality such as renegotiation and
error reporting. All of these can affect the practical and theoretical security of the protocol.

At a high level, the parties run a cryptographic protocol to establish a secure channel, then
communicate arbitrary application data over that channel. More precisely, execution begins with
a channel establishment phase, in which parties negotiate which set of cryptographic parameters
they intend to use, establish a shared session key, use long-term keys for entity authentication
(either server-only or mutual), and send key confirmation messages. This is followed by the
communication of application data over a secure channel which provides confidentiality and
integrity using the session key from the channel establishment phase. The secure channel is
called the binary packet protocol in SSH. A complicating factor for SSH (as well as TLS) is that
some portions of the channel establishment phase take place in plaintext, and other portions
are sent over the secure channel. The overlap between the channel establishment phase and the
secure channel can cause complications in the analysis of these protocols.

For precision, we will use the following terminology:

• plaintext channel : communication that is not sent via authenticated encryption using the
session key;

• auth-enc channel : communication that is sent via authenticated encryption using the
session key;

• handshake phase: communication of protocol messages to perform entity authentication
and establish a secure channel, consisting of a negotiation phase and a sub-protocol (or
ciphersuite) phase;2

• application data phase: communication of application data using the auth-enc channel.

Figure 1 shows a simplified version of the SSH protocol with mutual authentication; details
appear in Section 4.

Provable security of real-world protocols. Standard authenticated key exchange (AKE)
models [7, 12, 27] are not appropriate for modelling protocols such as SSH and TLS for several
reasons. First, the auth-enc channel for secure application data communication is quite important
but is not included in AKE definitions. Moreover, even the handshake phase cannot be analyzed
as an AKE protocol: AKE security requires indistinguishability of session keys, but in both
SSH and TLS, in the handshake phase, a key confirmation message is sent over the auth-enc
channel which allows an attacker to distinguish a random session key from the real one. Some
work has shown that truncated forms of the SSH [36] and TLS [22, 29] handshakes are secure
AKE protocols, but this does not necessarily imply security of the entire protocol.

It has also been observed that standard notions of authenticated encryption are not quite
appropriate for the auth-enc channels in SSH or TLS either. The security property that the

1In this paper, we refer exclusively to SSHv2 [39, 37, 40].
2We note that ciphersuite happens to be a TLS-centric term. SSH does not define a single ciphersuite, instead

separately negotiating key exchange, encryption, and MAC algorithms. For consistency, in the case of SSH we
refer to a single combination of these algorithms as a ciphersuite.

3

Initiator Responder

KEXINIT: nonce, ciphersuites

KEXREPLY: nonce, ciphersuites

KEXDH INIT: gx

KEXDH REPLY: gy, pkresp, sig

accept server
authentication

AUTHREQUEST: Enc(pkinit or pw or none)

AUTHOK†: Enc(pkinit)

AUTHREQUEST†: Enc(pkinit, sig)

accept client
authentication

AUTHSUCCESS

Enc(application data)

p
la

in
te

x
t

ch
an

n
el

au
th

-e
n
c

ch
a
n
n

el h
a
n

d
sh

a
ke

p
h

as
e

application
data phase

n
eg

o
ti

at
io

n
su

b
-p

ro
to

co
l

(c
ip

h
er

su
it

e)

Figure 1: Overview of SSH protocol flow.
† denotes messages omitted for server-only/password auth.

auth-enc channel in SSH aims to meet is buffered stateful authenticated encryption [6, 1, 31],
which includes confidentiality and integrity of ciphertexts and protection against reordering,
along with details associated with byte-wise processing of received data.

Analysis of TLS proceeded in a similarly separate manner, until, in 2012, the first security
proof of a full, unmodified TLS ciphersuite appeared. Jager et al. [20] showed that (mutually
authenticated) signed-Diffie–Hellman TLS ciphersuites were secure authenticated and confidential
channel establishment (ACCE) protocols under reasonable assumptions on the cryptographic
building blocks. ACCE essentially combines AKE and authenticated encryption notions to
obtain a single notion in which parties establish a channel that provides confidentiality and
integrity of ciphertexts. Subsequently, ciphersuites based on RSA key transport and static Diffie–
Hellman, with mutual and server-only authentication, have been shown ACCE secure by both
Kohlar et al. [24] and Krawczyk et al. [26]. The ACCE notion was extended by Giesen et al. [17]
to cover renegotiation, in which parties can establish a new ciphersuite or change authentication
credentials in an existing connection. Alternative approaches for proving the full security of
TLS include a composability approach [10] and formal verification of security properties of an
implementation [8], but ACCE seems the dominant approach at present, and thus our choice for
analyzing SSH.

Multi-protocol security. As noted above, both SSH and TLS support the negotiation of
different combinations of cryptographic algorithms—ciphersuites—for both the handshake phase
and the auth-enc channel. SSH’s possible negotiated algorithms are noted in Section 4, and TLS
supports more than 300 different combinations of algorithms. A note on terminology: we will
talk about SSH or TLS as a single “protocol” consisting of different “ciphersuites”; hence we are
interested in “multi-ciphersuite” security.

The previous works on ACCE security of TLS all focus on ciphersuites running in isolation:
in a cryptographic sense, each ciphersuite is a different “protocol”. Most ciphersuites of TLS have
been proven secure, but only in a world where they have no interaction with other ciphersuites.
In practice, servers and clients often share a single long-term key across multiple ciphersuites:
For example, in SSH, the server may have a single 2048-bit RSA signing key that it uses with

4

various key exchange and authenticated encryption mechanisms.
As first identified by Kelsey et al. [23], re-use or sharing of keys across multiple primitives

or protocols can potentially be insecure; this is variously called a chosen protocol attack, cross-
protocol attack, or multi-protocol attack. Very early work on SSL by Wagner and Schneier [35]
identified a theoretical cross-ciphersuite attack on TLS: in ciphersuites with signed key exchange,
the data structure that is signed (ServerKeyExchange) does not contain an identifier of its
type, so it is theoretically possible that a data structure signed for one key exchange method
could be interpreted as valid in another key exchange method. While Wagner and Schneier were
not able to translate this into a concrete attack, Mavrogiannopoulos et al. [28] were able to
make use of this observation to interpret a set of ECDH parameters as valid DH parameters.
Cross-protocols attacks have been studied in a variety of contexts for protocols in the literature
[2, 34, 14] and in practice [21]; notably, Cremers [14] studied 30 AKE protocols from the literature
and found cross-protocol attacks on 23 of them. In these lines of work, attacks arose from a
common fundamental principle: messages signed or decrypted using long-term keys did not have
sufficiently different structure to prevent misuse in other protocols.

There have been several works considering the joint security of protocols with shared or
re-used keys, sometimes called key agility.3 In their original paper on chosen protocol attacks,
Kelsey et al. [23] state five design principles that aim to render chosen protocol attacks impossible;
Canetti et al. [13] similarly discuss requirements for security in multi-protocol environments.
Thayer-Fabrega et al. [33] proposed the use of strand spaces, a type of formal logic for protocol
execution, to identify under which conditions a protocol could be composed with other protocols
(re-using the same long-term public key) without compromising security; enhancements to this
approach have followed [18, 5]. Datta et al. [15] and Andova et al. [4] both give an alternative
protocol composition logic. A common characteristic to these approaches is defining some form of
independence of protocols, and then using a composition theorem where protocols that are secure
in isolation and which are independent remain secure when used together, even with re-used
long-term keys. Bhargavan et al. [9] analyze TLS in a multi-ciphersuite setting, constructing a
generic protocol where some—but not all—algorithms can be combined while sharing long-term
keys.

Contributions. Our main contribution is a provable security analysis of the SSH protocol. In
particular, we show the various signed-Diffie–Hellman ciphersuites of SSH are ACCE secure in
isolation, under reasonable assumptions on the underlying cryptographic primitive. We also show,
using a newly created framework for analyzing the security of multi-ciphersuite protocols, that
SSH is secure even when these ciphersuites share the same long-term key. Our multi-ciphersuite
ACCE framework can be applied to analyze the security of other ACCE protocols.

1. Provable security of signed-Diffie–Hellman SSH ciphersuites in isolation. We provide the
first proof that SSH is ACCE-secure. In particular, we show that the signed-Diffie–Hellman
ciphersuites in SSH are ACCE-secure, under reasonable assumptions on the cryptographic
primitives used. (Although RSA-key-transport-based ciphersuites have been standardized for
SSH [19], OpenSSH, the most prominent implementation of SSH, does not support them as of
this writing4, so we omit them.) We give results for both server-only and mutually authenticated
variants.

For mutual authentication, we only provide a formal treatment of client authentication using
public keys. While SSH does support client authentication using passwords [37, §8], this is a
non-cryptographic form of password authentication: after establishing a server-to-client auth-enc
channel, the client simply sends her username and password directly over the auth-enc channel.
Thus, having analyzed the server-only variant, there is no value in further analyzing the case of

3Contrast this with the universal composability (UC) framework [11], where secure AKE protocols [12] can be
composed with other protocols but long-term keys are in general not re-used across functionalities.

4http://www.openbsd.org/cgi-bin/cvsweb/src/usr.bin/ssh/kex.h?rev=1.64

5

http://www.openbsd.org/cgi-bin/cvsweb/src/usr.bin/ssh/kex.h?rev=1.64

password authentication. Note as well that SSH allows multiple connections to be multiplexed
in a single encrypted tunnel [38], but from a cryptographic perspective this is all just application
data.

As alluded to earlier, in proving security of a real world protocol such as SSH one encounters
various problems that do not occur with simpler, academic protocols. These problems are
detailed in Section 5.1. We had to solve proof problems with encrypted handshake messages, the
fact that the secret Diffie-Hellman key is input to a hash function, and an abbreviated handshake
mode. As the SSH Binary Packet Protocol in counter mode is a buffered stateful authenticated
encryption scheme (see Paterson and Watson [31]), we bypass any potential problems with
padding or encryption.

2. Framework for analyzing multi-ciphersuite protocols. We begin by adapting Jager et al.’s
authenticated and confidential channel establishment (ACCE) definition [20]: we define a
multi-ciphersuite ACCE protocol: a short negotiation phase is used to agree on one of several
ciphersuites, which is then used in the subsequent handshake phase and auth-enc channel. We
next define what it means for a multi-ciphersuite ACCE protocol to be secure: it should be hard
to break authentication or channel security in any ciphersuite.

We then develop in Section 6 a generic approach for proving multi-ciphersuite security from
single ciphersuite security. It will not be possible to prove in general that, if individual ciphersuites
are ACCE-secure in isolation, then the collection is multi-ciphersuite-secure even when long-term
keys are re-used across ciphersuites: the aforementioned attack by Mavrogiannopoulos et al. [28]
on the signed-DH and signed-ECDH ciphersuites in TLS serves as a counterexample to such a
theorem, so we need some additional alteration to the standard ACCE definition.

Moreover, when long-term keys are shared, there are challenges in the standard simulation
approach to proof. For example, consider the case of two different ciphersuites that use the same
long-term keys for authentication. A standard simulation approach to proving multi-ciphersuite
security would be to assume one ciphersuite is secure in isolation, then simulate the other
ciphersuite. However, if long-term keys are shared between the two ciphersuites, then it is in
general not possible to simulate the long-term private key operations in the second, simulated
ciphersuite, because those keys are internal to the first ciphersuite.

These are the main problems our technical approach must solve. We achieve a composition
theorem as follows:

1. Define a variant of ACCE in which the adversary has access to an auxiliary oracle that
does operations using the long-term secret key, as long as queries to that oracle do not
violate a certain condition.

2. Suppose for each ciphersuite SPi there exists an auxiliary algorithm Auxi(sk, ·) and
condition Φi such that:

(a) SPi is secure even if an adversary makes queries to Auxi(sk, ·), provided the queries
do not violate Φi (i.e., in the sense of item 1 above); and

(b) if SPj shares long-term keys with SPi, then SPj can be simulated using Auxi without
violating Φi.

3. Then the collection of ciphersuites is secure, even when long-term keys are re-used across
ciphersuites.

Item 1 can be viewed as “opening up” the ACCE definition a little bit, providing access to
the secret key to do operations that “don’t affect security”. With carefully chosen auxiliary
algorithms and conditions, items 2(a) and 2(b) work together to bypass the aforementioned
challenge in proving a composition theorem using a simulation argument. Our approach seems
to provide substantial compositional power without making proofs much harder in practice.

Our multi-ciphersuite ACCE approach contrasts with the key agility methodology of Bhar-
gavan et al. [9] for analyzing TLS. As noted above, TLS is not multi-ciphersuite secure in
general due to the cross-ciphersuite attack [28], so Bhargavan et al. develop a more “fine-grained”
approach to key agility in TLS: they explicitly model TLS as a protocol with multiple signature,

6

KEM, and PRF algorithms, and then prove the joint security of key-agile TLS under reasonable
assumptions on the individual building blocks. Our approach is more “coarse-grained”: we
can compose several whole ACCE-secure ciphersuites in a nearly black-box manner, and the
ciphersuites to be composed need not be as “cleanly” related to each other as in Bhargavan et al..
In fact, one could conceivably prove that key re-use in entirely unrelated protocols (e.g., the
same signing key in SSH and (a revised form of) TLS) is secure using our framework.

3. Multi-ciphersuite security of SSH. Our composition framework can be readily applied
to signed-Diffie–Hellman ciphersuites in SSH, yielding multi-ciphersuite security even when
long-term signing keys are re-used across ciphersuites. To do so, we describe how to instantiate
the auxiliary oracle Auxi and predicate Φi in a way that maintains security in condition 2(a)
above, yet still allows cross-protocol simulation as per condition 2(b) above. The composition
theorem then immediately yields multi-ciphersuite security.

2 Preliminaries

In this section, we define notation used in the paper and review the cryptographic assumptions
used in the proofs.

Notation. Different typefaces are used to represent different types of objects: Algorithms
(also A and B); Queries; Protocols; variables; security-notions; constants; vector notation ~x is
used for ordered lists. We use ∅ to denote the empty string, and [n] = [1, n] = {1, . . . , n} ⊂ N for

the set of integers between 1 and n. If A is a set, then a
$← A denotes that a is drawn uniformly

at random from A. If A is a probabilistic algorithm, then x
$← A(y) denotes the output x of A

when run on input y and randomly chosen coins.

2.1 Decisional Diffie–Hellman

Let G be a group of prime order q and g be a generator of G. The advantage of an algorithm A
in solving the decisional Diffie–Hellman (DDH) problem for (g, q) is Advddh

g,q (A), defined as∣∣∣Pr
(
A(g, ga, gb, gab) = 1

)
− Pr

(
A(g, ga, gb, gc) = 1

)∣∣∣ ,

where a, b, c
$← Zq.

2.2 Digital signature schemes

A digital signature scheme is a triple SIG = (KeyGen,Sign,Vfy), consisting of the key generation

algorithm KeyGen()
$→ (pk, sk), the signing algorithm Sign(sk,m)

$→ σ, and the verification

algorithm Vfy(pk, σ,m)
$→ {1, 0}.

Strong existential unforgeability under chosen message attacks is formalized in the following
security game that is played between a challenger C and an adversary A.

1. The challenger generates a key pair (sk, pk)
$← KeyGen() and the public key pk is given

to the adversary.
2. The adversary may adaptively obtain signatures σi on message mi of its choosing.
3. The adversary outputs a message/signature pair (m,σ).
4. The adversary wins if Vfy(pk,m, σ) = 1 and (m,σ) 6= (mi, σi) for all i.

The advantage of A in breaking the strong existential unforgeability under chosen message attack
of SIG is Adveuf-cma

SIG (A), defined as the probability that A wins in the above experiment.

7

Encrypt(m0,m1):

1. u← u+ 1
2. (C(0), st0e)

$← Enc(k,m0, st
0
e)

3. (C(1), st1e)
$← Enc(k,m1, st

1
e)

4. if C(0) = ⊥ or C(1) = ⊥ then
5. return ⊥
6. C[u]← C(b)

7. return C(b)

Decrypt(C):

1. v ← v + 1
2. (m, std)← Dec(k,C, std)
3. if m = ⊥p then return ⊥
4. if b = 0 then return ⊥
5. if v > u or C 6= C[v] then
6. phase← 1
7. if phase = 1 then return m
8. return ⊥

Figure 2: Encrypt and Decrypt oracles in the buffered stateful authenticated encryption security
experiment. The values u, v and phase are all initialized to 0 at the beginning of the security
game. The Decrypt query accounts for buffering in the third line.

2.3 Buffered stateful authenticated encryption

Paterson et al. [31] introduced buffered stateful authenticated encryption (BSAE) for ap-
propriately modeling the security of the SSH auth-enc channel. A similar notion (stateful
length-hiding authenticated encryption (sLHAE)) is used to model the auth-enc channel in
TLS [30, 20]. These notions encompass both confidentiality (indistinguishability under chosen
ciphertext attack) and stateful ciphertext integrity. The main difference of BSAE to previous
definitions for authenticated encryption schemes is that the decryption oracle buffers partial
ciphertexts until a complete ciphertext block is received, before answering a decryption query.

A BSAE scheme is a pair of algorithms StE = (Enc,Dec) described in Figure 2; our
presentation adapts the chosen ciphertext security and integrity notions for buffered stateful
authenticated encryption given by Paterson and Watson [31] to the combined setting used in
the ACCE experiment of Jager et al. [20].

• The encryption algorithm Enc(k,C, ste)
$→ (m, st′e), takes as input a symmetric secret

key k ∈ {0, 1}κ, a plaintext m ∈ {0, 1}∗, and an encryption state ste, outputs either a
ciphertext c ∈ {0, 1}` or an error ⊥, and an updated encryption state st′e.
• The decryption algorithm Dec(k, c, std) → m′ processes secret key k, ciphertext c, and

decryption state std. It returns the new decryption state std (possibly containing yet
unprocessed ciphertext chunks) and a value m′ which is either the message encrypted in c,
a pending state symbol ⊥p to signal that it has not received enough ciphertext bytes to
decrypt, or a distinguished error symbol ⊥e indicating that c is not a valid ciphertext.

Security of a BSAE is defined via the following security game played between a challenger C and
adversary A.

1. The challenger picks b
$← {0, 1} and k

$← {0, 1}κ.
2. The adversary may adaptively query the encryption oracle Encrypt and decryption oracle

Decrypt which respond as shown in Figure 2.
3. The adversary outputs a guess b′ ∈ {0, 1}.

The advantage of A in breaking the BSAE scheme StE is Advbsae
StE (A) = |Pr(b = b′)− 1/2|.

2.4 Pseudo-random functions

Our definition of a pseudorandom function and a stateful length-hiding authenticated encryption
scheme follows that of [26, full version, p. 43–45].

A pseudorandom function F with key space K and input space {0, 1}∗ is a deterministic
algorithm. On input a key k ∈ K and an input string x ∈ {0, 1}∗, the algorithm outputs a value
F (k, x) ∈ {0, 1}µ.

Security is formulated via the following security game that is played between a challenger C
and a stateful adversary A.

8

1. The challenger samples k
$← K uniformly random and b

$← {0, 1}.
2. The adversary may adaptively query the challenger; for each query value x, the challenger

replies with F (k, x).
3. The adversary outputs a value y that was not a query to the challenger.

4. If b = 0, the challenger computes z ← F (k, y). If b = 1, the challenger samples z
$← {0, 1}µ.

5. The adversary receives z and may continue to adaptively query the challenger on any value
y.

6. The adversary outputs a guess b′ ∈ {0, 1}.
The advantage of A in breaking the PRF F is Advprf

F (A) = |Pr(b = b′)− 1/2|.

2.5 Collision-resistant hash functions

An unkeyed hash function H : {0, 1}∗ → {0, 1}µ is a deterministic algorithm. The advantage of
A in finding a collision in H is

Advcr
H(A) = Pr

(
H(x) = H(x′) ∧ x 6= x′ : (x, x′)

$← A()
)
.

3 Multi-ciphersuite ACCE protocols

In the original ACCE formulation, an ACCE protocol is defined implicitly by however the
experiment responds to the Send queries. In the multi-ciphersuite setting, there are many
different ciphersuite algorithms to consider, so we begin by more formally defining a multi-
ciphersuite protocol in several portions. There will be a negotiation protocol, which is common
to all ciphersuites, and which is typically used to negotiate which ciphersuite is used. Each
party then proceeds with the negotiated one of several sub-protocols, each of which represents a
different ciphersuite. Each execution of the protocol is called a session and will maintain and
update a collection of per-session variables.

Definition 1 (Per-session variables). Let π denote the following collection of per-session
variables:

• ρ ∈ {init, resp}: The party’s role in this session.

• c ∈ {1, . . . , nSP,⊥}: The identifier of the sub-protocol chosen for this session, or ⊥.

• pid ∈ {1, . . . , nP ,⊥}: The identifier of the alleged peer of this session, or ⊥ for an
unauthenticated peer.

• α ∈ {in-progress, reject, accept}: The status.

• k: A session key, or ⊥. Note that k consists of two sub-keys: bi-directional authenticated
encryption keys ke and kd (which themselves may consist of encryption and MAC sub-keys).

• sid: A session identifier defined by the protocol.

• ste, std: State for the stateful authenticated encryption and decryption algorithms.

• Any additional state specific to the protocol.

• Any additional state specific to the security experiment.

We can now define an ACCE protocol. It will be convenient to explicitly name the different
algorithms that are executed at different times in the protocol.

Definition 2 (ACCE protocol). An ACCE protocol is a tuple of algorithms. The key generation

algorithm KeyGen()
$→ (sk, pk) outputs a long-term secret key / public key pair. The handshake

algorithms AlgI` and AlgR`, ` = 1, . . . , take as input (sk, pk) and an incoming message m,
update per-session variables π, and output an outgoing message m′. The handshake algorithms

9

eventually set the variables for the peer identifier π.pid, the session status π.α, the session key
π.k, and the session identifier π.sid. There are also stateful authenticated encryption and

decryption algorithms Enc(π.ke,m, π.ste)
$→ (C, π.ste) and Dec(π.kd, C, π.std) → (m′, π.std).

All algorithms are assumed to take as implicit input any global protocol parameters, including
the list of all trusted peer public keys.

Having defined a single ACCE protocol, we now turn to the multi-ciphersuite setting.

Definition 3 (Multi-ciphersuite protocol). A multi-ciphersuite ACCE protocol NP‖ ~SP is the
protocol obtained by first running a negotiation protocol NP, which outputs per-session variables
π and a ciphersuite choice c, then running subprotocol SPc ∈ ~SP. A negotiation protocol NP is a
tuple of algorithms, denoted either NP.AlgI` or NP.AlgR` for initiator or responder algorithms,
respectively, for ` = 1, All algorithms take as input an incoming message m, update per-
session variables π, and output an outgoing message m′. The first algorithms for both the initiator
and responder also take as input a vector ~sp of ciphersuite preferences that the party should
use in this session. The final negotiation algorithm for both parties sets the ciphersuite choice
variable π.c. Each sub-protocol SPc is a tuple of algorithms corresponding to an ACCE protocol
as in Definition 2, namely SPc.KeyGen, SPc.AlgI`, SPc.AlgR`, SPc.Enc, SPc.Dec. Note that the
execution of the negotiation protocol and the chosen subprotocol may be slightly interleaved, in
that the responder may send the last negotiation message and the first sub-protocol message
together.

It should be clear that, when the number of subprotocols nSP = | ~SP| = 1, the definitions of
a multi-ciphersuite ACCE protocol and an ACCE protocol are equivalent, up to a change of
notation.

3.1 Execution environment

The security experiment for a multi-ciphersuite ACCE protocol is similar to that of individual
ACCE protocols [20], except that parties initially establish multiple long-term keys, the adversary
can activate parties with an ordered list of sub-protocols, and the encryption/decryption is
buffered stateful authenticated encryption, rather than a stateful length-hiding authenticated
encryption. Let NP‖ ~SP be a multi-ciphersuite ACCE protocol, with | ~SP| = nSP.

Parties and long-term key generation. The execution environment consists of nP parties,
P1, . . . , PnP , each of whom is a potential protocol participant. At the beginning of the experiment,
the variable δi,{c,d} is set to 1 or 0 and represents whether party Pi re-uses the same long-term
key for SPc and SPd; note that δi,{c,d} must be 0 if SPc.KeyGen 6= SPd.KeyGen, namely if there
exists at least one input on which the two algorithms differ (for the same randomness). Observe
that δi,{c,d} is symmetric in c and d. Each party Pi generates long-term private key / public
key pairs (ski,c, pki,c) for each sub-protocol SPc using SPc.KeyGen(), but, for all d > c such that
δi,{c,d} = 1, sets (ski,d, pki,d) = (ski,c, pki,c). We say that there is no key re-use if all δi,{c,d} = 0.

Sessions. Each party can execute multiple sessions of the protocol, either concurrently or
subsequently. We will denote the sth session of a protocol at party Pi by πsi , where s ∈ {1, . . . , nS}.
We overload the notation so that πsi also denotes the per-session variables π for this session.
Each session within a party has read access to the party’s long-term keys. The per-session
variables πji .(c, pid, α, k, sid) are initialized to (⊥,⊥, in-progress,⊥,⊥). For the purposes of
defining ciphertext indistinguishability and integrity, each session upon initialization chooses a

uniform random bit πsi .b
$← {0, 1}. Each session also maintains additional variables for stateful

encryption/decryption as required in Figure 3.

10

Adversary interaction. The adversary controls all communications between parties: it
directs parties to initiate sessions, delivers messages to parties, and can reorder, alter, delete,
and create messages. The adversary can also compromise certain long-term and per-session
values of parties. The adversary interacts with parties using the following queries.

The first query models normal, unencrypted communication of parties during session estab-
lishment.

• Send(i, s,m)
$→ m′: The adversary sends message m to session πsi . Party Pi processes

message m according to the protocol specification and its per-session state πsi , updates its
per-session state, and optionally outputs an outgoing message m′.
There is a distinguished initialization message which allows the adversary to activate the
session with certain information. In particular, the initialization message consists of: the
role ρ the party is meant to play in this session; the ordered list ~sp of sub-protocols the
party should use in this session; and optionally the identity pid of the intended partner of
this session.
This query may return error symbol ⊥ if the session has entered state α = accept and no
more protocol messages are transmitted over the unencrypted channel.

The next two queries model adversarial compromise of long-term and per-session secrets.

• Reveal(i, s)→ k: Returns session key πsi .k.
• Corrupt(i, c)→ sk: Returns party Pi’s long-term secret key ski,c for sub-protocol c. Note

the adversary does not take control of the corrupted party, but can impersonate Pi in later
sessions of sub-protocol c.

The final two queries model communication over the encrypted channel. The adversary
can cause plaintexts to be encrypted as outgoing ciphertexts, and can cause ciphertexts to be
delivered and decrypted as incoming plaintexts.

• Encrypt(i, s,m0,m1)
$→ C: This query takes as input two messages m0 and m1. If πsi .k = ⊥,

the query returns ⊥. Otherwise, it proceeds as in Figure 3, depending on the random bit
πsi .b sampled by πsi at the beginning of the game and the state variables of πsi .
• Decrypt(i, s, C) → m or ⊥: This query takes as input a ciphertext C. If πsi .k = ⊥, the

query returns ⊥. Otherwise, it proceeds as in Figure 3. Note in particular that decryption
can be buffered, meaning a decryption state may be maintained containing unprocessed
bytes of a partial ciphertext.

Together, these two oracles model the BSAE notion, which simultaneously captures (i)
indistinguishability under chosen ciphertext attack, (ii) integrity of ciphertexts, and (iii) buffered
in-order delivery of ciphertexts. The hidden bit πsi .b is leaked to the adversary if any of these
goals is violated.

3.2 Security definitions

Security of ACCE protocols is defined by requiring that (i) the protocol is a secure authentication
protocol, and (ii) the encrypted channel provides authenticated and confidential communication
in the sense of buffered stateful authenticated encryption (Section 2.3). In the multi-ciphersuite
setting, security is further augmented by requiring that the parties agree on the sub-protocol
used.

Multi-ciphersuite ACCE security experiment. The security experiment is played be-
tween an adversary A and a challenger who implements all parties according to the multi-
ciphersuite ACCE execution environment. The adversary sets the values of the long-term key
re-use variables δi,{c,d}. After the challenger initializes long-term keys based on δi,{c,d}, the
adversary receives the long-term public keys of all parties, then interacts with the challenger

11

Encrypt(i, s,m0,m1):

1. u← u+ 1
2. (C(0), st0e)

$← SPc.Enc(ke,m0, st
0
e)

3. (C(1), st1e)
$← SPc.Enc(ke,m1, st

1
e)

4. if C(0) = ⊥ or C(1) = ⊥ then
5. return ⊥
6. C[u]← C(b)

7. return C(b)

Decrypt(i, s, C):

1. (j, t)← πsi .pid, v ← v + 1
2. (m, std)← SPc.Dec(kd, C, std)
3. if m = ⊥p then return ⊥
4. if b = 0 then return ⊥
5. if v > πtj .u or C 6= πtj .C[v] then
6. phase← 1
7. if phase = 1 then return m
8. return ⊥

Figure 3: Encrypt and Decrypt queries in the multi-ciphersuite ACCE security experiment.
Note that b, c, C[], kd, ke, std, ste, u, v denote the values stored in the per-session variables πsi . Although πsi .pid only
contains the party identifier j, once πsi has accepted every session πsi has a unique matching session πtj known to the
challenger. The Decrypt query accounts for buffering in the third line; this is the difference from ACCE’s original stateful
length-hiding definition [20, 26].

using Send, Reveal, Corrupt, Encrypt, and Decrypt queries. Finally, the adversary outputs a triple
(i, s, b′) and terminates. We begin by defining when sessions match.

Definition 4 (Matching sessions). We say that session πtj matches πsi if

• πsi .ρ 6= πtj .ρ;

• πsi .c = πtj .c; and

• πsi .sid prefix-matches πtj .sid, meaning that (i) if πsi sent the last message in πsi .sid, then
πtj .sid is a prefix of πsi .sid, or (ii) if πtj sent the last message in πsi .sid, then πsi .sid = πtj .sid.

Note that for SSH, session IDs consist of a single value and thus not only prefix-match, but
must be identical: πsi .sid = πtj .sid (see Section A.2). Thus the “matching” relation is symmetric
and thus easier to handle.

Next we give mutual and server-only authentication definitions, based on the existence of
matching sessions. For server-only authentication, we are only concerned about clients accepting
without a matching server session.

Definition 5 (Authentication). Let πsi be a session. We say that πsi accepts maliciously for
sub-protocol c∗ if

• πsi .α = accept;

• πsi .c = c∗; and

• πsi .pid = j 6= ⊥, where no Corrupt(j, c∗) query was issued before πsi accepted, nor
Corrupt(j, d) for any d such that δj,{c∗,d} = 1,

but there is no unique session πtj which matches πsi .

Define Advmcs-acce-auth
NP‖ ~SP,c∗ (A) as the probability that, when A terminates in the multi-ciphersuite

ACCE experiment for NP‖ ~SP, there exists a session that has accepted maliciously for sub-protocol
c∗.

Define Advmcs-acce-so-auth
NP‖ ~SP,c∗ (A) as the probability that, when A terminates in the multi-ciphersuite

ACCE experiment for NP‖ ~SP, there exists an initiator session (i.e., with πsi .ρ = init) that has
accepted maliciously for sub-protocol c∗.

Channel security is defined by the ability to break confidentiality or integrity of the channel.
Formally, this is defined as the ability of the adversary to guess the bit b used in the Encrypt and
Decrypt queries of an uncompromised session. “Uncompromised” means that the adversary did
not reveal the session key at either the session or any matching session, and that that adversary
did not corrupt the long-term keys of either party in the session. We give variants for mutually
and server-only authenticated channels.

12

Definition 6 (Channel security). Suppose A outputs (i, s, b′) in the multi-ciphersuite ACCE
experiment. We say that A answers the encryption challenge correctly for subprotocol c∗ if

• πsi .α = accept;

• πsi .c = c∗;

• no Corrupt(i, c∗) query was ever issued, nor Corrupt(i, d) for any d such that δi,{c∗,d} = 1;

• no Corrupt(j, c∗) query was ever issued for any j such that πtj matches πsi , nor Corrupt(j, d)
for any d such that δj,{c∗,d} = 1;

• no Reveal(i, s) query was issued;

• no Reveal(j, t) query was issued for any πtj that matches πsi ; and

• πsi .b = b′.

Define Advmcs-acce-aenc
NP‖ ~SP,c∗ (A) as |p−1/2|, where p is the probability that A answers the encryption

challenge correctly for subprotocol c∗.
Define Advmcs-acce-so-aenc

NP‖ ~SP,c∗ (A) as |p − 1/2|, where p is the probability that A answers the

encryption challenge correctly for subprotocol c∗ and either πsi .ρ = init or both πsi .ρ = resp and
there exists a session that matches πsi .

Definition 7 (Multi-ciphersuite-ACCE-secure). A multi-ciphersuite protocol NP‖ ~SP is ~ε-multi-
ciphersuite-ACCE-secure against an adversary A if, for all c∗, we have that Advmcs-acce-auth

NP‖ ~SP,c∗ (A) ≤
εc∗ and Advmcs-acce-aenc

NP‖ ~SP,c∗ (A) ≤ εc∗ . We define an analogous notion for server-only authentication.

When nSP = 1, the multi-ciphersuite ACCE protocol and security definitions are equivalent
to the original ACCE definitions (albeit with slightly different notation), except for the change
to buffered stateful authenticated encryption. For simplicity, we explicitly give those definitions:

Definition 8 (Mutual authentication ACCE-secure). A (single-ciphersuite) protocol P = NP‖SP
is ε-ACCE-secure (with mutual authentication) against an adversary A if Advacce-auth

NP‖SP (A) ≤ ε
and Advacce-aenc

NP‖SP (A) ≤ ε.

Definition 9 (Server-only-ACCE-secure). A (single-ciphersuite) protocol P = NP‖SP is ε-server-
only-ACCE-secure against adversary A if Advacce-so-auth

NP‖SP (A) ≤ ε and Advacce-so-aenc
NP‖SP (A) ≤ ε.

4 The SSH protocol

In this section, we describe the SSH protocol using signed Diffie–Hellman.
There are several cryptographic components that may be negotiated in SSH, and the collective

choice of these components constitutes a ciphersuite. A party’s preferences are represented as
a vector ~sp, and the initiator and responder preferences ~spC , ~spS are inputs to the negotiation
function neg(~spC , ~spS)→ c specified by the standard [40, §7.1] which selects the first element in
~spC that is also in ~spS .

Each ciphersuite SSHc can use different cryptographic components. The signature scheme
SIGc for server and client authentication may be either RSA, DSA, ECDSA [32], or Ed25519.
The key exchange method is Diffie–Hellman over either a finite field or elliptic curve cyclic group
Gc of prime order qc generated by gc. The hash function Hc can be either SHA-1 or SHA-256.
The buffered stateful encryption scheme StEc can be composed of a variety of encryption and
MAC algorithms, including TripleDES in CBC mode or AES in CBC or CTR mode and HMAC
with MD5, SHA-1, SHA-256, or SHA-512; or ChaCha20 with Poly1305.

During the negotiation phase, KEXINIT and KEXREPLY exchange nonces and negotiate the
ciphersuite. During the key-exchange portion of the sub-protocol phase, KEXDH INIT and
KEXDH REPLY exchange key-material, generate session keys and authenticate the responder to
the initiator via the negotiated digital certificates and ciphersuites. During the authentication
portion of the sub-protocol phase, the responder verifies if the chosen authentication mode is

13

Negotiation

1. init→ resp: KEXINIT

1. rC
$← {0, 1}µ=128

2. send KEXINIT← (rC , ~spC)
3. π.ρ← init

4. π.α← in-progress

2. resp→ init: KEXREPLY

1. rS
$← {0, 1}µ

2. send KEXREPLY← (rS , ~spS)
3. π.ρ← resp

4. π.α← in-progress
5. π.c← neg(~spC , ~spS)

3. init

1. π.c← neg(~spC , ~spS)

Signed-Diffie–Hellman sub-protocol (common to all authentication modes)

4. init→ resp: KEXDH INIT

1. x
$← Zqπ.c

2. e← gxπ.c
3. send KEXDH INIT← e

5. resp→ init: KEXDH REPLY and NEWKEYS

1. y
$← Zqπ.c

2. f ← gyπ.c
3. K ← ey

4. (π.sid, π.k)← PRFπ.c(K,
VC‖VS‖KEXINIT‖KEXREPLY‖pkS,π.c‖e‖f)

5. σS ← SIGπ.c.Sign(skS,π.c, π.sid)
6. send KEXDH REPLY← (f, pkS,π.c, σS)
7. send NEWKEYS

6. init→ resp: NEWKEYS

1. K ← fx

2. (π.sid, π.k)← PRFπ.c(K,
VC‖VS‖KEXINIT‖KEXREPLY‖pkS,π.c‖e‖f)

3. if SIGπ.c.Vfy(pkS,π.c, σS , π.sid) = 0 then
4. π.α← reject and terminate
5. π.pid← S, where PS has public key pkS,π.c

6. send NEWKEYS

Note VC and VS are client and server version
strings.

Signed-Diffie–Hellman
sub-protocol, server-only
authentication mode

7. init→ resp: AUTHREQUEST

1. send AUTHREQUEST← username
‖service‖none

8. resp→ init:
AUTHSUCCESS or AUTHFAILURE

1. if none authentication is autho-
rised for username for service
then

2. π.α← accept;
send AUTHSUCCESS

3. else
4. π.α← reject;

send AUTHFAILURE

11. init

1. if AUTHFAILURE then
2. π.α← reject and terminate
3. else if AUTHSUCCESS then
4. π.α← accept

Signed-Diffie–Hellman sub-protocol, mutual authentication mode

7. init→ resp: AUTHREQUEST

1. send AUTHREQUEST ← username‖service
‖public-key‖0‖alg‖pkC,π.c (where alg is
the name of the public key algorithm (RSA,
DSA, ECDSA) and pkC,π.c is the client’s
public key for this ciphersuite)

8. resp→ init: AUTHOK or AUTHFAILURE

1. if username is not allowed access to service
by public-key authentication then

2. π.α← reject and terminate
3. if π.α = in-progress then
4. send AUTHOK← alg‖pkC,π.c
5. if π.α = reject then
6. send AUTHFAILURE and terminate

9. init→ resp: AUTHREQUEST

1. A← username‖service‖public-key
‖1‖alg‖pkC,π.c

2. σC ← SIGπ.c.Sign(skC,π.c, π.sid, A)
3. send AUTHREQUEST← A‖σC

10. resp→ init: AUTHSUCCESS or AUTHFAILURE

1. A′ ← username‖service‖public-key
‖1‖alg‖pkC,π.c

2. if A′ 6= A then
3. π.α← reject

4. if SIGπ.c.Vfy(pkC,π.c, σC , π.sid,A) = 0
then

5. π.α← reject

6. if π.α = in-progress then
7. π.α← accept

8. if π.α = accept then
9. send AUTHSUCCESS

10. else if π.α = reject then
11. send AUTHFAILURE and terminate

11. init

1. if AUTHFAILURE then
2. π.α← reject and terminate
3. else if AUTHSUCCESS then
4. π.α← accept

Figure 4: SSH handshake phase protocol: negotiation protocol and signed-Diffie–Hellman
sub-protocol

authorised for the given initiator, and authenticates the initiator via passwords, public-keys or
no client authentication at all.

The basic outline of the SSH protocol is given in Figure 1 in the introduction; the detailed
message flow and processing for the signed-Diffie–Hellman handshake phase with server-only or
mutual public key authentication can be found in Figure 4and Appendix A. For details on the
authenticated encryption we refer to the standard [40] and Albrecht et al. [1].

4.1 The SSH PRF

The PRFc function described in Figure 5 is used in the SSH protocol to compute two values:
H, which will be used as the session ID (this value is later signed in the KEXDH REPLY and
AUTHREPLY messages); and k1‖k2‖k3‖k4‖k5‖k6 (which are later used as encryption keys, IVs,
and authentication keys). PRFc computes these values using the hash function Hc negotiated
by the ciphersuite. While PRFc is superficially similar to HMAC, it varies sufficiently that it
merits independent analysis.

We cannot prove security for SSH from the assumption that Hc is a collision-resistant hash
function: in SSH the hash value H to be signed by both parties not only contains a transcript of
the most important exchanged messages, but also the secret Diffie-Hellman key K computed by

14

PRFc(K,x):

1. H ← Hc(x‖K)
2. label← [A,B,C,D,E, F]
3. for i ∈ {1, . . . , 6} do
4. ki ← Hc(K‖H‖labeli‖H)
5. return (H, k1‖k2‖k3‖k4‖k5‖k6)

Figure 5: Computation of PRFc using Hc.

both parties. If Hc leaks information about K, the protocol cannot be proven secure. Therefore
we need the assumption that PRFc is a secure PRF, which is how our security proof of SSH
proceeds in the rest of this section.

Under the assumption that Hc is a random function, it is straightforward to see that PRFc
is a secure PRF.

Analysis of PRFc under weaker, standard-model assumptions on Hc is more challenging.
One way of analyzing key derivation functions is Krawczyk’s extract-then-expand paradigm
[25]. In this paradigm, first a pseudorandom key K ← H(SKM) is extracted from the secret
key material (such as the Diffie–Hellman shared secret) SKM using a hash function H, then
application keying material KM ← F (K, “1”‖info)‖F (K, “2”‖info)‖ . . . is expanded from the
pseudorandom key K using a PRF F . Although PRFc does seemingly have an extract phase (line
1) and then an expand phase (line 4), the extract-then-expand paradigm does not directly apply
because the pseudorandom key (H, in the case of PRFc) is subsequently used in another area of
the SSH protocol: H is signed by the signature scheme and the signature is transmitted over
the channel. Thus H and the signature on H must not leak anything about the Diffie–Hellman
shared secret.

It may be possible to adapt extract-then-expand to analyze the SSH PRF, but we leave
that as future work. Our main security proof of SSH is entirely standard model, so any future
work improving the analysis of PRFc from random oracle model to standard model immediately
yields a full standard model proof of SSH.

5 ACCE security of SSH

In this section, we analyze the security of single signed-DH SSH ciphersuites, in isolation. We
first note a few challenges we faced in the proofs, then show authentication and channel security
in the server-only and mutual authentication modes.

5.1 Challenges with security proofs for SSH

ACCE. As noted in the Introduction, challenges are often encountered when trying to analyze
real-world protocols. The first problem that arises when analyzing SSH is the fact that the
messages needed for client authentication are sent encrypted, allowing the adversary to trivially
win key indistinguishability in a standard authenticated key exchange security experiment; this
is resolved by switching to ACCE.

Collision-free hash function must be non-leaking. One feature of SSH is the fact that
the hash value to be signed by both parties not only contains a transcript of the most important
exchanged messages, but also the secret Diffie-Hellman key computed by both parties. This
poses a non-standard problem with the definition of collision-free hash functions. To understand
the problem, consider the following function, constructed from a collision-resistant hash function
H:

H∗(m||k) := H(m||k)||k . (1)

15

If the length of k is fixed, the function H∗ also is a hash function with constant output length
|H()| + |k|, and it is collision-free since the prefix H(m||k) is collision-free. However, this
counter-intuitive, but definition-conforming collision-free hash function may compromise the
security of the protocol: If the signature scheme used has message recovery (e.g. plain RSA
Signatures), a (passive) adversary may learn the secret Diffie-Hellman key by verifying the
signature. We solve this problem by requiring that the first hash value computation must be
collision resistant, and that the concatenation of the two hash values (session id computation
and key derivation) must form a pseudorandom function. The pseudorandomness property
guarantees that no bits from the input leak when computing the hash function.

Session IDs vs. matching conversations. A secure authentication protocol can, loosely
speaking, be defined as a protocol where the success probabilities of active and passive adversaries
are equal, up to a negligible difference. There are two main possible formalizations of this
concept: session IDs and matching conversations. We initially tried to base our proof that SSH
is a secure authentication protocol on the classical notion of matching conversations (when the
two parties have the same transcript of communication), in order to make our result comparable
to previous work. However, SSH itself makes this impossible, because of a special option to
negotiate keys more quickly: the SSH client may choose to start an abbreviated handshake, by
guessing which cryptographic parameters the server would accept, sending messages KEXINIT

and KEXDH INIT simultaneously. The SSH server however may refuse this option, and in this
case, the KEXDH INIT message is discarded, and replaced by a new message KEXDH INIT′ to the
server. In such a scenario, an adversary may simply change the original value of KEXDH INIT

arbitrarily, thus breaking the matching conversations condition, and nevertheless make both
sessions accept. Instead, the SSH specification itself suggests the use of a protocol-specific session
ID, a hash value H over the initial handshake messages. This hash value is then used to generate
and verify the signatures both on client and server side.

PRF-ODH. Readers may wonder why we do not need the PRF-Oracle-Diffie–Hellman (PFR-
ODH) assumption used in the analysis of signed-DH in TLS [20, 26]. In TLS, a hypothetical
adversary who can solve the CDH problem can make a client oracle accept maliciously by
intercepting all messages after ServerKeyExchange, and then faking a valid ServerFinished

message. At the same time, this adversary can refuse to cooperate in breaking DDH by testing
if the DDH challenge was embedded in the current session. All this may not happen in SSH:
here, acceptance directly depends on signature verification.

SHA-1 collisions exist. For any unique hash function, we know that collisions exist due to
the pigeonhole principle. Thus there are algorithms that output a collision in constant time:
it is just hardwired into their code. So we do not show that if SSH is insecure then we could
output some SHA-1 collision; instead we give an algorithm that, if SSH is insecure, helps us in
computing new SHA-1 collisions.

5.2 Server-only-authentication mode

In this section we drop subscripts for ciphersuites: SSH denotes a single ciphersuite of the signed-
Diffie–Hellman SSH protocol described in Section 4, with signature scheme SIG, Diffie–Hellman
group of prime order q generated by g, and hash function H, and the BSAE scheme StE.

The following theorem shows that, if the hash function H is collision-resistant, the signature
scheme SIG is euf-cma-secure, the DDH problem for (g, q) is hard, the PRF is a secure PRF,
and the symmetric encryption is a secure BSAE scheme, then the (single ciphersuite) signed-
Diffie–Hellman SSH protocol is a secure server-only ACCE protocol.

16

Theorem 1 (SSH is server-only-ACCE-secure). Let µ be the length of the nonces in KEXINIT

and KEXREPLY (µ = 128), nP the number of participating parties and nS the maximum number
of sessions per party. The algorithms B1, . . . , B5 given in the proof of the theorem are such that,
for all algorithms A,

Advacce-so-auth
SSH (A) ≤ (nPnS)2

2µ
+ Advcr

H(BA1) + nPAdveuf-cma
SIG (BA2) (2)

and

Advacce-so-aenc
SSH (A) ≤ Advacce-so-auth

SSH (A)

+ nPnS

(
Advddh

g,q (BA3) + Advprf
PRF(BA4) + Advbsae

StE (BA5)
)

and BA1 , . . . , BA5 have approximately the same running time as A.

In order to prove the theorem, we will proceed as follows. In Lemma 1 we show that the
SSH protocol is secure according to the single ciphersuite version of Definition 5 (i.e. there exists
no client session that accepts maliciously except with some small probability). Lemma 2 proves
that the single ciphersuite version of Definition 6 is also fulfilled (i.e. there exists no adversary
that is able to answer the encryption/integrity-challenge correctly, except with small advantage).

Lemma 1 (Server-only auth.). The algorithms B1 and B2 explicitly given in the proof of the
lemma, are such that, for all algorithms A,

Advacce-so-auth
SSH (A) ≤ (nPnS)2

2µ
+ Advcr

H(BA1) + nPAdveuf-cma
SIG (BA2) , (3)

where nP , nS, and µ are as in the statement of Theorem 1, and BA1 and BA2 have approximately
the same running time as A.

Proof. The essence of the proof is the observation that acceptance of a client session is the result
of a successful signature verification. To be able to use this fact, we have to make sure that all
session IDs are different (by aborting if a nonce is chosen twice or if a collision occurs in the
hash computation of the session ID).

Let break
(0)
δ be the event that occurs when a client session accepts maliciously in Game δ in

the sense of Definition 5.
Game 0. The game equals the ACCE security experiment described in Section 3.2. Thus,

Advacce-so-auth
SSH (A) = Pr(break

(0)
0) . (4)

Game 1. In this game we add an abort rule for non-unique nonces ri. Specifically the
challenger collects a list L of all cookies ri sampled by the challenger during the simulation. If
one cookie appears twice, we abort the simulation. Thus

Pr(break
(0)
0) ≤ Pr(break

(0)
1) +

(nPnS)2

2µ
. (5)

Game 2. In this game we exclude hash collisions. Note that in this game we can compute
all session keys and session identifiers honestly, and we maintain a list Coll, where all the
input/output pairs of all executions of the hash function H are recorded. We abort if at any
time a pair (in,H(in)) is added to Coll such that there already exists an entry (in′,H(in′))
in Coll with H(in) = H(in′) but in 6= in′. Now we construct BA1 as follows: B1 simulates the
SSH protocol and interacts with A. Whenever A wins the acce-so-auth game, B1 inspects the
recorded simulation to see if a hash collision occured. If it did, B1 outputs this collision. Since
B1 finds a collision, we have that

Pr(break
(0)
1) ≤ Pr(break

(0)
2) + Advcr

H(BA1) . (6)

17

Game 3. In this game we exclude signature forgeries. We abort the simulation if some
session πs

∗
i∗ accepts after it receives a signature which was never output of a session with a

matching session identifier. Note that we have excluded nonce and hash collisions, so from now
on all values to be signed are different. Thus any abort event is related to a signature forgery.

Technically, we construct an algorithm BA2 which simulates the SSH protocol as in Game 1.
B2 interacts with A. B2 receives a public key pk from an euf-cma signature challenger for SIG,
guesses which public key pkj∗ the session will use to verify the signature (which costs us a factor
nP in the reduction) and sets pkj∗ = pk. Since the signing key has to be uncorrupted it is no
problem for the reduction that the secret signing key is unknown. If B2 needs to sign a message
on behalf of party Pj∗ , it makes a signing query to the euf-cma challenger. If the session πs

∗
i∗

maliciously accepts in the sense of definition 5 in Game 3, we know from the discussion above
that the maliciously accepting session has verified a signature σ′ over a session ID H where there
is no session πtj∗ with the same session ID, thus this signature was not generated with a call to
the signature challenger. Thus B2 has found (H,σ′) as a signature forgery, so

Pr(break
(0)
2) ≤ Pr(break

(0)
3) + nPAdveuf-cma

SIG (BA2) . (7)

Final analysis. Now all signatures are computed by legitimate parties only, and are all
computed for different session IDs. Thus there is no way for a session to accept maliciously, and
we have

Pr(break
(0)
3) = 0 . (8)

Lemma 2 (Channel security, server-only auth. mode). The algorithms B3, B4, and B5, explicitly
given in the proof of the lemma, are such that, for all algorithms A,

Advacce-so-aenc
SSH (A) ≤ Advacce-so-auth

SSH (A)+nPnS(Advddh
g,q (BA3)+Advprf

PRF(BA4)+Advbsae
StE (BA5)) (9)

where nP , nS, and µ are as in the statement of Theorem 1, and BA3 , BA4 , BA5 have approximately
the same running time as A.

Proof. Let break
(1)
δ be the event that occurs when A answers the encryption challenge correctly

in Game δ in the sense of Definition 6.
Game 0. This game equals the ACCE security experiment described in Section 3.2.
Game 1. This game is identical to Game 3 of Lemma 1 and we abort if some session accepts

maliciously. With the previous sequence of games we ensured unique nonces, excluded hash
collisions and signature forgeries. Thus, in this game any session that accepts non-maliciously in
the sense of Definition 5 has a unique uncorrupted partner session. From the previous proof, we
have

Pr(break
(1)
0) ≤ Pr(break

(1)
1) + Advacce-so-auth

SSH (A) . (10)

From now on, we always have a matching session for the session πs
∗
i∗ where the adversary tries

to guess the random bit: for server sessions through Definition 5, and for client sessions through
this game.

Game 2. In this game, we guess the session for which the adversary outputs the bit b′.
We guess two indices (i∗, s∗) ∈ [nP] × [nS] and abort if the adversary outputs (i, s, b′) with
(i∗, s∗) 6= (i, s). This happens with probability 1

nPnS
. We then exploit that no client session

maliciously accepts due to Game 1, so we have that there exists a unique partner session πt
∗
j∗

which can be easily determined by the simulator. Thus we have:

Pr(break
(1)
1) ≤ nPnS · Pr(break

(1)
2) . (11)

18

Game 3. In this game we replace the value K = gxy computed by πs
∗
i∗ and πt

∗
j∗ with a

random value K∗. Since we have excluded maliciously accepting sessions, and since πs
∗
i∗ fulfills

all conditions from Definition 6, the adversary cannot influence these values. Any adversary
A that can distinguish this game from the previous game can directly be used to construct an
adversary BA3 that can break the DDH assumption: let (g, gu, gv, gw) be the DDH challenge.
We set gx := gu and gy := gv, and K∗ := gw. If w = uv, then we have K∗ = K, and we are in
Game 2, otherwise we are in Game 3. Thus

Pr(break
(1)
2) ≤ Pr(break

(1)
3) + Advddh

g,q (BA3) . (12)

Game 4. In this game we replace the values H, k1, ..., k6 computed by πs
∗
i∗ and πt

∗
j∗ as

PRF(K∗, sid) with random values H∗, k∗1, ..., k
∗
6. Any adversary A that can distinguish this

game from the previous game can directly be used to construct an adversary BA4 that can break
the PRF assumption: let S = H||k1||...||k6 be the output of PRF, and let S∗ = H∗||k∗1||...||k∗6
be a random string of the same length. For S we are in Game 3, and for S∗ in Game 4. Thus

Pr(break
(1)
3) ≤ Pr(break

(1)
4) + Advprf

PRF(BA4) . (13)

Final analysis. We now have that the keys k∗1, ..., k
∗
6 are information-theoretically indepen-

dent from the key exchange messages. Thus any adversary A that can guess (i∗, s∗, b′) correctly
can directly be used to construct an adversary BA5 that breaks the BSAE scheme. Technically
we exploit the fact that all keys for the encryption scheme are independent from the handshake
and embed a BSAE challenger. Now we simply have to forward A’s output to the challenger
and thus we have

Pr(break
(1)
4) ≤ Advbsae

StE (BA5) . (14)

Combining the probability bounds from Lemma 1 and Lemma 2 yields Theorem 1.

Remark 1. Forward secrecy. The ACCE definition of Jager et al. [20] can be extended to include
forward secrecy, meaning that the adversary in the channel security definition is allowed to
corrupt the long-term key of the owner of the target session or its peer after the target session
has accepted. We have omitted forward secrecy from this paper for simplicity, but Definition 6
can be easily extended to cover the case of forward secrecy, and the proof of Lemma 2 can be
readily adapted using the techniques in [20].

5.3 Mutual authentication mode

In a similar manner, it can be shown that the (single ciphersuite) signed-Diffie–Hellman SSH
protocol has secure mutual authentication when the client uses public key authentication if the
building blocks of SSH are secure, and thus is a secure ACCE protocol with mutual authentication.

Theorem 2 (SSH is mutual-auth.-ACCE-secure). Let µ be the length of the nonces in KEXINIT

and KEXREPLY, nP the number of participating parties and nS the maximum number of sessions
per party. The algorithms B1, . . . , B5, explicitly given in the proof of the theorem, are such that,
for all algorithms A,

Advacce-auth
SSH (A) ≤ (nPnS)2

2µ
+ Advcr

H(BA1) + nPAdveuf-cma
SIG (BA2) (15)

and

Advacce-aenc
SSH (A) ≤ Advacce-auth

SSH (A)+nPnS

(
Advddh

g,q (BA3) + Advprf
PRF(BA4) + Advbsae

StE (BA5)
)

(16)

and BA1 , . . . , BA5 have approximately the same running time as A.

19

Lemma 3 (SSH has secure mutual authentication). There exist algorithms B1 and B2, explicitly
given in the proof of the lemma, such that, for all algorithms A,

Advacce-auth
SSH (A) ≤ (nPnS)2

2µ
+ Advcr

H(BA1) + nPAdveuf-cma
SIG (BA2),

where nP , nS, and µ are as in the statement of Theorem 2, and BA1 and BA2 have approximately
the same running time as A.

Proof. Again, for both client and server sessions, acceptance is the result of a successful signature
verification. Thus with exactly the same sequence of games as in Lemma 1, we get the same
bound.

Lemma 4 (SSH has channel security in mutual auth. mode). The algorithms B3, B4, and B5,
explicitly given in the proof of the lemma, are such that, for all algorithms A,

Advacce-aenc
SSH (A) ≤ Advacce-auth

SSH (A) +
(nPnS)2

2µ

+ nPnS

(
Advddh

g,q (BA3) + Advprf
PRF(BA4) + Advbsae

StE (BA5)
)
.

where nP , nS, and µ are as in the statement of Theorem 2, and BA3 , BA4 , BA5 have approximately
the same running time as A.

Proof. Again, the proof is very similar to the proof of Lemma 2, with the same sequence of
games and the same bound.

6 Composition theorem for multi-ciphersuite security

As noted in the Introduction, if two ciphersuites with the same long-term key generation
algorithm have been proven individually secure (i.e., if SP1.KeyGen = SP2.KeyGen, NP‖SP1

is ACCE-secure, and NP‖SP2 is ACCE-secure), it does not necessarily follow that they are
collectively secure when parties use the same long-term secret key in both ciphersuites.

We still hope however to be able to prove some security properties of individual ciphersuites
separately and then compose them together using some generic theorem, rather than having to
directly prove security of the whole multi-ciphersuite combination all at once. Some intuition
for our composition framework follows.

Suppose a user supports two ACCE-secure ciphersuites (the “apple” ciphersuite and the
“orange” ciphersuite) with authentication in both cases provided by use of the same digital
signature scheme, and that in each ciphersuite, the signed data clearly and unambiguously
identifies the ciphersuite (for example, starting with the word “apple” or the word “orange”,
respectively). As well, suppose that during authentication in each ciphersuite, the receiver
verifies that the signed data is for the ciphersuite in question (it really does start with the word
“apple” or the word “orange”, respectively).

Intuitively, then, obtaining signatures from one ciphersuite should not help in breaking the
second ciphersuite, even if they are both signed using the same long-term keys. These signed
objects cannot be re-used across ciphersuites: a receiver running the orange ciphersuite will
reject any signatures that don’t start with the word “orange”, which includes anything starting
with the word “apple”.

We are now able to consider the security of the two ciphersuites together. Since “apple”
signatures will not affect the security of the “orange” ciphersuite, and “orange” signatures will
not affect the security of the “apple” ciphersuite, the two ciphersuites remain secure even if they
share long-term keys. A theorem for the security of the two ciphersuites together should say:
if both the “apple” and “orange” ciphersuites are being used and users are possibly sharing

20

long-term keys between them, and the adversary breaks some session in the “apple” ciphersuite,
then the “apple” ciphersuite was not secure even in isolation; and similarly for “orange”.

To prove security, our simulator will be given a challenger for the “apple” ciphersuite and
must simulate the others. The simulation can simulate ciphersuites that use keys not shared
with “apple” because it can choose those keys itself. Only ciphersuites that share keys with
“apple” are tricky; in this case, the simulator asks the “apple” challenger to sign an “orange”
message, which should not affect the security of the “apple” ciphersuite but allows the simulator
to simulate the “orange” ciphersuite. We have to introduce a few small technical conditions to
ensure that the simulation goes through, but this is the main idea.

6.1 Single ciphersuite security with auxiliary oracle

We begin by “opening up” the ACCE security definition a little bit, to consider security of a
single ciphersuite in isolation, but with additional access to secret key operations. As shown
in Definition 10, we extend the ACCE security experiment to allow the adversary access to an
auxiliary oracle that runs a specified private key operation Aux(sk, ·) (in the case of signed-DH
SSH, a signing oracle that signs arbitrary messages). If the adversary breaks the original ACCE
security goals without asking a query x to Aux that violates the constraint or predicate Φ, then
the adversary wins. For example, if we are studying the “orange” ciphersuite, then the predicate
Φ(x) would test if x starts with the word “orange”. As long as the adversary’s signing queries
did not start with the word “orange”, they should not help him win the security experiment.

Definition 10 (ACCE-secure w/auxiliary oracle). Let P be an ACCE protocol. Let Aux :
(sk, x) 7→ y be an algorithm. Augment the ACCE experiment giving the adversary access to an
additional oracle Aux(i, x) which outputs Aux(ski, x). Let Φ(x) be a predicate on a value x.

Define Advacce-auth-aux
P,Aux,Φ (A) as the probability that, when A terminates in the above augmented

ACCE experiment for P with auxiliary oracle, there exists a session that has accepted maliciously,
with the additional constraint that, for all x such that A queried Aux(πsi .pid, x), Φ(x) = 0.

Similarly, define Advacce-aenc-aux
P,Aux,Φ (A) as |p− 1/2|, where p is the probability that A answers

the encryption challenge correctly in the above augmented ACCE experiment for P with auxiliary
oracle, again with the additional constraint that, for all x such that A queried Aux(πsi .pid, x),
Φ(x) = 0.

We define analogous notions for server-only authentication.

6.2 Multi-ciphersuite composition

Once we have that each ciphersuite is individually secure, we want to use a composition theorem
to show that their multi-ciphersuite combination is secure, even if long-term keys are shared across
ciphersuites. For ciphersuites that do not re-use long-term keys, security of the combination is
trivial. For ciphersuites that do re-use long-term keys, reducing the security of the combination
to the security of the individual ciphersuites requires that we be able to simulate the other
ciphersuites. We can do so using the above auxiliary signing oracle, as long as we do not
violate the predicate. For example, we need to be able to simulate the “apple” ciphersuite
using the “orange” signing oracle, without asking queries that start with the word “orange”.
This simulatability condition is modelled in Definitions 11 and 12. Our composition theorem
(Theorem 3) is then shown using such a simulation argument.

Definition 11 (Simulatable). We say a sub-protocol SP is simulatable using auxiliary algorithm

Aux and helper algorithms {HI`,HR`} if, for all `, HI
Aux(sk,·)
` (pk, π,m) = SP.AlgI`(sk, pk, π,m)

and HR
Aux(sk,·)
` (pk, π,m) = SP.AlgR`(sk, pk, π,m).

Definition 12 (Freshly simulatable). We say that auxiliary algorithm Aux and helper algorithms
{HI`,HR`} provide a fresh simulation of SP under condition Φ if Definition 11 is satisfied and,

21

for all A ∈ {HI`,HR`}, there exist no inputs to A that cause A to make a call Aux(·, x) such
that Φ(x) = 1.

Theorem 3 (Multi-ciphersuite composition). Let NP‖ ~SP be a multi-ciphersuite ACCE protocol.
Let ~Aux be a vector of auxiliary algorithms and let ~Φ be a vector of conditions. Suppose that:

1. for all c, d ∈ [nSP], d 6= c, there exist helper algorithms {HId,c` ,HRd,c
` } such that Auxc and

these helper algorithms provide a fresh simulation of SPd under Φc; and
2. after observing the messages output by the negotiation protocol, one can efficiently recon-

struct the complete per-session variables updated by those algorithms.

Then the algorithm B explicitly given in the proof of the theorem is such that, for all algorithms
A and for all c,

Advmcs-acce-auth
NP‖ ~SP,c (A) ≤ nSPAdvacce-auth-aux

NP‖SPc,Auxc,Φc
(BA) (17)

even under key re-use across ciphersuites. Moreover, BA has at most approximately the same
running time as A.

Similarly,
Advmcs-acce-aenc

NP‖ ~SP,c (A) ≤ nSPAdvacce-aenc-aux
NP‖SPc,Auxc,Φc

(BA) (18)

for all c, even under key re-use across ciphersuites.
Moreover, analogous versions of the theorem apply for server-only authentication.

Proof. We will specify an algorithm B that uses A. Whenever A breaks authentication or channel
security for ciphersuite c∗ in the multi-ciphersuite ACCE experiment for multi-ciphersuite ACCE
protocol NP‖ ~SP, the algorithm BA will, with probability 1/| ~SP|, break authentication or channel
security in the ACCE with auxiliary oracle experiment for the ACCE protocol NP‖SPc∗ .

Let A be an adversary in the multi-ciphersuite ACCE experiment. Recall that A starts the
experiment by setting key re-use variables δi,{c,d}, which is 1 if party Pi is to re-use long-term keys
between SPc and SPd, namely if SPc.KeyGen = SPd.KeyGen and party Pi is to set ski,c = ski,d;
δi,{c,d} = 0 otherwise.

Algorithm B simulates an multi-ciphersuite ACCE experiment for NP‖ ~SP as follows. First, B
chooses ĉ

$← {1, . . . , nSP}. B interacts with a challenger for the ACCE experiment for NP‖SPĉ
with auxiliary oracle Auxĉ.
B obtains the parties’ public keys for sub-protocol c from the NP‖SPĉ experiment. For

each party Pi and each sub-protocol d, if δi,{c,d} = 1 then B sets party Pi’s public key for
sub-protocol d equal to its public key in sub-protocol c, otherwise it generates a fresh key pair
using SPd.KeyGen. B gives all of these public keys to A.
B now runs A. A can make any Send, Corrupt, Reveal, Encrypt, or Decrypt queries specified

in the multi-ciphersuite ACCE experiment. B needs to answer all of these. The basic idea of B’s
simulation is as follows.
B will start off every session by relaying it down to the challenger for the ACCE-security of

NP‖SPĉ with auxiliary oracle. If a session ends up negotiating sub-protocol c, then B continues
relaying all queries for that session to the NP‖SPĉ challenger.

If a session ends up negotiating a sub-protocol d other than ĉ, B needs to simulate it. It can
do so as follows. By pre-condition 2 of the theorem, it can reconstruct the per-session variables
used by the negotiation protocol in the challenger, so it can construct its own per-session variables
from the output of the negotiation protocol. If the query is directed towards a party Pi such
that Pi is using the same key for sub-protocols ĉ and d (i.e., if δi,{c,d} = 1), then B simulates the

session for party Pi using the helper algorithms {HId,ĉ` ,HRd,ĉ
` } for SPd using the auxiliary oracle

Aux of the challenger; by pre-condition 1 of the theorem, this provides a correct simulation of
NP‖SPd. If δi,{ĉ,d} = 0, then B can simulate the session for party Pi itself since it generated Pi’s
secret key for this sub-protocol.

22

For parties and sessions where B relayed the complete session to the challenger, B also relays
the Corrupt, Reveal, Encrypt, and Decrypt queries to the challenger; otherwise B answers them
itself.
B’s simulation of the multi-ciphersuite ACCE experiment for NP‖ ~SP to A is perfect.
Suppose A breaks authentication in NP‖ ~SP. In particular, there exists in the multi-ciphersuite

ACCE experiment some c∗ ∈ [nSP] and some session πsi that has accepted maliciously for sub-
protocol c∗ with peer identifier j, but there is no unique session πtj (in the multi-ciphersuite
ACCE experiment) with which πsi has a matching session. With probability 1/nSP, ĉ = c∗. In
this case, there correspondingly exists in the ACCE-aux challenger a session πsi that has accepted
with peer identifier j but there is no unique session πtj (in the ACCE-aux challenger) with which
πsi has had a matching session. Note in particular that B has not violated the condition Φc∗

for NP‖SPc∗ because SPd is freshly simulatable under Φc∗ due to pre-condition 1 of the theorem.
Thus B has caused a session in the ACCE-aux challenger to accept maliciously, and thus has
broken authentication in NP‖SPc∗ . Hence,

Advmcs-acce-auth
NP‖ ~SP,c∗ (A) ≤ nSPAdvacce-auth-aux

NP‖SPc∗ ,Auxc∗ ,Φc∗
(BA) . (19)

Similarly, if A breaks channel security of NP‖ ~SP by answering the encryption challenge
correctly, then with probability 1/nSP B can answer its encryption challenge correctly and break
the channel security of NP‖SPc∗ . Note that B has not made any prohibited queries in the channel
security definition: Reveal queries that would have made the ACCE challenger unfresh also would
have made the multi-ciphersuite ACCE experiment unfresh; and similarly to the authentication
case above, B has not violated the condition Φc∗ . Hence,

Advmcs-acce-aenc
NP‖ ~SP,c∗ (A) ≤ nSPAdvacce-aenc-aux

NP‖SPc∗ ,Auxc∗ ,Φc∗
(BA) . (20)

This yields the result. Note the same reasoning yields the results for server-only authentication.

Remark 2. The concrete bounds in the proof of the composition theorem preserve (up to a small
factor of nSP) the security levels of the various ciphersuites. For example, suppose we have two
signed-Diffie–Hellman ciphersuites, both of which use digital signatures with 256-bit security,
but one of which uses a DH group with 128-bit security and the other of which uses a DH group
with 256-bit security. (A theoretician might object that there is no reason to use a 256-bit-strong
signature with a 128-bit-strong group, but in practice a client or server may only have a single
signing key that is used with ciphersuites of differing security levels.) As we can see above, the
security level of authentication in the multi-ciphersuite protocol remains effectively 256-bit.

7 SSH is multi-ciphersuite secure

In order to use the composition theorem to show that signed-Diffie–Hellman SSH ciphersuites are
multi-ciphersuite secure, even with re-use of long-term keys across ciphersuites, we need to define
the auxiliary algorithm Aux and the condition Φ, show that the preconditions of Theorem 3 are
satisfied, and show that individual ciphersuites are ACCE-secure with Aux.

Let SSHc denote a ciphersuite of SSH, using signature scheme SIGc. Recall from Section 4
that both the initiator and responder use the long-term signing key as follows. First, they
compute the session ID as a hash of a session identification string and the shared secret:

π.sid← Hc(VC‖VS‖KEXINIT‖KEXREPLY‖pkd‖e‖f‖K) . (21)

Finally, they compute a signature σ ← SIGc.Sign(sk, π.sid). (If Sign is a hash-then-sign scheme,
this means that the session identification string is hashed twice.) Recall further that KEXINIT and

23

KEXREPLY contain the initiator and responder’s respective preference-ordered list of ciphersuites.
(These are actually separate lists for key exchange, compression, signature, MAC, and symmetric
encryption algorithms, but from these we can infer a ciphersuite.)

We define the auxiliary algorithm Auxc(sk, x) as computing SIGc.Sign(sk,Hc(x)). For a
ciphersuite c, we define Φc(x) = 1 if, when x is parsed as in (21) and the ordered ciphersuite
preferences ~spC and ~spS are parsed from KEXINIT and KEXREPLY, c = neg(~spC , ~spS); in other
words, if c is the ciphersuite that is mutually most preferred by the initiator and responder.

7.1 Proof of Precondition 2

We wish to show that after viewing the outputs of the negotiation algorithms {NP.AlgIl, NP.AlgRl}
(for all l), any party can efficiently reconstruct the per-session variables output by those algorithms.
In Section 4 we see that Init→ Resp : KEXINIT outputs the message KEXINIT and updates the
per-session variables π.α and π.ρ. π.ρ and π.α are always updated with init and in-progress
respectively. By observing KEXINIT any party can thus construct the updated per-session
variables π.α← in-progress and π.ρ← init.

The second negotiation algorithm Resp → Init : KEXREPLY outputs the message KEXREPLY

and updates the per-session variables π.α and π.ρ with in-progress and resp respectively,
and π.c with the particular sub-protocol SPc that has been negotiated. Since π.α and π.ρ are
always updated with in-progress and resp, and π.c is updated with neg(~spC , ~spS) (where
~spC ← KEXINIT and ~spS ← KEXREPLY), any party can construct these updated per-session
variables with knowledge of KEXINIT and KEXREPLY.

The third and final negotiation algorithm for SSH is Resp : ∅ which updates π.c from
KEXINIT and KEXREPLY, which is the same set of key-exchange, compression, signature, MAC and
symmetric encryption algorithms computed above. As we saw before, any party with knowledge
of KEXINIT and KEXREPLY can reconstruct the per-session variable π.c via neg(~spC , ~spS) and
thus can reconstruct all updated per-session variables, which serves as proof of Precondition 2 of
Theorem 3.

7.2 Proof of Precondition 1

We wish to show that for all c, d ∈ {1, . . . , nSP}, d 6= c, that there exists ‘helper algorithms’

{HId,cl ,HRd,cl } such that Auxc and these helper algorithms provide a fresh simulation of SPd under
Φc. These helper algorithms are almost identical to the sub-protocol algorithms {SPd.AlgIl, SPd.AlgRl}
described in Section 4. From the proof of Precondition 2 above we know that after the negotiation
phase of the protocol, we can reconstruct all relevant per-session variables, and wish to simulate
the rest of the protocol run.

Without loss of generality, let us say that the negotiated ciphersuite is π′.c = d. The first
helper algorithm HRd,c1 is identical to the respective sub-protocol algorithm SPd.AlgI1(skd, pkd, π)

→ (π′, KEXDH INIT) and outputs the message KEXDH INIT. Thus HId,c0 = SPd.AlgI1(skd, pkd, π)→
(π′, KEXDH INIT).

The second helper algorithm HRd,c1 is the one of two algorithm that differs from the re-
spective sub-protocol algorithm SPd.AlgR1(skd, pkd, π, KEXDH INIT) → (π′, KEXDH REPLY). In-
stead, the signature step is replaced with a call to the auxiliary oracle Auxc over inputs
(πsi .pid, VC‖VS‖KEXINIT‖KEXREPLY‖pkπ.c‖e‖f‖π.k) where πsi .pid ← π′.pid, and KEXINIT and
KEXREPLY are the observed negotiation messages:

HRd,c1 (skd, pkd, π, KEXDH INIT)→ (π′, KEXDH REPLY)

1. y
$← Zqπ.c

2. f ← gyπ.c
3. K ← ey

24

4. (π.sid, π.k)← PRFπ.c(K,VC‖VS‖KEXINIT‖KEXREPLY‖pkπ.c‖e‖f)
5. σS ← Auxc(π

s
i .pid, VC‖VS‖KEXINIT‖KEXREPLY‖pkπ.c‖e‖f‖π.k)

6. KEXDH REPLY← (f, pkS,π.c, σS)

The third helper algorithm HId,c2 is exactly identical to the respective sub-protocol algo-
rithm SPd.AlgI2(skd, pkd, π, KEXDH REPLY) → (π′, AUTHREQUEST), which computes the shared
session key, as well as authenticating the server by verifying the server’s digital signature,
and outputs the message AUTHREQUEST, which requests the mode of authentication. Thus
HId,c2 = SPd.AlgI2(skd, pkd, π, KEXDH REPLY)→ (π′, AUTHREQUEST).

The fourth helper algorithm (omitted in server-only authentication) HRd,c2 is identical to the
sub-protocol algorithm SPd.AlgR2(skd, pkd, π, AUTHREQUEST) → (π′, AUTHOK or AUTHFAILURE),
which confirms that to the server that mutual authentication has been selected, and verifies
the choice to the client by replying with the algorithm name and public-key. Thus HRd,c2 =
SPd.AlgR2(skd, pkd, π, AUTHREQUEST)→ (π′, AUTHOK or AUTHFAILURE).

The fifth helper algorithm (also omitted in server-only authentication) HId,c3 is the second
of the two algorithms that differs from the sub-protocol algorithm SPd.AlgI3(skd, pkd, π, AUTHOK
or AUTHFAILURE) → (π′, AUTHREPLY). Instead, the signature step is replaced with a call to
the auxiliary oracle Auxc over inputs (πtj .pid, VC‖VS‖KEXINIT‖KEXREPLY‖pkπ.c‖e‖f‖A) where
πtj .pid← π′.pkd and A is as calculated below:

HRd,c3 (skd, pkd, π, AUTHOK or AUTHFAILURE)→ (π′, AUTHREPLY)

1. A← username‖service‖public-key‖1‖alg‖pkC,π.c
2. σC ← Auxc(π

t
j .pid, VC‖VS‖KEXINIT‖KEXREPLY‖pkπ.c‖e‖f‖π.k,A)

3. AUTHREPLY← A‖σC
Note again that since neg(~spC , ~spS) 6= c (where ~spC ← KEXINIT ~spS ← KEXREPLY),

Φc(VC‖VS‖KEXINIT‖KEXREPLY‖pkπ.c‖e‖f‖π.k,A) = 0

and the freshness condition is not violated.
The sixth helper algorithm HRd,c3 is identical to the respective sub-protocol algorithm

SPd.AlgR3 (skd, pkd, π, AUTHREPLY)→ (π′, AUTHSUCCESS or AUTHFAILURE) (in server-only auth.,
the helper algorithm is identical to SPd.AlgR2(skd, pkd, π, AUTHREQUEST)→ (π′, AUTHSUCCESS or
AUTHFAILURE)), which verifies that authentication was successful and responds with the message

AUTHSUCCESS, or AUTHFAILURE otherwise. Thus HRd,c3 = SPd.AlgR3(skd, pkd, π, AUTHREPLY) →
(π′, AUTHSUCCESS or AUTHFAILURE), or in server-only authentication HRd,c3 = SPd.AlgR2(skd, pkd,
π, AUTHREQUEST)→ (π′, AUTHSUCCESS or AUTHFAILURE).

The seventh and final helper algorithm HId,c4 is identical to the respective sub-protocol algo-
rithm SPd.AlgI4(skd, pkd, π, AUTHSUCCESS or AUTHFAILURE)→ (π′) (in server-only authentication,
the helper algorithm is identical to SPd.AlgI3(skd, pkd, π, AUTHSUCCESS or AUTHFAILURE)→ (π′).

This algorithm verifies the AUTHSUCCESS message, and accepts the handshake. Thus HId,c4 =
SPd.AlgI4(skd, pkd, π, AUTHSUCCESSAUTHFAILURE)→ (π) or in server-only authentication mode

HRd,c3 = SPd.AlgI3(skd, pkd, π, AUTHSUCCESS or AUTHFAILURE)→ (π′).
The outputs and updated per-session variables for these helper algorithms are indistinguish-

able from the outputs from the ‘real’ sub-protocol algorithms for SSH and together with the
auxiliary oracle Aux provide a fresh simulation of a sub-protocol run SPd under Φc.

7.3 Security of SSH with auxiliary oracle

Theorem 4 (SSH is secure w/aux. oracle). Let SSHc be a signed-DH SSH ciphersuite with
signature scheme SIGc, hash function Hc; define Auxc and Φc as above. Let µ be the length of
the nonces in KEXINIT and KEXREPLY (µ = 128), nP the number of participating parties and nS

25

the maximum number of sessions per party. The algorithms B1, . . . ,B5 given in the proof of the
lemma, are such that, for all algorithms A,

Advacce-so-auth-aux
SSHc,Auxc,Φc (A) ≤ (nPnS)2

2µ
+ Advcr

Hc(B
A
1) + nPAdveuf-cma

SIGc (BA2) , (22)

and

Advacce-so-aenc-aux
SSHc,Auxc,Φc (A) ≤ Advacce-so-auth-aux

SSHc,Auxc,Φc (A)

+ nPnS

(
Advddh

gc,qc(B
A
3) + Advprf

PRFc
(BA4) + Advbsae

StEc(B
A
5)

)
,

and BA1 , . . . ,BA5 have approximately the same running time as A.

In order to prove the theorem, we first obtain a bound on the server-only authentication
advantage in Lemma 5, then on the channel security advantage in Lemma 6.

Lemma 5 (Authentication w/auxiliary oracle). Let SSHc be a signed-DH SSH ciphersuite with
signature scheme SIGc, hash function Hc, Diffie–Hellman group (gc, qc), and BSAE scheme StEc,
and define Auxc and Φc as above. The algorithms B1 and B1 given in the proof of the lemma,
are such that, for all algorithms A,

Advacce-so-auth-aux
SSHc,Auxc,Φc (A) ≤ (nPnS)2

2µ
+ Advcr

Hc(B
A
1) + nPAdveuf-cma

SIGc (BA2) ,

where nP , nS, and µ are as in the statement of Theorem 1, and BA1 and BA2 have approximately
the same running time as A.

Proof. The proof of authentication with adversarial access to the auxiliary oracle Auxc proceeds
identically to the proof of the bound on Advacce-so-auth

SSH (A) in Section 5.2 with one major change:
Game 3, which involves signature forgeries now considers signatures output by Auxc. Specifically,
we note that any queries x made to Auxc either do not help the session to accept maliciously, or
the predicate Φ(x) = 1 for x and thus Auxc will not output a signature. This is because, any
query x that helps the session to accept maliciously will include a transcript of the negotiation
phase, and thus uniquely identifies the ciphersuite, satisfying the predicate.

Games 0, 1, and 2 proceed exactly as in the proof of Lemma 1.
Game 0. The game equals the multi-ciphersuite ACCE security experiment described in

Section 3.2.
Game 1. In this game we proceed identically to Game 1 in the proof of Lemma 1, adding

an abort rule for non-unique nonces, and get the same result.
Game 2. In the next two games we will exclude adversarial modifications of all messages

(KEXINIT to KEXDH INIT) by using a successful adversary to either output a hash collision (in
this game) or a signature forgery (next game). In this game we proceed exactly as Game 2 in
the proof of Lemma 1, adding an abort rule for hash collisions, and get the same result.

Game 3. In this game we ensure an adversary cannot use signature forgery to make some
session accept maliciously. If the session πs

∗
i∗ maliciously accepts in the sense of Definition 5,

we know from the discussion in the proof of Lemma 1 that A has modified at least one of the
key exchange messages and computed a valid signature σ′ over the hash of the correspondingly
modified session string. In order to do this, either A has computed a valid signature itself, or A
has utilised the auxiliary signing algorithm (for the negotiated ciphersuite c) Auxc to compute a
hash and signature on the modified session string. In order for the ACCE-with-auxiliary-oracle
experiment to remain fresh, for all x that A queries to Auxc, we must have that Φc(x) = 0;
in particular, when x is parsed as a session string as given in equation (21), the negotiated
ciphersuite neg(~spC , ~spS) 6= c. But all sessions that accept have negotiated ciphersuite equal
to c, and thus no query to the auxiliary oracle helps make any session accept maliciously. We

26

now embed a euf-cma signature challenger, receive a public key pk, guess the public-key pkj∗
the oracle will use for signature verification, (again costing our reduction by a factor of nP) and
replace pk with pkj∗. We know any maliciously accepting oracle has verified a signature σ′ over
a session string where there exists no other oracle πt

∗
j∗ with the same session string. Thus σ′ was

generated by the adversary, and we can forward (sid′,σ′) as a signature forgery to the euf-cma
signature challenger, and we get:

Pr(break(0)) ≤ Pr(break
(0)
3) + nPAdveuf-cma

SIGc (BA2) . (23)

Final analysis. After Game 3, all of the server’s relevant key-exchange messages are
authenticated via the signature σS , and since Game 3 aborts when a session accepts maliciously,
consequently we have

Pr(break
(0)
3) = 0 . (24)

Lemma 6 (Channel security w/auxiliary oracle). Let SSHc be a signed-DH SSH ciphersuite with
signature scheme SIGc, hash function Hc, Diffie–Hellman group (gc, qc), and BSAE scheme StEc,
and define Auxc and Φc as above. The algorithms B3, B4, B5, given in the proof of the lemma,
are such that, for all algorithms A,

Advacce-so-aenc-aux
SSHc,Auxc,Φc (A) ≤ Advacce-so-auth-aux

SSHc,Auxc,Φc (A)

+ nPnS

(
Advddh

gc,qc(B
A
3) + Advprf

PRFc
(BA4) + Advbsae

StEc(B
A
5)

)
.

where nP , nS, and µ are as in the statement of Theorem 1, and BA3 , BA4 , BA5 have approximately
the same running time as A.

The proof proceeds identically to the proof of Lemma 2 and yields the same result.

7.4 Final result: Multi-ciphersuite SSH

Combining Lemmas 5 and 6 from the previous subsection with the composition theorem
(Theorem 3) immediately yields that the SSH protocol is multi-ciphersuite secure, even with key
re-use across ciphersuites.

Corollary 1 (SSH is multi-ciphersuite secure). Let ~SSH be the multi-ciphersuite SSH protocol
with each of the nSP ciphersuites SSHc being a signed-Diffie–Hellman ciphersuite as in Section 4.
The algorithms B1, . . . , B5 inferred from the proof are such that, for all algorithms A:

Advmcs-acce-so-auth
~SSH,c

(A) ≤ nSP
(

(nPnS)2

2µ
+ Advcr

Hc(B
A
1) + nPAdveuf-cma

SIGc (BA2)

)
and

Advmcs-acce-so-aenc
~SSH,c

(A) ≤ Advmcs-acce-so-auth
~SSH,c

(A)

+ nPnS

(
Advddh

gc,qq(B
A
3) + Advprf

PRFc
(BA4) + Advbsae

StEc(B
A
5)

)
and BA1 , . . . , BA5 have approximately the same running time as A. Moreover, analogous versions
of the theorem apply for mutual authentication.

27

struct {

select (KeyExchangeAlgorithm):

case dhe_dss:

case dhe_rsa:

ServerDHParams params;

digitally-signed struct {

opaque client_random[32];

opaque server_random[32];

ServerDHParams params;

} signed_params;

case ec_diffie_hellman:

ServerECDHParams params;

digitally-signed struct {

opaque client_random[32];

opaque server_random[32];

ServerECDHParams params;

} signed_params;

} ServerKeyExchange

struct {

opaque dh_p<1..2^16-1>;

opaque dh_g<1..2^16-1>;

opaque dh_Ys<1..2^16-1>;

} ServerDHParams;

struct {

ECCurveType curve_type = explicit_prime(1);

opaque prime_p <1..2^8-1>;

ECCurve curve;

ECPoint base;

opaque order <1..2^8-1>;

opaque cofactor <1..2^8-1>;

opaque point <1..2^8-1>;

} ServerECDHParams;

Figure 6: Data structures for signed-Diffie–Hellman ciphersuites in TLS

8 TLS is not multi-ciphersuite secure

As described in the Introduction, the TLS protocol is in general not multi-ciphersuite secure.
In particular, in a cross-ciphersuite attack, identified by Mavrogiannopoulos et al. [28], signed
elliptic curve ephemeral Diffie–Hellman parameters can be interpreted as valid signed finite
field ephemeral DH parameters. However, other combinations of ciphersuites do not suffer from
the attack. In this section, we review this attack, place it in context of our definition of multi-
ciphersuite security, explain why our composition theorem cannot apply to those ciphersuites,
and then show which combinations of TLS ciphersuites can be proven multi-ciphersuite secure.

8.1 Attack of Mavrogiannopoulos et al.

In TLS signed-DH ciphersuites (both finite field and elliptic curve), the ServerKeyExchange

message [16, §7.4.3] contains a data structure with the Diffie–Hellman parameters and server’s
ephemeral public key, as well as the server’s signature on these values. The signature is meant
to provide server-to-client authentication. Figure 6 shows the ServerKeyExchange message and
sub-structures for finite field and elliptic curve signed-Diffie–Hellman ciphersuites.

Putting aside the finite-field versus ephemeral Diffie–Hellman case, some multi-ciphersuite
use of TLS is likely to be secure, for example signed finite-field Diffie–Hellman with different
hash algorithms or bulk ciphers. Bhargavan et al. [9] investigate the multi-ciphersuite security
of the TLS handshake, and show that certain combinations of signature schemes, hashes, PRFs,
and key establishment can be proven to be a secure AKE protocol even with key re-use. In the
rest of this section, we examine solely the case of finite-field versus elliptic curve Diffie–Hellman
to illustrate the cross-protocol attack in our model and framework.

In the ServerKeyExchange data structure on the left of Figure 6, for both (finite field) DH
and ECDH the digitally-signedstruct signed params is the signature over the client and
server random values and the Diffie–Hellman parameters structure. However, the inputs to the
signature do not contain an indicator distinguishing ServerDHParams or ServerECDHParams:
the fields from the relevant sub-structure are simply concatenated without a prefix. Since the
signature itself does not explicitly indicate whether the thing that is signed is a ServerDHParams

or a ServerECDHParams structure, we are at risk of a cross-ciphersuite attack.
Mavrogiannopoulos et al. show that there is enough flexibility in the ServerECDHParams

struct to construct something that is valid in both finite field and elliptic curve settings.
The ServerECDHParams struct actually supports several curve type values: explicit prime,
explicit char2, and named curve. The attack works by using an explicit prime curve (which

28

is why we only show the explicit prime fields in Figure 6).5 In particular, if the explicit
curve is actually the secp384r1 standardized curve and the server’s ephemeral private key
is selected randomly, then the ServerECDHParams data structure will also be a well-formed
ServerDHParams structure for a group of around 2048 bits with probability around 2−27.6.
Moreover, the resulting finite field DH group will be smooth with reasonable probability, allowing
the attacker to compute the ephemeral private key, for a total attack success probability of
around 2−40.

The recommended fix by Mavrogiannopoulos et al. is to explicitly include the name of the
peer, the handshake transcript, and the chosen key exchange algorithm in the digitally-signed
data structure. An alternative approach to stop the ephemeral private key recovery attack would
be to have the server check whether the DH group is a “good group”, but that may not rule out
other cross-ciphersuite attacks.

8.2 The attack in our framework

The above attack demonstrates that TLS signed-Diffie–Hellman ciphersuites are not multi-
ciphersuite secure in the sense of Section 3, since an attacker can take a ServerKeyExchange

message from a signed-ECDH ciphersuite and use that message to impersonate that server in
a finite field DH ciphersuite with probability around 2−40, causing a client to accept without
a matching session. Note that this attack relies in some sense on the agreed upon finite field
Diffie–Hellman group being “weak”. Previous analyses of Diffie–Hellman ciphersuites in TLS
have explicitly assumed that secure DH groups are used, so in a sense this type of attack is
excluded from the security analysis. But in fact the TLS specification gives no mechanism to
check the strength of the proposed finite field DH parameters.

To gain further intuition on the composition theorem of Section 6, we will also examine why it
cannot be applied to TLS signed-DH ciphersuites. At a high level, the problem is that we cannot
simultaneously satisfy pre-condition 1 of Theorem 3 and have ACCE security with auxiliary
oracle: there is no auxiliary algorithm Aux and predicate Φ such that we have both ACCE
security of signed-DH with auxiliary algorithm Aux under condition Φ and fresh simulatability
of signed-ECDH using the same Aux and Φ.

Suppose we wanted to prove signed-DH and signed-ECDH simultaneously secure using the
composition theorem. For each ciphersuite, we would need to pick an auxiliary algorithm Aux
that would allow us to simulate one ciphersuite using the other. However, as noted above,
some well-formed ServerECDHParams structures are also well-formed ServerDHParams structures.
Thus, there is no predicate Φ that can distinguish ServerECDHParams and ServerDHParams

structures. This means that we cannot prove that signed-DH is ACCE-secure with that Aux and
Φ. We could of course try a different Aux or a more restrictive Φ that excludes some well-formed
but undesirable ServerECDHParams. However, then we would not be able to fully simulate the
ciphersuite (pre-condition 1 of Theorem 3). Thus, as we should expect, our composition theorem
cannot be applied to the signed-DH and signed-ECDH ciphersuites in TLS.

9 Discussion

Although we encountered some challenges in proving the ACCE-security of SSH, overall SSH
seemed somewhat easier to prove secure compared with the proofs of signed-DH ciphersuites
in TLS [20]. As in both cases, mutual authentication comes from digital signatures, but in
SSH the object that is signed is the (hash of the) session identifier which is a significant
portion of the transcript, whereas in TLS only the ephemeral keys are signed. This means the

5Most popular implementations of elliptic curve cryptography in TLS only implement the named curve type,
but the standard does allow explicit curves.

29

security guarantees from verifying the signature in SSH more readily lead to the proof of entity
authentication for the whole session.

Another nice consequence of how SSH uses signatures is that it enabled us to readily
prove multi-ciphersuite security. Even though long-term signing keys may be used by multiple
ciphersuites, in every case the object that is signed uniquely identifies the ciphersuite it is
intended to be used for. This reinforces the importance of the long-held cryptographic wisdom
of ‘signing what you mean to sign’. Our multi-ciphersuite composition framework precisely
captures Anderson and Needham’s [3] principle 3 on protocol design: “Be careful when signing
or decrypting data that you never let yourself be used as an oracle by your opponent.”

The lessons learned from the TLS cross-ciphersuite attack [28] are particularly interesting in
the context of our multi-ciphersuite framework. Mavrogiannopoulos et al. suggested including
the ciphersuite and handshake transcripts in what is signed in TLS as a countermeasure. If
future versions of TLS do indeed do this, for example moving the server signature to just
before the server’s Finished message and including the complete transcript, then it should be
straightforward to adapt existing security analyses of TLS. Moreover, such an adaptation should
easily have a proof of single-ciphersuite security even with an auxiliary signing oracle, at which
point our composition theorem can readily be applied to yield multi-ciphersuite security. With
discussions for a new version of TLS beginning on the IETF’s mailing list, we hope that TLS
1.3 will indeed incorporate this suggestion.

With a security proof for SSH, an additional direction for future work is whether SSH’s
key re-exchange functionality can be modelled in the renegotiable ACCE framework [17], and
whether there is an elegant way to combine the renegotiation and multi-ciphersuite frameworks.
Additionally, other important real-world protocols that negotiate cryptographic parameters
and share long-term keys, including IPsec’s Internet Key Exchange (IKE) protocol, merit
investigation.

Acknowledgements

The authors gratefully acknowledge helpful discussions with Tibor Jager.

References

[1] M. R. Albrecht, K. G. Paterson, and G. J. Watson. Plaintext recovery attacks against SSH.
In 2009 IEEE Symposium on Security and Privacy, pages 16–26. IEEE Computer Society
Press, May 2009.

[2] J. Alves-Foss. Multi-protocol attacks and the public key infrastructure. In Proc. 21st
National Information Systems Security Conference, pages 566–576, October 1998.

[3] R. J. Anderson and R. M. Needham. Robustness principles for public key protocols. In
D. Coppersmith, editor, CRYPTO’95, volume 963 of LNCS, pages 236–247. Springer, Aug.
1995.

[4] S. Andova, C. Cremers, K. Gjøsteen, S. Mauw, S. F. Mjølsnes, and S. Radomirović. A
framework for compositional verification of security protocols. Information and Computation,
206:425–459, 2008.

[5] G. Bela and I. Ignat. Verifying the independence of security protocols. In Proc. 2007 IEEE
International Conference on Intelligent Computer Communication and Processing, pages
155–162. IEEE, 2007.

[6] M. Bellare, T. Kohno, and C. Namprempre. Breaking and provably repairing the SSH
authenticated encryption scheme: A case study of the encode-then-encrypt-and-MAC

30

paradigm. ACM Transactions on Information and System Security, 7(2):206–241, May
2004. Extended abstract published in ACM CCS 2002.

[7] M. Bellare and P. Rogaway. Entity authentication and key distribution. In D. R. Stinson,
editor, CRYPTO’93, volume 773 of LNCS, pages 232–249. Springer, Aug. 1993.

[8] K. Bhargavan, C. Fournet, M. Kohlweiss, A. Pironti, and P.-Y. Strub. Implementing TLS
with verified cryptographic security. In 2013 IEEE Symposium on Security and Privacy,
pages 445–459. IEEE Computer Society Press, May 2013.

[9] K. Bhargavan, C. Fournet, M. Kohlweiss, A. Pironti, P.-Y. Strub, and S. Zanella-Béguelin.
Proving the TLS handshake secure (as it is). In J. A. Garay and R. Gennaro, editors,
CRYPTO 2014, volume 8617 of LNCS, pages 235–255. Springer, 2014.

[10] C. Brzuska, M. Fischlin, N. P. Smart, B. Warinschi, and S. C. Williams. Less is more: Relaxed
yet composable security notions for key exchange. International Journal of Information
Security, 12(4):267–297, August 2013.

[11] R. Canetti. Universally composable security: A new paradigm for cryptographic protocols.
In 42nd FOCS, pages 136–145. IEEE Computer Society Press, Oct. 2001.

[12] R. Canetti and H. Krawczyk. Analysis of key-exchange protocols and their use for building
secure channels. In B. Pfitzmann, editor, EUROCRYPT 2001, volume 2045 of LNCS, pages
453–474. Springer, May 2001.

[13] R. Canetti, C. Meadows, and P. Syverson. Environmental requirements for authentication
protocols. In M. Okada, B. C. Pierce, A. Scedrov, H. Tokuda, and A. Yonezawa, editors,
Proc. Mext-NSF-JSPS Internaional Symposium on Software Security (ISSS) – Theories
and Systems, Part 9, volume 2609 of LNCS, pages 339–355. Springer, 2002.

[14] C. J. F. Cremers. Feasibility of multi-protocol attacks. In Proc. 1st International Conference
on Availability, Reliability, and Security (ARES) 2006, pages 287–294. IEEE, 2006.

[15] A. Datta, A. Derek, J. C. Mitchell, and D. Pavlovic. Secure protocol composition. Electronic
Notes in Theoretical Computer Science, 83(15), 2004.

[16] T. Dierks and E. Rescorla. The Transport Layer Security (TLS) Protocol Version 1.2. RFC
5246 (Proposed Standard), Aug. 2008. Updated by RFCs 5746, 5878, 6176.

[17] F. Giesen, F. Kohlar, and D. Stebila. On the security of TLS renegotiation. In A.-R.
Sadeghi, V. D. Gligor, and M. Yung, editors, ACM CCS 13, pages 387–398. ACM Press,
Nov. 2013.

[18] J. D. Guttman and F. J. Thayer Fabrega. Protocol independence through disjoint encryption.
In Proceedings 13th IEEE Computer Security Foundations Workshop (CSFW-13), pages
24–34. IEEE, 2000.

[19] B. Harris. RSA Key Exchange for the Secure Shell (SSH) Transport Layer Protocol. RFC
4432 (Proposed Standard), Mar. 2006.

[20] T. Jager, F. Kohlar, S. Schäge, and J. Schwenk. On the security of TLS-DHE in the
standard model. In R. Safavi-Naini and R. Canetti, editors, CRYPTO 2012, volume 7417
of LNCS, pages 273–293. Springer, Aug. 2012.

[21] T. Jager, K. G. Paterson, and J. Somorovsky. One bad apple: Backwards compatibility
attacks on state-of-the-art cryptography. In Proc. Internet Society Network and Distributed
System Security Symposium (NDSS) 2013, 2013.

31

[22] J. Jonsson and B. S. Kaliski Jr. On the security of RSA encryption in TLS. In M. Yung,
editor, CRYPTO 2002, volume 2442 of LNCS, pages 127–142. Springer, Aug. 2002.

[23] J. Kelsey, B. Schneier, and D. Wagner. Protocol interactions and the chosen protocol attack.
In B. Christianson, B. Crispo, M. Lomas, and M. Roe, editors, Proc. 5th International
Workshop on Security Protocols, volume 1361 of LNCS, pages 91–104. Springer, 1997.

[24] F. Kohlar, S. Schäge, and J. Schwenk. On the security of TLS-DH and TLS-RSA in the
standard model. Cryptology ePrint Archive, Report 2013/367, 2013. http://eprint.iacr.
org/2013/367.

[25] H. Krawczyk. Cryptographic extraction and key derivation: The HKDF scheme. In T. Rabin,
editor, CRYPTO 2010, volume 6223 of LNCS, pages 631–648. Springer, Aug. 2010.

[26] H. Krawczyk, K. G. Paterson, and H. Wee. On the security of the TLS protocol: A
systematic analysis. In R. Canetti and J. A. Garay, editors, CRYPTO 2013, Part I, volume
8042 of LNCS, pages 429–448. Springer, Aug. 2013.

[27] B. A. LaMacchia, K. Lauter, and A. Mityagin. Stronger security of authenticated key
exchange. In W. Susilo, J. K. Liu, and Y. Mu, editors, ProvSec 2007, volume 4784 of LNCS,
pages 1–16. Springer, Nov. 2007.

[28] N. Mavrogiannopoulos, F. Vercauteren, V. Velichkov, and B. Preneel. A cross-protocol
attack on the TLS protocol. In T. Yu, G. Danezis, and V. D. Gligor, editors, ACM CCS 12,
pages 62–72. ACM Press, Oct. 2012.

[29] P. Morrissey, N. P. Smart, and B. Warinschi. A modular security analysis of the TLS
handshake protocol. In J. Pieprzyk, editor, ASIACRYPT 2008, volume 5350 of LNCS,
pages 55–73. Springer, Dec. 2008.

[30] K. G. Paterson, T. Ristenpart, and T. Shrimpton. Tag size does matter: Attacks and
proofs for the TLS record protocol. In D. H. Lee and X. Wang, editors, ASIACRYPT 2011,
volume 7073 of LNCS, pages 372–389. Springer, Dec. 2011.

[31] K. G. Paterson and G. J. Watson. Plaintext-dependent decryption: A formal security
treatment of SSH-CTR. In H. Gilbert, editor, EUROCRYPT 2010, volume 6110 of LNCS,
pages 345–361. Springer, May 2010.

[32] D. Stebila and J. Green. Elliptic Curve Algorithm Integration in the Secure Shell Transport
Layer. RFC 5656 (Proposed Standard), Dec. 2009.

[33] F. J. Thayer Fabrega, J. Herzog, and J. D. Guttman. Mixed strand spaces. In Proceedings
12th IEEE Computer Security Foundations Workshop (CSFW-12), pages 72–82, 1999.

[34] W.-G. Tzeng and C.-M. Hu. Inter-protocol interleaving attacks on some authentication and
key distribution protocols. Information Processing Letters, 69(6):297–302, March 1999.

[35] D. Wagner and B. Schneier. Analysis of the SSL 3.0 protocol. In Proc. 2nd USENIX
Workshop on Electronic Commerce, 1996.

[36] S. C. Williams. Analysis of the SSH key exchange protocol. Cryptology ePrint Archive,
Report 2011/276, 2011. http://eprint.iacr.org/2011/276.

[37] T. Ylonen and C. Lonvick. The Secure Shell (SSH) Authentication Protocol. RFC 4252
(Proposed Standard), Jan. 2006.

[38] T. Ylonen and C. Lonvick. The Secure Shell (SSH) Connection Protocol. RFC 4254
(Proposed Standard), Jan. 2006.

32

http://eprint.iacr.org/2013/367
http://eprint.iacr.org/2013/367
http://eprint.iacr.org/2011/276

[39] T. Ylonen and C. Lonvick. The Secure Shell (SSH) Protocol Architecture. RFC 4251
(Proposed Standard), Jan. 2006.

[40] T. Ylonen and C. Lonvick. The Secure Shell (SSH) Transport Layer Protocol. RFC 4253
(Proposed Standard), Jan. 2006. Updated by RFC 6668.

A Protocol description for SSH signed-Diffie–Hellman cipher-
suite

This description complements Figure 1 and 4.

A.1 Negotiation

The first two messages exchanged negotiate the ciphersuite.

1. Init→ Resp: KEXINIT. The initiator is activated with a list ~spC of ciphersuite preferences,
picks a random nonce rC , generates its KEXINIT message and updates the per-session variables.

1. rC
$← {0, 1}µ

2. KEXINIT← (rC , ~spC)
3. π.ρ← init

4. π.α← in-progress

2. Resp→ Init: KEXREPLY. The responder picks a random nonce rS , generates its KEXREPLY

message, negotiates the optimal ciphersuite and updates the per-session variables.

1. rS
$← {0, 1}µ

2. KEXREPLY← (rS , ~spS)
3. π.ρ← resp

4. π.α← in-progress
5. π.c← neg(~spC , ~spS);

3. Init. Upon receiving KEXREPLY, the initiator records the negotiated ciphersuite based on its
~spC and the ~spS received from the responder:

1. π.c← neg(~spC , ~spS)

A.2 Signed-DH sub-protocol—all authentication modes

We define and name the i-th sub-protocol algorithm for the sub-protocol π.c that updates the
per-session variables and sends the appropriate message as according to protocol specification as
SPπ.c.AlgIi or SPπ.c.AlgRi for the initiator and responder respectively.

4. Init → Resp: SPπ.c.AlgI1 → KEXDH INIT. The initiator now starts the negotiated sub-
protocol, SPπ.c. The initiator generates and sends an ephemeral Diffie–Hellman key.

1. x
$← Zqπ.c

2. e← gxπ.c
3. KEXDH INIT← e

5. Resp → Init: SPπ.c.AlgR1 → KEXDH REPLY and NEWKEYS. The responder generates its
ephemeral Diffie–Hellman key, computing a session identifier and session keys, and signing a
hash of the session identifier to provide authentication.

1. y
$← Zqπ.c

33

2. f ← gyπ.c
3. K ← ey

4. (π.sid, π.k)← PRFπ.c(K,VC‖VS‖KEXINIT‖KEXREPLY‖pkπ.c‖e‖f)
5. σS ← SIGπ.c.Sign(skS,π.c, π.sid)
6. KEXDH REPLY← (f, pkS,π.c, σS)

where PRFπ.c(K, sid) is as defined in Figure 5 and (skS,π.c, pkS,π.c) denotes the server’s long-term
key pair in this sub-protocol.

The responder now also sends a distinguished message NEWKEYS indicating that all following
communication sent by the responder will be over the auth-enc channel, using StEπ.c.Enc.

6. Init→ Resp : SPπ.c.AlgI2 → NEWKEYS. The initiator computes the session key and verifies
server authentication. We note that this algorithm combines verifying the server authentication
(found below) with sending the appropriate authentication message AUTHREQUEST.

1. K ← fx

2. (π.sid, π.k)← PRFπ.c(K,VC‖VS‖KEXINIT‖KEXREPLY‖pkπ.c‖e‖f)
3. If SIGπ.c.Vfy(pkS,π.c, σS , π.sid) = 0, then set π.α← reject and terminate.
4. π.pid← S, where PS is the party with public key pkS,π.c

The initiator also sends a distinguished message NEWKEYS indicating that all following
communication sent by the initiator will be over the auth-enc channel.

A.3 Sub-protocol—no client authentication

7. Init → Resp: SPπ.c.AlgI2 → AUTHREQUEST. In server-only authentication mode, the client
does not perform public key authentication. It still sends a message (now over the auth-enc
channel) indicating its username and a request for access without public key authentication.

1. AUTHREQUEST← username‖service‖none

8. Resp → Init: SPπ.c.AlgR2 → AUTHSUCCESS or AUTHFAILURE. If username is allowed
access to service without authentication, the responder sets π.α ← accept; otherwise, it
sets π.α ← reject. Note that even if the server accepts, it leaves π.pid = ⊥ to indicate an
unauthenticated peer.

1. If π.α = accept, send AUTHSUCCESS.
2. If π.α = reject, send AUTHFAILURE and terminate.

11. Init: SPπ.c.AlgI3. If the initiator receives AUTHFAILURE over the auth-enc channel, it sets
π.α← reject and terminates. If it receives AUTHSUCCESS, it sets π.α← accept.

12. Init↔ Resp: Application data. The initiator and responder can now exchange applica-
tion data over the auth-enc channel.

A.4 Sub-protocol—password client authentication

7. Init→ Resp: SPπ.c.AlgI2 → AUTHREQUEST. In mutual authentication mode using a password,
the client sends its password pw over the auth-enc channel.

1. AUTHREQUEST← username‖service‖pw‖pw

8. Resp → Init: SPπ.c.AlgR2 → AUTHSUCCESS or AUTHFAILURE. If username is allowed to
access service based on password pw, the responder sets π.α ← accept; otherwise, it sets
π.α← reject. Note that if the server accepts, it sets π.pid = C, where PC is username.

The server responds with a status message, sent over the auth-enc channel.

34

1. If π.α = accept, send AUTHSUCCESS.
2. If π.α = reject, send AUTHFAILURE and terminate.

11. Init: SPπ.c.AlgI3. If the initiator receives AUTHFAILURE over the auth-enc channel, it sets
π.α← reject and terminates. If it receives AUTHSUCCESS, it sets π.α← accept.

12. Init↔ Resp: Application data. The initiator and responder can now exchange applica-
tion data over the auth-enc channel.

A.5 Sub-protocol—public-key client authentication

SSH in the case of mutual authentication differs from the server-only mode after the server sends
its Diffie–Hellman key exchange message KEXDH REPLY, namely, from message 5 onwards.

7. Init → Resp: SPπ.c.AlgI2 → AUTHREQUEST. In mutual authentication mode using public
keys, the initiator sends (over the auth-enc channel) an authentication request message asking to
perform client authentication using a given public key; the client does not demonstrate possession
of the corresponding private key at this point.

1. AUTHREQUEST ← username‖service‖public-key‖0‖alg‖pkC,π.c where alg is the name of
the public key algorithm (RSA, DSA, ECDSA) and pkC,π.c is the client’s public key for
this ciphersuite.

8. Resp → Init: SPπ.c.AlgR2 → AUTHOK or AUTHFAILURE. If username is not allowed access
to service by public-key authentication, it sets π.α← reject.

The server responds with a status message, sent over the auth-enc channel.

1. If π.α = in-progress, send AUTHOK← alg‖pkC,π.c.
2. If π.α = reject, send AUTHFAILURE and terminate.

9. Init → Resp: SPπ.c.AlgI3 → AUTHREPLY. The client computes its signature of session
identifier and authentication information and sends it to the server over the auth-enc channel.

1. A← username‖service‖public-key‖1‖alg‖pkC,π.c
2. σC ← SIGπ.c.Sign(skC,π.c, π.sid,A)
3. AUTHREPLY← A‖σC

10. Resp→ Init: SPπ.c.AlgR3 → AUTHSUCCESS. The responder recomputes its own A′ value to
see if it matches A, then verifies the client’s signature; if these checks pass, the server accepts
and sends a success method.

1. A′ ← username‖service‖public-key‖1‖alg‖pkC,π.c
2. If A′ 6= A, then π.α← reject.
3. If SIGπ.c.Vfy(pkC,π.c, σC , π.sid,A) = 0, then π.α← reject.
4. If π.α = in-progress, then π.α← accept.
5. If π.α = accept, send AUTHSUCCESS.
6. If π.α = reject, send AUTHFAILURE and terminate.

11. Init: SPπ.c.AlgI4. If the initiator receives AUTHFAILURE over the auth-enc channel, it sets
π.α← reject and terminates. If it receives AUTHSUCCESS, it sets π.α← accept.

12. Init↔ Resp: Application data. The initiator and responder can now exchange applica-
tion data over the auth-enc channel.

35

	Introduction
	Preliminaries
	Decisional Diffie–Hellman
	Digital signature schemes
	Buffered stateful authenticated encryption
	Pseudo-random functions
	Collision-resistant hash functions

	Multi-ciphersuite ACCE protocols
	Execution environment
	Security definitions

	The SSH protocol
	The SSH PRF

	ACCE security of SSH
	Challenges with security proofs for SSH
	Server-only-authentication mode
	Mutual authentication mode

	Composition theorem for multi-ciphersuite security
	Single ciphersuite security with auxiliary oracle
	Multi-ciphersuite composition

	SSH is multi-ciphersuite secure
	Proof of Precondition 2
	Proof of Precondition 1
	Security of SSH with auxiliary oracle
	Final result: Multi-ciphersuite SSH

	TLS is not multi-ciphersuite secure
	Attack of Mavrogiannopoulos et al.
	The attack in our framework

	Discussion
	Protocol description for SSH signed-Diffie–Hellman ciphersuite
	Negotiation
	Signed-DH sub-protocol—all authentication modes
	Sub-protocol—no client authentication
	Sub-protocol—password client authentication
	Sub-protocol—public-key client authentication

