
A preliminary version of this paper appears in the proceedings of the 23rd ACM Conference on Computer and
Communications Security (CCS 2016), DOI: 10.1145/2976749.2978425. This is the full version. Tables 1–4
are updated to reflect tighter parameters and more accurate security estimates and correct communication
sizes.

Frodo: Take off the ring!
Practical, Quantum-Secure Key Exchange from LWE

Joppe Bos1 Craig Costello2 Léo Ducas3 Ilya Mironov4 Michael Naehrig2

Valeria Nikolaenko5∗ Ananth Raghunathan4

Douglas Stebila6

1 NXP Semiconductors, joppe.bos@nxp.com
2 Microsoft Research, craigco@microsoft.com, mnaehrig@microsoft.com

3 CWI, l.ducas@cwi.nl
4 Google Inc., mironov@google.com, pseudorandom@google.com

5 Stanford University, valerini@stanford.edu
6 McMaster University, stebilad@mcmaster.ca

February 23, 2017

Abstract

Lattice-based cryptography offers some of the most attractive primitives believed to be resis-
tant to quantum computers. Following increasing interest from both companies and government
agencies in building quantum computers, a number of works have proposed instantiations of
practical post-quantum key exchange protocols based on hard problems in ideal lattices, mainly
based on the Ring Learning With Errors (R-LWE) problem. While ideal lattices facilitate major
efficiency and storage benefits over their non-ideal counterparts, the additional ring structure
that enables these advantages also raises concerns about the assumed difficulty of the underly-
ing problems. Thus, a question of significant interest to cryptographers, and especially to those
currently placing bets on primitives that will withstand quantum adversaries, is how much of
an advantage the additional ring structure actually gives in practice.

Despite conventional wisdom that generic lattices might be too slow and unwieldy, we demon-
strate that LWE-based key exchange is quite practical: our constant time implementation re-
quires around 1.3ms computation time for each party; compared to the recent NewHope R-LWE
scheme, communication sizes increase by a factor of 4.7×, but remain under 12KiB in each di-
rection. Our protocol is competitive when used for serving web pages over TLS; when partnered
with ECDSA signatures, latencies increase by less than a factor of 1.6×, and (even under heavy
load) server throughput only decreases by factors of 1.5× and 1.2× when serving typical 1KiB
and 100KiB pages, respectively. To achieve these practical results, our protocol takes advan-
tage of several innovations. These include techniques to optimize communication bandwidth,
dynamic generation of public parameters (which also offers additional security against back-
doors), carefully chosen error distributions, and tight security parameters.

Keywords: Post-quantum cryptography; learning with errors; key exchange; OpenSSL; TLS

∗Large parts of this work were done when Valeria Nikolaenko was an intern at Google.

1

http://dx.doi.org/10.1145/2976749.2978425
mailto:joppe.bos@nxp.com
mailto:craigco@microsoft.com
mailto:mnaehrig@microsoft.com
mailto:l.ducas@cwi.nl
mailto:mironov@google.com
mailto:pseudorandom@google.com
mailto:valerini@stanford.edu
mailto:stebilad@mcmaster.ca

Contents

1 Introduction 3
1.1 Key Exchange and Forward Secrecy . 3
1.2 Generic vs. Ideal Lattices . 3
1.3 Our Contributions . 4

2 Related Work 6

3 Key Exchange from LWE 6
3.1 The new key exchange protocol . 7
3.2 A generalized reconciliation mechanism . 8
3.3 Error distributions . 10

4 Security assessment and parameter selection 10
4.1 Methodology: the core-SVP hardness . 11
4.2 Primal attack . 11
4.3 Dual attack . 12
4.4 Proposed parameters . 12

5 Proof of Security 13
5.1 The LWE problem and variants . 13
5.2 Security of the key exchange protocol . 15
5.3 Security when used in TLS . 17

6 Implementation 17

7 Evaluation 18
7.1 Standalone cryptographic operations . 20
7.2 HTTPS connections . 20

2

1 Introduction

Recent advances in quantum computing (cf. [26, 40]) have triggered widespread interest in develop-
ing practical post-quantum cryptographic schemes [49]. Subsequently, standards bodies and govern-
ment agencies have announced their intentions to transition to cryptographic standards that offer
quantum-resistance; this includes the National Institute of Standards and Technology (NIST) [51],
the National Security Agency (NSA) [52], and the PQCRYPTO project [9] funded by the European
Union.

Traditional number-theoretic cryptographic problems such as the integer factorization problem
and the discrete logarithm problem (over both multiplicative groups modulo a prime p and elliptic
curve groups) are vulnerable to polynomial-time quantum attacks [61, 57]. Lattice-based cryptog-
raphy, beginning with Ajtai’s seminal work [4] (cf. the recent survey [55] for a comprehensive list of
relevant references), is an exciting field of research that, in addition to providing a richer diversity
of underlying primitives, offers the potential to build practical quantum-resistant cryptography.

1.1 Key Exchange and Forward Secrecy

Although large-scale quantum computers are likely to affect all of the cryptographic building blocks
used to secure the internet, the threat of quantum computing to each specific primitive differs
significantly. On the symmetric side, the cryptanalytic speedups (using Grover’s algorithm [34])
aided by a quantum computer are well-understood. It is currently believed that it will suffice
to double the secret key sizes of symmetric encryption algorithms and MACs to defend against
quantum computers.

On the asymmetric side, cryptographers are currently examining the potential of a new range
of mathematical problems (like those based on lattices) for post-quantum security. While there
are several interesting candidates for post-quantum signature schemes, a more pressing concern to
practitioners is the deployment of post-quantum public key encryption and key exchange protocols:
the secrecy of today’s communications can be compromised by a quantum computer that is built
decades into the future (by an attacker who stores these communications until then); on the other
hand, authentication can only be forged at connection time.

In this paper, we focus on the most pressing issue in public key post-quantum cryptography:
the development of a secure, practical key exchange protocol that can be used to secure internet
traffic in anticipation of a quantum adversary. This focus on (quantum-secure) key exchange aligns
with the notion of forward secrecy [28] deployed in TLS and, for example, the notion of long-term
security used for classified documents by government agencies (see Table 4 in [11]).

1.2 Generic vs. Ideal Lattices

Public-key cryptography is built on the presumed difficulty of hard computational problems. When-
ever such a problem is introduced and has potential as a cryptographic primitive, cryptographers
naturally study whether there are special instances of the problem that offer practical benefits, and
in particular, whether they do so without compromising the presumed hardness. There are several
historic examples of special instances that have proven to be a disastrous choice compared to suit-
ably chosen random instances, e.g., the use of supersingular curves in elliptic curve cryptography
(ECC) [47, 30]. In some cases, special instances introduce well-understood security issues that can
be weighed against potential benefits, e.g., the use of small public exponents in RSA [22]. In many
scenarios, however, the size of such a security gap, or whether there is a gap at all, remains unclear.

One example of an unknown security gap currently exists in lattice-based cryptography. Five
years after Regev’s paper introducing the Learning With Errors (LWE) problem was published [58],

3

Lyubashevsky, Peikert and Regev [46] introduced a specialized version of the problem called Ring
Learning With Errors (R-LWE), which offers significant storage and efficiency improvements. LWE
is a mature and well-studied [7, 45, 48, 16] cryptographic primitive that relies only on the worst-case
hardness of a shortest vector problem in generic lattices. R-LWE has additional algebraic structure
and relies on the (worst-case) hardness of problems in ideal lattices. Ideal lattices correspond to
ideals in certain algebraic structures, such as polynomial rings. NTRU lattices [36], which are a
class of lattices with some structure (but different from R-LWE lattices) have also been used to
build cryptosystems.

The hardness of lattice problems on regular lattices as well as ideal lattices merits more study.
Although the algebraic structure of R-LWE (and NTRU) makes for more practical key-sizes and
protocol communication, this algebraic structure might inspire less confidence in the underlying
security. Currently, the best algorithms to solve hard problems in ideal lattices [21, 44] are the
same as those that target regular lattices (modulo small polynomial speedups), and it is not known
whether the R-LWE problem is significantly easier than the LWE problem for the same parameter
sizes. Certain sieving algorithms obtain a constant factor time and/or space improvement in the
ideal case [60, 15], but (at best) this only shaves a few bits off of the known bit-security. At the
very least, however, the additional ring structure might introduce subtleties in the choice of error
distribution [56].

Several recent papers [54, 14, 65, 6] have proposed and implemented key exchange variants that
rely on the hardness of the R-LWE problem [46]. In contrast, in this paper we develop and evaluate a
secure and practical key exchange protocol from the original LWE problem [59], the security of which
is based on hard problems in lattices that do not possess any ring structure. While both academic [9]
and government [19, 50] bodies are currently exploring candidates for post-quantum cryptography,
we believe it prudent to give a concrete evaluation of a lattice-based scheme that is invoked without
the additional structure, and to draw comparisons to previous ring-based implementations. The
design of our implementation and its accompanying security analysis was performed with a view
towards real-world (and in particular, internet) deployment. To our knowledge, there has not yet
been a practical implementation of key exchange based on the original LWE problem.

1.3 Our Contributions

We demonstrate the feasibility of LWE-based key exchange with a new key exchange protocol which
we call “Frodo,” and we provide a proof of its security based on the original LWE problem. We give
parameter sets for LWE at several security levels, including “recommended” parameters that achieve
128-bit security against quantum adversaries (using the best known attacks that incorporate recent
advances in lattice cryptanalysis), and “paranoid” parameters that are based on lower bounds for
sieving algorithm complexities. Our protocol incorporates several innovations:
• Efficiently sampleable noise distribution. We present four discrete noise distributions that

are more efficient to sample than previously used discrete Gaussian distributions (without
increasing the lattice dimensions); the safety of using these in place of rounded continuous
Gaussians follows from analyzing the corresponding Rényi divergence.
• Efficient and dynamic generation of public parameters. We generate the LWE public matrix A

for every key exchange from a small random seed, which has two benefits. Using a new A with
every connection avoids the use of global parameters that can lead to “all-for-the-price-of-one”
precomputation attacks, such as the Logjam attack on finite-field Diffie–Hellman [1] (we note
that these attacks have the potential to be even more devastating in the context of lattices
– see [6]). Furthermore, in LWE this approach gives rise to significant bandwidth savings,
since we avoid the transmission of the large matrix A by instead transmitting the small seed.

4

While this approach was already explored in the context of R-LWE in [6], in the context of
LWE it becomes more challenging due to the large amount of randomness that is required.
A significant step towards achieving high performance was optimizing this pseudorandom
generation of A, since in our case it still consumes around 40% of the total computation time
for each party. In order to target a large number of platforms and applications, we optimized
this step for memory-access patterns; pseudorandom construction of A from a small random
seed is done component-wise so that devices with memory constraints can generate blocks of
A, use them, and discard them.

Implementation. We provide an open-source implementation of our protocol in the C language
that provides protection against simple timing and cache-timing attacks. We have integrated our
implementation, as well as publicly available implementations of several other post-quantum key
exchange protocols [14, 6, 64, 24], to allow a direct comparison of post-quantum candidates in
a common framework. We have also integrated our framework into OpenSSL, allowing it to be
used with Apache for performance testing in real-world settings. In addition, we implemented and
evaluated the hybrid version of each ciphersuite; this partners each of the proposed post-quantum
key exchange primitives with ECDHE in order to mitigate the potential of (classical) cryptanalytic
advances against the newer primitives.

The implementation of our protocol and parameter finding scripts are available at https://
github.com/lwe-frodo/. Our framework for comparing post-quantum algorithms and integration
into OpenSSL is available at https://github.com/open-quantum-safe/.

Performance comparison and evaluation in TLS.We evaluate the performance of our protocol,
along with the other post-quantum protocols mentioned above, in two ways:

• Microbenchmarks. These measure the performance of standalone cryptographic operations.
Using LWE key exchange at the “recommended” security level, each party’s operations run in
around 1.3ms. As expected, this is slower but still comparable to ideal lattice-based schemes
(they have runtimes between 0.15ms—2.15ms per party), but it is significantly faster than the
post-quantum software based on supersingular isogenies [24], and is comparable to traditional
elliptic curve Diffie–Hellman using nistp256 (which takes about 0.7ms per party). Table 4
contains detailed comparisons.
• Performance within HTTPS/TLS. To measure the real-world impact of using generic lattices,

we measure the connection time and server throughput when using post-quantum ciphersuites
in TLS. This includes their performance under heavy sustained load while serving hundreds
of connections every second. In this realistic scenario, the performance gap between ideal
and generic lattices shrinks considerably. When ECDSA certificates are used, the time to
establish a connection using our LWE key exchange ciphersuite is just 18.3ms (or 23ms when
deployed in a hybrid mode with ECDHE). The handshake size is around 23.1KiB. Compared
to NewHope [6] (which is a very fast R-LWE based scheme), we see that using generic lattices
in our case gives rise to just a factor 1.5× increase in latency (12.1ms or 16.5ms in hybrid
mode), and a factor 4.7× increase in handshake size (4.9KiB). Given that modern web pages
load with latencies of hundreds of milliseconds and with sizes of a megabyte or more, the
overhead of LWE key exchange is manageable in many cases and unnoticeable in many more.
We measured connections per second at a variety of page sizes (see Table 5): at 100KiB, the
throughput of LWE is only 1.2× less than that of NewHope, and this drops to just 1.15×
when each ciphersuite is deployed in a hybrid mode with ECDHE.

Ultimately, the size and speed of our protocol shows that we need not rely exclusively on ideal
lattices to construct practical lattice-based key exchange: LWE-based key exchange is indeed a

5

https://github.com/lwe-frodo/
https://github.com/lwe-frodo/
https://github.com/open-quantum-safe/

viable candidate for a practical quantum-resistant scheme.

2 Related Work

Regev [59] introduced the LWE problem accompanied by a (quantum) reduction to certain worst-
case lattice problems and demonstrated how to build a public-key encryption scheme based on the
hardness of this problem. Peikert [53] gave the first classical reduction from LWE to standard lattice
problems, however this reduction required moduli that were exponential in the size of the lattice
dimension. Subsequently, Brakerski et al. [16] then showed that for moduli that are polynomial in
the size of the lattice dimension, standard, worst-case problems in lattices are classically reducible
to the LWE problem. Constructions based on LWE have led to a large variety of public-key cryp-
tosystems [39, 53, 33, 18, 3, 2, 17]. Its ring analogue, R-LWE [46], yields more efficient constructions
of public-key cryptosystems [54].

Based on the key encapsulation mechanism described by Peikert [54], Bos et al. [14] presented
a Diffie-Hellman-like key exchange protocol whose security is based on the R-LWE problem. They
demonstrated the feasibility of the protocol by integrating their implementation into the TLS proto-
col in OpenSSL, reporting a slight performance penalty over classically secure key exchange (using
elliptic curves). Soon after, Alkim et al. [6] presented a range of improvements over the implemen-
tation in [14]. In particular, the in-depth security analysis performed in [6] paved the way for a
superior set of parameters to those used in [14]: Alkim et al. showed that higher security could be
achieved with a smaller modulus and a new, more efficiently samplable noise distribution. Moreover,
their improved error reconciliation and more aggressive implementation culminated in R-LWE key
exchange software that was more than an order of magnitude faster than the software presented by
Bos et al..

Previously, Ding et al. [29] had proposed an alternative instantiation of lattice-based key ex-
change that builds on Regev’s public-key cryptosystem [59], giving a Diffie-Hellman-like protocol
from both LWE and R-LWE. The deduced shared key in their scheme is not uniform random, and
they subsequently suggest to use an extractor; however, this reduces the effective length of the key.
Our protocol is based on similar ideas to the LWE protocol in [29], but as in the R-LWE schemes
in [14] and [6], we incorporate (and extend) Peikert’s reconciliation technique [54] and further mod-
ify the protocol to conserve bandwidth. Moreover, the analysis in [29] was performed for single-bit
key exchange, and [29] did not include a concrete proposal for quantum-secure key exchange or an
implementation of the scheme.

3 Key Exchange from LWE

Notation. If χ is a probability distribution over a set S, then x
$← χ denotes sampling x ∈ S

according to χ. If S is a set, then U(S) denotes the uniform distribution on S, and we denote
sampling x uniformly at random from S either with x $← U(S) or sometimes x $← S. Matrices are
denoted by bold face capital letters. If χ is a distribution over a set S, then X

$← χ(Sn×m) denotes
generating an n ×m matrix X by sampling each of its entries independently from S according to
χ. If A is a probabilistic algorithm, y $← A(x) denotes running A on input x with randomly chosen
coins and assigning the output to y.

The LWE problem is characterized by three parameters: the modulus q, the dimension of the
matrix n, and the error distribution χ. Given an integer modulus q, denote by Zq the ring of
integers modulo q. The distribution χ is typically taken to be a rounded continuous or discrete

6

Alice Bob

seedA
$← U({0, 1}s)

A← Gen(seedA)

S,E
$← χ(Zn×n

q)

B← AS + E seedA,B

∈ {0, 1}s × Zn×nq A← Gen(seedA)

S′,E′
$← χ(Zm×n

q)

B′ ← S′A + E′

E′′
$← χ(Zm×n

q)

V← S′B + E′′

B′,C C← 〈V〉2B
∈ Zm×nq × Zm×n2

K ← rec(B′S,C) K ← bVe2B

Figure I: The LWE-based key exchange protocol with LWE parameters (n, q, χ), and protocol specific
parameters n,m,B ∈ Z. The matrix A ∈ Zn×nq is generated from seedA via a pseudo-random
function Gen.

Gaussian distribution over Z with center zero and standard deviation σ. However, as we discuss
in detail in §3.3, alternative choices are possible and have advantages over such distributions. The
concrete choice of the LWE parameters q, n, σ determines the security level of the protocol, and
their selection is described in §4.

3.1 The new key exchange protocol

In this section we describe an unauthenticated key exchange protocol based on the LWE problem.
The protocol is shown in Figure I and the Transport Layer Security (TLS) protocol is sketched in
Figure II.

The ServerKeyExchange, ClientKeyExchange and the two computekeys operations are highlighted
in Figure II, in order to show where the corresponding operations in Figure I take place during the
TLS handshake. The output of the computekeys operation is the premaster secret pms, which is
equal to the shared key K from Figure I. It is used to derive the master secret ms as described in
the TLS specification [27], §8.1.

In the key exchange protocol in Figure I, both Alice and Bob generate the same large matrix
A ∈ Zn×nq that is combined with the LWE secrets to compute their public keys as instances of the
LWE problem. Alice’s n LWE instances and Bob’s m LWE instances are combined to compute a
secret matrix in Zm×nq , where B uniform bits are extracted from each entry to form the session
key K. Thus, the dimensions n and m should be chosen such that K has (at least) the number
of required bits for the target security level. For example, in targeting 128 bits of post-quantum
security, it should be the case that n ·m ·B ≥ 256. This condition ensures that we obtain a uniform
256-bit secret for the session key and even an exhaustive key search via Grover’s quantum algorithm
would take 2128 operations. The protocol in Figure I allows for the ratio between n and m to be
changed, in order to trade-off between Bob’s amount of uploaded data for Alice’s computational
load. This could be useful in mobile devices, where energy efficiency of uploads is at most half that

7

Client Server

ClientHello

ServerHello
Certificate

ServerKeyExchange

Certificate Request*
ServerHelloDone

Certificate*
ClientKeyExchange

CertificateVerify*

[ChangeCipherSpec]

compute keys

Finished

[ChangeCipherSpec]

compute keys

Finished

application data

Asterisks (*) indicate optional messages, single lines (→) denote unencrypted communication, double lines
(⇒) denote encrypted and authenticated communication, rectangles highlight messages or procedures that
need to be added or require modification for an LWE ciphersuite.

Figure II: Message flow in the TLS protocol.

of downstream traffic [63, 37].

Hybrid ciphersuites. As lattice-based cryptography is undergoing a period of intense development
and scrutiny, a conservative approach towards deployment of lattice-based key exchange is to pair
it with legacy schemes such as elliptic curve Diffie-Hellman (ECDH). Since the message flow of our
proposed solution is identical to the existing ECDH(E) key exchange protocol, the two can be run
concurrently as part of the same “hybrid” ciphersuite, with both outputs mixed in into the premaster
secret via a KDF (as was done in [14]); see §7 for performance results.

3.2 A generalized reconciliation mechanism

In the protocol in Figure I, Alice and Bob compute the secret matrices V ∈ Zm×nq and B′S ∈ Zm×nq ,
respectively. Each of the mn entries in V is approximately equal in Zq to the corresponding entry
in B′S. To modify such an approximate key agreement into an exact key agreement, Bob sends
C = 〈V〉2B to Alice which allows both parties to reconcile the same shared key K. In this section
we describe the reconciliation mechanism that allows such exact agreement to be achieved, i.e., we

8

detail the function 〈·〉2B used in line 6 of Bob’s flow, and the functions b·e2B and rec used when Alice
and Bob compute their respective shared keys. Our reconciliation mechanism is a generalized version
of Peikert’s mechanism [54] that, for every approximate agreement in Zq, allows the extraction of
more (exact) shared bits. This increased extraction comes at the cost of an increased probability of
failed reconciliation, but we argue that the resulting probability is still small enough for practical
application. Previous works that used Peikert’s mechanism (e.g., [14, 6]) have not needed to extract
more than one bit per approximate agreement in Zq, since the number of such agreements far
exceeded the number of shared bits required to form a secure session key. As we discussed in §3.1,
we need m · n ·B ≥ 256 for our desired level of quantum security, so a larger B (the number of bits
extracted per approximate agreement) means we can achieve smaller m and n, which in turn means
sending smaller LWE matrices.

We focus on the case when the modulus q is a power of 2; this can be generalized to an arbitrary
modulus using techniques described in [54]. Let the number B of bits that we are aiming to extract
from one coefficient in Zq be such that B < (log2 q) − 1. Let B̄ = (log2 q) − B. For any v ∈ Zq,
represented as a unique integer in [0, q), we define the following functions. The rounding function
b·e2B is defined as

b·e2B : v 7→
⌊
2−B̄v

⌉
mod 2B,

i.e., bve2B ∈ [0, 2B). Note that b·e2B outputs the B most significant bits of (v+2B̄−1) mod q. This
means that b·e2B partitions Zq into 2B intervals of integers with the same B most significant bits,
up to a cyclic shift of the values that centers these intervals around 0. The cross-rounding function
〈·〉2B is defined as

〈·〉2B : v 7→
⌊
2−B̄+1v

⌋
mod 2,

which divides Zq into two subsets according to their (B + 1)-th most significant bit, splitting up
each interval above into two equally sized subintervals. Replacing b·e2B by b·c2B would amount to
simply taking the B most significant bits of v. However, using b·e2B ensures that the size of the
error introduced by rounding is unbiased with respect to the sets induced by the cross-rounding
function.

We are now in a position to define the reconciliation function, rec, following [54]. On input
of w ∈ Zq and b ∈ {0, 1}, rec(w, b) outputs bve2B , where v is the closest element to w such that
〈v〉2B = b. The two claims below are the generalizations of the claims in [54], the proofs of which
are analogous. They demonstrate that releasing 〈v〉2B does not reveal any information about bve2B ,
but it can serve as a hint for the two parties that are trying to agree on B bits, based on sufficiently
close numbers w and v. Claim 3.2 means that, if corresponding elements of B′S and V are within
2B̄−2 of one another, the key agreement in Fig. I is exact.

Claim 3.1. If v ∈ Zq is uniformly random, then bve2B is uniformly random given 〈v〉2B .

Claim 3.2. If |v − w| < 2B̄−2, then rec(w, 〈v〉2B) = bve2B .

Round-and-truncate. We observe that the lower-order bits of B and B′ exchanged by the parties
have vanishingly small influence on the negotiated key. To conserve bandwidth, a version of the
protocol could be used in which entries of B and B′ are rounded to multiples of 2C , and the lower C
bits, which are now zeros, are truncated and never transmitted. Since B and B′ are now transmitted
with lower accuracy, this introduces another source of error in the reconciliation process. Although
our implementation does not currently exploit this option, we note that if it were to be used,
Bob should sample uniform noise and add it back to the lower order bits. This is to ensure that
truncation does not affect the proof of security.

9

dist. bits var. Probability of Rényi
req. (ς2) 0 ±1 ±2 ±3 ±4 ±5 ±6 order diverg.

D1 8 1.25 88 61 20 3 25.0 1.0021674
D2 12 1.00 1570 990 248 24 1 40.0 1.0001925
D3 12 1.75 1206 919 406 104 15 1 100.0 1.0003011
D4 16 1.75 19304 14700 6490 1659 245 21 1 500.0 1.0000146

Table 1: The discrete PDFs (and the number of bits required to obtain one sample from them)
for the four noise distributions used in this work, which are approximations to rounded continuous
Gaussian distributions of the given variance ς2; the closeness of these approximations is specified
by the given Rényi divergence and its order.

3.3 Error distributions

The key exchange protocol in Figure I is described in terms of an unspecified error distribution χ
over a set S. We now describe the concrete choice of error distribution used in our implementation,
which is an instantiation of inversion sampling that uses a precomputed table corresponding to a
discrete cumulative density function (CDF) over a small interval. The four distributions we use are
defined by the discrete probability density functions (PDFs) in Table 1. We use the first distribution,
D1, as an example to illustrate how the sampling routine works. Modifying the corresponding PDF
into a CDF gives the table T = [43, 104, 124, 127]. We then sample 8 bits uniformly at random;
the first 7 bits correspond to a uniform random integer y ∈ [0, 127] which is used to return the
smallest index x̃ ∈ [0, 3] such that y ≤ T [x̃], and the last (eighth) bit is used to determine the sign
s ∈ {−1, 1} of the sampled value x = s · x̃.

For each distribution in Table 1, performing inversion sampling can be done efficiently using
at most seven precomputed values of at most 16 bits each; thus, the precomputed look-up tables
required for sampling any of the above distributions are at most 14 bytes each. Obtaining a single
sample amounts to accessing an element from one of these small look-up tables; this can be done in
a memory and timing sidechannel-resistant manner by always scanning all elements and performing
comparisons with branchless arithmetic operations.

The four distributions D1, D2, D3, D4, are the result of an exhaustive search for combinations
of discrete probabilities that closely approximate the rounded continuous Gaussians of the variances
specified in Table 1. Here the measure of “closeness” is the Rényi divergence of the orders specified
in Table 1. We refer to [10] for more details on the Rényi divergence, but for our purposes it suffices
to say that the nearer the divergence is to 1, the tighter the security reduction is (when replacing
the rounded Gaussian distribution with our discrete approximation to it), which gives rise to either
higher (provable) security, or better parameters.

4 Security assessment and parameter selection

In this section, we explain our methodology to provide conservative security estimates against both
classical and quantum attacks, and subsequently, we propose parameters for the protocol in the pre-
vious section. The methodology is similar to the one proposed in [6], with slight modifications that
take into account the fact that some quasi-linear accelerations [60, 15] over sieving algorithms [12, 43]
are not available without the ring structure. We restate this analysis for self-containment.

We remark that our methodology is significantly more conservative than what is usually used in

10

the literature [5]. Our goal is not just to demonstrate feasibility, but to provide long-term and real-
world security. To that end, we acknowledge that lattice cryptanalysis is far less mature than the
cryptanalysis against schemes based on the hardness of factoring and computing discrete logarithms,
for which the best-known attack can safely be considered as a best-possible attack.

4.1 Methodology: the core-SVP hardness

Due to the (very) limited number m of LWE samples available to an attacker (m = n + m or
m = n+n), we are not concerned with BKW-like attacks [41], nor are we concerned with linearization
attacks [8]. This essentially leaves us with two BKZ-style [21] attacks, which are usually referred to
as primal and dual attacks; we review both below.

The BKZ algorithm with block-size b requires up to polynomially many calls to an SVP oracle
in dimension b. However, using some heuristics essentially allows the number of oracle calls to be
decreased to a linear number [20]. To account for further improvement, we only count the cost of
one such call to the SVP oracle, i.e., the core-SVP hardness. Such precaution seems reasonable,
especially in the case of the dual attack that involves running BKZ several times, in which case it
is plausible that most of the lattice reduction cost may be amortized.

Even the concrete cost of a single SVP computation in dimension b is problematic to evaluate.
This is due to the fact that the numerically optimized pruned enumeration strategy does not yield a
closed formula [32, 21]. Even with pruning, enumeration is asymptotically super-exponential, while
sieving algorithms have exponential complexity 2cb+o(b) (where the constant c in the exponent is
well-understood). A sound and simple strategy is therefore to determine a lower bound for the cost
of an attack by 2cb vector operations (i.e., about b2cb CPU cycles1), and to make sure that the
block-size b lies in a range where enumeration is more expensive than 2cb. From the estimate of [21],
it is argued in [6] that this is the case (both classically and quantumly) when b ≥ 200.

Classically, the best known constant is cC = log2

√
3/2 ≈ 0.292, which is provided by the

sieve algorithm of [12]; and, in the context of quantum attacks, the best known constant is cQ =
log2

√
13/9 ≈ 0.265 (see §14.2.10 in [43]). Since all variants of the sieving algorithm require a list of√

4/3
b

= 20.2075b vectors to be built, it also seems plausible that cP = 0.2075 can serve as a worst-
case lower bound. (Here the subscripts C, Q and P differentiate between the sieving constants used
to obtain “classical”, “quantum” and “paranoid” estimates on the concrete bit-security given by a
particular set of parameters.)

4.2 Primal attack

The primal attack constructs a unique-SVP instance from the LWE problem and solves it using
BKZ. We examine how large the block dimension b is required to be for BKZ to find the unique
solution. Given the matrix LWE instance (A,b = As + e) ∈ Zm×nq × Zm×1

q , one builds the lattice
Λ = {x ∈ Zm+n+1 : (A | Im | −b)x = 0 mod q} of dimension d = m + n + 1 and volume qm. The
vector v = (s, e, 1) ∈ Λ is a unique-SVP solution of norm λ ≈ ς

√
n+m, where ς is the standard

deviation of the error distribution used to sample e. In our case, the number of samples used, m,
may be chosen between 0 and n+m (or n+ n), and we numerically optimize this choice.

Using the typical models of BKZ (under the geometric series assumption and the Gaussian
1Due to the presence of the ring-structure, [6] chose to ignore this factor b in order to afford the ad-

versary the advantage of assuming that the techniques in [60, 15] can be adapted to more advanced sieve
algorithms [6]. However, for plain-LWE, we include this factor.

11

heuristic [20, 5]), one concludes that the primal attack is successful if and only if

ς
√
b ≤ δ2b−d−1 · qm/d,

where δ = ((πb)1/b · b/2πe)1/2(b−1).

4.3 Dual attack

In the dual attack, one searches for a short vector (v,w) in the dual lattice Λ̂ = {(x,y) ∈ Zm×Zn :
Atx = y mod q}, with the aim of using it as a distinguisher for the decision-LWE problem. The
BKZ algorithm with block-size b will output such a vector of length ` = δd−1qn/d.

Having found (x,y) ∈ Λ̂ of length `, an attacker computes z = vt · b = vtAs + vte = wts +
vte mod q. If (A,b) is indeed an LWE sample, then z is distributed as a Gaussian, centered around 0
and of standard deviation `ς, otherwise z is distributed uniformly modulo q. The maximal variation
distance between these two distributions is bounded by ε ≈ 4 exp(−2π2τ2), where τ = `ς/q: thus,
given such a vector of length `, the attacker may distinguish LWE samples from random with
advantage at most ε.

It is important to note that a small distinguishing advantage ε does not provide appreciable help
to an adversary that is attacking a key exchange protocol: since the agreed key is to be used to derive
a symmetric cipher key, any advantage below 1/2 does not significantly decrease the search space
in a brute force search for the symmetric cipher key. (Recall that the reconciled key is processed
with a random oracle before it is used for any other purposes.)

We therefore require an attacker to amplify his success probability by finding approximately 1/ε2

such short vectors. Since the sieve algorithms provide 20.2075b vectors, the attack must be repeated
at least R = max(1, 1/(20.2075bε2)) times. We again stress that we are erring on the conservative
side, since the other vectors that are output by the sieving algorithm are typically a little larger
than the shortest one.

4.4 Proposed parameters

Our proposed parameters are summarized in Table 2, and their security detailed in Table 3.

Challenge parameters. We provide a set of challenge parameters as a target that should be
reasonably accessible within the current cryptanalytic state-of-the-art. Attacking these parameters
may even be feasible without subtle optimizations such as pruned enumeration. We do not provide
hardness claims for those parameters because the required BKZ block-size for breaking them is far
below 200, and since our analysis only considers sieving algorithms, it is not valid in that range.

Classical parameters. We also propose a classical parameter set that provides 128-bits of security
against classical attacks. We do not recommend these parameters in practice since they fail to
achieve a high enough protection against quantum attacks, but provide them to ease the comparison
with other proposals from the literature.

Recommended parameters. The last two parameter sets are the ones we recommend if a scheme
like the one described in this paper is to be deployed in the real-world. The first (Recommended)
set conservatively offers 128 bits of security against the best known quantum attack. The second
(Paranoid) set would resist an algorithm reaching the complexity lower bound for sieving algorithms
we mentioned in § 4.1, and could even remain quantum-secure if significant improvements towards
solving SVP are achieved.

Failure rate estimation. Recall from Claim 3.2 that Alice and Bob’s reconciliation of B bits
(per approximate agreement in Zq) will work with probability 1 if the distance between their two

12

Scheme n q dist. B ·m2 = B · n2 failure bandwidth

Challenge 352 211 D1 1 · 82 = 64 2−41.8 7.75 KB
Classical 592 212 D2 2 · 82 = 128 2−36.2 14.22 KB
Recommended 752 215 D3 4 · 82 = 256 2−38.9 22.57 KB
Paranoid 864 215 D4 4 · 82 = 256 2−33.8 25.93 KB

Table 2: Proposed parameter sets with dimension n, modulus q, and noise distribution (which is an
approximation to the rounded Gaussian – see Table 1), showing the size of the shared key in bits
as the product of the number B of bits agreed upon per coefficient and the number of coefficients
m · n, the failure rate and the total size of key exchange messages.

Zq elements is less than q/2B+2. On the other hand, if this distance is greater than 3q/2B+2, the
reconciliation will work with probability 0, and the success probability decreases linearly from 1 to
0 in the range between these two extremes. To determine the overall failure rate of our protocol, we
combine this relationship with the probability distribution of the distance. In the continuous case,
it is easy to check that the distribution of this distance has variance σ2 = 2nς4 + ς2, where ς2 is the
variance of the continuous Gaussian distribution. However, using more computationally-intensive
but tighter analysis, we can compute the distribution of the distance corresponding to our discrete
approximation directly. The union bound gives an upper bound on the total failure probability,
which is summarized for our chosen parameter sets in Table 2.

Numbers of samples and bits per coefficient. We opted to choose m = n, i.e., an equal
division of bandwidth to Alice and Bob. The new reconciliation mechanism from §3.2 drives down
both bandwidth and computation costs by extracting more random bits from a single ring element.
Compared to the previous reconciliation mechanism of Peikert [54] that extracts a single bit per
element, we extract 4 bits per element (when using our Recommended parameter set), which reduces
the total amount of communication and computation by approximately a factor of 2.

5 Proof of Security

The security of our key exchange protocol can be reduced to the learning with errors problem. Our
proof uses a variant with short secrets and matrices (instead of vectors) that is equivalent to the
original LWE problem.

5.1 The LWE problem and variants

Definition 5.1 (Decision LWE problem). Let n and q be positive integers. Let χ be a distribution
over Z. Let s $← U(Znq). Define the following two oracles:

• Oχ,s: a
$← U(Znq), e $← χ(Zq); return (a,as + e).

• U : a $← U(Znq), u $← U(Zq); return (a, u).
The decision LWE problem for (n, q, χ) is to distinguish Oχ,s from U . In particular, for algorithm
A, define the advantage

Advdlwe
n,q,χ(A) =

∣∣∣Pr(s
$← Znq : AOχ,s() = 1)− Pr(AU () = 1)

∣∣∣ .
13

Scheme Attack Rounded Gaussian Post-reduction
m b C Q P C Q P

Challenge Primal 338 266 – – – – – –
Dual 331 263 – – – – – –

Classical Primal 549 442 138 126 100 132 120 95
Dual 544 438 136 124 99 130 119 94

Recommended Primal 716 489 151 138 110 145 132 104
Dual 737 485 150 137 109 144 130 103

Paranoid Primal 793 581 179 163 129 178 162 129
Dual 833 576 177 161 128 177 161 128

Table 3: Runtime for the best attacks on the proposed parameter sets according to our analysis.
The rounded Gaussian columns capture security of the ideal, rounded Gaussian noise distribution;
the post-reduction columns correspond to lower bound on security of the discretized distribution.
The best classical attack takes 2C operations, the best quantum attack 2Q, and 2P is the worst-case
lower bound runtime imposed by the list size in sieving algorithms. Bold face numbers indicate the
“security claim” for the specific parameter set, e.g. the Classical parameter set provides 130 bits of
classical security, whereas the Recommended set has 130 bits of post-quantum security.

The proof of security of our key exchange protocol relies on a variant of the LWE problem stated
below, where secrets s are drawn from χ.

Definition 5.2 (Decision LWE problem with short secrets). Let n and q be positive integers. Let
χ be a distribution over Z. Let s

$← χ(Znq). Define oracles Oχ,s and U as in Definition 5.1. The
decision LWE problem (with short secrets) for (n, q, χ) is to distinguish Oχ,s from U . In particular,
for algorithm A, define the advantage

Advdlwe-ss
n,q,χ (A) =

∣∣∣Pr
(
s

$← χ(Znq) : AOχ,s() = 1
)
− Pr

(
AU () = 1

)∣∣∣ .
It was shown by Applebaum et al. [7] that the short secret variant has a tight reduction to the

decision LWE problem.

Lemma 5.1 (Short LWE [7]). Let n, q and χ be as above. If A is a distinguishing algorithm
for decision LWE with short secrets (Definition 5.2), it can be used to construct a distinguishing
algorithm B for decision LWE (Definition 5.1) running in roughly the same time as A, with B
making O(n2) calls to its oracle, and satisfying Advdlwe

n,q,χ(B) = Advdlwe-ss
n,q,χ (A).

Matrix form. We use an extended form of the problem in which the secrets and errors are also
matrices. Let n, q, χ be as above, let m and n be positive integers, and let S $← χ(Zn×nq). Define

• Oχ,S: A
$← U(Zm×nq), E $← χ(Zm×nq); return (A,AS + E).

• U : A $← U(Zm×nq), U $← U(Zm×nq); return (A,U).
We call this the (m,n)-matrix decision LWE problem. A standard hybrid argument shows that

any adversary distinguishing these two distributions with advantage ε can be used to construct
an efficient adversary breaking the decision LWE problem with advantage at least ε/n. We can
similarly define a short secrets version.

14

Game 0:

1: A
$← U(Zn×nq)

2: S,E
$← χ(Zn×nq)

3: B← AS + E

4: S′,E′
$← χ(Zm×nq)

5: B′ ← S′A + E′

6: E′′
$← χ(Zm×nq)

7: V← S′B + E′′

8: C← 〈V〉2B
9: K ← bVe2B
10: K′ $← U({0, 1}n·m·B)

11: b∗ $← U({0, 1})
12: if b∗ = 0

return (A,B,B′,C,K)
13: else

return (A,B,B′,C,K′)

Game 1:

1: A
$← U(Zn×nq)

2: B
$← U(Zn×nq)

3: S′,E′
$← χ(Zm×nq)

4: B′ ← S′A + E′

5: E′′
$← χ(Zm×nq)

6: V← S′B + E′′

7: C← 〈V〉2B
8: K ← bVe2B
9: K′ $← U({0, 1}n·m·B)

10: b∗ $← U({0, 1})
11: if b∗ = 0

return (A,B,B′,C,K)
12: else

return (A,B,B′,C,K′)

Game 2:

1: A
$← U(Zn×nq)

2: B
$← U(Zn×nq)

3: S′
$← χ(Zm×nq)

4:
[
E′‖E′′

] $← χ(Zm×(n+n)
q)

5:
[
B′‖V

]
← S′

[
A‖B

]
+

[
E′‖E′′

]
6: C← 〈V〉2B
7: K ← bVe2B
8: K′ $← U({0, 1}n·m·B)

9: b∗ $← U({0, 1})
10: if b∗ = 0

return (A,B,B′,C,K)
11: else

return (A,B,B′,C,K′)

Game 3:

1: A
$← U(Zn×nq)

2: B
$← U(Zn×nq)

3:
[
B′‖V

] $← U(Zm×(n+n)
q)

4: C← 〈V〉2B
5: K ← bVe2B
6: K′ $← U({0, 1}n·m·B)

7: b∗ $← U({0, 1})
8: if b∗ = 0

return (A,B,B′,C,K)
9: else

return (A,B,B′,C,K′)

Figure III: Sequence of games for proof of Theorem 5.1.

5.2 Security of the key exchange protocol

To prove security of the key exchange protocol, consider an LWE key-exchange adversary that tries
to distinguish the session key K from a uniformly random key K ′ given the transcript of the key
exchange protocol. Formally, we define the advantage of such an adversary A as:

Advddh-like
n,n,m,B,q,χ(A) =

∣∣Pr
[
A
(
A,B,B′,C,K

)
= 1
]
− Pr

[
A
(
A,B,B′,C,K ′

)
= 1
]∣∣ ,

where A, B, B′, C, and K are as in Figure I, with LWE parameters n, q, and χ, additional
parameters n,m,B, and K ′ is a uniform bit string of length n ·m ·B.

The following theorem implies that under the decision LWE assumption (with short secrets) for
parameters n, q, and α, efficient adversaries have negligible advantage against the key exchange
protocol of §3.

Theorem 5.1. Let n, n, m, B, and q be positive integers, and let χ be a distribution on Zq. If Gen
is a secure pseudorandom function and the decision LWE problem is hard for (n, q, χ), then the key
exchange protocol in Figure I yields keys indistinguishable from random. More precisely,

Advddh-like
n,n,m,B,q,χ(A) ≤ Advprf

Gen(B0) + n ·Advdlwe
n,q,χ(A ◦ B1) +m ·Advdlwe

n,q,χ(A ◦ B2)

where B1 and B2 are the reduction algorithms given in Figure IV, and B0 is implicit in the proof.
The runtimes of B0, A ◦ B1, and A ◦ B2 are essentially the same as that of A.

Proof. The proof closely follows Peikert’s proof of IND-CPA security of the R-LWE KEM; see
Lemma 4.1 of [54], and Bos et al.’s proof of R-LWE DH key exchange [14]. It proceeds by the
sequence of games shown in Figure III. Let Si be the event that the adversary guesses the bit b∗ in
Game i.

Game 0. This is the original game, where the messages are generated honestly as in Figure I. We
want to bound Pr(S0). Note that in Game 0, the LWE pairs are: (A,B) with secret S; and (A,B′)
and (B,V) both with secret S′. Hence,

Advddh-like
n,n,m,B,q,χ(A) = |Pr(S0)− 1/2| . (1)

Game 1. In this game, the public matrix A is generated uniformly at random, rather than being
generated pseudorandomly from seedA using Gen.

15

B1(A,B):

1: S′,E′
$← χ(Zm×nq)

2: B′ ← S′A + E′

3: E′′
$← χ(Zm×nq)

4: V← S′B + E′′

5: C← 〈V〉2B
6: K ← bVe2B
7: K′ $← U({0, 1}n·m·B)

8: b∗ $← U({0, 1})
9: if b∗ = 0 return (A,B,B′,C,K)
10: else return (A,B,B′,C,K′)

B2(Y,Z):

1:
[
A>

B>

]
← Y

2:
[
B′>

V>

]
← Z

3: C← 〈V〉2B
4: K ← bVe2B
5: K′ $← U({0, 1}n·m·B)

6: b∗ $← U({0, 1})
7: if b∗ = 0 return (A,B,B′,C,K)
8: else return (A,B,B′,C,K′)

Figure IV: Reductions for proof of Theorem 5.1.

Difference between Game 0 and Game 1. An adversary that can distinguish these two games
immediately leads to a distinguisher B0 for Gen:

|Pr(S0)− Pr(S1)| ≤ Advprf
Gen(B0) . (2)

Game 2. In this game, Alice’s ephemeral public key B is generated uniformly at random, rather
than being generated from a sampler for the (n, n)-matrix decision LWE problem. Note that in
Game 2, the (remaining) LWE pairs are: (A,B′) and (B,V) both with secret S′.

Difference between Game 1 and Game 2. In Game 1, (A,B) is a sample from Oχ,S. In Game
2, (A,B) is a sample from U(Zn×nq)× U(Zn×nq). Under the decision LWE assumption for (n, q, χ),
these two distributions are indistinguishable with a factor of n.

More explicitly, let B1 be the algorithm shown in Figure IV which takes as input a pair (A,B).
When (A,B) is a sample from Oχ,S where S

$← χ(Zn×nq), then the output of B1 is distributed
exactly as in Game 1. When (A,B) is a sample from U(Zn×nq) × U(Zn×nq), then the output of B1

is distributed exactly as in Game 2. Thus, if A can distinguish Game 1 from Game 2, then A ◦ B1

can distinguish samples from Oχ,S from samples from U(Zn×nq)× U(Zn×nq). Thus,

|Pr(S1)− Pr(S2)| ≤ n ·Advdlwe-ss
n,q,χ (A ◦ B1) . (3)

Game 3. Game 3 is a simple rewrite of Game 2. Bob’s ephemeral public key B′ and shared secret
V are simultaneously generated from S′ rather than sequentially. In Game 3, the single LWE pair([

A>

B>

]
,

[
B′>

V>

])
with secret S′> is an instance of the (n+ n,m)-matrix decision LWE problem.

Difference between Game 2 and Game 3. Since Game 3 is just a conceptual rewrite of Game
2, we have that

Pr(S2) = Pr(S3) . (4)

Game 4. In Game 4, there are no LWE pairs. Bob’s ephemeral public key B′ and shared secret V
are generated uniformly at random, rather than simultaneously from S′.

Difference between Game 3 and Game 4. In Game 3,
([
A‖B

]
,
[
B′‖V

])
is (the transpose

of) a sample from oracle Oχ,S′ in the ((n + n),m)-matrix decision LWE problem. In Game 4,([
A‖B

]
,
[
B′‖V

])
is (the transpose of) a sample from U(Z(n+n)×n

q) × U(Z(n+n)×m
q). Under the

decision LWE assumption for (n, q, χ), these two distributions are indistinguishable with a factor of
m.

16

More explicitly, let B2 be the algorithm shown in Figure IV that takes as input (Y,Z) ∈
Z(n+n)×n
q × Zn×mq . When (Y,Z) is a sample from Oχ,S′> in the (n + n,m)-matrix decision LWE

problem, where S′
$← χ(Zn×mq), then the output of B2 is distributed exactly as in Game 3. When

(Y,Z) is a sample from U(Z(n+n)×n
q)×U(Zn×mq), the output of B2 is distributed exactly as in Game

4. If A can distinguish Game 3 from Game 4, then A◦B2 can distinguish samples from Oχ,S′ from
samples from U(Z(n+n)×n

q)× U(Zn×mq). Thus,

|Pr(S3)− Pr(S4)| ≤ m ·Advddh-like
n,q,χ (A ◦ B2) . (5)

Analysis of Game 4. In Game 4, the adversary is asked to guess b∗ and thereby distinguish
between K and K ′. In Game 4, K ′ is clearly generated uniformly at random from {0, 1}n·m·B. K is
generated from rounding V, and V is uniform, so K is too. The adversary is also given C, but by
Claim 3.1 we have that, for uniform V, K = bVe2B remains uniform even given C = 〈V〉2B . Thus,
the adversary has no information about b∗, and hence

Pr(S4) = 1/2 . (6)

Conclusion. Combining equations (1)–(6) yields the result.

5.3 Security when used in TLS

The accepted model for security of secure channel protocols such as TLS is Jager et al.’s authenti-
cated and confidential channel establishment (ACCE) model [38]. Bos et al. [14] show that a TLS
ciphersuite that uses signatures for authentication and a key exchange mechanism that satisfies the
ddh-like security property (§5.2) achieves the ACCE security notion. Since our Theorem 5.1 shows
that the LWE-based protocol has ddh-like-security, we immediately (modulo a small change of no-
tation) inherit ACCE security of the resulting signed-DH-like ciphersuite using LWE key exchange.
Bos et al. note that their result requires that a change be made in the TLS protocol: the server’s
signature must be moved later in the handshake and must include the full transcript. This is to be
able to rely on a plain decisional assumption, rather than an “oracle” assumption (PRF-ODH) that
was required in Jager et al.’s proof; we inherit this requirement as well.

Alternatively, one could leave the signature in place and use an IND-CCCA-secure key encap-
sulation mechanism following Krawczyk et al. [42], constructed via standard constructions such as
[31], albeit at the expense of increasing the number of bits transmitted.

6 Implementation

In this section we discuss two aspects of our implementation: representing matrix elements and
generating the public matrix A. Matrix operations in our implementation use the straightforward
approach, i.e., the product of an n × m matrix and an m × p matrix incurs nmp multiplications
and O(nmp) additions. We make this choice because our matrix dimensions are not large enough
for the asymptotically faster methods [62, 23] to offer a worthwhile trade-off (see [25]).

Representing matrix elements. All parameter sets in Table 2 have q = 2x < 216. To facilitate
an efficient implementation, we use a redundant representation: matrix entries are represented as
elements from Z216 = Z/(216−xq)Z instead of Zq. This has the advantage that, when elements are
stored in 16-bit datatypes, all arithmetic is performed modulo 216 for free (implicitly). Converting

17

from this redundant representation to elements in Zq is as simple as ignoring the 16 − x most
significant bits, which amounts to a single bitwise AND instruction.

The exchanged matrices B, B′, and C are packed down to their optimal representation. The
computational overhead due to packing and unpacking is outweighed by savings in communication
complexity.

Generating the matrix A. The matrix A ∈ Zn×nq is a public parameter used by both parties
in the key exchange. It could be taken as a fixed system parameter, saving this communication
effort between parties. This approach was taken in [14] in the ring setting, where the polynomial
a was fixed system wide. However, as discussed in Section 3 of [6], such a choice raises questions
about possible backdoors and all-for-the-price-of-one attacks. Therefore, the scheme in [6] generates
a fresh polynomial a from a uniformly random seed for every instantiation of the key exchange.

Here we adopt a similar approach and propose that the server choose a fresh seed for every new
key exchange instance, and that A be generated pseudorandomly from this seed. The seed is sent to
the client in the ServerKeyExchange message (see Figure I) and allows the client to pseudorandomly
generate the same A. The matrix A is generated from a 16-byte seed using AES128 in the ECB
mode. Substituting a randomly sampled matrix with the one derived in this manner can be justified
by appealing to the random oracle heuristic; exploring its applicability in our context against a
quantum adversary is an interesting open question.

Depending on the architecture, particularly for memory-constrained embedded devices, storing
the matrix A in its entirety and loading it into memory for matrix multiplication might be too
costly. In such scenarios, we propose to generate, use and discard parts of the matrix A on-the-fly.

To facilitate on-the-fly matrix generation by both the client and the server, we pursue the
following approach. The matrix A is derived by applying AES128-ECB to pre-filled matrix rows
with guaranteed uniqueness.2 The matrix thus defined can be computed either by rows, one row
at a time, or by columns, 8 columns at a time, depending on whether A is multiplied by S on the
right (client-side) or on the left (server-side). The cost of this pseudorandom generation can be a
significant burden and can be amortized by relaxing the requirement for a fresh A in every new key
exchange (e.g., by allowing A to be cached on the server for a limited time).

7 Evaluation

We evaluate the performance of LWE-based key exchange on the following characteristics: 1) speed
of standalone cryptographic operations; 2) speed of HTTPS connections; 3) communication costs.
Our LWE implementation is written in C and the implementation is as described in §6. In this
section, we report the results of our implementation of LWE-based key exchange and compare our
results with several other post-quantum primitives.

We selected the following post-quantum algorithms with publicly available implementations:
• BCNS R-LWE key exchange, C implementation [14];
• NewHope R-LWE key exchange, C implementation [6];
• NTRU public key encryption key transport using parameter set EES743EP1, C implementation

[64]; and
• SIDH (supersingular isogeny Diffie–Hellman) key exchange, C implementation [24].

The implementation of Bernstein et al.’s “McBits” high-speed code-based cryptosystem [13] was not
publicly available at the time of writing. We also included OpenSSL’s implementation of ECDH (on
the nistp256 curve) and RSA with a 3072-bit modulus for comparisons against widely deployed

2Our implementation uses the AES-NI instruction set where supported.

18

Scheme Alice0 Bob Alice1 Communication (bytes) Claimed security
(ms) (ms) (ms) A→B B→A classical quantum

RSA 3072-bit — 0.09 ± 0.004 4.49 ± 0.005 387 / 0∗ 384 128 —
ECDH nistp256 0.366 ± 0.006 0.698 ± 0.014 0.331 ± 0.01 32 32 128 —

BCNS 1.01 ± 0.006 1.59 ± 0.007 0.174 ± 0.001 4,096 4,224 163 76
NewHope 0.112 ± 0.003 0.164 ± 0.001 0.034 ± 0.001 1,824 2,048 229 206
NTRU EES743EP1 2.00 ± 0.055 0.281 ± 0.047 0.148 ± 0.005 1,027 1,022 256 128
SIDH 135 ± 1.91 464 ± 6.74 301 ± 0.97 564 564 192 128

Frodo Recomm. 1.13 ± 0.09 1.34 ± 0.02 0.13 ± 0.01 11,296 11,288 144 130
Frodo Paranoid 1.25 ± 0.02 1.64 ± 0.03 0.15 ± 0.01 12,976 12,968 177 161

Table 4: Performance of standalone cryptographic operations, showing mean runtime (± standard
deviation) in milliseconds of standalone cryptographic operations, communication sizes (public key
/ messages) in bytes, and claimed security level in bits. ∗In TLS, the RSA public key is already
included in the server’s certificate message, so RSA key transport imposes no additional communi-
cation from server to client.

non-post-quantum key exchange at the 128-bit classical security level. The compiler is gcc version
4.8.4 and software is compiled for the x86_64 architecture.

We integrated our C implementation of our LWE protocol, as well as all the other implementa-
tions, into OpenSSL v1.0.1f3 following Stebila’s OpenSSL v1.0.1f fork for the R-LWE experiments in
[14], to allow for comparison of all algorithms in the same context and to facilitate the HTTPS per-
formance evaluation.4 Our implementation includes a common API for post-quantum key exchange
methods, making it easier to add and compare new candidates as they become available. Finally,
our implementation and evaluation uses AES256 GCM authenticated encryption and SHA384 to
ensure post-quantum security for symmetric key operations.

We use a common hardware platform for all measurements. Standalone cryptographic opera-
tions were measured on the same computer, which acted as the server for measuring speed of TLS
connections. This is an n1-standard-4 Google Cloud VM instance5 with 15 GB of memory, which
has 4 virtual CPUs; in our instance, each of these was implemented as a single hardware hyper-
thread on a 2.6GHz Intel Xeon E5 (Sandy Bridge). Clients for measuring the throughput of TLS
connections were run on an n1-standard-32 Google Cloud VM instance with 120 GB of memory
and 32 virtual CPUs, which ensured that we could fully load the server. Although some implemen-
tations included optimizations using the AVX2 instruction set, the cloud servers we used did not
support AVX2; while vectorization of matrix operations using AVX2 will improve performance, our
results may be more indicative of performance on widespread non-AVX2 hardware.

19

7.1 Standalone cryptographic operations

Table 4 reports the performance of standalone post-quantum cryptographic operations, as well as
standard cryptographic operations for comparison. We obtained these results by integrating their
implementations into OpenSSL as discussed above, and in particular using the openssl speed
command. In the table, Alice0 denotes Alice’s initial ephemeral key and message generation (e.g.,
Alice’s operations up to and including her message transmission in Figure I); Bob denotes Bob’s
full execution, including ephemeral key and message generation and key derivation (all of Bob’s
operations in Figure I); and Alice1 denotes Alice’s final key derivation (e.g., Alice’s operations
upon receiving Bob’s message in Figure I).

Discussion. Microbenchmarks of LWE-based key exchange are very promising when compared
with other protocols. At approximately 1.3ms for each party, the runtime of Frodo is orders of
magnitude faster than SIDH, faster than NTRU (on the server side), about 1.8× slower than ECDH
nistp256, and about 9× slower than R-LWE (NewHope). While there is a large gap between
the microbenchmark performance of LWE against R-LWE, we recall that LWE has the increased
confidence of using generic rather than ideal lattices, and we will observe in the next section that
this gap is significantly narrowed when measured in an application that uses TLS. Additionally,
we observe that the runtime of our paranoid parameters requires a slight (between 14% and 19%)
overhead in bandwidth and compute in return for much higher security.

Our modifications to openssl speed allowed us to benchmark the impact of freshly generating
the matrix A for each connection versus using a precomputed A. For our recommended parameters,
the time to generate A was 0.54ms ± 0.01, which is 42% of Alice’s total runtime (similarly for Bob).
This is substantial, and means that optimization of this step is valuable (see §6 for more details);
our original naive implementation was several times slower. This also highlights the benefit that
could come from caching A: a busy TLS server might reuse the same A for an hour or a day while
still limiting the risk of global all-for-the-price-of-one attacks.

Embedded system. We also performed micro-benchmarks on the low-cost, community-supported
BeagleBone Black development platform which has a AM335x 1GHz ARM Cortex-A8. We mea-
sured the standalone functionality using the GNU/Linux perf infrastructure with gcc version 4.6.3;
measurements are averages over thousands of runs. For the Frodo recommended parameters, Alice0
takes 77.5M cycles; Bob takes 80.22M cycles; and Alice1 takes 1.09M cycles.

7.2 HTTPS connections

Table 5 reports the performance of a TLS-protected web server using the various key exchange
mechanisms, following the methodology of Gupta et al. [35] that was used by Bos et al. [14].
The methodology reports performance with HTTP payloads of 4 different sizes (1 byte, 1KiB,
10KiB, and 100KiB), to demonstrate the diminishing importance of key exchange performance on
TLS performance as payload size increases in realistic workloads. For each key exchange primi-
tive, we measured performance using RSA signatures (with 3072-bit keys) and ECDSA signatures

3https://www.openssl.org/
4While §5.3 notes that moving the server’s signature to later in the handshake is required to achieve

provable security of the full LWE-based ciphersuite under the decision LWE assumption, our prototype
implementation does not make this complex change in OpenSSL as the purpose of our implementation is to
measure performance, which would be the same regardless of where the signature is in the handshake. This
would be required for deployed implementations to match the security theorem; fortunately current TLS 1.3
drafts include this change, so eventually TLS 1.3 implementations will provide this.

5https://cloud.google.com/compute/docs/machine-types#standard_machine_types

20

https://www.openssl.org/
https://cloud.google.com/compute/docs/machine-types#standard_machine_types

La
te

n
cy

Throughput

Latency vs. throughput curve

Throughput
measured here

Figure V: A typical curve describing latency vs. throughput (connections/sec.) measured across
different loads on the HTTPS server. Scales of axes vary with ciphersuites.

Ciphersuite Connections/second Connection time (ms) Handshake
Key exchange Sig. 1B 1KiB 10KiB 100KiB w/o load w/load size (B)

ECDHE
ECDSA 1187 ± 61 1107 ± 103 1088 ± 103 961 ± 68 14.2 ± 0.25 22.2 1,264
RSA 814 ± 3.5 810 ± 5.2 790 ± 5.9 710 ± 12 16.1 ± 0.89 24.7 1,845

BCNS
ECDSA 922 ± 89 907 ± 83 893 ± 16 819 ± 83 18.8 ± 0.48 35.8 9,455
RSA 722 ± 4.2 710 ± 9.7 716 ± 2.7 638 ± 3.7 20.5 ± 0.51 36.9 9,964

NewHope
ECDSA 1616 ± 166 1413 ± 39 1351 ± 148 985 ± 77 12.1 ± 0.12 18.6 5,005
RSA 983 ± 61 970 ± 67 949 ± 36 771 ± 41 13.1 ± 1.5 20.0 5,514

NTRU
ECDSA 725 ± 3.4 723 ± 8.8 708 ± 17 612 ± 31 20.0 ± 0.96 27.2 3,181
RSA 553 ± 20 534 ± 7.3 548 ± 1.4 512 ± 4.9 19.9 ± 0.91 29.6 3,691

Frodo Recomm.
ECDSA 923 ± 49 892 ± 59 878 ± 70 843 ± 68 18.3 ± 0.5 31.5 23,725
RSA 703 ± 4.2 700 ± 6.2 698 ± 1.8 635 ± 16 20.7 ± 0.6 32.7 24,228

Hybrid ciphersuites

BCNS+ECDHE
ECDSA 736 ± 19 735 ± 3.8 728 ± 6.4 664 ± 7.3 23.1 ± 0.28 37.7 9,595
RSA 567 ± 1.7 567 ± 1.0 559 ± 2.4 503 ± 3.2 24.6 ± 0.09 40.2 10,177

NewHope+ECDHE
ECDSA 1095 ± 54 1075 ± 58 1017 ± 16 776 ± 1.4 16.5 ± 0.79 25.2 5,151
RSA 776 ± 1.4 775 ± 3.7 765 ± 2.4 686 ± 8.6 18.13 ± 0.85 28.0 5,731

NTRU+ECDHE
ECDSA 590 ± 1.0 589 ± 1.0 578 ± 3.2 539 ± 5.4 22.5 ± 0.2 34.3 3,328
RSA 468 ± 0.3 467 ± 0.4 456 ± 3.6 424 ± 24 24.2 ± 0.21 36.8 3,908

Frodo+ECDHE
ECDSA 735 ± 12 716 ± 1.5 701 ± 20 667 ± 7 22.9 ± 0.5 36.4 23,859
RSA 552 ± 0.5 551 ± 1.9 544 ± 1.6 516 ± 1.8 24.5 ± 0.3 39.9 24,439

Table 5: Performance of Apache HTTP server using post-quantum key exchange, measured in
connections per second, connection time in milliseconds, and handshake size in bytes. Connection
time under load is reported as the 75th percentile value across 20 measurements. Values measured
across experiments were within 2× the reported value. All TLS ciphersuites used AES256-GCM
authenticated encryption with SHA384 in the MAC and KDF. Note that different key exchange
methods are at different security levels; see Table 4 for details.

(with nistp256 keys): as noted in the introduction, future quantum adversaries would be able
to retroactively decipher information protected by a non-quantum-safe key exchange, but not be
able to retroactively impersonate parties authenticated using non-quantum-safe digital signatures.
(We omit TLS-level benchmarks of Frodo-Paranoid since its microbenchmarks are similar to Frodo-
Recommended, and similarly omit SIDH since its performance is on the order of a handful of

21

connections per second.)
For the server, we used Apache httpd6 version 2.4.20, compiled against our customized OpenSSL

library above, and using the prefork module for multi-threading. The client and server were con-
nected over the standard data center network with a ping time of 0.62ms ± 0.02ms which did not
achieve saturation during any of our experiments.

Connections/second (throughput). Multiple client connections were generated by using the
http_load tool7 version 09Mar2016, which is a multi-threaded tool that can generate multiple http
or https fetches in parallel. We found that we could sometimes achieve better performance by
running multiple http_load processes with fewer threads in each process. For each ciphersuite mea-
sured below, Figure V shows a typical tradeoff between latency (connection time) and throughput
(connections/sec). As we increase loads beyond the point at which we report throughput, there is
very little increase in connections/sec but a significantly larger increase in mean connection time.
At this point, we posit that the bottleneck in serving TLS requests shifts to the Apache process
scheduling and request buffer management rather than ciphersuite performance. Our client machine
had sufficient power to ensure our server computer reached at least 90% CPU usage throughout the
test. Results reported are the mean of five executions, each of which was run for thirty seconds.

Connection time and handshake size. Wireshark8 was used to measure the time for the client
to establish a TLS connection on an otherwise unloaded server, measured from when the client opens
the TCP connection to when the client starts to receive the first packet of application data, and
the size in bytes of the TLS handshake as observed. Connections were initiated using the openssl
s_client command.

We considered two scenarios in this measurement. In scenario 1, client-server connections were
initiated when the server was under no load. The results reported under the column “w/o load” in
Table 5 were the average of ten executions. In scenario 2, client-server connections were initiated
when the server was under approximately 70% CPU load (also due to concurrent TLS connections).
Connection time naturally had a larger variance under load and we report the 75th percentile results
over twenty experiments under the column “w/load” in Table 5.

Discussion. Due to HTTPS loads imposing stress on many different parts of the system, slower
compute time of LWE compared to R-LWE (NewHope) has a much lower impact on overall perfor-
mance. This is especially true when considering hybrid ciphersuites. Our results are not necessarily
generalizable to all applications, but do provide a good indication of how TLS-based applications
with a variety of load profiles are affected.

Since establishing a TLS connection involves several round trips as well as other cryptographic
operations, the connection times (for a server without load) for all ciphersuites we tested all range
between 12ms and 21ms, which are an order of magnitude smaller than the load times of typical
web pages, so perceived client load times will be minimally impacted in many applications. Even
under reasonable load, the increase in connection times for LWE follows similar increases across the
different ciphersuites profiled.

Our key exchange does affect server throughput, but the gap between LWE and R-LWE is
smaller and (naturally) decreases as page size increases. For 1KiB pages, LWE can support 1.6×
fewer connections than R-LWE (NewHope), but this gap narrows to 1.2× fewer for 100KiB pages,
and outperforms NTRU. When measuring server throughput with hybrid ciphersuites, the overhead
of LWE is further reduced to just about 15% for 100KiB pages when compared to NewHope.

6http://httpd.apache.org/
7http://www.acme.com/software/http_load/
8https://www.wireshark.org/

22

http://httpd.apache.org/
http://www.acme.com/software/http_load/
https://www.wireshark.org/

While LWE does have an impact on both TLS client and server performance and on the hand-
shake size, the complex nature of TLS connections and various system bottlenecks when serving
webpages mute the perceived gap seen between LWE and R-LWE in the microbenchmarks. For
many applications, such as web browsing and secure data transfers, the LWE latency and commu-
nication size are small compared to typical application profiles.

Going forward, if we choose to deploy a post-quantum ciphersuite that combines LWE and
ECDHE instead of a (non-post-quantum) ECDHE ciphersuite, the additional overhead in serving
typical webpages between 10KiB and 100KiB will only decrease server throughput by less than a
factor of two. This might be a small price to pay for long-term post-quantum security based on
generic lattices without any ring structure, in order to avoid the possibility of attacks that this
structure gives rise to.

Acknowledgments

JB and LD were supported in part by the Commission of the European Communities through the
Horizon 2020 program under project number 645622 (PQCRYPTO). DS was supported in part by
Australian Research Council (ARC) Discovery Project grant DP130104304 and a Natural Sciences
and Engineering Research Council of Canada (NSERC) Discovery Grant. The authors would like
to thank Adam Langley, Eric Grosse, and Úlfar Erlingsson for their inputs. A large part of this
work was done when VN was an intern with the Google Security and Privacy Research team.

References
[1] D. Adrian, K. Bhargavan, Z. Durumeric, P. Gaudry, M. Green, J. A. Halderman, N. Heninger,

D. Springall, E. Thomé, L. Valenta, B. VanderSloot, E. Wustrow, S. Z. Béguelin, and P. Zimmermann.
Imperfect forward secrecy: How Diffie-Hellman fails in practice. In I. Ray, N. Li, and C. Kruegel:,
editors, ACM CCS 15, pages 5–17. ACM Press, Oct. 2015.

[2] S. Agrawal, D. Boneh, and X. Boyen. Efficient lattice (H)IBE in the standard model. In H. Gilbert,
editor, EUROCRYPT 2010, volume 6110 of LNCS, pages 553–572. Springer, Heidelberg, May 2010.

[3] S. Agrawal, D. Boneh, and X. Boyen. Lattice basis delegation in fixed dimension and shorter-ciphertext
hierarchical IBE. In T. Rabin, editor, CRYPTO 2010, volume 6223 of LNCS, pages 98–115. Springer,
Heidelberg, Aug. 2010.

[4] M. Ajtai. Generating hard instances of lattice problems. Quaderni di Matematica, 13:1–32, 2004.
Preliminary version in STOC 1996.

[5] M. R. Albrecht, R. Player, and S. Scott. On the concrete hardness of learning with errors. Journal of
Mathematical Cryptology, 9(3):169–203, 2015.

[6] E. Alkim, L. Ducas, T. Pöppelmann, and P. Schwabe. Post-quantum key exchange - a new hope. In
USENIX Security 16. USENIX Association, 2015.

[7] B. Applebaum, D. Cash, C. Peikert, and A. Sahai. Fast cryptographic primitives and circular-secure
encryption based on hard learning problems. In S. Halevi, editor, CRYPTO 2009, volume 5677 of LNCS,
pages 595–618. Springer, Heidelberg, Aug. 2009.

[8] S. Arora and R. Ge. New algorithms for learning in presence of errors. In L. Aceto, M. Henzinger, and
J. Sgall, editors, ICALP 2011, Part I, volume 6755 of LNCS, pages 403–415. Springer, Heidelberg, July
2011.

[9] D. Augot, L. Batina, D. J. Bernstein, J. W. Bos, J. Buchmann, W. Castryck, O. Dunkelman,
T. Güneysu, S. Gueron, A. Hülsing, T. Lange, M. S. E. Mohamed, C. Rechberger, P. Schwabe,

23

N. Sendrier, F. Vercauteren, and B.-Y. Yang. Initial recommendations of long-term secure post-quantum
systems, 2015. http://pqcrypto.eu.org/docs/initial-recommendations.pdf.

[10] S. Bai, A. Langlois, T. Lepoint, D. Stehlé, and R. Steinfeld. Improved security proofs in lattice-based
cryptography: Using the Rényi divergence rather than the statistical distance. In T. Iwata and J. H.
Cheon, editors, ASIACRYPT 2015, Part I, volume 9452 of LNCS, pages 3–24. Springer, Heidelberg,
Nov. / Dec. 2015.

[11] E. Barker, W. Barker, W. Burr, W. Polk, and M. Smid. Recommendation for key management – part 1:
General (rev 3), 2012. Available at http://csrc.nist.gov/publications/nistpubs/800-57/sp800-
57_part1_rev3_general.pdf.

[12] A. Becker, L. Ducas, N. Gama, and T. Laarhoven. New directions in nearest neighbor searching with
applications to lattice sieving. In R. Krauthgamer, editor, 27th SODA, pages 10–24. ACM-SIAM, Jan.
2016.

[13] D. J. Bernstein, T. Chou, and P. Schwabe. McBits: Fast constant-time code-based cryptography. In
G. Bertoni and J.-S. Coron, editors, CHES 2013, volume 8086 of LNCS, pages 250–272. Springer,
Heidelberg, Aug. 2013.

[14] J. W. Bos, C. Costello, M. Naehrig, and D. Stebila. Post-quantum key exchange for the TLS protocol
from the ring learning with errors problem. In 2015 IEEE Symposium on Security and Privacy, pages
553–570. IEEE Computer Society Press, May 2015.

[15] J. W. Bos, M. Naehrig, and J. van de Pol. Sieving for shortest vectors in ideal lattices: a practical
perspective. International Journal of Applied Cryptography, 2016. to appear, http://eprint.iacr.
org/2014/880.

[16] Z. Brakerski, A. Langlois, C. Peikert, O. Regev, and D. Stehlé. Classical hardness of learning with
errors. In D. Boneh, T. Roughgarden, and J. Feigenbaum, editors, 45th ACM STOC, pages 575–584.
ACM Press, June 2013.

[17] Z. Brakerski and V. Vaikuntanathan. Efficient fully homomorphic encryption from (standard) LWE.
SIAM Journal on Computing, 43(2):831–871, 2014.

[18] D. Cash, D. Hofheinz, E. Kiltz, and C. Peikert. Bonsai trees, or how to delegate a lattice basis. Journal
of Cryptology, 25(4):601–639, Oct. 2012.

[19] L. Chen, S. Jordan, Y.-K. Liu, D. Moody, R. Peralta, R. Perlner, and D. Smith-Tone. Report on
post-quantum cryptography. NISTIR 8105, DRAFT, 2016. http://csrc.nist.gov/publications/
drafts/nistir-8105/nistir_8105_draft.pdf.

[20] Y. Chen. Lattice reduction and concrete security of fully homomorphic encryption. PhD thesis,
l’Université Paris Diderot, 2013. Available at http://www.di.ens.fr/~ychen/research/these.pdf.

[21] Y. Chen and P. Q. Nguyen. BKZ 2.0: Better lattice security estimates. In D. H. Lee and X. Wang,
editors, ASIACRYPT 2011, volume 7073 of LNCS, pages 1–20. Springer, Heidelberg, Dec. 2011.

[22] D. Coppersmith. Finding a small root of a univariate modular equation. In U. M. Maurer, editor,
EUROCRYPT’96, volume 1070 of LNCS, pages 155–165. Springer, Heidelberg, May 1996.

[23] D. Coppersmith and S. Winograd. Matrix multiplication via arithmetic progressions. In A. Aho, editor,
19th ACM STOC, pages 1–6. ACM Press, May 1987.

[24] C. Costello, P. Longa, and M. Naehrig. Efficient algorithms for supersingular isogeny diffie-hellman.
In M. Robshaw and J. Katz, editors, CRYPTO 2016, Part I, volume 9814 of LNCS, pages 572–601.
Springer, Heidelberg, Aug. 2016.

[25] P. D’Alberto and A. Nicolau. Adaptive Strassen and ATLAS’s DGEMM: a fast square-matrix multiply
for modern high-performance systems. In High-Performance Computing in Asia-Pacific Region, pages
45–52. IEEE Computer Society, 2005.

24

http://pqcrypto.eu.org/docs/initial-recommendations.pdf
http://csrc.nist.gov/publications/nistpubs/800-57/sp800-57_part1_rev3_general.pdf
http://csrc.nist.gov/publications/nistpubs/800-57/sp800-57_part1_rev3_general.pdf
http://eprint.iacr.org/2014/880
http://eprint.iacr.org/2014/880
http://csrc.nist.gov/publications/drafts/nistir-8105/nistir_8105_draft.pdf
http://csrc.nist.gov/publications/drafts/nistir-8105/nistir_8105_draft.pdf
http://www.di.ens.fr/~ychen/research/these.pdf

[26] M. H. Devoret and R. J. Schoelkopf. Superconducting circuits for quantum information: an outlook.
Science, 339(6124):1169–1174, 2013.

[27] T. Dierks and E. Rescorla. The Transport Layer Security (TLS) protocol version 1.2. https://tools.
ietf.org/html/rfc5246. RFC 5246.

[28] W. Diffie, P. C. Van Oorschot, and M. J. Wiener. Authentication and authenticated key exchanges.
Designs, Codes and cryptography, 2(2):107–125, 1992.

[29] J. Ding, X. Xie, and X. Lin. A simple provably secure key exchange scheme based on the learning with
errors problem. Cryptology ePrint Archive, Report 2012/688, 2012. http://eprint.iacr.org/2012/
688.

[30] G. Frey and H.-G. Rück. A remark concerning m-divisibility and the discrete logarithm in the divisor
class group of curves. Math. Comp., 62(206):865–874, 1994.

[31] E. Fujisaki and T. Okamoto. Secure integration of asymmetric and symmetric encryption schemes. In
M. J. Wiener, editor, CRYPTO’99, volume 1666 of LNCS, pages 537–554. Springer, Heidelberg, Aug.
1999.

[32] N. Gama, P. Q. Nguyen, and O. Regev. Lattice enumeration using extreme pruning. In H. Gilbert,
editor, EUROCRYPT 2010, volume 6110 of LNCS, pages 257–278. Springer, Heidelberg, May 2010.

[33] C. Gentry, C. Peikert, and V. Vaikuntanathan. Trapdoors for hard lattices and new cryptographic
constructions. In R. E. Ladner and C. Dwork, editors, 40th ACM STOC, pages 197–206. ACM Press,
May 2008.

[34] L. K. Grover. A fast quantum mechanical algorithm for database search. In 28th ACM STOC, pages
212–219. ACM Press, May 1996.

[35] V. Gupta, D. Stebila, S. Fung, S. C. Shantz, N. Gura, and H. Eberle. Speeding up secure web transac-
tions using elliptic curve cryptography. In NDSS 2004. The Internet Society, Feb. 2004.

[36] J. Hoffstein, J. Pipher, and J. H. Silverman. NTRU: A ring-based public key cryptosystem. In Algo-
rithmic number theory, pages 267–288. Springer, 1998.

[37] J. Huang, F. Qian, A. Gerber, Z. M. Mao, S. Sen, and O. Spatscheck. A close examination of performance
and power characteristics of 4G LTE networks. In The 10th International Conference on Mobile Systems,
Applications, and Services, MobiSys’12, pages 225–238, 2012.

[38] T. Jager, F. Kohlar, S. Schäge, and J. Schwenk. On the security of TLS-DHE in the standard model. In
R. Safavi-Naini and R. Canetti, editors, CRYPTO 2012, volume 7417 of LNCS, pages 273–293. Springer,
Heidelberg, Aug. 2012.

[39] A. Kawachi, K. Tanaka, and K. Xagawa. Multi-bit cryptosystems based on lattice problems. In
T. Okamoto and X. Wang, editors, PKC 2007, volume 4450 of LNCS, pages 315–329. Springer, Heidel-
berg, Apr. 2007.

[40] J. Kelly, R. Barends, A. G. Fowler, A. Megrant, E. Jeffrey, T. C. White, D. Sank, J. Y. Mutus,
B. Campbell, Y. Chen, Z. Chen, B. Chiaro, A. Dunsworth, I.-C. Hoi, C. Neill, P. J. J. O/’Malley,
C. Quintana, P. Roushan, A. Vainsencher, J. Wenner, A. N. Cleland, and J. M. Martinis. State
preservation by repetitive error detection in a superconducting quantum circuit. Nature, 519:66–69,
2015.

[41] P. Kirchner and P.-A. Fouque. An improved BKW algorithm for LWE with applications to cryptography
and lattices. In R. Gennaro and M. J. B. Robshaw, editors, CRYPTO 2015, Part I, volume 9215 of
LNCS, pages 43–62. Springer, Heidelberg, Aug. 2015.

[42] H. Krawczyk, K. G. Paterson, and H. Wee. On the security of the TLS protocol: A systematic analysis.
In R. Canetti and J. A. Garay, editors, CRYPTO 2013, Part I, volume 8042 of LNCS, pages 429–448.
Springer, Heidelberg, Aug. 2013.

[43] T. Laarhoven. Search problems in cryptography. PhD thesis, Eindhoven University of Technology, 2015.

25

https://tools.ietf.org/html/rfc5246
https://tools.ietf.org/html/rfc5246
http://eprint.iacr.org/2012/688
http://eprint.iacr.org/2012/688

[44] T. Laarhoven. Sieving for shortest vectors in lattices using angular locality-sensitive hashing. In R. Gen-
naro and M. J. B. Robshaw, editors, CRYPTO 2015, Part I, volume 9215 of LNCS, pages 3–22. Springer,
Heidelberg, Aug. 2015.

[45] R. Lindner and C. Peikert. Better key sizes (and attacks) for LWE-based encryption. In A. Kiayias,
editor, CT-RSA 2011, volume 6558 of LNCS, pages 319–339. Springer, Heidelberg, Feb. 2011.

[46] V. Lyubashevsky, C. Peikert, and O. Regev. On ideal lattices and learning with errors over rings.
Journal of the ACM, 60(6):43:1–35, November 2013. Preliminary version in Eurocrypt 2010.

[47] A. Menezes, S. A. Vanstone, and T. Okamoto. Reducing elliptic curve logarithms to logarithms in a
finite field. In 23rd ACM STOC, pages 80–89. ACM Press, May 1991.

[48] D. Micciancio and C. Peikert. Hardness of SIS and LWE with small parameters. In R. Canetti and
J. A. Garay, editors, CRYPTO 2013, Part I, volume 8042 of LNCS, pages 21–39. Springer, Heidelberg,
Aug. 2013.

[49] M. Mosca. Cybersecurity in an era with quantum computers: Will we be ready? Cryptology ePrint
Archive, Report 2015/1075, 2015. http://eprint.iacr.org/2015/1075.

[50] National Security Agency (NSA). Cryptography today. https://www.nsa.gov/ia/programs/suiteb_
cryptography/, August 2015.

[51] NIST. http://www.nist.gov/itl/csd/ct/post-quantum-crypto-workshop-2015.cfm.

[52] NIST Suite B. https://www.nsa.gov/ia/programs/suiteb_cryptography/index.shtml.

[53] C. Peikert. Public-key cryptosystems from the worst-case shortest vector problem: extended abstract.
In M. Mitzenmacher, editor, 41st ACM STOC, pages 333–342. ACM Press, May / June 2009.

[54] C. Peikert. Lattice cryptography for the Internet. In M. Mosca, editor, PQCrypto 2014, volume 8772
of LNCS, pages 197–219. Springer, 2014.

[55] C. Peikert. A decade of lattice cryptography. Foundations and Trends in Theoretical Computer Science,
10(4):283–424, 2016.

[56] C. Peikert. How (not) to instantiate ring-LWE. Cryptology ePrint Archive, Report 2016/351, 2016.
http://eprint.iacr.org/2016/351.

[57] J. Proos and C. Zalka. Shor’s discrete logarithm quantum algorithm for elliptic curves. Quantum Info.
Comput., 3(4):317–344, 2003.

[58] O. Regev. On lattices, learning with errors, random linear codes, and cryptography. In H. N. Gabow
and R. Fagin, editors, 37th ACM STOC, pages 84–93. ACM Press, May 2005.

[59] O. Regev. On lattices, learning with errors, random linear codes, and cryptography. Journal of the
ACM, 56(6):34, 2009.

[60] M. Schneider. Sieving for shortest vectors in ideal lattices. In A. Youssef, A. Nitaj, and A. E. Hassanien,
editors, AFRICACRYPT 13, volume 7918 of LNCS, pages 375–391. Springer, Heidelberg, June 2013.

[61] P. Shor. Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum
computer. SIAM J. Comput., 26(5):1484âĂŞ1509, 1997. Preliminary version in STOC 1994.

[62] V. Strassen. Gaussian elimination is not optimal. Numerische Mathematik, 13(4):354–356, 1969.

[63] N. Thiagarajan, G. Aggarwal, A. Nicoara, D. Boneh, and J. P. Singh. Who killed my battery?: analyzing
mobile browser energy consumption. In Proceedings of the 21st international conference on World Wide
Web, pages 41–50. ACM, 2012.

[64] W. Whyte, M. Etzel, and P. Jenney. Open source NTRU public key cryptography algorithm and
reference code. https://github.com/NTRUOpenSourceProject/ntru-crypto, 2013.

[65] J. Zhang, Z. Zhang, J. Ding, M. Snook, and Ö. Dagdelen. Authenticated key exchange from ideal
lattices. In E. Oswald and M. Fischlin, editors, EUROCRYPT 2015, Part II, volume 9057 of LNCS,
pages 719–751. Springer, Heidelberg, Apr. 2015.

26

http://eprint.iacr.org/2015/1075
https://www.nsa.gov/ia/programs/suiteb_cryptography/
https://www.nsa.gov/ia/programs/suiteb_cryptography/
http://www.nist.gov/itl/csd/ct/post-quantum-crypto-workshop-2015.cfm
https://www.nsa.gov/ia/programs/suiteb_cryptography/index.shtml
http://eprint.iacr.org/2016/351
https://github.com/NTRUOpenSourceProject/ntru-crypto

	Introduction
	Key Exchange and Forward Secrecy
	Generic vs. Ideal Lattices
	Our Contributions

	Related Work
	Key Exchange from LWE
	The new key exchange protocol
	A generalized reconciliation mechanism
	Error distributions

	Security assessment and parameter selection
	Methodology: the core-SVP hardness
	Primal attack
	Dual attack
	Proposed parameters

	Proof of Security
	The LWE problem and variants
	Security of the key exchange protocol
	Security when used in TLS

	Implementation
	Evaluation
	Standalone cryptographic operations
	HTTPS connections

