
ar
X

iv
:1

21
1.

10
80

v1
 [

qu
an

t-
ph

]
 6

 N
ov

 2
01

2

Quantum one-time programs

Anne Broadbent† Gus Gutoski‡ Douglas Stebila∗

†Institute for Quantum Computing and Department of Combinatorics and Optimization
University of Waterloo, Waterloo, Ontario, Canada

albroadb@iqc.ca

‡Institute for Quantum Computing and School of Computer Science
University of Waterloo, Waterloo, Ontario, Canada

gus.gutoski@uwaterloo.ca
∗School of Electrical Engineering and Computer Science, Science and Engineering Faculty

Queensland University of Technology, Brisbane, Queensland, Australia
stebila@qut.edu.au

November 6, 2012

Abstract

One-time programs are modelled after a black box that allows a single evaluation of a func-
tion, and then self-destructs. Because software can, in principle, be copied, general one-time
programs exists only in the hardware token model: it has been shown that any function admits
a one-time program as long as we assume access to physical devices called one-time memo-
ries. Quantum information, with its well-known property of no-cloning, would, at first glance,
prevent the basic copying attack for classical programs. We show that this intuition is false:
one-time programs for both classical and quantum maps, based solely on quantum information,
do not exist, even with computational assumptions. We complement this strong impossibility
proof by an equally strong possibility result: assuming the same basic one-time memories as
used for classical one-time programs, we show that every quantum map has a quantum one-time
program that is secure in the universal composability framework. Our construction relies on a
new, simpler quantum authentication scheme and corresponding mechanism for computing on
authenticated data.

1

http://arxiv.org/abs/1211.1080v1
mailto:albroadb@iqc.ca
mailto:gus.gutoski@uwaterloo.ca
mailto:stebila@qut.edu.au

Contents

1 Introduction 4
1.1 Classical one-time programs from one-time memories 4
1.2 Impossibility of quantum one-time programs in the plain model 5
1.3 Main result: quantum one-time programs from one-time memories 5
1.4 Formalizing impossibility . 6
1.5 Related work . 7

2 Notation and tools 8
2.1 Universal composability . 8
2.2 Ideal functionalities . 9
2.3 Classical one-time programs . 10

3 Impossibility of non-trivial OTPs in the plain model 10
3.1 One-time programs in the plain quantum model . 11
3.2 Trivial one-time programs for unlockable channels 11
3.3 Impossibility of one-time programs for arbitrary channels 13
3.4 A conjecture on unlockable channels . 14

4 Constructing quantum OTPs from OTMs 15
4.1 Quantum authentication codes . 16
4.2 Computing on authenticated data . 16
4.3 Gate teleportation . 17
4.4 Overview of protocol . 17
4.5 Overview of simulator for proof . 18

5 The trap authentication scheme 18
5.1 Definitions and notation . 18
5.2 Properties of every encode-encrypt authentication scheme 19
5.3 Trap codes yield a secure authentication scheme . 19
5.4 Performing Gates on the Trap Code . 20
5.5 A universal gate set for the trap scheme . 21
5.6 Miscellaneous remarks . 24

6 Statement and analysis of our QOTP 25
6.1 Preliminaries . 26
6.2 Specification of the sender’s message . 27
6.3 Protocol for an honest receiver, completeness . 30
6.4 General form of an arbitrary environment . 30
6.5 A tabular representation for operators and vectors 32
6.6 Analysis of the environment’s interaction with the real sender 33
6.7 Specification of the simulator . 41
6.8 Analysis of the environment’s interaction with the simulator 43
6.9 Result . 48

7 UC security of delegating quantum computations 49

2

Appendices 50

A One-time programs for classical, bounded reactive functionalities (FBR-OTP) 50

B Properties of encode-encrypt authentication schemes 53
B.1 Security against Pauli attacks implies security against general attacks 53
B.2 Measure-then-decode equals decode-then-measure for CSS codes 55

C Analysis of teleportation 58
C.1 Teleportation under attack . 58
C.2 Teleportation under attack, tabular analysis . 59

Acknowledgements 60

References 60

3

1 Introduction

A one-time program for a function f , as introduced by Goldwasser, Rothblum and Kalai [GKR08],
is a cryptographic primitive by which a receiver may evaluate f on only one input, chosen by the
receiver at run time: no efficient adversary, after evaluating the one-time program on x, should
be able to learn anything about f(y) for any y 6= x beyond what can be inferred from f(x).
Secure one-time programs could have far reaching implications in software protection, digital rights
management, and electronic cash or token schemes. (For example, coins are a program that can
only be run once, and thus cannot be double spent.)

One-time programs cannot be achieved by software alone, as any software can be copied and
executed multiple times. Thus, any hope of achieving any one-time property must necessarily rely
on an additional assumptions such as secure hardware or interaction; in particular, computational
assumptions alone will not suffice.

1.1 Classical one-time programs from one-time memories

Goldwasser et al. showed how to construct a one-time program for any function f using a very
basic hypothetical hardware device called a one-time memory (OTM). Inspired by the interactive
cryptographic primitive oblivious transfer, each OTM stores two secret strings (s0, s1). A receiver
requests one of these two strings by specifying a single-bit input c ∈ {0, 1}. The OTM reveals sc
and then self-destructs: the other string sc is lost forever.

One advantage of using OTMs as a building block is their simplicity: an OTM is an extremely
basic device that does not perform any computation. Using the simplest possible hardware device
allows for easier scrutiny against potential hardware flaws such as side-channel attacks. Moreover,
the functionality of an OTM is independent of the program itself, and thus OTMs could be mass-
produced for a variety of programs. The use of tamper-proof hardware in cryptography is an old
and recurring theme [Smi81], and OTMs in particular have lead to a recent revival in ascertaining
what cryptographic primitives can be constructed using minimalistic hardware assumptions that
could not otherwise be achieved.

Non-interactive secure two-party computation. Goyal, Ishai, Sahai, Venkatesan, and
Wadia [GIS+10] improved on the work of Goldwasser et al. [GKR08] in several ways. First, they
consider a more general primitive, which they call non-interactive secure two-party computation, in
which two parties wish to evaluate a publicly known function f(x, y). One party—the sender—is
given the input string x. The sender uses x to prepare a “program” p(x) and sends this program
to the receiver. The receiver wishes to use the program p(x) in order to evaluate f(x, y) for any
input string y of her choice. Like one-time programs, after evaluating f(x, y), no adversary should
be able to learn anything about f(x, y′) for any y′ 6= y beyond what can be inferred from f(x, y).
The one-time programs of Goldwasser et al. are recovered as a special case of this primitive by
viewing the input x as a description of a function gx(y) and the publicly known function f as a
“universal computer” that produces f(x, y) = gx(y). Non-interactive secure two-party computation
is impossible in the plain model for the same reason that one-time programs are impossible in the
plain model: software can always be copied.

Second, the one-time programs of Goldwasser et al. are secure against a malicious receiver; the
issue of a malicious sender does not arise in their setting. By contrast, in the more general setting
of non-interactive secure two-party computation one could also consider malicious senders. The
protocol of Goyal et al. is secure against both a malicious receiver and a malicious sender.

4

Third, Goldwasser et al. use OTMs for large strings, whereas Goyal et al. require OTMs for
only single bits. Finally, Goldwasser et al. establish security against computationally bounded
adversaries, whereas Goyal et al. establish statistical universally composable security.

Terminology: For brevity, we use the term one-time program (OTP) synonymously with
“non-interactive secure two-party computation”.

1.2 Impossibility of quantum one-time programs in the plain model

In contrast to ordinary classical information, quantum information cannot in general be copied:
measurement is an irreversible, destructive process [WZ82]. The no-cloning property of quantum
information is credited for such classically impossible feats as quantum money [AC12, MS10, Wie83],
quantum key distribution [BB84], and quantum copy-protection [Aar09]. It is thus natural to ask
if one-time programs can be added to this list of quantum cryptographic primitives: does quantum
information allow for one-time programs without hardware assumptions? (When there are no
hardware assumptions, we refer to this as the plain quantum model.)

We observe in Section 3 that the answer to this question is a strong no: although quantum
information cannot be copied, a quantum “program state” for f can always be re-constructed by a
reversible adversary after each use so as to obtain the evaluation of f on multilple distinct inputs.
In particular, computational assumptions do not help to achieve quantum one-time programs.

One-time programs for quantum channels. By analogy to classical functions acting on
bits, one could also consider a one-time program for a quantum channel Φ : (A,B) → C acting on
multi-qubit registers A (the sender’s input), B (the receiver’s input), and C (the receiver’s output).
The security goal is similar in spirit to that for classical functions: for each joint state ρ of the
input registers (A,B) no adversary should be able to learn anything about Φ(ρ′) for any state ρ′ 6= ρ
beyond what can be inferred from Φ(ρ).

Here, again, our previous observation on the impossibility of quantum one-time programs in
the plain model holds: if a quantum program allows the adversary to evaluate Φ(ρ) then that same
program can be recovered by a reversible adversary in order to subsequently evaluate Φ(ρ′) for
any ρ′ that can be obtained from ρ by a local operation on B.

1.3 Main result: quantum one-time programs from one-time memories

Given that one-time programs do not exist for arbitrary quantum channels in the plain quantum
model, and that one-time programs do exist for arbitrary classical functions in the OTM model, a
natural question arises: what additional assumptions are required to achieve one-time programs for
quantum channels?

Our main result (Theorem 7) is that any channel Φ can be compiled into a quantum one-time
program (QOTP), which is a combination of quantum states and OTMs that allows a receiver
to evaluate Φ exactly once. In particular, (and perhaps surprisingly) single-bit classical one-time
memory devices suffice to establish quantum one-time programs for arbitrary quantum channels.
An informal version of Theorem 7 is as follows:

Main theorem (informal). For each channel Φ specified by a quantum circuit, there is a non-
interactive two-party protocol for the secure evaluation of Φ, assuming classical one-time memory
devices and an honest sender. Moreover, this protocol is universally composable (UC-secure).

We provide a fully rigorous proof of statistical universally composable (UC) security of our

5

QOTPs. The question of QOTPs that are also secure against a malicious sender is left for future
work. For simplicity, we restrict our attention to the case of non-reactive one-time quantum pro-
grams. The more general scenario of being able to query a program a bounded number of times
(including the case of an n-use program) may be implemented using standard techniques as is done
in the classical case (see Section 2.3). Most of the components of our QOTP for Φ are independent
of the sender’s input register A and so can be compiled (and mass-produced) by the sender before
he receives his input. As a corollary of our main result we obtain the UC security of the protocol
for delegated quantum computations of Aharonov, Ben-Or and Eban [ABOE10]; see Section 7.

Summary of techniques. Our protocol employs a method for quantum computing on authen-
ticated data (QCAD), which allows for the application of quantum gates to authenticated quantum
data without knowing the authentication key. We propose a new authentication scheme, called the
trap scheme, and show that it allows for QCAD (Section 4.1). Prior to our work, the only authen-
tication scheme known to admit QCAD was the signed polynomial scheme of Ben-Or, Crépeau,
Gottesman, Hassidim, and Smith [BOCG+06] (see also [ABOE10]). We compare our trap scheme
to the signed polynomial scheme in Section 4.2. Recently, and independently of our work, it was
shown by Dupuis, Nielsen, and Salvail [DNS12] that the Clifford authentication scheme also admits
QCAD.

In methods for QCAD, universal quantum computation can only be performed if the receiver
(who holds the authenticated data) is allowed to exchange classical messages with the sender (who
knows the authentication key). To keep our protocol non-interactive, all the classical interaction is
encapsulated by a bounded, reactive classical one-time program (BR-OTP) prepared by the sender.
(The existence of secure reactive one-time programs follows from the work of [GIS+10] as described
in Section 2.3.) This program for the BR-OTP depends upon the authentication key chosen for
the sender’s input register, but not on the contents of that register. Thus, by selecting this key in
advance, the BR-OTP can be prepared (or mass-produced) before the sender gets his input register.

In order to implement QCAD, the receiver’s input must be authenticated prior to computa-
tion. This is accomplished non-interactively by having the sender prepare a pair of registers in a
special “teleport-through-encode” state, which is a maximally entangled state with an authentica-
tion operation applied to one of the two registers. The authentication key is determined by the
(classical) result of the Bell measurement used for teleportation. The sender allows the receiver to
non-interactively de-authenticate the output at the end of the computation by preparing another
pair of registers in a “teleport-through-decode” state. In order to successfully de-authenticate, the
receiver’s messages to the BR-OTP must be consistent with the secret authentication key held by
the BR-OTP. Otherwise, the BR-OTP simply declines to reveal the final decryption key for the
receiver’s output.

1.4 Formalizing impossibility

In preparing a formal proof that one-time programs do not exist in the plain model, one immediately
encounters a pathological class of functions that do, in fact, admit classical one-time programs in
the plain model. For example, consider the function f(a, b) = a+b. A potential “one-time” program
for f has the sender simply reveal a to the receiver. Curiously, this is indeed a “one-time” program,
because this behaviour can be simulated with one-shot access to the ideal functionality f(a, ·): the
query f(a, 0) reveals a, which is exactly the one-time program prepared by the sender. Put another
way: f is a function for which there exists a one-time program in the plain model, but only because
the one-time program reveals enough information that even a simulator with one-shot access to

6

f(a, ·) can gain all information required to compute the function. This phenomenon is somewhat
akin to trivially obfuscatable functions [BGI+01].

An interesting question thus arises: what is the class of classical functions or quantum channels
that admit one-time programs in the plain model? We provide a complete characterization of this
class for classical functions. In particular, we define a class of unlockable functions consisting of
those functions f for which there exists at least one key input b0 such that for all a the value f(a, b)
can be recovered from f(a, b0) for any desired b. We prove the following.

Impossibility theorem for classical functions (informal). If f is unlockable then f admits
a trivial classical one-time program in the plain model. Conversely, if f is not unlockable then f
does not admit a quantum one-time program in the plain quantum model.

The situation for quantum channels is very interesting. We propose two definitions for the
unlockability of a channel, which we call weakly unlockable and strongly unlockable (Definition 3).
We prove the following.

Impossibility theorem for quantum channels (informal). If Φ is strongly unlockable then
Φ admits a trivial quantum one-time program in the plain quantum model. Conversely, if Φ is not
weakly unlockable then Φ does not admit a quantum one-time program in the plain quantum model.

By definition, every strongly unlockable channel is also weakly unlockable. We conjecture that
the converse also holds (Conjecture 6.) In lieu of a full proof, we provide a high-level outline of
what such a proof might look like in Section 3.4. It appears, in asking a question about unlockable
channels, that we have stumbled upon a deep and interesting question relating to the invertible
subspaces of an arbitrary channel, akin to the so-called “decoherence-free” subspaces studied in the
literature on quantum error correction.

1.5 Related work

Copy-protection. In software copy-protection [Aar09], a program can be evaluated (a possibly
unlimited number of times), but it should be impossible for the program to be “split” or “copied”
into parts allowing separate executions. As with OTPs, copy-protection cannot be achieved by
software means only. OTPs provide a hardware solution by enforcing that the program be run
only once. However, the more interesting question is if quantum information alone (with computa-
tional assumptions) can provide a solution. Aaronson [Aar09] has proposed such schemes based on
plausible, but non-standard, cryptographic assumptions. It is an open problem if quantum copy-
protection could be based on standard assumptions. In contrast, the security of quantum OTPs
is based on simple OTMs; it could be beneficial to study quantum copy-protection in light of our
result.

Quantum money. Our construction establishes quantum authentication codes (see Section 4.1)
that seem to provide a concrete and efficient realization of the “hidden subspaces” used for public-
key quantum money scheme of Aaronson and Christiano [AC12]. Our QOTPs can also be used to
implement non-interactive verification for quantum coin schemes [MS10].

Program obfuscation. A related but different task is program obfuscation, in which the receiver
should not be able to efficiently “learn” anything from the description of the program that he
could not also efficiently learn from the input-output behaviour of the program. In the case of

7

classical information, it is known that secure program obfuscation is not possible in the plain
model [BGI+01]. As with copy-protection, OTPs provide a hardware solution by enforcing that
the obfuscated program can be run only a limited number of times. Again, the more interesting
question is if quantum information alone (with computational assumptions) can provide a solution;
the impossibility proof for obfuscation breaks down in the quantum case due to the no-cloning
theorem. It is an open problem whether there is a way to substitute the assumption of secure
hardware in our main possibility result with a computational assumption in order to realize quantum
program obfuscation.

2 Notation and tools

A quantum register is a specific quantum system (composed, say, out of qubits). Quantum registers
are typically denoted with sans serifs such as A, B, etc. A quantum channel Φ : A→ B refers to any
physically-realizable mapping on quantum registers. We use the terms quantum map and quantum
channel interchangeably.

2.1 Universal composability

The universal composability (UC) framework provides an extremely high standard for establishing
a strong and rigorous notion of security. The basic idea is to postulate an ideal world, where
the protocol parties interact with an ideal functionality, which is secure by definition. Then, we
consider the real world, where the protocol parties execute the actual protocol. UC-security holds
if, for every real-world adversary, there exists a simulator in the ideal world (taking the role of
the real-world adversary) such that no environment can distinguish the real and ideal worlds. The
environment is powerful: it provides the parties’ inputs, receives outputs and interacts with the
adversary at arbitrary points in the protocol. Perfect, statistical, and computational notions of
UC security exist depending on the two worlds being equal or statistically or computationally
indistinguishable.

The UC framework was developed in the classical world by Canetti [Can01] and independently
(under the name of reactive simulatability) by Pfitzmann and Waidner [PW01]. The model was ex-
tended to the quantum world by Ben-Or and Mayers [BOM04] and independently by Unruh [Unr04].
Here, we follow the simplified UC framework as presented by Unruh [Unr10], to which we refer for
the description of the model, definitions, and theorems.

Via the composition theorem, this framework allows to rigorously prove results that are maxi-
mally useful for future work: our results can easily be embedded within a larger construction and
at the same time we can use prior constructions without having to re-visit their security proofs.
Another key result is Unruh’s quantum lifting theorem [Unr10] establishing that, in the statistical
case, classical-UC-secure protocols are also quantum-UC-secure.

Our main possibility result heavily relies on classical one-time programs, for which a (classical)
UC-secure instantiation exists assuming one-time memories [GIS+10]. In particular, we require
bounded reactive OTPs, which we construct by extending the results of Goyal et al. [GIS+10] (see
Section 2.3).

Some notable variations of Unruh’s terminology and definitions follow.
Out of the two protocol parties (the sender and the receiver), we consider security only in

the case of the receiver being a corruption party. This is the meaning of, e.g. “π statistically

8

quantum-UC-emulates ρ in the case of a corrupted receiver”.
In our scenario involving a corrupted receiver, we make use of a property related to the tran-

sitivity of UC-security [Unr10] (see Lemma 1); the proof is very similar to the original proof of
transitivity.

Lemma 1. Let π, σ and ρ be protocols with parties {sender, receiver}. Suppose that π statisically
quantum-UC-emulates ρ and that ρ statistically quantum-UC-emulates σ in the case of a corrupted
receiver. Then π statistically quantum-UC-emulates σ in the case of a corrupted receiver.

Combining Lemma 1 with the quantum universal composition theorem [Unr10] and the quantum
lifting theorem [Unr10] we get Corollary 1.1 below, which is essential in the proof of our main
possibility theorem (Theorem 7).

Corollary 1.1. Let π, and ρ be protocols with parties {sender, receiver}. Suppose π statistically
classical-UC-emulates F . Suppose that ρF statistically quantum-UC-emulates G in the case of a
corrupted receiver. Then ρπ statistically quantum-UC-emulates G in the case of a corrupted receiver.

2.2 Ideal functionalities

We now describe the relevant ideal functionalities. All functionalities involve two parties, the sender
and the receiver. An ideal functionality may exist in multiple instances and involves various parties.
Formally, instances are denoted by session identifiers and each instance involves labelled parties.
For the sake of simplicity, we have omitted these identifiers as they should be implicitly clear from
the context.

The ideal functionality FOTM for a one-time memory (OTM) is a two-step process modelled
after oblivious transfer. We sometimes refer to this functionality FOTM as an OTM token.

Functionality 1 Ideal Functionality FOTM.

1. Create: Upon input (s0, s1) from the sender with s0, s1 ∈ {0, 1}, send create to the receiver
and store (s0, s1).

2. Execute: Upon input c ∈ {0, 1} from the receiver, send s := sc to the receiver. Delete any
trace of this instance.

Next we describe the ideal functionalities FOTP
f and FOTP

Φ of a one-time program for a classical
function f and a quantum channel Φ, respectively. Note that the map that is computed (f or
Φ) is a public parameter of the functionality and it takes an input from the sender and an input
from the receiver. We thus view these ideal functionalities as having the property of hiding the
sender’s input only. If the intention is to to hide the map m itself—as in the intuitive notion of
one-time programs—then we can consider a universal map U that takes as part of its sender’s input
a program register representing m (see [BFGH10, NC97, dSR07]).

Functionality 2 Ideal functionality FOTP
f for a classical function f : {0, 1}n+m → {0, 1}k .

1. Create: Upon input a ∈ {0, 1}n from the sender, send create to the receiver and store a.
2. Execute: Upon input b ∈ {0, 1}m from the receiver, send f(a, b) to the receiver. Delete any

trace of this instance.

9

Functionality 3 Ideal functionality FOTP
Φ for a quantum channel Φ : (A,B)→ C.

1. Create: Upon input register A from the sender, send create to the receiver and store the
contents of register A.

2. Execute: Upon input register B from the receiver, evaluate Φ on registers A,B and send the
contents of the output register C to the receiver. Delete any trace of this instance.

It is clear from the description of these ideal functionalities that they may be called only a
single time. However, we may sometimes emphasize this in expressions such as “one-shot access to
an ideal functionality computing f”.

Functionalities 1–3 are sender-oblivious since they take an input from the sender and an input
from the receiver and deliver the result of the functionality to the receiver (but not the sender).
Moreover, they are non-reactive since they interact with the sender and the receiver in a single
round. Reactive functionalities are more general, potentially having several rounds of inputs and
outputs and maintaining state between rounds. In Section 2.3 we consider an ideal functionality for
bounded reactive classical one-time programs; the ideal functionality for bounded-reactive OTPs is
specified in Appendix A.

2.3 Classical one-time programs

Our construction relies heavily on classical OTPs, the construction of which is given by Goyal et al. [GIS+10]:

Theorem 2. Let f be a non-reactive, sender-oblivious, polynomial-time computable classical two-
party functionality. Then there exists an efficient, non-interactive protocol which statistically
classical-UC-emulates FOTP

f in the FOTM-hybrid model.

In Appendix A, we use straightforward techniques to extend this result to sender-oblivious,
polynomial-time computable, bounded reactive classical two-party functionalities. The main result
on reactive OTPs, as used in our construction in Section 4, is:

Corollary 2.1. There exists a non-interactive protocol σ that statistically classical-UC-emulates
FBR-OTP
g1,...gℓ

in the FOTM-hybrid model.

3 Impossibility of non-trivial OTPs in the plain model

We now consider whether classical functions or quantum channels admit one-time programs in the
plain quantum model. We will see that it is precisely maps that are unlockable—meaning there
is a key1 input to the map that unlocks enough information to fully simulate the map—that have
one-time programs in the plain model, and that these one-time programs are in a sense trivial. For
quantum channels, we will have two versions of unlockable, the difference being whether the key
that unlocks the channel is a state (strongly unlockable) or a channel that transforms a given input
(weakly unlockable).

Our possibility result shows that every strongly unlockable channel admits a trivial one-time
program in the plain quantum model, and in fact that this protocol is UC-secure. Our impossibility
result shows that every channel that is not weakly unlockable does not admit a one-time program

1Note we use “key” not in the cryptographic sense of a secret key, but in the metaphorical sense of something that

unlocks a lock.

10

in the plain quantum model; our impossibility result holds even if we relax to an approximate case
or allow computational assumptions.2 As we will see, it is easy to establish that the weak and
strong unlockable notions are equivalent for classical functions, but whether they are equivalent
for quantum channels is an open question, which we note appears to be an interesting and deep
question related to invertible subspaces of a channel.

3.1 One-time programs in the plain quantum model

Here, we formalize some concepts relating to one-time programs in the plain quantum model.
A protocol for a quantum one-time program in the plain model consists of a single quantum

message, the program register P, from the sender to receiver. Thus, the actions of the honest sender
in such a protocol are completely characterized by an encoding channel enc : A→ P that the sender
applies to her portion of the joint input so as to prepare a program register for the receiver. In
particular, for any joint state ρ of the input registers (A,B) the joint state of the registers (P,B)
in the receiver’s possession after the program register has been received is given by (enc ⊗ 1B)(ρ).
From this state we would like the receiver to be able to recover Φ(ρ). That is, there should exist a
decoding channel dec : (P,B) → C for the honest receiver such that the channels dec ◦ enc and Φ
are indistinguishable. A comparison of the ideal and real models for one-time programs is given in
Figure 1.

(a) Ideal world

ρ Φ
A

B

C

(b) Real world

ρ
encA

dec
B

P

C ≈ Φ(ρ)

Figure 1: (a) In the ideal world, the receiver obtains the output of the ideal functionality for Φ on
arbitrary input registers (A,B). (b) In the real world, encoding and decoding maps implement the
functionality, namely dec ◦ enc ≈ Φ.

By the completeness of the dummy-adversary [Unr10], it is sufficient, in order to establish UC-
security, to consider only the case of the dummy-adversary who forwards the program register, P,
to the environment. Thus, UC-security is established by exhibiting a simulator that can re-create
a state that is indistinguishable from the joint state (enc ⊗ 1B)(ρ) of registers (P,B), using only
the ideal functionality; recall indistinguishability is from the perspective of the environment, and
could be perfect, statistical, or computational as appropriate. The corresponding channels are
depicted in Figure 2. Here, the simulator (sim1, sim2) consists of channels sim1 : B→ (B′,M) and
sim2 : (C,M) → (P,B), where M is a private memory register for the simulator, security holds if
the channels sim2 ◦Φ ◦ sim1 and enc⊗ 1B are indistinguishable.

3.2 Trivial one-time programs for unlockable channels

Intuitively, a one-time program for a channel means that no receiver can learn more than he could
given one-shot access to an ideal functionality. However, there are certain channels where one-shot
access to the ideal functionality is enough to fully simulate the map for a fixed choice of the sender’s

2Although our impossibility result is stated in the UC framework, the impossibility is not an artifact of the high

level of security required of UC, but seems inherent in the notion of OTPs, and the impossibility argument applied

for any relaxation we attempted.

11

(a) Real world

ρ

encA

BB

P

(b) Simulator

ρ

sim1B

ΦA

B′

sim2

M

C

P

B

Figure 2: (a) The sender prepares the program register P by applying enc to A. The sender cannot
touch B. (b) A simulator (sim1, sim2) should be able to re-create an indistinguishable state of (P,B)
using only the ideal functionality Φ.

input. Such channels—which we call unlockable—effectively have trivial one-time programs, as we
will see in this section.

Definition 3. A channel Φ : (A,B) → C is strongly unlockable if there exists a register K, a key
state ξ0 of (B,K) and a recovery algorithm (i.e., channel) A : (C,K,B)→ C with the property that
A ◦Φ0 ≈ Φ, where the channel Φ0 is specified by

Φ0 : A→ (C,K) : A 7→ (Φ⊗ 1K)(A⊗ ξ0) .

A channel Φ : (A,B) → C is weakly unlockable if there exists a register K and a key channel
Ξ0 : B → (B,K) such that the channel Φ ◦ Ξ0 has the following property: for every choice of
registers E and channels Ψ : B → (B,E) for the receiver there exists a recovery algorithm (i.e.,
channel) AΨ : (C,K)→ (C,E) such that:

AΨ ◦ Φ ◦ Ξ0 ≈ Φ ◦Ψ .

Here, ≈ can denote perfect, statistical, or computational indistinguishability; in all cases, chan-
nels Φ0, A, Ξ0, and AΨ must be efficient.

See Figure 3 for diagrams representing strongly and weakly unlockable channels.

(a) Strongly unlockable

ρ ξ0

ΦA
B

A

C

K
B

C

output ≈ Φ(ρ)

(b) Weakly unlockable

ρ

Ξ0B

ΦA

B AΨ

C

K

C

E

output ≈ Φ(Ψ(ρ))

Figure 3: (a) For a strongly unlockable channel Φ, there exists a key state ξ0 and a recovery
algorithm A that allows computation of Φ(ρ) for any ρ. (b) For a weakly unlockable channel Φ,
there exists a key channel Ξ0 such that for any channel Ψ there exists a recovery algorithm AΨ

that allows computation of Φ(Ψ(ρ)) for any ρ.

It is easy to see that every strongly unlockable channel is also weakly unlockable: if ξ0 is the key
state for Φ, then the key channel Ξ0 generates ξ0, sends the B register of ξ0 to ideal functionality Φ
and the K register of ξ0 and the B register of ρ to AΨ = A ◦Ψ.

When the channel Φ is an entirely classical mapping, the definitions of strongly unlockable and
weakly unlockable are equivalent. A simplification for the classical case is as follows (we restrict to

12

the perfect case for clarity). A classical function f : A× B → C is unlockable if there exists a key
input b0 ∈ B and a recovery algorithm A : C ×B → C such that, for all a ∈ A and b ∈ B, we have
that f(a, b) = A(f(a, b0), b). Intuitively, for an unlockable function, there exists an algorithm that
can compute all values of f(a, ·) given a one-time program for f(a, ·), but this is okay, because a
simulator, given one-shot oracle access to f(a, ·), can also compute f(a, b) for all b. This function
is “learnable” in one shot, and so a simulator can do everything any algorithm can.

Simple examples of strongly unlockable channels include all unitary channels of the form Φ :
X 7→ UXU∗ for some unitary U and all constant channels of the form Φ : X 7→ Tr(X)σ for some
fixed state σ. Simple examples of unlockable functions include permutations.

We can now see that strongly unlockable channels have one-time programs; in fact, trivial
one-time programs.

Theorem 4. Let Φ : (A,B)→ C be a non-reactive, sender-oblivious polynomial-time quantum com-
putable two-party functionality. Then if Φ is strongly unlockable, there exists an efficient, quantum
non-interactive protocol which quantum-UC-emulates FOTP

Φ in the plain quantum model.
This holds in the perfect, statistical and computational cases.

Proof. The protocol is simple.
1. Create: The sender prepares the program register P = (C,K) by preparing registers (B′,K)

in the key state ξ0 and applying Φ to (A,B′). In other words, the sender’s encoding channel
enc is given by enc = Φ0, where Φ0 is as in the definition of strongly unlockable.

2. Execute: Because Φ is strongly unlockable, the receiver can recover the action of Φ = A◦Φ0

simply by applying the recovery algorithm A to (P,B). In other words, the receiver’s decoding
channel dec is given by dec = A.

Clearly, because Φ is strongly unlockable, the output of the honest receiver in the real model is
indistinguishable from the output of the ideal model.

According to the discussion in Section 3.1, in order to show that this protocol is secure, it
suffices to exhibit a simulator that can emulate the channel enc⊗1B = Φ0⊗1B using only the ideal
functionality. But this is easy: the simulator can emulate Φ0 ⊗ 1B simply by preparing registers
(B′,K) in the key state ξ0 and using the ideal functionality. Formally, the simulator (sim1, sim2) is
specified by sim1 : B→ (B′,K,B) : X 7→ ξ0 ⊗ Y and sim2 = I, so that

sim2 ◦ Φ ◦ sim1 : X ⊗ Y 7→ (Φ⊗ 1K)(X ⊗ ξ0)⊗ Y = Φ0(X)⊗ Y

as desired. (See Figure 2.)

Theorem 4 is in the quantum model; it is not hard to see by its proof that if Φ is in fact a
classical channel, then the resulting protocol π is a purely classical protocol.

3.3 Impossibility of one-time programs for arbitrary channels

Having seen that, in the plain model, one-time programs do exist for strongly unlockable channels,
we now see that they do not exist for weakly unlockable channels.

Theorem 5. Suppose Φ : (A,B)→ C is a non-reactive, sender-oblivious polynomial-time quantum
computable two-party functionality, and suppose that Φ admits an efficient, non-interactive quantum
protocol which quantum-UC-emulates FOTP

Φ in the plain model. Then Φ is weakly unlockable.
This holds in the perfect, statistical and computational cases.

13

The intuition of the proof is as follows. If a channel has a one-time program, then for any
adversary there exists a simulator that can match the behaviour of the adversary. In particular,
there must be a simulator that matches the behaviour of the dummy adversary that just outputs
the program state: thus, there must be an algorithm that can reconstruct the program state given
the output of the channel, thus allowing computation for any output, meeting the definition of a
weakly unlockable channel.

Proof. Suppose Φ is as in the theorem statement. By the discussion in Section 3.1, there exists
an encoding channel enc : A → P for the sender and a decoding channel dec : (P,B) → C for
the receiver such that dec ◦ enc is indistinguishable from Φ. Moreover, there exists a simulator
(sim1, sim2) with sim2 ◦ Φ ◦ sim1 being indistinguishable from enc⊗ 1B.

We claim that Φ is weakly unlockable with key channel Ξ0 = sim1 and recovery algorithm given
by AΨ = dec ◦ Ψ ◦ sim2 for any choice of Ψ. To this end fix a choice of Ψ : B → (B,E). The
channels Ψ and enc commute, as they act on different input registers. Thus using ≈ to indicate
computational, statistical, or perfect indistinguishability, depending on the scenario,

Φ ◦Ψ ≈ dec ◦ enc ◦Ψ = dec ◦Ψ ◦ enc ≈ dec ◦Ψ ◦ sim2
︸ ︷︷ ︸

AΨ

◦ Φ ◦ sim1
︸︷︷︸

Ξ0

.

An alternate intuition for the impossibility result for classical functions can be found by consid-
ering rewinding. Any correct one-time program state ρx for a classical function f(x, ·) must result
in the receiver obtaining an output state ρx,y that is (almost) orthogonal in the basis in which the
receiver measures it, because the measurement of ρx,y results in f(x, y) with (almost) certainty. As
a result, measurement does not disturb the state (much), so the receiver can reverse the computa-
tion to obtain (almost) the program state again, and then rerun the computation to obtain f(x, y′)
for a different y′. It is possible to give a proof for impossibility of OTPs for classical functions in
the plain quantum model using this rewinding argument. Impossibility for classical functions also
follows as a special case of the impossibility shown in [BCS12].

3.4 A conjecture on unlockable channels

As noted earlier, every strongly unlockable channel is also weakly unlockable. We conjecture that
the converse also holds: every weakly unlockable channel is also strongly unlockable. Though we
do not yet have a formal proof of this conjecture for arbitrary Φ, we can nonetheless provide a
high-level outline of what such a proof might look like.

Conjecture 6. Every channel Φ : (A,B)→ C that is weakly unlockable is also strongly unlockable.

Proof outline. Let σ be any mixed state of a register B′ ≡ B and consider the channel

Ψdummy : B→ (B′,B) : B 7→ σ ⊗B

so that
Φ ◦Ψdummy : (A,B)→ (C,B) : A⊗B 7→ Φ(A⊗ σ)⊗B.

That is, the channel Ψdummy swaps out the receiver’s input register B with a dummy register B′ in
state σ before Φ is applied. By definition, the channel Φ ◦Ψdummy does not touch B.

14

Let Ξ0,AΨ witness the weak unlockability of Φ. For the choice Ψ = Ψdummy it holds that the
channel

AΨdummy
◦Φ ◦ Ξ0 = Φ ◦Ψdummy

also must not touch B. Hence it must be that the channel Φ ◦ Ξ0 is invertible on B.
By enlarging the key register K as needed, we may assume without loss of generality that Ξ0

is implemented by an isometry S. Thus, in order to be invertible on B it must be that for each
pure state |ψ〉 of B the state S|ψ〉 of (B,K) can be recovered after Φ acts on B. In other words,
Φ must be invertible on the subspace Binv of the state space of register B containing the image of
TrK(S|ψ〉〈ψ|S∗) for every choice of |ψ〉.

Before putting B through Φ an alternate key channel Ξ′
0 could coherently swap out the subspace

Binv with some portion of the key register K in any fixed state ξ. Then, after receiving C from Φ,
the alternate recovery algorithm A′

Ψdummy
could perform the inversion operation to recover ξ, swap

this state back into the key register, and then perform the inverse of the inversion operation on
S|ψ〉 so as to apply Φ to this state. These modifications yield the desired simulator.

For the proof of the conjecture to go through, we need the invertibility of Φ on the aforemen-
tioned substance Binv to hold. It appears, then, that we have stumbled upon an interesting and deep
question relating to the invertible subspaces of a channel, akin to the “decoherence-free” subspaces
studied in the literature on quantum error correction.

4 Constructing quantum OTPs from OTMs

We now state our main possibility theorem which establishes non-interactive unconditionally secure
quantum computation using OTM tokens.

Theorem 7. Let Φ be non-reactive, sender-oblivious polynomial-time quantum computable two-
party functionality. Then there exists an efficient, quantum non-interactive protocol which statisti-
cally quantum-UC-emulates FOTP

Φ in the case of a corrupt receiver, in the FOTM-hybrid model.

The proof of Theorem 7 follows directly from Theorem 8 below, together with Corollary 2.1,
the quantum lifting theorem as well as Lemma 1.

Theorem 8. Let Φ be a non-reactive, sender-oblivious polynomial-time quantum computable two-
party functionality. Then there exists an efficient, statistically quantum-UC-secure non-interactive
protocol which realizes FOTP

Φ in the case of a corrupt receiver, in the FBR-OTP-hybrid model.

The proof of Theorem 8 is presented in the following sections, which we briefly highlight here;
a detailed outline follows in the next section.

1. Section 5 presents our new trap authentication scheme, a type of quantum authentication
code. We show how perform a universal set of quantum gates (X, Y , Z, cnot, i-shift and
π/8 phases, and H) on authenticated data without knowing the authentication key.

2. Section 6 presents our protocol for quantum one-time programs and the proof its security.
Since computation on authenticated data requires updates to be performed that are dependent
on the authentication key, our protocol uses a reactive classical one-time program (based
on one-time memories) to allow the receiver to non-interactively implement the required
operations to correctly compute on the sender’s authenticated data.

The following sections 4.1–4.5 provide an overview of the proof and related techniques.

15

4.1 Quantum authentication codes

A quantum authentication scheme consists of procedures for encoding and decoding quantum in-
formation with a secret classical key k such that an adversary with no knowledge of k who tampers
with encoded data will be detected with high probability. Quantum authentication codes were first
introduced by Barnum, Crépeau, Gottesman, Smith and Tapp [BCG+02].

Some of the known quantum authentication schemes have the following general form. Quantum
information is encoded according to some quantum error detecting code E chosen uniformly at
random from a special family E of codes. The encoded quantum data is then encrypted according
to the quantum one-time pad, meaning that a uniformly random Pauli operation P is applied to
the data encoded under E. The secret classical key for schemes of this form is the pair (E,P)
describing the choice of code E and encryption Pauli P . Authenticated quantum data is later
verified by decrypting according to P and then decoding according to E. Verification passes only if
the error syndrome for E indicates no errors. Terminology: In this paper authentication schemes
of this form are called encode-encrypt schemes.

This construction is desirable due to the remarkable property (known as the Pauli twirl [DCEL09])
that the Pauli encryption serves to render any attack on the scheme equivalent to a probabilistic
Pauli attack on data encoded with a random code E ∈ E . Thus, to establish a secure authentica-
tion scheme one need only construct a family E of quantum error detecting codes that detect Pauli
attacks with high probability over the choice of E ∈ E .

Our new trap authentication scheme falls in this family of codes. The family of codes E is
based on any quantum error detecting code C with distance d that encodes a single qubit into n
qubits. Authentication consists of first encoding a qubit under C and then appending n qubits
set to |0〉 and n qubits set to |+〉. A random permutation (indexed by a classical key) is then
applied. The first use of this code was implicit in the Shor–Preskill security proof for quantum key
distribution [SP00] (see also [BFK09]).

4.2 Computing on authenticated data

At a high level, our main protocol uses quantum authentication codes in order to protect the data
from any tampering by the receiver during the computation. An authentication code is insufficient,
however, because we want to implement a channel on this authenticated data, as specified by a
quantum circuit. For this, we use techniques for quantum computing on authenticated data, as
first established for the signed polynomial code [BOCG+06] (see also [ABOE10]), and recently
(and independently of our work), for the Clifford authentication code [DNS12]. More specifically,
computing on authenticated data allows acting on the encoded registers in order to implement
a known gate, but without knowledge of the key. Normally, any non-identity operation would
invalidate the authenticated state, but our encoded operations, together with a key update operation,
effectively forces the application of the desired gate, as otherwise the state would fail verification
under the updated key.

Encoded gates are executed in a manner similar to encoded gates in fault-tolerant quantum
computation: some gates (such as Pauli gates or the controlled-not gate) are transversal, while other
(such as the π/8 gate) require both an auxiliary register and classical interaction with an entity
who knows the encoding keys. This classical interaction makes our quantum one-time program
“interactive”, but only at a classical level. Thus, by extending classical one-time programs to reactive
functionalities, we manage to encapsulate this interaction into a classical one-time program.

16

Comparison with other methods of computing on authenticated data. Although meth-
ods for computing on authenticated data were developed prior to our work, we believe that the
simplicity of our trap scheme is an advantage. For example, whereas the trap scheme is defined
for qubits, the signed polynomial scheme of Ben-Or et al. [BOCG+06] acts on d-dimensional qu-
dits with d dictating the security of the scheme. By necessity, the universal gate set Ud for the
polynomial scheme is different for each d. In order to use the polynomial scheme for computation
on qubits, one must first embed the desired qubit computation into a qudit computation. (For
example, a naive approach is to simply embed one qubit into each qudit and use only the first two
dimensions.) However this embedding is chosen, one must demonstrate that gates in the original
qubit computation can be implemented efficiently using gates from Ud. Normally, an efficient tran-
sition between universal gate sets is implied by the Solovay–Kitaev algorithm, but this techniques
scales poorly with d and so cannot be used for this purpose for large d. (See Dawson and Nielsen
[DN06] and the references therein.) Although we fully expect such an embedding to admit an
efficient implementation, it appears that the issue has not been addressed in the literature.

Compared with the gate implementations in the recent Clifford scheme of Dupuis et al. [DNS12],
our trap scheme is less complex and requires less communication between the sender and the receiver
(the Clifford scheme requires communication for all circuit elements).

4.3 Gate teleportation

The main outline of our protocol is now becoming clearer: the receiver executes the encoded
circuit, using techniques for computing on authenticated data. But how does the receiver get the
authenticated version of her data in the first place? And how does the receiver get the decoded
output? We resolve this by using encoding and decoding gadgets that are inspired by the gate
teleportation technique of Gottesman and Chuang [GC99]. In this technique, a quantum register
undergoes a transformation by a quantum circuit via its teleportation through a special entangled
state. In our case, encoding is performed by teleporting the input qubit through an EPR pair,
half of which has itself undergone the encoding operation. By revealing the classical result of the
teleportation, the authentication key for the output of this process is determined. Decoding is
similar. The encoding and decoding gadgets are prepared by the sender as part of the quantum
one-time program.

4.4 Overview of protocol

Given the tools and techniques described above, the structure of our protocol is as follows (although
we suggest the use of the trap authentication scheme, the protocol and proof is applicable to any
encode-encrypt quantum authentication scheme that admits computing on authenticated data).
1. The sender gives the receiver an authenticated version of the sender’s input, together with

auxiliary states required for evaluating the target circuit. The sender also prepares encoding
and decoding gadgets.

2. The sender gives the receiver a bounded reactive classical one-time program that emulates the
classical interaction that would occur when using the encoding and decoding gadgets, as well as
for computing on authenticated data.

3. The receiver uses the encoding gadget to encode his input; he then performs the target circuit
on the authenticated data by performing encoded gates. Finally, he decodes the output using
the decoding gadget. All classical interaction is done via the classical one-time program.

17

As a proof technique, we specify that the target circuit be given as a controlled-unitary, with the
control set to 1, for a reason described in the simulation sketch below.

4.5 Overview of simulator for proof

In order to prove UC security, we must establish that every real-world adversary has an ideal-
world simulator. This is done via a rigorous mathematical analysis of any arbitrary attack; the
exposition of our proof is aided by a table representation we have developed for pure quantum
states (see Section C.2). The simulator prepares a quantum one-time program as in Section 4.4,
with the following modifications:
1. The encoding gadget is split into two halves. The first half is a simple EPR pair, used to extract

the input from the adversary; the second half is an encoding gadget, used to insert the output
of the ideal functionality into the computation.

2. The control-bit for the controlled-unitary is 0.
3. The encoded input is a dummy encoded input.
The simulator then executes the adversary on this “quantum one-time program”. After the use
of the encoding gadget, the receiver’s input is determined and this is used as input into the ideal
functionality. The output of the ideal functionality is then returned into the computation via
the encoding gadget. Because the control bit is set to 0, the computation actually performs the
identity. When the adversary is honest, the output will therefore be correct. For any behaviour of
the adversary, our analysis shows that the ideal and real worlds are indistinguishable. The simulator
thus indistinguishably emulates the real-world behaviour of any adversary with just a single call to
the ideal functionality, which establishes UC security.

5 The trap authentication scheme

In this section we introduce the trap authentication scheme, which is an example of an encrypt-
encode scheme as described in Section 4.1. We show how to implement gates from a universal
set on data authenticated under this scheme (including measurement in the standard basis), from
which it follows that the trap scheme admits QCAD.

5.1 Definitions and notation

In this paper we assume that a quantum error correcting code is specified by a unitary operation E
that can be implemented by a circuit consisting entirely of Clifford gates. A data register D is
encoded under code E by preparing two syndrome registers (X,Z) in the |0〉 state and applying E
to (D,X,Z). Data is decoded by applying the inverse circuit E∗ and measuring the syndrome
registers (X,Z) in the computational basis. Any non-zero syndrome measurement result indicates
an error (or that cheating has been detected, depending on the context). These assumptions are
met, for example, by every stabilizer code. In order to minimize the number of symbols for distinct
quantum registers we adopt the convention that the tilde ˜ denotes an encoded register. For example,
the encoded register D̃ consists of a data portion D plus two syndrome registers X,Z and can be
viewed as a triple D̃ = (D,X,Z).

Let E be a code for some data register D and let Q be any Pauli acting on D̃. As E is a Clifford
circuit there must be a Pauli QE acting on D̃ with QE = EQE .

18

Definition 9. A family E is said to be ǫ-secure against Pauli attacks if for each fixed choice of
Pauli Q acting on D̃ it holds that the probability (taken over a uniformly random choice of code
E ∈ E) that QE acts nontrivially on logical data and yet has no error syndrome is at most ǫ.

Formally defining the security of an authentication scheme is tricky work. (See Barnum et al.
[BCG+02] for a discussion of definitional issues.) Fortunately, the task becomes much easier if we
restrict attention to encode-encrypt schemes described in Section 4.1. This happy state of affairs is
a consequence of the fact that an arbitrary attack on data authenticated under an encode-encrypt
scheme is equivalent to a probabilistic mixture of Pauli attacks. (See below for futher discussion.)
Thus, an encode-encrypt scheme is ǫ-secure against against arbitrary attacks if and only if the
underlying family E of codes is ǫ-secure against Pauli attacks.

5.2 Properties of every encode-encrypt authentication scheme

Before introducing the trap scheme we review some facts about encrypt-encode authentication
schemes as described in Section 4.1. These facts were largely known to the community prior to the
present work and hence a full discussion is relegated to Appendix B. Our purpose in this paper is
to collect these facts in one convenient place and to present them in a way that is amenable to a
discussion of QCAD. In Appendix B we formalize and prove the following facts:

1. Any family E of codes that is ǫ-secure against Pauli attacks immediately induces an ǫ-secure
encode-encrypt scheme via the construction described in Section 4.1.

2. If the codes in E are CSS codes then measurement of logical data in the computational basis
can be implemented by bitwise measurement of authenticated data followed by a classical
decoding process in order to determine the measurement result.

3. The measure-then-decode procedure of property 2 is equivalent to a decode-then-measure
procedure in which the register D̃ is first de-authenticated and then the logical register D

is measured in the computational basis. In this procedure, the X-syndrome register is also
measured in the computational basis so as to check for errors, but the Z-syndrome register
is simply discarded without any verification.

4. For any encode-encrypt scheme thus constructed, the measure-then-decode procedure (or
equivalently, the decode-then-measure procedure) of property 2 is also ǫ-secure against arbi-
trary attacks.

5. In any encode-encrypt scheme the code key E can be re-used to authenticate multiple distinct
data registers, provided that each new register gets its own fresh Pauli key P .

The proof of property 5 is easy enough that we can give it immediately. As noted in Section
4.1 (and established in the proof of property 1 in Appendix B), the Pauli encryption serves to
render any attack on an encode-encrypt scheme equivalent to a probabilistic mixture of Pauli
attacks. By definition a Pauli attack is a product attack on each physical qubit in the authenticated
registers, so security against attacks on one register implies security against attacks on all registers.
This observation was originally made in the analysis of the polynomial authentication scheme
[BOCG+06]. (See Ref. [ABOE10] for a slightly more detailed discussion.)

5.3 Trap codes yield a secure authentication scheme

In this section we describe a method by which any code E with distance d can be used to construct
a family E of codes that is (2/3)d/2-secure against Pauli attacks. Codes of this form shall be called
trap codes. It follows immediately from the discussion of Section 5.2 that trap codes yield a secure

19

authentication scheme via the encode-encrypt construction of Section 4.1. This authentication
scheme shall be called the trap scheme.

Furthermore, if the underlying code E is a CSS code then so is every member of the associated
family E of trap codes. In this case it follows from the discussion of Section 5.2 that measurement
of logical data in the computational basis can be implemented securely by bitwise measurement of
physical data plus classical decoding.

For convenience we restrict attention to codes that encode one logical qubit into n physical
qubits. (These are called [[n, 1, d]]-codes.) Given such a code, each member of the associated
family E of trap codes is a [[3n, 1, d]] code that is uniquely specified by a permutation π of 3n
elements. In particular, for each π we construct a Clifford encoding circuit Eπ as follows.

1. Encode the data qubit D under E, producing an n-qubit system (D,X,Z).
2. Introduce two new n-qubit syndrome registers X′,Z′ in states |0〉⊗n, |+〉⊗n, respectively.
3. Permute all 3n qubits of (D,X,Z,X′,Z′) according to π.

The X- and Z-syndrome registers for the code Eπ are (X,X′) and (Z,Z′), respectively so that
D̃ = (D, (X,X′), (Z,Z′)). Security of this family against Pauli attacks is easy to prove.

Proposition 10 (Security of trap codes against Pauli attacks). The family E of trap codes based
on a code of distance d is (2/3)d/2-secure against Pauli attacks.

Remark. The bound in Proposition 10 is quite weak and can probably be strengthened sig-
nificantly by a tighter analysis. All that really matters is that the security parameter decreases
exponentially in d.

Proof. Let Q be a 3n-qubit Pauli. In order for Q to act nontrivially on logical data it must have
weight w ≥ d, owing to the fact that the underlying code E has distance d. In this case Q must
distribute w non-identity qubit Pauli operations over the 3n qubits without triggering any of the
traps. Let us bound the probability of such an event.

In order to have weight w the Pauli Q must specify either an X-Pauli on at least w/2 qubits
or a Z-Pauli on at least w/2 qubits. We analyze only the first case; a similar analysis applies to
the second case. If any of these qubits belong to the register X′ then Q will be detected as an
error. Thus, to avoid detection all w/2 of these qubits must not belong to X′—a sample-without-
replacement event whose probability of success is bounded by the probability of a successful sample-
with-replacement event. The probability of success in any one sample is at most 2/3 and so the
probability of w/2 successful samples with replacement is at most (2/3)w/2.

5.4 Performing Gates on the Trap Code

Authentication schemes that also allow for the implementation of a universal set of quantum gates
on authenticated data without knowing the key hold great promise for a host of cryptographic
applications. In this section, we exhibit a universal gate set together with implementations of each
gate in that set for the trap scheme. As discussed in Section 4.2, these techniques are used in our
quantum one-time programs.

Let us be more explicit about what it means to apply gates to authenticated quantum data
without knowing the key. It is helpful to think of two parties: a trusted verifier who prepares
authenticated data with secret classical key k and a malicious attacker who is to act upon the
authenticated data without knowledge of k. The goal is to construct an authentication scheme
with the property that for each gate G belonging to some universal set of gates there exists a

20

gadget circuit G̃ that the attacker can perform on authenticated data so as to implement a logical
G. Furthermore, we require that the gadget G̃ be independent of the choice of classical key k so
that it may be implemented by an attacker without knowledge of k.

Normally, any non-identity gadget G̃ would invalidate the authenticated state. We therefore
require a scheme which allows the verifier to validate the state again simply by updating the classical
key k 7→ k′. Moreover, by updating the key in this way the verifier effectively forces the attacker
to apply the desired gadget G̃ as otherwise the state would fail verification under the updated key
k′.

Some gadgets are quite simple. For example, we shall soon see that the gadget for a logical
controlled-NOT in the trap scheme is simply a bitwise controlled-NOT applied to the physical
qubits in the authenticated registers. Other gadgets, however, are more complicated, owing partly
to the fact that there is no quantum error detecting code that admits bitwise implementation of
every gate in a universal gate set.

Following the example of the polynomial scheme of Ben-Or et al. [BOCG+06], we borrow from
the study of fault-tolerant quantum computation to complete a universal gate set by means of so-
called “magic states”. A magic state gadget for a logical gate G is a circuit that takes an additional
(authenticated) ancillary register as input, performs a measurement, and then performs a correction
based on the result of that measurement. A magic state gadget for G works only when the ancillae
are prepared in a special (authenticated) magic state tailored specifically for the gate G. (For
example, Ben-Or et al. exhibited a magic state and associated gadget for the generalized Toffoli
gate under the polynomial scheme [BOCG+06].) Thus, implementation of a universal gate set on
authenticated data requires the ability to prepare authenticated magic states and the ability to
measure authenticated qubits in the computational basis.

5.5 A universal gate set for the trap scheme

In Section 5.3 we stipulated that a trap scheme can be constructed from any underlying code E
chosen from a large class of codes. We also noted that if E is a CSS code then so are its associated
trap codes, from which it follows that measurement of logical data can be implemented by a simple
bitwise measurement of authenticated data.

In addition to being a CSS code, our implementation of a universal gate set for the trap scheme
requires an underlying code E for which a logical Hadamard gate H is implemented by bitwise H
on each physical qubit. CSS codes with this property are sometimes called self-dual CSS codes.
The seven-qubit Steane code is one example of a self-dual CSS code that suffices for this purpose.
Specifically, it follows from Proposition 10 that if our trap scheme is to have security (2/3)d/2 then
it suffices to base the trap scheme upon the Steane code nested a sufficient number of levels so as
to achieve distance d.

Our universal gate set consists of the following gates, listed in the order they are presented in
the following subsections.

1. The standard single-qubit Pauli gates, denoted X,Y,Z.
2. The standard two-qubit controlled-NOT gate, denoted cnot.
3. The single-qubit i-shift phase gate, denoted K and specified by K : |a〉 7→ ia|a〉 for a ∈ {0, 1}.
4. The single-qubit π/8-phase gate, denoted T and specified by T : |a〉 7→ eaiπ/4|a〉 for a ∈ {0, 1}.
5. The standard single-qubit Hadamard gate, denoted H.

This gate set is redundant in the sense that only {cnot,H, T} are required to achieve universality.
Indeed, T 2 = K and K2 = Z, so why bother listing these extra gates? The answer is that the

21

gadgets for the Pauli and controlled-NOT gates are very simple. By contrast, the gadget for K
is a magic state gadget that requires cnot and Y and the gadget for T is a magic state gadget
that requires cnot, X, and K. Thus, in order to get a T gate we must “bootstrap” our way up
from Pauli gates, cnot, and K. (If an application calls for only Clifford circuits on authenticated
data then the T gate construction can be ignored, as {cnot,H,K} suffice to generate the Clifford
circuits.)

5.5.1 Pauli gates

The gadgets for each Pauli gate X,Y,Z are empty. As with the polynomial scheme [BOCG+06], in
order to implement a logical Pauli gate in the trap scheme the attacker does absolutely nothing to
the authenticated register and the verifier simply updates the Pauli key according to the desired
Pauli gate.

In particular, logical Paulis for the seven-qubit Steane code admit straightforward bitwise im-
plementations. Thus, the verifier can implement a logical Pauli Q in the trap scheme by modifying
the Pauli key according to P 7→ PQ⊗7 where Q⊗7 is applied to registers (D,X,Z), leaving the Pauli
key for the trap registers X′,Z′ unchanged.

5.5.2 The controlled-NOT gate

The gadget for a controlled-NOT from logical qubit a to logical qubit b is a straightforward bitwise
cnot applied from each physical qubit of a to its corresponding physical qubit in b.

To see that this simple bitwise gadget implements logical cnot recall that every CSS code
(including the Steane code) admits a bitwise implementation of logical cnot. Moreover, the cnot

applied bitwise to the trap registers acts trivially on those registers:

cnot : |0〉|0〉 7→ |0〉|0〉
: |+〉|+〉 7→ |+〉|+〉

Finally, observe that bitwise cnot is invariant under permutation of the physical qubits provided
that both data blocks are subjected to the same permutation. (See Section 5.6.1 for further discus-
sion.)

The Pauli key is updated according to the well-known effect of cnot on Pauli operations. In
particular, if the Pauli keys for the ith physical qubit from both data blocks are XpZq,XrZs,
respectively, then the updated Pauli keys for these physical qubits are XpZq+s,Xp+rZs.

5.5.3 The i-shift gate

Readers familiar with the Steane code know that a bitwise K gate applied to each physical qubit
implements K∗ on logical data. At first glance one might therefore hope that the K gate, like
cnot, admits a simple bitwise gadget under the trap scheme. Unfortunately, trap codes do not
admit bitwise implementation of the K gate even if the underlying code does admit such an imple-
mentation. Bitwise implementation fails for trap codes because the trap qubits prepared in state
|+〉 are mapped by K to K|+〉 = |0〉+ i|1〉. A trap qubit in this state is detected as a Z-error with
probability 1/2.

Instead we require a more complicated magic state gadget for K that uses only Pauli and cnot

gates together with measurement in the computational basis. Our gadget is a simple modification

22

of the well-known fault-tolerant construction for the π/8-gate of Boykin et al. [BMP+00]. The
logical gadget for the K gate is depicted as follows.

|0〉+ i|1〉 • Y K|ψ〉

|ψ〉

(1)

Here |ψ〉 denotes the arbitrary state of the data qubit; the magic state for this gadget is |0〉+ i|1〉.
The physical gadget to be implemented by the attacker on authenticated data is derived from the
above logical gadget by replacing the input qubits with authenticated registers and by replacing
the logical cnot, Y , and measurement with their respective physical gadgets.

Once the authenticated magic state has been prepared, all the gates in this gadget except the
measurement can be implemented by solely by the attacker. The verifier’s knowledge of the secret
key is required in order to decode the measurement result, which indicates whether a Y correction
is needed.

Since Y is a Pauli gate and since Pauli gates require no action from the attacker, this gadget
can be implemented with only one-way classical interaction from attacker to verifier. In particular,
the attacker implements the measurement by bitwise measurement of physical data as described in
Section 5.2. The verifier decodes the measurement result (and checks for tampering in the process)
and then implements the Y correction (if it is needed) simply by updating the Pauli key for that
qubit as described in Section 5.5.1.

5.5.4 The π/8-phase gate

The gadget for the T gate is a magic state gadget that is very similar to the magic state gadget
for the K gate described Section 5.5.3 and consequently much of the discussion from that section
applies here. The original fault-tolerant construction due to Boykin et al. [BMP+00] can be used
verbatim as the logical gadget for the T gate in the trap scheme. Their construction is reproduced
below.

|0〉 + eiπ/4|1〉 • KX T |ψ〉

|ψ〉

(2)

The magic state for this gadget is |0〉+ eiπ/4|1〉.
Whereas the gadget for K presented in Section 5.5.3 specified only a Pauli Y correction, the

correction required in the T gadget is the Clifford gate KX. Two-way communication between
verifier and attacker is required to implement this gadget because the verifier must inform the
attacker as to whether to apply a K gate. Naturally, this K gate, if it is required, is achieved via
the magic state gadget presented Section 5.5.3, which requires a separate magic state of its own.

Since K is not a Pauli gate subsequent computation on authenticated quantum data cannot
proceed until the correction is applied (if it is needed). Thus, the verifier must decode the classi-
cal measurement result and reply immediately to the attacker with instructions as to whether a
correction is required.

23

5.5.5 The Hadamard gate

Similar to the K gate, a logical H gate can be implemented under the Steane code by applying H
bitwise to each physical qubit. One might therefore hope that the H gate admits a simple bitwise
gadget under the trap scheme. Unfortunately, as with the K gate, trap codes do not admit bitwise
implementation of H even if the underlying code does admit such an implementation. Bitwise
implementation fails for trap codes because the |0〉 and |+〉 trap qubits are swapped by the action
of bitwise H. Each trap qubit is thus in a state that is detected as an error with probability 1/2.

As with the implementations of the K and T gates described previously we shall implement
the Hadamard by a magic state gadget. Whereas the gadgets for K,T are compact and efficient,
the simplest known magic state gadget for the Hadamard gate is the teleport-through-Hadamard
circuit, which is a special case of the gate teleportation protocol of Gottesman and Chuang [GC99].
This circuit is depicted in Figure 4. The magic state for this gadget is the two-qubit maximally
entangled state |00〉 + |01〉 + |10〉 − |11〉.

|00〉 + |11〉

|ψ〉

H

+

H

/⌢

/⌢

Z X H|ψ〉

Magic state

Bell measurement

Figure 4: Teleport-through-Hadamard circuit

Implementation of the Bell measurement appearing in the above circuit requires that a Hadamard
gate be applied to one of the two qubits immediately prior to measurement. At first glance this
requirement might appear circular, as we require a Hadamard gate in order to implement the
Hadamard gate. We claim, however, that it is possible to implement the Hadamard gate bitwise
on authenticated data provided that the qubit is measured immediately afterward as is the case for
a Bell measurement.

This claim is not difficult to justify. As mentioned above, the effect of the bitwise H gate is to
swap the syndrome registers X′,Z′ immediately prior to measurement. But it is trivial to modify
any measure-then-decode procedure (such as that mentioned in Section 5.2) so as to take this swap
into account.

As with the gadget for K presented in Section 5.5.3, the correction in our gadget for H is a
Pauli gate. Hence, implementation of this gadget requires only one-way classical communication
from attacker to verifier.

5.6 Miscellaneous remarks

5.6.1 On the need to re-use code keys in the trap scheme

Classical keys for the trap scheme are specified by a pair k = (π, P) indicating the choice of trap
code Eπ and Pauli encryption P . In Section 5.5 we saw that each gate G in our universal gate
set for the trap scheme has the property that the associated gadget G̃ is validated by updating

24

only the Pauli key P so that (π, P) 7→ (π, P ′). This is fortunate, as our implementation of the
controlled-NOT gate necessitates that every authenticated qubit share the same code key π. As
noted in Section 5.2, the security of of any encode-encrypt scheme (including our trap scheme) is
preserved even when the code key is re-used across multiple data registers.

The polynomial scheme of Ben-Or et al. has a similar structure [BOCG+06]. In particular, a
key in the polynomial scheme is a pair k = (s, P) consisting of a “sign key” s and a Pauli key P .
The generalized controlled-NOT and Toffoli gates for the polynomial scheme necessitate that each
authenticated qudit use the same sign key but different Pauli keys.

5.6.2 Clifford circuits can be implemented offline

The π/8-phase (T) gate is the only gate in the universal set described in Section 5.5 that requires two-
way interaction between the attacker and verifier. Since any Clifford circuit can be implemented
without T gates, it follows that any Clifford circuit can be implemented on data authenticated
under the trap scheme in an offline manner. In particular, the transmission to the verifier of all
measurement results from all gadgets for the gates in a Clifford circuit can be put off until the very
end of the computation, at which time the verifier can decode the results and deduce the effect of
each correction on the final Pauli key.

5.6.3 Any circuit can be implemented with only classical interaction

We can see from the gate constructions of Section 5.5 that any quantum circuit whatsoever—be
it a Clifford circuit or otherwise—can be implemented on authenticated data with only classical
interaction between attacker and verifier.

In our application to quantum one-time programs we exploit this fact in order to obtain a non-
interactive protocol for two-party quantum computation by encapsulating all classical interaction
inside a reactive classical one-time program.

The need in our quantum one-time program for a reactive classical one-time program is neces-
sitated by the gadget for the T gate. In the special case that the quantum one-time program is
for a Clifford circuit there is no need for a reactive classical one-time program: it suffices to use a
non-reactive COTP to compute the final decryption key based on measurement results supplied by
the user.

5.6.4 Rigorous security

In this section we described how gates from a universal set can be applied to data authenticated
under the trap scheme. Intuitively, we can see that the interactive protocol for implementing an
arbitrary circuit is cryptographically secure, yet we did not provide a fully formal proof of security
in this section. If desired, a fully rigorous security proof for computation on authenticated data
via the trap scheme can be obtained as a special case of the security proof for our main result on
QOTPs in the next section.

6 Statement and analysis of our QOTP

In this section we will formally describe and analyze our protocol for quantum one-time programs.
First, in Section 6.1, we describe a few preliminaries, in particular notation related to implementing

25

quantum computation using Clifford gates and magic states. In Sections 6.2 and 6.3 we specify
the protocol actions for honest senders and receivers. Sections 6.4 through 6.8 contain the proof of
Theorem 8, that our protocol is statistically quantum-UC-secure realization of FOTP

Φ in the case of
a corrupt user, in the FBR-OTP-hybrid model. The proof makes use of a new tabular representation
for operations which is given in Section 6.5 (see also Appendix C.2). We first describe the general
form of the security argument in Section 6.4, analyze the environment’s interaction with the sender
in Section 6.6, and describe and analyze the simulator for an arbitrary adversary in Sections 6.7
and 6.8.

Our QOTP construction requires an encode-encrypt quantum authentication scheme that ad-
mits quantum computation on authenticated data, such as the trap scheme presented in Section
5. Our construction is completely independent of the specific choice of scheme. Moreover, if the
underlying authentication scheme is ε-secure then our QOTP is 2ε-secure.

Henceforth we assume that such a scheme is fixed—call this scheme Q. We let E denote the
family of codes upon which Q is based and we let G denote the universal gate set that can be
implemented on data authenticated under Q.

6.1 Preliminaries

Suppose that we are given an arbitrary unitary V—specified as a circuit using gates from G and
acting upon register R—and we wish to construct a circuit that implements V on data authenticated
under Q. We have already seen how to do this for the trap scheme. In this section we review
this simple process so as to establish basic concepts and notation that will be useful throughout
Section 6.

6.1.1 Quantum computation with Clifford gates and magic states

Let r denote the number of gates in V that require magic states. (For the trap scheme, r is the total
number of K, H, and T gates in V .) Alongside the data register R we add r registers M1, . . . ,Mr,
which are assumed to be initialized to the appropriate magic states |µ1〉, . . . , |µr〉. We refer to
these r registers collectively as M and to the collective state of M as |µ〉.

Let V (0), . . . , V (r) be a partition of the gates of V so that V (i) denotes the Clifford circuit con-
sisting of all the gates occurring after measurement of the ith magic state and before measurement
of the (i + 1)th magic state. Note that each V (i) acts only upon registers (R,Mi+1) and V

(r) acts
only upon R. The circuit V is implemented as follows:

1. Apply V (0).
2. For i = 1, . . . , r:

(a) Measure the magic state register Mi and apply the Clifford correction C(i) indicated by
that measurement result.

(b) Apply V (i).
In order to see how the action of V is recovered from the above process it is helpful to write

this procedure as a channel on R in Kraus form. To this end let a ∈ {0, 1}r be the r-dimensional
vector of classical measurement results obtained in the above implementation of V and let Va de-
note the Clifford circuit resulting from applying V (0), . . . , V (r) interleaved with Clifford corrections
C(1), . . . , C(r) according to the measurement outcomes a. Because each V (i) acts upon a unique

26

magic state register, the desired channel on R can be written as follows:

ρ 7→
∑

a∈{0,1}r

〈a|Va (ρ⊗ |µ〉〈µ|) V ∗
a |a〉 . (3)

It is a property of magic state implementations of gates that for each a we have

〈a|Va|µ〉 =
1

2r/2
V . (4)

So the above channel (3) is equivalent to

ρ 7→
∑

a∈{0,1}r

1

2r
V ρV ∗ = V ρV ∗ (5)

as desired.
If for some reason the measurement results a are corrupted to some other vector a′ then the

above procedure will mis-apply the Clifford corrections C(1), . . . , C(r). Let Va−a′ denote the circuit
derived from V by inserting extra Clifford gates according to the corruption a− a′ so that

〈a′|Va|µ〉 =
1

2r/2
Va−a′ . (6)

6.1.2 Encoded circuits

In accordance with the convention introduced in Section 5.1, any register denoted with a tilde ˜
is assumed to be accompanied by its own X- and Z-syndrome registers. Given a logical register R
and a code E ∈ E , the encoded register R̃ is obtained by applying the operator E(IR ⊗ |0〉) to R.
For brevity we omit the initial state |0〉 of the syndrome registers and simply view E as an isometry
from R to R̃ when it is convenient to do so. When multiple registers R1, . . . ,Rk are each encoded
under the same code E we write E instead of E⊗k.

Given a circuit W acting on R and composed entirely of states from G that can be implemented
without magic states (such as the circuits Va of the previous subsection), it is easy to construct the
circuit W̃ acting on R̃ that implements W on authenticated data: simply replace each logical gate
with its equivalent on authenticated data.

Of course, encoding a register under a code E and then applying W̃ is equivalent to first
applying W and then encoding the result under E. This identity is expressed succinctly under the
above notation as

W̃E = EW.

6.2 Specification of the sender’s message

Let Φ : (A,B) → C be a channel specified as a quantum circuit using gates from G. In this
section we specify the QOTP for Φ. More specifically, suppose that the input registers (A,B)
are prepared in some state (possibly entangled with other registers) and given to the sender and
receiver, respectively. In this section we show how to construct the sender’s message to the receiver
given A.

27

6.2.1 Implementing a channel via controlled-unitary

Without loss of generality we assume that the channel Φ has the form Φ : (A,B)→ B. That is, the
receiver’s output register C = B has the same size as the input register. Furthermore, without loss
of generality we assume that the channel Φ is specified by a unitary circuit U acting on registers
(A,B,E). The extra register E is an auxiliary register initialized to the |0〉 state. The action of Φ is
recovered from U by discarding registers (A,E) so that Φ(ρ) = TrAE(UρU

∗) for all ρ.
Given a circuit U one can efficiently find a circuit for the controlled-U operation, which we

denote c-U . In addition to the registers (A,B,E), the circuit for c-U acts upon an additional qubit
called the control qubit so that for any pure state |ψ〉 of (A,B,E) we have

c-U : |ψ〉 ⊗ |on〉 7→ U |ψ〉 ⊗ |on〉
: |ψ〉 ⊗ |off〉 7→ |ψ〉 ⊗ |off〉 .

In an effort to minimize the number of distinct register names we bundle the control qubit into the
ancillary register E with the understanding that the initial state of E is |0〉 for U and |0〉|on/off〉
for c-U .

In our QOTP for Φ the sender and receiver shall implement the circuit for c-Ũ . In this protocol
the sender prepares the authenticated ancilla register Ẽ (including the control qubit) and gives it
to the receiver (along with several other quantum registers and a reactive COTP to be specified
shortly). This control qubit is always initialized to the |on〉 state. As such, one might wonder why
we bother implementing c-Ũ instead of Ũ . The purpose of the control qubit is to facilitate the
forthcoming security proof.

We also have an alternative QOTP in which Ũ is implemented directly with no need for c-Ũ .
However, the security proof for this alternative QOTP is more technically cumbersome than our
protocol for c-Ũ (see Section 6.2.3) so we have elected to present only the protocol for c-Ũ in this
paper. Whether or not the controlled-U is necessary for our somewhat simpler security proof is an
interesting unresolved question.

6.2.2 Specification

Let r be the number of gates in c-Ũ that require magic states. After the parties have received their
input registers A,B, a non-interactive protocol for c-Ũ consists of a single message from the sender
to the receiver. This message consists of the following objects:

1. Quantum registers Ã,Bin, B̃in,Bout, B̃out, Ẽ, M̃ = (M̃1, . . . , M̃r) prepared in specific states de-
scribed in Protocol 1 below.

2. An (r+1)-round reactive classical one-time program (BR-OTP) described in Protocol 2 below.
In order to prepare this message, a code E ∈ E and encryption Paulis P, S are chosen uniformly at
random. The Pauli S acts on B̃out and the Pauli P acts on (Ã, B̃in, Ẽ, M̃). (Here and throughout the
paper we adopt the convention that the portion of a multi-register Pauli acting on a single register
is denoted by the register name appearing in a subscript. For example, the portion of P acting
on M̃ is denoted P

M̃
and it holds that P = P

Ã
⊗ P

B̃in
⊗ P

Ẽ
⊗ P

M̃
.) The registers are prepared as

described in Protocol 1 and Figure 5.
In addition to these registers, the sender prepares an (r+1)-round BR-OTP to act as described

in Protocol 2.

28

Protocol 1 Message preparation for sender

(Bin, B̃in): Teleport-through-authentication state P
B̃in
E|φ+〉. (See Figure 5(a).)

(B̃out,Bout): Teleport-through-de-authentication state obtained by discarding the syndrome reg-
isters of E∗S|φ+〉. (See Figure 5(b).)

Ã: Authenticated input state. Obtained by applying P
Ã
E to the input register A.

Ẽ: Authenticated ancilla P
Ẽ
E|0〉|on〉.

M̃: Authenticated magic states P
M̃
E|µ〉 where |µ〉 = |µ1〉 · · · |µr〉 and |µ1〉, . . . , |µr〉 are

the r magic states required for c-U .

(a) Teleport-through-authentication

|φ+〉
Bin

E
D

X

Z

|0〉
|0〉

P
B̃in B̃in

(b) Teleport-through-de-authentication

|φ+〉
B̃out

E∗ S

Bout

syndrome
registers
discarded

Figure 5: Circuits for teleporting through authentication and de-authentication

Protocol 2 Specification of the BR-OTP

1. Receive (a classical description of) a Pauli T in.
2. For i = 1, . . . , r:

(a) Receive a classical bit string ci. Decode ci into a classical bit ai as per the measure-
then-decode circuit (95) of Section B.2 with code key E and decryption Pauli P̂

M̃i
to be

specified later. Return the decoded bit ai to the user.
(b) If ci is inconsistent with (E, P̂

M̃i
)—that is, if the measure-then-decode circuit (95) applied

to ci indicates a non-zero error syndrome—then cheating has been detected. Remember
whether cheating has been detected.

3. Receive (a classical description of) a Pauli T out. If cheating was never detected in step 2b
then return to the user a (classical description of a) decryption Pauli Ŝ to be specified later.
Otherwise return uniformly random bits. For later convenience we specify that the classical
description of Ŝ be contained in a register K.

29

This QOTP could be mass-produced. The state of the authenticated register Ã depends
upon the state of the sender’s input register A. But the remaining registers could all be prepared
(or mass-produced) before A is received. Furthermore, the BR-OTP also does not depend upon A,
but it does depend upon the authentication key for Ã. This key could be chosen in advance, in
which case the BR-OTP could also be mass-produced before A is received.

6.2.3 No need to check integrity of the data registers

Notice that the BR-OTP checks the syndrome registers of only the magic state register M̃ and
ignores any error syndrome present in other registers. This minimal requirement might at first
seem insufficient to establish a secure QOTP as, for example, the receiver is free to tamper with
the data registers (Ã, B̃, Ẽ). We shall see later that any such attack is equivalent to an attack before
and/or after Φ is applied and hence can be reproduced by a simulator with one-shot access to Φ.

If instead we were to modify our BR-OTP so as to also verify the syndrome registers for the
receiver’s output register Bout then we could derive a protocol that implements the circuit U directly,
as opposed to the controlled-U implemented by the present protocol. As suggested earlier, however,
the formal proof of security for such a protocol is more technically cumbersome than our current
proof.

As noted in Section B.2, the measure-then-decode circuit (95) implemented by the COTP in step
2a is equivalent to the decode-then-measure circuit (96). Thus, we may equivalently assume that
in step 2a the COTP applies the quantum circuit P̂

M̃i
E∗ to register M̃i followed by measurements

of the X-syndrome register and the data register.

6.3 Protocol for an honest receiver, completeness

The actions for an honest receiver to use the QOTP to obtain Φ(ρ) are specified in Protocol 3.

6.4 General form of an arbitrary environment

UC security of the protocol of Section 6.2 is proved as follows. First, consider an arbitrary (possibly
cheating) receiver who receives the message from the sender and interacts with the sender’s BR-
OTP. Throughout the interaction the receiver also exchanges messages with an environment. UC
security is established by exhibiting a simulator that mimics the behaviour of the receiver from the
environment’s point of view using only calls to the ideal functionality. Specifically, the environment
selects the input registers (A,B) for both sender and receiver, interacts with either the real receiver
or the simulated receiver, then produces a single bit indicating the environment’s guess as to whether
it interacted with the real or simulated receiver.

By the completeness of dummy adversaries [Can01, Unr10], it suffices to assume that the receiver
simply shuttles messages between the environment and the honest sender. For convenience this
dummy receiver can be absorbed into the environment, leaving only an interaction between the
environment and the honest sender (or simulated honest sender). In this section we write down a
general form that every such environment must have.

Given the discussion above, we assume without loss of generality that the actions of any envi-
ronment throughout the interaction are as described in Protocol 4.

Let us now argue that no generality is lost in assuming an environment described in Protocol
4.

30

Protocol 3 Honest use of QOTP

1. Perform a Bell measurement on (B,Bin) so as to teleport-through-authentication. This is
achieved by first applying the unitary Bell rotation B followed by a measurement {|T in〉〈T in|}
where each |T in〉〈T in| is a projector onto the classical basis state indicating Pauli correction
T in. The receiver provides T in as the first input to the BR-OTP.
At this time the contents of B have been authenticated and placed in register B̃in.

2. Run the protocol of Section 6.1.1 with V = c-Ũ so as to apply c-Ũ to the authenticated
registers (Ã, B̃in, Ẽ, M̃). Explicitly,

(a) Apply ˜c-U (0).
(b) For i = 1, . . . , r:

i. Measure the magic state register M̃i and provide the result as input to the BR-OTP.
ii. The BR-OTP provides as output a single bit indicating whether to apply the asso-

ciated Clifford correction C̃(i).
iii. Apply ˜c-U (i).

The implementation of c-Ũ is now complete. At this time the register (Ã, B̃in, Ẽ) holds the
authenticated version of (A,B,E) with c-U applied.

3. Perform a Bell measurement on (B̃in, B̃out) so as to teleport-through-de-authentication. As
above, the result of this measurement indicates a Pauli correction T out, which the receiver
provides as the final input to the BR-OTP.
At this time the register Bout holds the receiver’s output. This register is encrypted but not
authenticated.

4. For its final output, the BR-OTP provides the Pauli decryption key Ŝ to be specified later.
Apply this Pauli to Bout to recover the receiver’s output.

Protocol 4 General form of an arbitrary environment

1. Prepare registers (A,B,W) in an arbitrary pure state |ψ〉 and provide A to the sender (or
simulated sender) as input.

2. Receive from the sender (or simulated sender) quantum registers (Ã,Bin, B̃in,Bout, B̃out, Ẽ, M̃).
Apply a unitary K(0) to all the registers, then perform a Bell measurement on (B,Bin) so as
to teleport-through-authentication. Provide the resulting Pauli T in as the first input to the
BR-OTP, just as an honest receiver would.

3. For i = 1, . . . , r:
(a) Provide the register M̃i to the BR-OTP.
(b) The BR-OTP returns a single bit ai.

(c) Apply a unitary K
(i)
ai to the remaining registers. (That is, every register except

B,Bin, M̃1, . . . , M̃i.) The subscript ai indicates that the environment’s choice of K
(i)
ai

could depend upon the bit ai.
4. Perform a Bell measurement on (B̃in, B̃out) so as to teleport-through-de-authentication. Pro-

vide the resulting Pauli T out as the final input to the BR-OTP, just as an honest receiver
would.

5. The BR-OTP provides as its final output (a classical description of) a decryption Pauli Ŝ to
be specified later, stored in a new register K.

6. Perform a binary-valued measurement on the remaining registers Ã,Bout,E,W,K.

31

1. The BR-OTP has by definition classical input/output behaviour that does not preserve co-
herent superpositions of classical basis states. As such, any qubits touched by the BR-OTP
are assumed to be measured in the computational basis. Thus, it makes no difference whether
data sent to a BR-OTP is measured by the environment or by the BR-OTP, so we are free
to assume that any given measurement is performed by whichever party better suits our
discussion.

2. In steps 2 and 4 it is assumed that the environment does a proper Bell measurement of (B,Bin)
and (B̃in, B̃out), respectively, and then faithfully reports the results to the BR-OTP just as an
honest receiver would. This assumption is justified because any tampering the environment
might wish to do with the measurements or the results thereof can instead be incorporated

into the environment’s circuits K
(i)
ai .

For example, an environment who wishes to tamper with the Bell measurement in step 2
could select the circuit K(0) so as to prepare the registers (B,Bin) in any desired state by
swapping out data from the memory workspace W (or even other registers from the sender)
and then pre-invert the rotation into the Bell basis prior to measurement. Substituting this
choice of K(0) into Protocol 4, we see that such an environment undoes the Bell rotation
and thus the resulting measurement of (B,Bin) reproduces exactly the result intended by the
environment.

3. In step 3a it is assumed that the environment simply transmits the unmeasured register M̃i

to the BR-OTP.
As explained above, we are free to make this assumption as the BR-OTP has purely classical
input/output behaviour. This assumption is convenient because it allows us to seamlessly
substitute the measure-then-decode procedure with its equivalent decode-then-measure pro-
cedure acting on unmeasured quantum data as described in Section 5.2.

4. Intuitively, the environment’s ith circuit K
(i)
ai could depend upon all prior classical data

exchanged with the BR-OTP. Yet in step 3c we explicitly allow only for dependence upon
the most recent bit ai received from the BR-OTP. Furthermore, we make the simplifying

assumption that each K
(i)
ai does not act upon the registers B,Bin, M̃1, . . . , M̃i−1 that were

measured earlier in the protocol. No generality is lost, however, because prior circuits are
free to copy classical data into fresh space within the workspace register W for reference in
future rounds.

6.5 A tabular representation for operators and vectors

Security of our QOTP is established by analysis of the state of all the registers in the environ-
ment’s posession immediately prior to the final binary-valued measurement in step 6 of Protocol
4. However, it is difficult to produce a concise description of this state due to the large number of
distinct registers and the many rounds of interaction with the BR-OTP. To combat this difficulty
we introduce a tabular representation for operators and vectors.

This new way of describing states is best explained by example. To this end recall that the
initial state of registers (A,B,W) is |ψ〉 and that register A is given to the sender as input. The
sender introduces registers Bin, B̃in, B̃out,Bout, Ẽ, M̃. For each choice of code key E, encryption keys
P, S, Bell measurement results T in, T out, and magic state data- and syndrome-measurement results
a = (a1, . . . , ar), s = (s1, . . . , sr), the unnormalized pure state of the remaining (unmeasured)
quantum registers (Bout, Ã,W, Ẽ) after step 4 of Protocol 4 (that is, immediately before the BR-

32

B 〈T in|B

K(0)

|ψ〉B
Bin |φ+〉
B̃in 〈T out|B

K
(r)
ar . . .

K
(2)
a2

K
(1)
a1

P
B̃in
E

B̃out |φ+〉
Bout E∗S

Ã P
Ã
E |ψ〉A

W |ψ〉W
Ẽ P

Ẽ
E |0〉|on〉

M̃r 〈ar|〈sr|E∗P̂
M̃r

P
M̃r
E |µr〉

...
. . .

...
...

M̃2 〈a2|〈s2|E∗P̂
M̃2

P
M̃2
E |µ2〉

M̃1 〈a1|〈s1|E∗P̂
M̃1

P
M̃1
E |µ1〉

Figure 6: Tabular representation of the state of the system after step 4 of Protocol 4.

OTP reveals the decryption key register K) is given by the table in Figure 6.
In general, rows in a table correspond to registers in the joint system. Cells within each row

correspond to individual operators or vectors and are ordered from right to left as per the convention
for operator composition. Empty cells implicitly indicate the identity operator. The table as a whole
specifies an operator (or vector) as a composition of product operators on the registers.

In this particular table we have used the notation |ψ〉A, |ψ〉B, |ψ〉W to refer to the portions of
|ψ〉 contained in registers A,B,W, respectively.

6.6 Analysis of the environment’s interaction with the real sender

At the end of its interaction the environment produces a single output bit. In order to prove UC
security we must exhibit a simulator that interacts with the environment such that the distribution
on the environment’s output bit is nearly identical to that induced by the environment’s interaction
with the real sender and BR-OTP.

We accomplish this task by deriving an expression for the state ρreal of the registers (Bout, Ã, Ẽ,W,K)
in the environment’s possession at the end of step 5 of Protocol 4. In Section 6.7 we will exhibit
a simulator, then in Section 6.8 we derive an expression for the associated state ρsim at the end
of the simulated interaction and show that the trace distance between ρreal and ρsim is negligible,
from which the security of our QOTP follows.

Recall that in step 5 the register K is revealed by the BR-OTP. Thus, if the state of the system
at the end of step 5 is ρreal then state of the system at the end of step 4 must be TrK(ρreal). We
begin our analysis by focussing on the state TrK(ρreal).

Let |P |, |S | denote the number of Pauli operations acting on (B̃in, M̃, P̃), B̃out, respectively,
so that each encryption Pauli P, S is chosen with probability 1/|P |, 1/|S |, respectively. The

33

normalized mixed state TrK(ρreal) of (Bout, Ã,W, Ẽ) at step 4 is

TrK(ρreal) =
1

|E ||P ||S |
∑

E,P,S,a,s,T in,T out

|(6)〉〈(6)| (7)

where |(6)〉 denotes the unnormalized pure state depicted in Figure 6.
This state can be written much more succinctly. Let a = (a1, . . . , ar) and s = (s1, . . . , sr) denote

the vectors of magic-state data and syndrome values and write

Ka
def
= K(r)

ar · · ·K(1)
a1 K

(0) (8)

〈a| def= 〈ar| · · · 〈a1| (9)

〈s| def= 〈sr| · · · 〈s1|. (10)

The rows of table (6) corresponding to the magic state registers M̃1, . . . , M̃r can be amalgamated
into a single row M̃. The table (6) can be written

|(6)〉 =

B 〈T in|B

Ka

|ψ〉B
Bin |φ+〉
B̃in 〈T out|B P

B̃in
E

B̃out |φ+〉
Bout E∗S

Ã P
Ã
E |ψ〉A

W |ψ〉W
Ẽ P

Ẽ
E |0〉|on〉

M̃ 〈a|〈s|E∗P̂
M̃

P
M̃
E |µ〉

(11)

Insert a superfluous I = (c-Ũa)
∗(c-Ũa) acting on registers (B̃in, Ã, Ẽ, M̃) into the table (11) immedi-

ately prior to Ka and reorder the rows to get

|(6)〉 =

W |ψ〉W
B 〈T in|B

Ka

|ψ〉B
Bin |φ+〉
B̃in 〈T out|B (c-Ũa)

∗
B̃in

(c-Ũa)B̃in
P
B̃in
E

B̃out |φ+〉
Bout E∗S

Ã (c-Ũa)
∗
Ã

(c-Ũa)Ã P
Ã
E |ψ〉A

Ẽ (c-Ũa)
∗
Ẽ

(c-Ũa)Ẽ P
Ẽ
E |0〉|on〉

M̃ 〈a|〈s|E∗P̂
M̃

(c-Ũa)
∗
M̃

(c-Ũa)M̃ P
M̃
E |µ〉

(12)

(Here we have used the notation (c-Ũa)
∗
Ã
, etc. to illustrate the fact that the unitary (c-Ũa)

∗ is split

over several nonadjacent rows in the table. If the rows Ã, B̃in, Ẽ, M̃ were all adjacent then this

34

notation would be unnecessary; all four of those cells could be merged into a single larger cell for
the operator (c-Ũa)

∗. Unfortunately, it is not possible to order the rows so as to eliminate the need
to split some operators or states across nonadjacent rows.)

At an intuitive level, if the environment is to avoid being detected as a cheater by the BR-OTP
then whatever the environment does in Ka must cancel out (c-Ũa)

∗ so that c-Ũa is implemented on
(B̃in, Ã, Ẽ, M̃).

Let

Ka(c-Ũa)
∗ =

∑

Paulis Q

αQQ (13)

be a Pauli decomposition of Ka(c-Ũa)
∗. Substitute this decomposition into (12) to obtain

|(6)〉 =
∑

Paulis Q

αQ|(15)〉 (14)

where the table (15) is given by

W Q
W̃

|ψ〉W
B 〈T in|B QB |ψ〉B
Bin QBin |φ+〉
B̃in 〈T out|B Q

B̃in
(c-Ũa)B̃in

P
B̃in
E

B̃out Q
B̃out |φ+〉

Bout QBout
E∗S

Ã Q
Ã

(c-Ũa)Ã P
Ã
E |ψ〉A

Ẽ Q
Ẽ

(c-Ũa)Ẽ P
Ẽ
E |0〉|on〉

M̃ 〈a|〈s|E∗P̂
M̃

Q
M̃

(c-Ũa)M̃ P
M̃
E |µ〉

(15)

Let us consider the teleportation operations. According to Appendix C, the rows for B and Bin can
be folded into B̃in to obtain

|(15)〉 = |B|−1/2

B̃in 〈T out|B Q
B̃in

(c-Ũa)B̃in
P
B̃in
EQT

Bin
T inQB |ψ〉B

B̃out Q
B̃out |φ+〉

Bout QBout
E∗S

Registers Ã, Ẽ, M̃,W same as (15).

(16)

(Here |R| denotes the dimension of the space associated with register R.) We can then fold B̃in, B̃out

into Bout so as to obtain

|(15)〉 = |B|−1/2|B̃in |−1/2
Bout QBout

E∗SQT

B̃out

T outQ
B̃in

(c-Ũa)B̃in
P
B̃in
EQT

Bin
T inQB |ψ〉B

Registers Ã, Ẽ, M̃,W same as (15).
(17)

35

Notice the normalization factors |B|−1/2, |B̃in |−1/2 picked up in the process—we will include those
later. Let us re-write the entire table, amalgamating c-Ũa, P , and |ψ〉.

|(15)〉 =

W QW

|ψ〉Bout QBout
E∗SQT

B̃out

T outQ
B̃in

c-Ũa P

E QT
Bin
T inQB

Ã Q
Ã

E

Ẽ Q
Ẽ

E |0〉|on〉
M̃ 〈a|〈s|E∗P̂

M̃
Q

M̃
E |µ〉

(18)

The next step is to use commutation relations so as to massage this table into a nice form for the
Pauli sandwich (Appendix B).

To this end let us first dispense with the annoying transposition operations appearing on
QT

B̃out

, QT
Bin

. Note that for any multi-qubit Pauli operator P the transpose PT = ±P with the

negative phase occurring whenever P is a product of an odd number of Y -Paulis. Let y(P) ∈ {±1}
denote this phase so that PT = y(P)P for all Paulis P . We apply this identity to the above table,
producing an extra phase factor y(Q

B̃out
)y(QBin

).
We require some notation before proceeding further. For any Paulis P,Q we write

c(P,Q)
def
=

{
+1 if PQ = QP
−1 if PQ = −QP (19)

for the phase picked up by commuting P,Q. By analogy to the notation introduced in Section 5.1,
for any code E and any Pauli P we let PE denote the Pauli with PEE = EP . Recall that for
any vector a of measurement results the encoded circuit c-Ũa is a Clifford circuit. As such, for any
Pauli P we let πa(P) denote the Pauli with

πa(P)(c-Ũ) = (c-Ũa)P . (20)

Finally, recall that (c-Ũa)E = E(c-Ua) as noted in Section 6.1.2.
Now, concentrate only on the rightmost four columns of the table (18):
1. QBin

commutes with T in, picking up a phase of c(T in, QBin
).

c-Ũa P

E T inQBin
QB

E

E

E

(21)

2. Replace ET in with T in
EE.

c-Ũa P

T in
E E QBin

QB

E

E

E

(22)

36

3. Since c-Ũa is a Clifford, we can pull PT in
E through c-Ũa.

πa(PT
in
E) c-Ũa

E QBin
QB

E

E

E

(23)

4. Then we can pull E through c-Ũa.

πa(PT
in
E)

E

c-Ua

QBin
QB

E

E

E

(24)

The entire table is now

|(15)〉 =

W QW

|ψ〉Bout QBout
E∗SQ

B̃out
T outQ

B̃in

πa(PT
in
E)

E

c-Ua

QBin
QB

Ã Q
Ã

E

Ẽ Q
Ẽ

E |0〉|on〉
M̃ 〈a, s|E∗P̂

M̃
Q

M̃
E |µ〉

(25)

We now have an expression for the decryption Pauli P̂
M̃

used by the BR-OTP:

P̂
M̃

def
= πa(PT

in
E)

M̃
. (26)

In order to clean up the extra phases we introduced by the above commutation relations we write

αQ,T in

def
= y(Q

B̃out
)y(QBin

)c(T in, QBin
)αQ (27)

for each choice of Paulis Q,T in so that the original state (6) can be written

|(6)〉 = |B|−1/2|B̃in |−1/2
∑

Paulis Q

αQ,T in |(25)〉. (28)

Until now we have used only simple commutation relations to derive an alternate expression for
the state |(15)〉. Now we wish to employ the Pauli sandwich on register M̃ so that the double sum
over Q

M̃
becomes a single sum. To this end consider the table

W QW

|ψ〉Bout QBout
E∗SQ

B̃out
T outQ

B̃in
πa(PT

in
E)Bout

E

c-Ua

QBin
QB

Ã Q
Ã

πa(PT
in
E)

Ã
E

Ẽ Q
Ẽ

πa(PT
in
E)

Ẽ
E |0〉|on〉

M̃ |µ〉

(29)

37

obtained from (25) by deleting everything in row M̃ occurring after the operator c-Ua. For each
Pauli Q

M̃
define

|Q
M̃
〉 def
=
∑

¬Q
M̃

αQ,Tin
|(29)〉. (30)

Here the summation over ¬Q
M̃

is shorthand for a summation over all Paulis QB, QBin
, Q

B̃in
, Q

B̃out
,

QBout
, Q

Ã
, Q

Ẽ
, QW—that is, all Paulis comprising Q except the Pauli Q

M̃
acting on M̃. Note that

the only dependence of |Q
M̃
〉 on Q

M̃
is in the scalar αQ,T in . Keep in mind that |Q

M̃
〉 also depends

upon T in, T out, a, s, E, πa(PT
in
E)

B̃out
, πa(PT

in
E)

Ã
, πa(PT

in
E)

Ẽ
, S; we have simply omitted these

parameters for brevity.
By the Pauli sandwich (Lemma 13) we have that the mixed state TrK(ρreal) from (7) equals

TrK(ρreal) =
1

|E ||P ||S ||B||B̃in |
∑

E,P,S,a,s,T in,T out,Q
M̃

〈a|〈s|E∗Q
M̃
E|Q

M̃
〉〈Q

M̃
|E∗Q

M̃
E|a〉|s〉 (31)

From here consider two cases corresponding to zero and non-zero syndrome measurements (s =
0, s 6= 0), indicating acceptance and rejection by the BR-OTP, respectively. In so doing we decom-
pose ρreal into a sum of three positive semidefinite operators

ρreal = Rrej +Racc + [εreal] (32)

where [εreal] has trace at most ε. Then in Section 6.8 we will show that

ρsim = Rrej +Racc + [εsim] (33)

for some [εsim] that has trace at most ε, from which it will follow that

‖ρreal − ρsim‖Tr = ‖[εreal]− [εsim]‖Tr ≤ 2ε (34)

as desired.

6.6.1 In the event of acceptance

Consider the unnormalized mixed state obtained from the expression (31) for TrK(ρreal) by restrict-
ing attention to those terms in the summation with syndrome outcome s = 0. (See Appendix B for
explanations of the notation for the logical Pauli Qℓ(E) induced by E and for the subset EX(Q) ⊂ E

of codes E for which Qℓ(E) is a purely Z-Pauli and Q has no X-error syndrome.) It is easy to see
(and follows immediately from the work of Appendix B.2.1) that this unnormalized mixed state is

1

|E ||P ||S ||B||B̃in |
∑

P,S,a,T in,T out,Q
M̃

∑

E∈EX(QM̃
)

〈a||Q
M̃
〉〈Q

M̃
||a〉

︸ ︷︷ ︸

TrK(Racc)

+TrK ([εreal]) (35)

for some choice of [εreal]. By the security of the decode-then-measure procedure used by the BR-
OTP it must be that TrK([εreal]) and hence [εreal] have trace at most ε. Henceforth we concentrate
only on the highlighted term of (35), which is taken to be TrK(Racc) for the operator Racc appearing
in the desired decomposition (32) of ρreal.

38

Because the syndrome measurement succeeded, the BR-OTP reveals a new register K containing
a classical description |Ŝ〉 of a decryption key Ŝ. (An explicit formula for this key is given in Section
6.6.3.) The unnormalized pure state 〈a||Q

M̃
〉 plus register K can be written

〈a||Q
M̃
〉|Ŝ〉 =

∑

¬Q
M̃

αQ,T in|(37)〉 (36)

where the table (37) is given by

W QW

|ψ〉Bout QBout
E∗SQ

B̃out
T outQ

B̃in
πa(PT

in
E)Bout

E

c-Ua

QBin
QB

Ã Q
Ã

πa(PT
in
E)

Ã
E

Ẽ Q
Ẽ

πa(PT
in
E)

Ẽ
E |0〉|on〉

M̃ 〈a| |µ〉
K |Ŝ〉

(37)

We may now employ the identity (4) from Section 6.1.1 to get

〈a|c-Ua|µ〉|on〉 =
1

2r/2
c-U |on〉 = 1

2r/2
U (38)

so the state |(37)〉 becomes

|(37)〉 = 1

2r/2

W QW

|ψ〉Bout QBout
E∗SQ

B̃out
T outQ

B̃in
πa(PT

in
E)Bout

E

U

QBin
QB

Ã Q
Ã

πa(PT
in
E)

Ã
E

Ẽ Q
Ẽ

πa(PT
in
E)

Ẽ
E |0〉

K |Ŝ〉

(39)

Write

|Q
M̃
, Ŝ〉 def

=
∑

¬Q
M̃

αQ,T in|(39)〉 (40)

so that

Racc =
1

|E ||P ||S ||B||B̃in |2r
∑

P,S,a,T in,T out,Q
M̃

∑

E∈EX(QM̃
)

|Q
M̃
, Ŝ〉〈Q

M̃
, Ŝ| (41)

Notice that the receiver/environment learns nothing about the keys πa(PT
in
E)

Ã
, πa(PT

in
E)

Ẽ
so the

registers Ã, Ẽ remain completely mixed. Thus, the receiver gets only the Bout portion of the final
state as desired.

39

6.6.2 In the event of rejection

Consider the unnormalized mixed state obtained from the expression (31) for TrK(ρreal) by restrict-
ing attention to those terms in the summation with syndrome outcome s 6= 0. (Again, the reader is
reffered Appendix B for explanations of the notation Qℓ(E) and EX∅(Q).) According to the analysis
of Appendix B.2.1 this unnormalized mixed state is

1

|E ||P ||S ||B||B̃in |
∑

P,S,a,s 6=0,T in,T out,Q
M̃

∑

E∈EX∅(QM̃
)

〈a|Q
M̃,ℓ(E)|QM̃

〉〈Q
M̃
|Q

M̃,ℓ(E)|a〉 (42)

The operator of (42) shall be taken to be TrK(Rrej) for the operator Rrej appearing in the desired
decomposition (32) of ρreal.

Because the syndrome measurement failed, the register K revealed by the BR-OTP is com-
pletely mixed and so we can ignore it for the rest of this analysis. The unnormalized pure state
〈a|Q

M̃,ℓ(E)|QM̃
〉 can be written

〈a|Q
M̃,ℓ(E)|QM̃

〉 =
∑

¬Q
M̃

αQ,T in|(44)〉 (43)

where the table (44) is given by

W QW

|ψ〉Bout QBout
E∗SQ

B̃out
T outQ

B̃in
πa(PT

in
E)Bout

E

c-Ua

QBin
QB

Ã Q
Ã

πa(PT
in
E)

Ã
E

Ẽ Q
Ẽ

πa(PT
in
E)

Ẽ
E |0〉|on〉

M̃ 〈a| Q
M̃,ℓ(E) |µ〉

(44)

For each Q
M̃,ℓ(E) let |a′〉 = Q

M̃,ℓ(E)|a〉 denote the modified vector of magic state measurement

results. We may now employ the identity (4) from Section 6.1.1 to get

〈a′|c-Ua|µ〉 =
1

2r/2
c-Ua−a′ (45)

so the state |(44)〉 becomes

|(44)〉 = 1

2r/2

W QW

|ψ〉Bout QBout
E∗SQ

B̃out
T outQ

B̃in
πa(PT

in
E)Bout

E

c-Ua−a′

QBin
QB

Ã Q
Ã

πa(PT
in
E)

Ã
E

Ẽ Q
Ẽ

πa(PT
in
E)

Ẽ
E |0〉|on〉

(46)

In the case of rejection the sender has no information about the encryption Paulis πa(PT
in
E)Bout

,
πa(PT

in
E)

Ã
, and πa(PT

in
E)

Ẽ
. Thus, the unitary Ec-Ua−a′ appearing immediately before the encryp-

tion Paulis is superfluous—it can be removed without affecting the overall state. Moreover, the
registers Ã, Ẽ remain encrypted and therefore completely mixed from the receiver’s point of view.

40

Thus, one could replace the state |(44)〉 with, say, the following

|(44)〉 = 1

2r/2

W QW |ψ〉W
Bout QBout

E∗SQ
B̃out

T outQ
B̃in

πa(PT
in
E)Bout

QBin
QB |ψ〉B

Ã Q
Ã

πa(PT
in
E)

Ã
|anything〉

Ẽ Q
Ẽ

πa(PT
in
E)

Ẽ
|anything〉

(47)

Letting

|Q
M̃
, anything〉 def

=
∑

¬Q
M̃

αQ,T in |(47)〉 (48)

we have

TrK(Rrej) =
1

|E ||P ||S ||B||B̃in |2r
∑

P,S,a,s 6=0,T in,T out,Q
M̃

∑

E∈EX∅(QM̃
)

|Q
M̃
, anything〉〈Q

M̃
, anything| (49)

6.6.3 More analysis to determine the final key

Now that we have analyzed an arbitrary environment/receiver for our QOTP we can easily derive
an expression for the decryption key Ŝ used by an honest receiver to recover his output register B
at the end of the protocol. The derivation in this section is not a prerequisite for the discussion of
the simulator in Section 6.7. It is included here only for completeness.

We claim that the decryption Pauli Ŝ is the logical Pauli induced on the data register by code
E and Pauli

ST outπa(PT
in
E)Bout

. (50)

To see this, observe that an honest receiver will place no amplitude on terms for which Q 6= I. Our
calculations are therefore simplified by assuming Q = I. Under this assumption the state |(39)〉
becomes

|(39)〉 =

W

|ψ〉Bout E∗ST out πa(PT
in
E)Bout

E

UÃ πa(PT
in
E)

Ã
E

Ẽ πa(PT
in
E)

Ẽ
E |0〉

K |Ŝ〉

(51)

and so we see that applying Ŝ to register Bout decrypts that register. Of course, Ã, Ẽ remain
encrypted and the purification register W is not in the receiver’s posession, so the receiver obtains
only the B portion of (Φ ⊗ 1W)(|ψ〉〈ψ|) as desired.

6.7 Specification of the simulator

In Section 6.6 we derived an expression for the mixed state ρreal of the registers (Bout, Ã, Ẽ,W,K)
in the environment’s possession at the end of step 5. In this section we specify a simulator, and

41

in the following section we show that the state ρsim of the environment’s registers at the end of its
interaction with the simulator is close in trace distance to ρreal, from which security is established.

This simulator must not interact with the sender. Instead, the simulator is permitted only
one-shot, black-box access to the “ideal functionality” for Φ. We represent this ideal functionality
by a single call to an oracle for U acting on registers (A,B,E) prepared by the simulator. The rules
for permissible preparation and disposal of these registers are as follows:

1. When given the initial state |ψ〉 of registers (A,B,W) selected by the environment, the simu-
lator must pass the register A directly to U without any pre-processing.

2. The simulator must prepare the ancillary register E in pure state |0〉.
3. Upon receiving the output registers (A,B,E), the simulator must discard registers A,E without

any post-processing.
The simulator constructs registers as listed in Protocol 5 and then acts as specified described in

the protocol. The main idea is that our simulator will use the control bit contained in register Ẽ to
“switch off” the application of U that would have been implemented by the real receiver interacting
with the sender’s BR-OTP. Instead, the black-box call to the ideal functionality will be embedded
at the proper time so as to recover the required action of U . An additional teleportation step is
required so that our simulator can embed U at the proper time.

Protocol 5 Simulator
Registers prepared by the simulator.
Given the input register A our simulator constructs the following registers:

(Bin,Sin): Simple EPR pairs |φ+〉 for teleportation.
(Sout, B̃in): Teleport-through-authentication state of Protocol 1.

(B̃out,Bout): Teleport-through-de-authentication state of Protocol 1.

Ã: Authenticated dummy input state for the sender P
Ã
E|0〉.

Ẽ: Authenticated dummy ancillary state P
Ẽ
E|0〉|off〉.

M̃: Authenticated magic states as in Protocol 1.
A′ : To be used in the call to the ideal functionality. Contains the portion of |ψ〉

contained in register A.
E′ : To be used in the call to the ideal functionality. Ancillary register in state |0〉.

Execution of the simulator.
1. Prepare registers (Bin, B̃in, B̃out,Bout, Ã, Ẽ, M̃,W) as above and send these registers to the en-

vironment.
2. The environment responds with a Pauli T in. Apply T in to register Sin. Then use the ideal

black-box to apply U to (A′,Sin,E
′).

3. Perform a Bell measurement on (Sin,Sout) so as to teleport the contents of Sin through the
authentication and place the result in B̃in. Let T

sim denote the teleportation Pauli indicated
by this Bell measurement.

4. Execute Protocol 2 for the BR-OTP under the assumption that T sim was received in the first
round. (This step is not difficult: the responses of the BR-OTP depend only upon the choice
of code E and encryption Pauli P .)

42

6.8 Analysis of the environment’s interaction with the simulator

Fix a choice of code E and encryption Paulis P, S. We re-use notation from Section 6.6 as much
as possible. In Section 6.5 we wrote the unnormalized pure state of the entire system as a large
table |(6)〉. We then introduced some shorthand notation in Section 6.6 that allowed us to write
that table more compactly as |(11)〉. The equivalent of table (11) for our simulator is as follows.

E′ (U)E |0〉
A′ (U)A |ψ〉A
B 〈T in|B (Ka)B |ψ〉B
Bin (Ka)Bin |φ+〉
Sin 〈T sim|B (U)BT

in

Sout |φ+〉
B̃in 〈T out|B

Ka

P
B̃in
E

B̃out |φ+〉
Bout E∗S

Ã P
Ã
E |0〉

Ẽ P
Ẽ
E |0〉|off〉

M̃ 〈a|〈s|E∗P̂
M̃

P
M̃
E |µ〉

W |ψ〉W

(52)

Then

TrK(ρsim) =
1

|E ||P ||S |
∑

E,P,S,a,s,T in,T out,T sim

TrA′E′ (|(52)〉〈(52)|) . (53)

We then inserted a superfluous I = (c-Ũa)
∗(c-Ũa) into the table (11) and derived the table (15)

by substituting the Pauli decomposition (13) of Ka(c-Ũa)
∗ and fixing a choice Q of Pauli in that

decomposition. It is a simple matter to repeat those steps in the current setting. The equivalent

43

of table (15) for our simulator is

E′ (U)E′ |0〉
A′ (U)A′ |ψ〉A
B 〈T in|B QB |ψ〉B
Bin QBin |φ+〉
Sin 〈T sim|B (U)BT

in

Sout |φ+〉
B̃in 〈T out|B Q

B̃in
(c-Ũa)B̃in

P
B̃in
E

B̃out Q
B̃out |φ+〉

Bout QBout
E∗S

Ã Q
Ã

(c-Ũa)Ã P
Ã
E |0〉

Ẽ Q
Ẽ

(c-Ũa)Ẽ P
Ẽ
E |0〉|off〉

M̃ 〈a|〈s|E∗P̂ ′
M̃

Q
M̃

(c-Ũa)M̃ P
M̃
E |µ〉

W QW |ψ〉W

(54)

In Section 6.6 we applied a teleportation identity to derive table (18) from table (15). We apply
the same teleportation identity here so as to derive the following table from (54).

E′

U

|0〉
A′ |ψ〉A
Bout QBout

E∗SQT

B̃out

T outQ
B̃in

c-Ũa P

ET sim T inQT
Bin
T inQB |ψ〉B

Ã Q
Ã

E |0〉
Ẽ Q

Ẽ
E |0〉|off〉

M̃ 〈a|〈s|E∗P̂ ′
M̃

Q
M̃

E |µ〉
W QW |ψ〉W

(55)

We then replaced transposed Paulis with their un-transposed equivalents and employed several
commutation relations to derive table (25). That derivation can be repeated almost exactly in the
present context. The only significant difference is that, after commuting QBin

with T in and picking
up a phase of c(T in, QBin

), the two T in Paulis annihilate each other. The state |(54)〉 becomes

E′

U

|0〉
A′ |ψ〉A
Bout QBout

E∗SQ
B̃out

T outQ
B̃in

πa(PT
sim
E)

E

c-Ua

QBin
QB |ψ〉B

Ã Q
Ã

E |0〉
Ẽ Q

Ẽ
E |0〉|off〉

M̃ 〈a|〈s|E∗P̂ ′
M̃

Q
M̃

E |µ〉
W QW |ψ〉W

(56)

44

We now see that the decryption Pauli P̂ ′
M̃

used in the BR-OTP is given by

P̂ ′
M̃

def
= πa(PT

sim
E)

M̃
. (57)

By analogy to the formula (28) for the state |(6)〉 in Section 6.6 we have

|(52)〉 =
(

|B||B̃in ||Sin |
)−1/2 ∑

Paulis Q

αQ,T in |(56)〉 . (58)

As before, we wish to employ the Pauli sandwich on M̃. To this end consider the table

E′

U

|0〉
A′ |ψ〉A
Bout QBout

E∗SQ
B̃out

T outQ
B̃in

πa(PT
sim
E)Bout

E

c-Ua

QBin
QB |ψ〉B

Ã Q
Ã

πa(PT
sim
E)

Ã
E |0〉

Ẽ Q
Ẽ

πa(PT
sim
E)

Ẽ
E |0〉|off〉

M̃ |µ〉
W QW |ψ〉W

(59)

obtained from (56) by deleting everything in row M̃ occurring after the operator c-Ua. By analogy
to the state |Q

M̃
〉 defined in (30) in Section 6.6, for each Pauli Q

M̃
define

|Q′
M̃
〉 def
=
∑

¬Q
M̃

αQ,Tin
|(59)〉 . (60)

By analogy to the expression (31) for TrK(ρreal) derived in Section 6.6, by the Pauli sandwich
(Lemma 13) we have that the mixed state TrK(ρsim) from (53) equals

TrK(ρsim) =
1

|E ||P ||S ||B||B̃in ||Sin |
∑

E,P,S,a,s,T in,T out,T sim,Q
M̃

〈a|〈s|E∗Q
M̃
E TrA′E′

(

|Q′
M̃
〉〈Q′

M̃
|
)

E∗Q
M̃
E|a〉|s〉 .

(61)

As mentioned in Section 6.6, we will derive the expression (33) for ρsim, from which it will follow
that the state is close to ρreal in trace distance as desired.

6.8.1 In the event of acceptance

Just as in Section 6.6.1, consider the unnormalized mixed state obtained from the expression (61)
for TrK(ρsim) by restricting attention to those terms in the summation with syndrome outcome
s = 0. We can follow the argument of Section 6.6.1 to see that this unnormalized mixed state is

1

|E ||P ||S ||B||B̃in ||Sin |
∑

P,S,a,T in,T out,T sim,Q
M̃

∑

E∈EX(QM̃
)

〈a|TrA′E′

(

|Q′
M̃
〉〈Q′

M̃
|
)

|a〉

︸ ︷︷ ︸

show equal to TrK(Racc)

+TrK ([εsim]) (62)

45

for some choice of [εsim] with trace at most ε. Henceforth we concentrate only on the indicated
term of (62). We will show that this term equals TrK(Racc).

Because the syndromemeasurement succeeded, our simulator reveals a new register K containing
a classical description |Ŝ′〉 of a decryption key Ŝ′. (More about this key later in this section.) The
unnormalized pure state 〈a||Q′

M̃
〉 plus register K can be written

〈a||Q′
M̃
〉|Ŝ′〉 =

∑

¬Q
M̃

αQ,T in |(64)〉 (63)

where the table (64) is given by

E′

U

|0〉
A′ |ψ〉A
Bout QBout

E∗SQ
B̃out

T outQ
B̃in

πa(PT
sim
E)Bout

E

c-Ua

QBin
QB |ψ〉B

Ã Q
Ã

πa(PT
sim
E)

Ã
E |0〉

Ẽ Q
Ẽ

πa(PT
sim
E)

Ẽ
E |0〉|off〉

M̃ 〈a| |µ〉
W QW |ψ〉W
K |Ŝ′〉

(64)

Similar to Section 6.6, (except now the control-bit switch is set to |off〉) we may now employ the
identity (4) from Section 6.1.1 to get

〈a|c-Ua|µ〉|off〉 =
1

2r/2
c-U |off〉 = 1

2r/2
I (65)

so the state |(64)〉 becomes

|(64)〉 = 1

2r/2

W QW |ψ〉W
E′

U

|0〉
A′ |ψ〉A
Bout QBout

E∗SQ
B̃out

T outQ
B̃in

πa(PT
in
E)Bout

E QBin
QB |ψ〉B

Ã Q
Ã

πa(PT
in
E)

Ã
E |0〉

Ẽ Q
Ẽ

πa(PT
in
E)

Ẽ
E |0〉

K |Ŝ′〉

(66)

Write

|Q′
M̃
, Ŝ′〉 def

=
∑

¬Q
M̃

αQ,T in |(66)〉 (67)

so that the highlighted term in (62) becomes

1

|E ||P ||S ||B||B̃in ||Sin |2r
∑

P,S,a,T in,T out,T sim,Q
M̃

∑

E∈EX(QM̃
)

TrA′E′

(

|Q′
M̃
, Ŝ′〉〈Q′

M̃
, Ŝ′|

)

. (68)

46

By repeating the analysis of Section 6.6.3 it is easy to see that the final decryption Pauli Ŝ′ produced
by the simulator is the logical Pauli induced on the data register by code E and Pauli

ST outπa(PT
sim
E)

B̃out
. (69)

Finally, we claim that the expression (68) equals Racc from (41). To justify this claim we observe
the differences between the tables (39) and (66). The only differences are

1. T in
E has been replaced with T sim

E in the encryption Paulis for Bout, Ã, Ẽ and in the final decryp-

tion key Ŝ′.
2. U is applied to the auxiliary registers A′,E′ that are discarded by the simulator instead of the

registers Ã, Ẽ in the environment’s possession. The sender’s portion of the input state |ψ〉A is
contained in register A′ instead of Ã.

The first difference is eliminated by the uniformly random encryption Pauli P ; the summation over
T sim in (68) can be eliminated by a simple change of variable, summing over PT in

E T
sim
E instead of P .

The second difference is trivial because the registers Ã, Ẽ are encrypted anyway. In particular, |(39)〉
can be obtained from |(66)〉 by swapping (A′,E′) for (Ã, Ẽ) prior to encryption of those registers.
Since Ã, Ẽ are encrypted, such a swap cannot be detected.

6.8.2 In the event of rejection

Just as in Section 6.6.2, consider the unnormalized mixed state obtained from the expression (61)
for TrK(ρsim) by restricting attention to those terms in the summation with syndrome outcome
s 6= 0. We can follow the argument of Section 6.6.2 to see that this unnormalized mixed state is

1

|E ||P ||S ||B||B̃in ||Sin |
∑

P,S,a,s 6=0,T in,T out,T sim,Q
M̃

∑

E∈EX∅(QM̃
)

〈a|Q
M̃,ℓ(E)TrA′E′

(

|Q′
M̃
〉〈Q′

M̃
|
)

Q∗
M̃,ℓ(E)

|a〉 .

(70)

We will show that the expression (70) equals TrK(Rrej).
Because the syndrome measurement failed, the register K revealed by the simulator is com-

pletely mixed and so we can ignore it for the rest of this analysis. The unnormalized pure state
〈a|Q

M̃,ℓ(E)|Q′
M̃
〉 can be written

〈a|Q
M̃,ℓ(E)|Q′

M̃
〉 =

∑

¬Q
M̃

αQ,T in|(72)〉 (71)

where the table (72) is given by

E′

U

|0〉
A′ |ψ〉A
Bout QBout

E∗SQ
B̃out

T outQ
B̃in

πa(PT
sim
E)Bout

E

c-Ua

QBin
QB |ψ〉B

Ã Q
Ã

πa(PT
sim
E)

Ã
E |0〉

Ẽ Q
Ẽ

πa(PT
sim
E)

Ẽ
E |0〉|off〉

M̃ 〈a| Q
M̃

|µ〉
W QW |ψ〉W

(72)

47

For each Q
M̃,ℓ(E) let |a′〉 = Q

M̃,ℓ(E)|a〉 denote the modified vector of magic state measurement

results. As in Section 6.6.2 we may now employ the identity (4) from Section 6.1.1 to get

〈a′|c-Ua|µ〉 =
1

2r/2
c-Ua−a′ (73)

so the state |(72)〉 becomes

|(72)〉 = 1

2r/2

W QW |ψ〉W
E′

U

|0〉
A′ |ψ〉A
Bout QBout

E∗SQ
B̃out

T outQ
B̃in

πa(PT
sim
E)Bout

E

c-Ua−a′

QBin
QB |ψ〉B

Ã Q
Ã

πa(PT
sim
E)

Ã
E |0〉

Ẽ Q
Ẽ

πa(PT
sim
E)

Ẽ
E |0〉|off〉

(74)

In the case of rejection the sender has no information about the encryption Paulis πa(PT
in
E)Bout

,
πa(PT

in
E)

Ã
, and πa(PT

in
E)

Ẽ
. Thus, any unitaries that appear immediately before the encryption

Paulis are superfluous—they can be removed without affecting the overall state. In particular, we
get the same state even after we replace Ec-Ua−a′ with the identity in the table (74). Furthermore,
since A′,E′ are discarded by the simulator, the same logic allows us to replace U with the identity.
Finally, since registers (Ã, Ẽ) remain encrypted, one could replace the state |(74)〉 with

|(72)〉 = 1

2r/2

E′ |0〉
A′ |ψ〉A
Bout QBout

E∗SQ
B̃out

T outQ
B̃in

πa(PT
sim
E)Bout

QBin
QB |ψ〉B

Ã Q
Ã

πa(PT
sim
E)

Ã
|anything〉

Ẽ Q
Ẽ

πa(PT
sim
E)

Ẽ
|anything〉

W QW |ψ〉W

(75)

Summing over PT in
E T

sim
E instead of P and discarding registers (A′,E′) we see that the above state

can be interchanged with |(47)〉 from Section 6.6.2. The desired expression for Rrej follows.

6.9 Result

We have thus shown that, no environment of the given in Section 6.4 can distinguish ρreal, as
calculated in Section 6.6, from the output ρsim, as calculated in Section 6.8. Moreover, we argued
in Section 6.4 that any arbitrary environment is equivalent to an environment of the stated form.

This yields the proof of Theorem 8, that the protocol described in Sections 6.2 and 6.3 is
statistically quantum-UC-secure realization of FOTP

Φ in the case of a corrupt user, in the FBR-OTP-
hybrid model.

By combining this with the result that FBR-OTP can be realized statistically UC-secure in
the FOTM-hybrid model (Corollary 2.1), the quantum lifting theorem [Unr10], and the quantum
UC transitivity lemma (Lemma 1), we achieve the central result of the paper, Theorem 7: a

48

protocol for non-interactive statistically quantum-UC-secure (in the case of an honest sender and
potentially corrupt receiver) one-time programs, assuming secure OTM tokens (i.e., in the FOTM-
hybrid model).

7 UC security of delegating quantum computations

We show in this section that our main proof technique can also be used to establish the statistical
quantum-UC-security of a family of protocols for delegating quantum computations, closely related
to the protocol of Aharonov et al. [ABOE10]. Originally studied in the context of quantum interac-
tive proof systems, the protocol of Aharonov et al. was not originally shown to be secure according
to any rigorous cryptographic security definition.

We generalize the protocol of Aharonov et al. to support delegated quantum computation (in
contrast to only deciding membership in a language) by making two minor modifications. First
we instantiate the protocol using any encode-encrypt quantum authentication scheme that admits
computing on authenticated data (such as the trap authentication scheme or the signed polynomial
scheme as used by Aharonov et al.). Analogously to our main protocol, we also introduce as an aid
in the proof a control-bit so that the circuit being implemented is a controlled-unitary.

The ideal functionality we achieve is described in Functionality 4. Following [ABOE10], we
describe the functionality in terms of a prover and verifier.

Functionality 4 Ideal functionality Fdelegated
Φ for a quantum channel Φ : A→ C.

1. Create: Upon input register A from the verifier, send create to the prover and store the
contents of register A.

2. Execute: Upon input execute from the prover, evaluate Φ on register A, and send the
contents of the output register C to the verifier.

Theorem 11. Let Φ be polynomial-time quantum computable functionality. Then there exists
an efficient, quantum interactive protocol which statistically quantum-UC-emulates Fdelegated

Φ in
the case of a corrupt prover, in the plain model, and where the only quantum power required of
the verifier is to encode the input and auxiliary quantum registers, and to decode the output. In
particular, all the interaction is classical except for the first and last messages.

The proof of Theorem 11 follows as a special case of our main possibility result. In the case of a
general Φ, the registers that the verifier prepares in Theorem 11 are polynomial-size in the security
parameter. In the interactive proof scenario of Aharonov et al., the input to Φ is the all-|0〉 product
state, the output is a single classical bit, and it suffices to implement Fdelegated

Φ with only constant
security. Given these assumptions, the only quantum power required of the verifier is the ability to
prepare constant-sized quantum registers in the first round.

Proof sketch. We view the verifier as the sender in the QOTP, but since the verifier has the input,
and receives the output, she can encode and decode these herself, so we do away with the necessity
of the encoding and decoding gadgets. Also, classical interaction is permitted, so we replace the
BR-OTP with interaction. The simulator and proof are the same.

49

Appendices

A One-time programs for classical, bounded reactive functionali-

ties (FBR-OTP)

Functionality 5 Ideal functionality FBR-OTP
g1,...,gℓ

for a bounded, sender-oblivious reactive function-
ality. Here, g1(a, b1) 7→ (m1, s1) and gi(bi, si−1) 7→ (mi, si) (i = 2, . . . , ℓ) are classical functions;
a represents the sender’s input, bi represents the receiver’s input for round i (which can depend
on the input-output behaviour of previous rounds), si represents the internal state after round i,
and mi is the message returned to the receiver after round i. We assume sℓ = ⊥.

1. Create: Upon input a from the sender, send create to the recipient and store a.
2. Execute: Upon input (i, bi) where i ∈ {1, . . . , ℓ} from the recipient, do the following:

(a) For j = 1, . . . , i−1, if gj has not been evaluated, abort. If gi has already been evaluated,
abort.

(b) Compute gi(bi, si−1) = (mi, si) (if i = 1, compute g1(a, b1) = (m1, s1)).
(c) Output mi to the receiver. Store si and note that gi has been evaluated.
(d) If mℓ has just been output, delete any trace of this instance.

In this section, we use standard techniques to extend Theorem 2 to sender-oblivious, polynomial-
time computable, bounded reactive classical two-party functionalities (given as Functionality 5). We
achieve this result in a straightforward way. In fact, Goyal et al. [GIS+10, p. 40] suggest that the
result below would follow from their work. This appendix provides all the details, using some of
the techniques of Goyal et al. [GIS+10].

A message authentication code (MAC) is a pair of algorithms (MAC,V F), where MACk(m)
constructs a tag σ for a message m under a key k, and V Fk(m,σ) returns 1 if σ is a valid tag for
m under key k. A MAC is an unconditional one-time secure MAC if

Pr
[

V Fk(m,σ) = 1 : k
$←{0, 1}κ, (m,σ)← A()

]

(76)

is negligible in a security parameter κ for all probabilistic algorithms A. An example of such a
MAC is as follows. The key k is a pair of κ-length binary strings (a, b). The tag for a message
m ∈ {0, 1}κ is MAC(a,b)(m) = a ·m+ b, where all operations are in GF (2κ).

The basic idea of the construction (see Protocol 6) is to create a one-time program for each
next-message function gi in the ideal functionality FBR-OTP

g1,...gℓ
. For this, we need a way to guarantee

that the receiver executes the COTPs in the correct order, and also let the receiver pass the
functionality’s state information from one COTP to another without revealing this information to
the receiver. Both of these goals can be achieved via a standard authentication and encryption
mechanism: we define a family of functions fi that are based on gi and output an unconditionally
secure authenticated encryption of the sender’s internal state at the end of round i; this information
should be supplied by the receiver as an additional input for fi+1. If the authentication fails, then
fi outputs ⊥.

Theorem 12. Protocol 6 statistically classical-UC emulates FBR-OTP
g1,...,gℓ

in the FCOTP
f -hybrid model,

assuming MAC is an unconditional one-time secure MAC.

50

Protocol 6 Protocol for a bounded, sender-oblivious reactive functionality, FBR-OTP
g1,...gℓ

in the FCOTP
f -

hybrid model.

1. Key generation. For 1 ≤ i ≤ ℓ− 1, the sender randomly chooses keys ki1 and ki0.
2. Definition of functions. For each 1 ≤ i ≤ ℓ, given gi, define fi as follows.

(a) Inputs of fi.
• For i = 1, function f1 takes as input from the sender a string a, a key k11 for

message authentication scheme MAC(·), and key k10 which has the same length as
s1. Function f1 takes as input from the receiver a bit-string b1.

• For i > 1, function fi takes as input from the sender keys ki−1
1 and ki1 for message

authentication scheme MAC(·) and keys ki−1
0 and ki0 which have the same length

as si−1 and si, respectively. Function fi takes as input from the receiver bit-strings
(bi, c

i−1
0 , ci−1

1).
(b) Computation of fi.

• If i = 1, compute g1(a, b1) to obtain the message m1 as well as internal state s1.
• If i > 1, check that V Fk1

i−1(ci−1
0 , ci−1

1) = 1. If not, output ⊥. Else, set si−1 =

ci−1
0 ⊕ ki−1

0 . Compute gi(bi, si−1) to obtain the ith message mi as well as internal
state si.

(c) Outputs of fi.
• If i < ℓ, output (mi, si ⊕ ki0,MACki1

(si ⊕ ki0)).
• If i = ℓ, output (mi,⊥).

3. COTP construction. The sender uses FCOTP
fi

to create one-time programs for f1, . . . , fℓ.
4. Evaluation. The receiver evaluates g1, . . . , gℓ by doing the following:

• If i = 1, run FCOTP
f1

on input b1 and obtain (m1, c
1
0, c

1
1).

• If i > 1, run FCOTP
fi

on input (bi, c
i−1
0 , ci−1

1) and obtain (mi, c
i
0, c

i
1).

51

By Theorem 2, there exists a non-interactive protocol ρ that classical-UC-emulates FCOTP in
the FOTM-hybrid model. Thus we have Corollary 2.1 as given in the main text.

We finish this section with a proof of Theorem 12.

Proof of Theorem 12. The proof proceeds by considering security against either a malicious sender
or a malicious receiver.
Security against a malicious sender. Let A be an adversary corrupting the sender in Protocol 6.
We construct a simulator SimA for A.

The simulator is defined as follows: execute A on input given by Z. This execution determines
inputs for FCOTP

fi
, and in particular, it determines the sender’s input a.

We say that the senders’s keys are consistent if, for each i, the keys ki1 and ki−1
0 are self-

consistent between instantiations of FCOTP
fi

and FCOTP
fi+1

(i.e., the ideal functionalities are called
with the corresponding same inputs). If the sender’s keys are consistent, then an execution of
Protocol 6 with an honest receiver will not abort.

Thus, if SimA detects that the sender’s keys are not consistent, SimA inputs ABRT into the
ideal functionality FCOTP

g1,...gℓ
. Otherwise, SimA inputs a for the sender.

We thus have the following:
1. protocol 6 is non-interactive;
2. the probability of ABRT in the ideal model is independent of the receiver’s input;
3. an honest sender will not cause the protocol to abort.
Together, these imply that the real and ideal networks are perfectly indistinguishable.

Security against a malicious receiver.
Let A be an adversary corrupting the receiver in Protocol 6. We construct a simulator SimA,

given as Simulator 1.

Simulator 1 Simulator SimA, for the proof of Protocol 6 against a malicious receiver.

1. For i = 1, . . . , ℓ, choose keys k0i and k0i as in Protocol 6.
2. Start the execution of A on the input given by Z; set i = 1.
3. Execute A until a call to the ideal functionality FCOTP

fi
occurs. Do the following in order to

simulate interaction with the ideal functionality.
(a) For j = 1, . . . , i− 1, if FCOTP

fj
has not already been evaluated, abort.

(b) Let σi be A’s input into FCOTP
fi

.

i. if i = 1, forward σ1 to FCOTP
g1,...,gℓ

and receive as responsem1. Choose a random state w,
and return (m1, w ⊕ k10 ,MACk11

(w ⊕ k10)) to A.
ii. if i > 1, interpret σi as (bi, c

i−1
0 , ci−1

1). Check that V Fk1
i−1(ci−1

0 , ci−1
1) = 1. If not,

output ⊥. Forward bi to FCOTP
g1,...,gℓ

and receive as responsemi. Choose a random state
wi, and return (mi, wi ⊕ ki0,MACki1

(wi ⊕ ki0)) to A.
(c) If i < ℓ, return to step 3. Otherwise, output A’s output.

The real and ideal networks are indistinguishable: in the real world, the adversary can succeed
in out-of-order querying with probability at most the probability of generating a forged MAC, which
is negligible since the MAC is secure and A can succeed in making an OTP accept an incorrect
internal state also with negligible probability.

52

B Properties of encode-encrypt authentication schemes

B.1 Security against Pauli attacks implies security against general attacks

Parts of this section are reproduced from Aharonov, Ben-Or, and Eban [ABOE10].

B.1.1 How Pauli attacks affect the state of the system

A Pauli attack on a family E of codes has the following form.
1. The data register D is encoded under a uniformly random choice of code E ∈ E by preparing

(X,Z) in the |0〉 state and applying E to (D,X,Z).
2. A malicious attacker applies a Pauli operator Q to (D,X,Z).
3. Data is decoded by applying the inverse operator E∗ to (D,X,Z).
4. The syndrome registers (X,Z) are measured in the computational basis. A non-zero measure-

ment result indicates cheating.
The first three steps of this protocol induce a channel ΨQ of the form

ΨQ : D→ (D,X,Z) : ρ 7→ 1

|E |
∑

E∈E

E∗QE(ρ⊗ |0〉〈0|)E∗Q∗E .

Let [X], [Z] denote the projectors onto the state |0〉 for syndrome registers X,Z, respectively. The
state of the data register D after the syndrome measurement of step 4 is

TrXZ ([X][Z]ΨQ(ρ)) + TrXZ ((I − [X][Z])ΨQ(ρ)) . (77)

Let us examine the terms associated with each measurement outcome. For each Pauli Q we define
the following partition of E :

EXZ(Q): The set of codes E ∈ E for which Q acts trivially on logical data and has no error
syndrome.

EXZ!(Q): The set of codes E ∈ E for which Q acts non-trivially on logical data but has no
error syndrome.

EXZ∅(Q): The set of codes E ∈ E for which Q has non-zero error syndrome.

For each code E ∈ E let Qℓ(E) denote the logical Pauli induced by Q,E and observe that if
E ∈ EXZ(Q) then Qℓ(E) = I. Then

TrXZ ([X][Z]ΨQ(ρ)) =
1

|E |
∑

E∈EXZ(Q)

Qℓ(E)ρQ
∗
ℓ(E)

︸ ︷︷ ︸

|EXZ(Q)|

|E |
ρ

+
1

|E |
∑

E∈EXZ!(Q)

Qℓ(E)ρQ
∗
ℓ(E)

︸ ︷︷ ︸

[ε(Q)]

(78)

TrXZ ((I − [X][Z])ΨQ(ρ)) =
1

|E |
∑

E∈EXZ∅(Q)

Qℓ(E)ρQ
∗
ℓ(E) . (79)

If E is ǫ-secure against Pauli attacks (according to Definition 9) then by definition the term marked
[ε(Q)] in (78) has trace at most ǫ and so it must be that |EXZ!(Q)|/|E | ≤ ǫ for all Q.

If Q = I then Qℓ(E) = I for all E ∈ E and EXZ(Q) = E . In this case the terms [ε(Q)] and (79)
both vanish and the state of the system is simply ρ as required for any authentication scheme.

53

B.1.2 The Pauli sandwich

As mentioned in Section 4.1, encode-encrypt authentication schemes have the desirable property
that the Pauli encryption breaks up an arbitrary attack into a probabilistic mixture of Pauli at-
tacks. This property hinges upon a key lemma that we call the Pauli sandwich; it is a direct
consequence of the Pauli twirl [DCEL09]. A succinct proof can be found in Aharonov, Ben-Or, and
Eban [ABOE10].

Lemma 13 (Pauli sandwich (see [ABOE10])). Let W be an arbitrary operator acting on n-qubits
and let Q,Q′ be Pauli operators acting on n-qubits. It holds that

1

4n

∑

Paulis P

P ∗QPWP ∗Q′∗P =

{
QWQ∗ if Q = Q′

0 otherwise
(80)

To see how the Pauli sandwich breaks up an arbitrary attack into a mixture of Pauli attacks
let U be any operator acting on a register of n-qubits, let U =

∑

Paulis Q αQQ be a decomposition
of U as a linear combination of Pauli operators, and consider the channel

Ψ : ρ 7→ 1

4n

∑

Paulis P

P ∗UPρP ∗U∗P =
1

4n

∑

Paulis P

∑

Paulis Q,Q′

αQαQ′P ∗QPρP ∗Q′∗P (81)

It follows immediately from the Pauli sandwich (Lemma 13) that

Ψ : ρ 7→
∑

Paulis Q

|αQ |2QρQ∗ (82)

That is, if an adversary applies a unitary attack U to a register encrypted with a uniformly random
Pauli P then the resulting state after decryption is indistinguishable from a simplified attack where
the adversary instead applies a Pauli attack Q chosen at random according to the distribution
{|αQ |2}.

This observation holds for arbitrary operators U (not just unitary operators) so it can easy
be extended to arbitrary non-unitary channel attacks Φ by applying a similar analysis for each
operator in a Kraus decomposition of Φ.

B.1.3 How general attacks affect the state of the system

An arbitrary attack on an encode-encrypt authentication scheme based on a family E of codes has
the following form.

1. A data register D is authenticated by encoding it with a random code E ∈ E (implicitly
introducing syndrome registers X,Z) and then encrypting the encoded n-qubit system (D,X,Z)
with a random Pauli P .

2. A malicious attacker applies a channel Φ to the n qubits comprising the registers (D,X,Z).
3. The system is decrypted by applying the Pauli P ∗ and decoded by applying the inverse circuit
E∗.

4. The syndrome registers (X,Z) are measured in the computational basis. A non-zero measure-
ment result indicates cheating.

54

As mentioned previously, it suffices to restrict attention only to unitary attacks Φ : X 7→ UXU∗;
security against arbitrary channels is recovered by applying the same analysis to each operator in
a Kraus decomposition of Φ. The first three steps of this protocol induce a channel ΨU of the form

ΨU : D→ (D,X,Z) (83)

ρ 7→ 1

4n|E |
∑

E∈E

∑

Paulis P

E∗P ∗UPE (ρ⊗ |0〉〈0|)E∗P ∗U∗PE (84)

Let U =
∑

Paulis Q αQQ be a decomposition of U into a linear combination of Paulis so that the
channel ΨU could equivalently be written

ΨU : ρ 7→ 1

4n|E |
∑

E∈E

∑

Paulis P

∑

Paulis Q,Q′

αQαQ′E∗P ∗QPE (ρ⊗ |0〉〈0|)E∗P ∗Q′∗PE (85)

=
1

|E |
∑

E∈E

∑

Paulis Q

|αQ |2E∗QE (ρ⊗ |0〉〈0|)E∗Q∗E (86)

=
∑

Paulis Q

|αQ |2ΨQ(ρ) (87)

with the first equality following form the Pauli sandwich (Lemma 13).
The state of the register D after the syndrome measurement of step 4 is

TrXZ ([X][Z]ΨU (ρ)) + TrXZ ((I − [X][Z])ΨU (ρ)) . (88)

As before, let us examine the terms associated with each measurement outcome. We have

TrXZ ([X][Z]ΨU (ρ)) =
∑

Paulis Q

|αQ |2 TrXZ ([X][Z]ΨQ(ρ)) (89)

=
∑

Paulis Q

|αQ |2
(|EXZ(Q)|

|E | ρ+ [ε(Q)]

)

(90)

where the second equality is from (78). From the expression (90) one can see that the probability
of acceptance is a nondecreasing function of the modulus squared of αI . In particular, the more
weight U places on the identity in its Pauli decomposition, the better the chance that the attack
U is successful (and the least likely it is to have any effect on the state).

For completeness we explicitly write the term associated with outcome I − [X][Z]:

TrXZ ((I − [X][Z])ΨU (ρ)) =
∑

Paulis Q

|αQ |2 TrXZ ((I − [X][Z])ΨQ(ρ)) (91)

=
∑

Paulis Q

|αQ |2

1

|E |
∑

E∈EXZ∅(Q)

Qℓ(E)ρQ
∗
ℓ(E)

 (92)

B.2 Measure-then-decode equals decode-then-measure for CSS codes

CSS codes have the property that measurement of logical data in the computational basis can be
implemented by bitwise (transversal) measurement of the physical qubits in the encoding, followed
by a purely classical decoding process.

55

More concretely, suppose E is a CSS code that encodes one logical qubit into n physical qubits.
For each value of the bit a ∈ {0, 1} there exists a set DE(a) of n-bit strings such that the encoded
logical basis state E|a〉 is an equal superposition of strings in DE(a):

E|a〉 = 1
√

|DE(a)|
∑

b∈DE(a)

|b〉 (93)

Bitwise measurement of E|a〉 in the computational basis yields a string b ∈ DE(a) selected uniformly
at random. The sets DE(0),DE(1) are disjoint so the logical measurement result a can be deduced
by identifying the set DE(a) from which b was drawn. Moreover, given an arbitrary n-bit string c
there is an efficient classical algorithm that computes the function

DecodeE : c 7→ (a, s) (94)

where s is an n-bit syndrome string with the property that c⊕ s ∈ DE(a).
Suppose instead that our logical qubit is authenticated under an encode-encrypt scheme based

on a family E of CSS codes and fix a choice of key (E,P) indicating the CSS code E and Pauli
encryption P . In this case measurement of the logical qubit can still be implemented by bitwise
measurement of the authenticated qubit. The only difference is that the X-portion P |X of the Pauli
key P indicates a mask to be applied before the classical decoding process. This simple process
could be drawn as follows.

authenticated quantum data P |X
c

DecodeE
decoded bit a

syndrome s must be 0
(95)

The analysis later in this paper is better facilitated by writing this process in a different form. We
claim that the above process (95) of measure-then-decode on classical data is equivalent to the
following process of decode-then-measure on quantum data:

authenticated quantum data P ∗

E∗

decoded bit |a〉

X-syndrome must be |0〉
Z-syndrome traced out

(96)

To prove the claim it suffices to show that the decode-then-measure circuit (96) accepts an
encrypted n-qubit computational basis state P |c〉 if and only if c ∈ DE(a) for some bit a. It is clear
that if |c〉 does not meet this condition then it will be rejected by (96), so suppose that it does. It
is a property of every CSS code that |c〉 can be written as a superposition of states of the form
QE|a〉 where Q is a purely Z-Pauli. That is,

|c〉 =
∑

Z-Paulis Q

αc,QQE|a〉 (97)

for some complex amplitudes {αc,Q}. Thus, the encrypted basis state P |c〉 is accepted by (96) and
decodes to |a〉 as desired.

56

B.2.1 How general attacks affect the decode-then-measure process

In Section B.1.3 we analyzed the effect of an arbitrary attack on the state of a system protected by
an encode-encrypt authentication scheme. In this section we are interested in the effect of such an
attack on the decode-then-measure process when the scheme is based on a family E of CSS codes.
The protocol for such an attack is identical to the protocol of Section B.1.3 except that step 4 is
replaced with the following.

4. The data register D is measured in the computational basis. The syndrome register X is
measured in the computational basis; a non-zero measurement result indicates cheating. The
syndrome register Z is discarded.

As usual, it suffices to restrict attention only to unitary channels Φ : X 7→ UXU∗ for some unitary
U with Pauli decomposition U =

∑

Paulis Q αQQ. The state of the register D after the measurements
step 4 is

∑

Paulis Q

|αQ |2
∑

a∈{0,1}

|a〉〈a|

∑

M∈{[X],I−[X]}

TrXZ (MΨQ(ρ))

 |a〉〈a|. (98)

As before, let us examine the terms associated with each measurement outcome {[X], I− [X]}. The
analysis here is slightly more complicated than in previous sections, owing to the fact that only
the X-syndrome is verified in the decode-then-measure protocol. For each Pauli Q we define the
following partition of E :

EX(Q): The set of codes E ∈ E for which Qℓ(E) is a purely Z-Pauli and Q has no X-error
syndrome.

EX!(Q): The set of codes E ∈ E for which Qℓ(E) has nontrivial X-component but Q has no
X-error syndrome.

EX∅(Q): The set of codes E ∈ E for which Qℓ(E) has non-zero X-error syndrome.

Then for each Pauli Q we have

TrXZ ([X]ΨQ(ρ)) =
1

|E |
∑

E∈EX(Q)

Qℓ(E)ρQ
∗
ℓ(E) +

1

|E |
∑

E∈EX!(Q)

Qℓ(E)ρQ
∗
ℓ(E)

︸ ︷︷ ︸

[εX(Q)]

(99)

TrXZ ((I − [X])ΨQ(ρ)) =
1

|E |
∑

E∈EX∅(Q)

Qℓ(E)ρQ
∗
ℓ(E) . (100)

It is a property of every CSS code E that if Q is a purely X- or Z-Pauli then the logical Pauli Qℓ(E)

induced by E is also a purely X- or Z-Pauli. Thus, if E is ǫ-secure against Pauli attacks and if
Qℓ(E) has nontrivial X-portion then Q must have nontrivial X-syndrome with probability at most
ε taken over the choice of code E ∈ E . In particular, the term marked [εX(Q)] in (99) has trace at
most ǫ and it must be that |EX!(Q)|/|E | ≤ ǫ.

On the other hand, if Qℓ(E) is a purely Z-Pauli (which is always the case when E ∈ EX(Q))
then

|a〉〈a|Qℓ(E)ρQ
∗
ℓ(E)|a〉〈a| = |a〉〈a|ρ|a〉〈a| (101)

57

for each a ∈ {0, 1}. It follows that the term in (98) associated with outcome [X] is equal to

∑

Paulis Q

|αQ |2
∑

a∈{0,1}

|a〉〈a|
(|EX(Q)|
|E | ρ+ [εX(Q)]

)

|a〉〈a|. (102)

Moreover, if Q is a purely Z-Pauli then for every E ∈ E it holds that Qℓ(E) is also a purely Z-Pauli
and that Q has no X-syndrome under E. That is, EX(Q) = E and the terms [εX(Q)] and (100)
both vanish. Thus, one can see from the expression (102) that the probability of acceptance is
a nondecreasing function of

∑

Z-Paulis Q |αQ |2. In particular, the more weight U places on purely
Z-Paulis in its Pauli decomposition, the better the chance that the attack U is successful (and the
least likely it is to have any effect on the measured state).

For completeness we explicitly write the term in (98) associated with outcome I − [X]:

∑

Paulis Q

|αQ |2
∑

a∈{0,1}

|a〉〈a|

1

|E |
∑

E∈EX∅(Q)

Qℓ(E)ρQ
∗
ℓ(E)

 |a〉〈a|. (103)

C Analysis of teleportation

Suppose that a pair of n-qubit registers (In,Out) is prepared in a “teleport-through-C” state for
some n-qubit unitary C. Such a state is constructed by preparing n copies of the entangled state
(|00〉 + |11〉)/

√
2 in the registers (In,Out) and then applying C to register Out. Suppose further

that an n-qubit register D is prepared in an arbitrary pure state |ψ〉 with the intention that this
state be teleported through C to qubit Out by way of a standard Bell measurement on (D, In).

The Bell measurement is implemented in the usual way by applying an n-fold Bell rotation B
(each composed of cnot and H gates) to the registers (D, In) followed by a measurement of those
two registers in the computational basis. After this measurement the registers (D, In) are in the
classical basis state |T 〉 indicating a uniformly random Pauli correction T . Conditioned on this
measurement outcome, it is easily seen that the pure state of register Out is CT |ψ〉.

In the basic teleportation protocol C is the identity and so the state |ψ〉 can be recovered
by applying the appropriate Pauli correction T , thus “teleporting” the state |ψ〉 from register D

to register Out. If C is a Clifford circuit then the state C|ψ〉 can be recovered by applying an
appropriate Pauli correction TC , thus “teleporting” the state |ψ〉 from register D “through C” and
into register Out.

C.1 Teleportation under attack

Now suppose that all three registers (D, In,Out) are passed through a channel Φ prior to the Bell
measurement. One could think of Φ as noise, or perhaps a malicious attack on the registers. How
does Φ affect the teleportation? In particular, what is the state of the system after the Bell
measurement is complete?

Let’s start with the special case where Φ is a product unitary U = UD⊗UIn⊗UOut. In this case
the pure state of the entire system after the Bell rotation is easily seen to be

1

2n/2

∑

Paulis T

|T 〉 ⊗ UOutCU
T
InTUD|ψ〉. (104)

58

Measurement of (D, In) then yields a uniformly random outcome T leaving register Out in the pure
state

UOutCU
T
InTUD|ψ〉. (105)

The mapping (104) is linear in each of UD, UIn, UOut so it can be used to deduce the effect of
arbitrary, possibly non-product unitaries U on the state of the registers. This is accomplished by
decomposing U into a linear combination of product unitaries and then applying the above identity
to each term in that decomposition. For example, let

U =
∑

Paulis P

αPP (106)

be a decomposition of U into a linear combination of Pauli operators of the form P = PD⊗PIn⊗POut.
By the above analysis it holds that the pure state of the entire system after the Bell rotation is
given by

1

2n/2

∑

Paulis T

|T 〉 ⊗
(
∑

Paulis P

αPPOutCP
T
InTPD

)

|ψ〉. (107)

Measurement of (D, In) yields an outcome T leaving register Out in the unnormalized pure state
(
∑

Paulis P

αPPOutCP
T
InTPD

)

|ψ〉. (108)

The distribution of measurement outcomes T obtained by measurement of (D, In) need not be
uniform, owing to the potential for interference in the sum over amplitudes αP .

This analysis applies even to non-unitary operators U . Thus, a similar expression can be derived
for arbitrary, possibly non-unitary channels Φ by applying the above analysis to each individual
Kraus operator in a Kraus decomposition of Φ.

C.2 Teleportation under attack, tabular analysis

It is a useful exercise to repeat the analysis of the previous section in light of the tabular notation
introduced in Section 6.5. Let us recall the specification of the attack on teleportation:

1. Registers (In,Out) are prepared in the pure state C|φ+〉 where |φ+〉 is shorthand for n EPR
pairs.

2. An arbitrary attack unitary U is applied to (D, In,Out).
3. A Bell measurement is applied to (D, In) by via Bell rotation B followed by a measurement

in the computational basis, which is denoted {|T 〉〈T |}.
The entire procedure may be viewed as a channel

Φ : D→ (D, In,Out) (109)

ρ 7→
∑

Paulis T

|T 〉〈T |BUC
(
ρ⊗ |φ+〉〈φ+|

)
C∗U∗B∗|T 〉〈T | . (110)

For each fixed Pauli T consider the Kraus operator

|T 〉〈T |BUC|φ+〉 (111)

59

belonging to the channel Φ. This Kraus operator is represented by the following table.

D |T 〉〈T | B
UIn |φ+〉

Out C

(112)

Substituting the Pauli-decomposition (106) of U into the Kraus operator (111) yields

(111) =
∑

Paulis P

αP |T 〉〈T |BPC|φ+〉 . (113)

Fix a choice of Pauli P = PD⊗PIn⊗POut and consider the operator |T 〉〈T |BPC|φ+〉. This operator
can be written in tabular form

D |T 〉〈T | B
PD

In PIn |φ+〉
Out POut C

(114)

so that

(112) =
∑

Paulis P

αP (114) (115)

The observations of the previous sections can be phrased as an identity between tables:

(114) =

D 1
2n/2 |T 〉

In

Out POut C PT
In

T PD

(116)

Often it is more convenient to simply remove the rows (D, In) and write

Out POut C PT
In

T PD (117)

so that

(112) =
1

2n/2
|T 〉 ⊗

∑

Paulis P

αP (114) (118)

Acknowledgements

We gratefully acknowledge helpful discussions with Daniel Gottesman, Harry Buhrman, Christian
Schaffner, Bruce Richmond and Dominique Unruh. A.B. acknowledges support from the Canadian
Institute for Advanced Research (CIFAR), Canada’s NSERC and Industry Canada. G.G. acknowl-
edges support from Industry Canada, Ontario’s Ministry of Research and Innovation, NSERC,
DTO-ARO, CIFAR, and QuantumWorks. Part of this research conducted while D.S. was a visitor
at the University of Waterloo’s IQC.

60

References

[Aar09] Scott Aaronson. Quantum copy-protection and quantum money. In Proc. 24th IEEE Conference
on Computational Complexity (CCC) 2009, pp. 229–242, 2009. doi:10.1109/CCC.2009.42.

[ABOE10] Dorit Aharonov, Michael Ben-Or, and Elad Eban. Interactive proofs
for quantum computations. In Proc. Innovations in Computer Sci-
ence (ICS) 2010, pp. 453–469, 2010. eprint arXiv:0810.5375v2, url

http://conference.itcs.tsinghua.edu.cn/ICS2010/content/papers/35.html.

[AC12] Scott Aaronson and Paul Christiano. Quantum money from hidden subspaces. In
Proc. 44th Symposium on Theory of Computing (STOC) 2012, pp. 41–60, 2012.
doi:10.1145/2213977.2213983. Full version availables as arXiv:1203.4740.

[BB84] Charles H. Bennett and Gilles Brassard. Quantum cryptography: Public key distribution and
coin tossing. In Proc. International Conf. on Computers, Systems and Signal Processing, pp.
175–179. Bangalore, India, 1984.

[BCG+02] Howard Barnum, Claude Crépeau, Daniel Gottesman, Adam Smith, and Alain Tapp. Authen-
tication of quantum messages. In Proc. 43rd IEEE Symposium on Foundations of Computer
Science (FOCS) 2002, pp. 449–458, 2002. doi:10.1109/SFCS.2002.1181969. Full version avail-
able as arXiv:quant-ph/0205128.

[BCS12] Harry Buhrman, Matthias Christandl, and Christian Schaffner. Complete insecurity of quantum
protocols for classical two-party computation. Physical Review Letters, 109:160501, Oct 2012.
doi:10.1103/PhysRevLett.109.160501.

[BFGH10] Debajyoti Bera, Stephen Fenner, Frederic Green, and Steve Homer. Efficient universal quan-
tum circuits. Quantum Information and Computation, 10(1):16–28, January 2010. eprint

arXiv:0804.2429, url http://www.rintonpress.com/journals/qiconline.html#v10n12.

[BFK09] Anne Broadbent, Joseph Fitzsimons, and ElhamKashefi. Universal blind quantum computation.
In Proc. 50th IEEE Symposium on Foundations of Computer Science (FOCS) 2009, pp. 517–
526. IEEE, 2009. doi:10.1109/FOCS.2009.36. eprint arXiv:0807.4154.

[BGI+01] Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai, Salil Vadhan,
and Ke Yang. On the (im)possibility of obfuscating programs. In Advances in Cryptology – Proc.
CRYPTO 2001, LNCS, volume 2139, pp. 1–18. Springer, 2001. doi:10.1007/3-540-44647-8 1.
Full version available as http://www.wisdom.weizmann.ac.il/~oded/p_obfuscate.html.

[BMP+00] P. Oscar Boykin, Tal Mor, Matthew Pulver, Vwani Roychowdhury, and Farrokh Vatan. On
universal and fault-tolerant quantum computing. Information Processing Letters, 75:101–107,
2000. eprint arXiv:quant-ph/9906054v1.

[BOCG+06] Michael Ben-Or, Claude Crépeau, Daniel Gottesman, Avinatan Hassidim, and Adam Smith.
Secure multiparty quantum computation with (only) a strict honest majority. In Proc. 47th
IEEE Symposium on Foundations of Computer Science (FOCS) 2006, pp. 249–260, 2006.
doi:10.1109/FOCS.2006.68. eprint arXiv:0801.1544v1.

[BOM04] Michael Ben Or and Dominic Mayers. General security definition and composability for quan-
tum & classical protocols. arXiv:quant-ph/0409062, 2004.

[Can01] Ran Canetti. Universally composable security: a new paradigm for cryptographic pro-
tocols. In Proc. 42nd IEEE Symposium on Foundations of Computer Science (FOCS)
2001, pp. 136–145, 2001. doi:10.1109/SFCS.2001.959888. Updated version available at
http://eprint.iacr.org/2000/067.

61

http://dx.doi.org/10.1109/CCC.2009.42
http://arxiv.org/abs/0810.5375v2
http://conference.itcs.tsinghua.edu.cn/ICS2010/content/papers/35.html
http://dx.doi.org/10.1145/2213977.2213983
http://arxiv.org/abs/1203.4740
http://dx.doi.org/10.1109/SFCS.2002.1181969
http://arxiv.org/abs/quant-ph/0205128
http://dx.doi.org/10.1103/PhysRevLett.109.160501
http://arxiv.org/abs/0804.2429
http://www.rintonpress.com/journals/qiconline.html#v10n12
http://dx.doi.org/10.1109/FOCS.2009.36
http://arxiv.org/abs/0807.4154
http://dx.doi.org/10.1007/3-540-44647-8_1
http://www.wisdom.weizmann.ac.il/~oded/p_obfuscate.html
http://arxiv.org/abs/quant-ph/9906054
http://dx.doi.org/10.1109/FOCS.2006.68
http://arxiv.org/abs/0801.1544v1
http://arxiv.org/abs/quant-ph/0409062
http://dx.doi.org/10.1109/SFCS.2001.959888
http://eprint.iacr.org/2000/067

[DCEL09] Christoph Dankert, Richard Cleve, Joseph Emerson, and Etera Livine. Exact and approximate
unitary 2-designs and their application to fidelity estimation. Physical Review A, 80(1):012304,
2009. doi:10.1103/PhysRevA.80.012304.

[DN06] Christopher Dawson and Michael Nielsen. The Solovay–Kitaev algorithm. Quantum
Information and Computation, 6(1):81–95, 2006. eprint arXiv:quant-ph/0505030, url

http://www.rintonpress.com/journals/qiconline.html#v6n1.

[DNS12] Frédéric Dupuis, Jesper Buus Nielsen, and Louis Salvail. Actively secure two-party evaluation
of any quantum operation. In Advances in Cryptology – Proc. CRYPTO 2012, LNCS, volume
7417, pp. 794–811. Springer, 2012. doi:10.1007/978-3-642-32009-5 46.

[dSR07] Paulo Beńıcio de Sousa and Rubens Viana Ramos. Universal quantum circuit
for N -qubit quantum gate: a programmable quantum gate. Quantum Information
and Computation, 7(3):228–242, March 2007. eprint arXiv:quant-ph/0602174, url

http://www.rintonpress.com/journals/qiconline.html#v7n3.

[GC99] Daniel Gottesman and Issac Chuang. Demonstrating the viability of universal quantum
computation using teleportation and single-qubit operations. Nature, 402:390–393, 1999.
doi:10.1038/46503. arXiv:quant-ph/9908010v1.

[GIS+10] Vipul Goyal, Yuval Ishai, Amit Sahai, Ramarathnam Venkatesan, and Akshay
Wadia. Founding cryptography on tamper-proof hardware tokens. In Proc.
Theory of Cryptography Conference (TCC) 2010, LNCS, volume 5978, pp. 308–
326. Springer, 2010. doi:10.1007/978-3-642-11799-2 19. Full version available at
http://eprint.iacr.org/2010/153.

[GKR08] Shafi Goldwasser, Yael Kalai, and Guy Rothblum. One-time programs. In Advances
in Cryptology – Proc. CRYPTO 2008, LNCS, volume 5157, pp. 39–56. Springer, 2008.
doi:10.1007/978-3-540-85174-5 3.

[MS10] Michele Mosca and Douglas Stebila. Quantum coins. In Error-Correcting Codes, Finite Ge-
ometries and Cryptography, Contemporary Mathematics, volume 523, pp. 35–47. American
Mathematical Society, 2010. eprint arXiv:0911.1295.

[NC97] Michael A. Nielsen and Isaac L. Chuang. Programmable quantum gate arrays. Physical Review
Letters, 79:321–324, 1997. doi:10.1103/PhysRevLett.79.321.

[PW01] Birgit Pfitzmann and Michael Waidner. A model for asynchronous reactive systems and its
application to secure message transmission. In Proc. 22nd IEEE Symposium on Security &
Privacy (S&P) 2001, pp. 184–200. IEEE, 2001. doi:10.1109/SECPRI.2001.924298. Full version
available at http://eprint.iacr.org/2000/066.

[Smi81] Miles E. Smid. Integrating the Data Encryption Standard into computer networks. IEEE Trans-
actions on Communications, 29(6):762–772, June 1981. doi:10.1109/TCOM.1981.1095071.

[SP00] Peter Shor and John Preskill. Simple proof of security of the BB84 quantum key distribution
protocol. Physical Review Letters, 85:441–444, 2000. doi:10.1103/PhysRevLett.85.441.

[Unr04] Dominique Unruh. Simulatable security for quantum protocols. arXiv:quant-ph/0409125,
2004.

[Unr10] Dominique Unruh. Universally composable quantum multi-party computation. In Advances
in Cryptology – Proc. EUROCRYPT 2010, LNCS, volume 6110, pp. 486–505. Springer, 2010.
doi:10.1007/978-3-642-13190-5 25. Full version availables as arXiv:0910.2912.

[Wie83] Stephen Wiesner. Conjugate coding. ACM SIGACT News, 15(1):78–88, 1983.
doi:10.1145/1008908.1008920. Original article written circa 1970.

[WZ82] William K. Wootters and Wojciech H. Zurek. A single quantum cannot be cloned. Nature,
299(5886):802–803, 1982. doi:10.1038/299802a0.

62

http://dx.doi.org/10.1103/PhysRevA.80.012304
http://arxiv.org/abs/quant-ph/0505030
http://www.rintonpress.com/journals/qiconline.html#v6n1
http://dx.doi.org/10.1007/978-3-642-32009-5_46
http://arxiv.org/abs/quant-ph/0602174
http://www.rintonpress.com/journals/qiconline.html#v7n3
http://dx.doi.org/10.1038/46503
http://arxiv.org/abs/quant-ph/9908010v1
http://dx.doi.org/10.1007/978-3-642-11799-2_19
http://eprint.iacr.org/2010/153
http://dx.doi.org/10.1007/978-3-540-85174-5_3
http://arxiv.org/abs/0911.1295
http://dx.doi.org/10.1103/PhysRevLett.79.321
http://dx.doi.org/10.1109/SECPRI.2001.924298
http://eprint.iacr.org/2000/066
http://dx.doi.org/10.1109/TCOM.1981.1095071
http://dx.doi.org/10.1103/PhysRevLett.85.441
arXiv:quant-ph/0409125
http://dx.doi.org/10.1007/978-3-642-13190-5_25
http://arxiv.org/abs/0910.2912
http://dx.doi.org/10.1145/1008908.1008920
http://dx.doi.org/10.1038/299802a0

	1 Introduction
	1.1 Classical one-time programs from one-time memories
	1.2 Impossibility of quantum one-time programs in the plain model
	1.3 Main result: quantum one-time programs from one-time memories
	1.4 Formalizing impossibility
	1.5 Related work

	2 Notation and tools
	2.1 Universal composability
	2.2 Ideal functionalities
	2.3 Classical one-time programs

	3 Impossibility of non-trivial OTPs in the plain model
	3.1 One-time programs in the plain quantum model
	3.2 Trivial one-time programs for unlockable channels
	3.3 Impossibility of one-time programs for arbitrary channels
	3.4 A conjecture on unlockable channels

	4 Constructing quantum OTPs from OTMs
	4.1 Quantum authentication codes
	4.2 Computing on authenticated data
	4.3 Gate teleportation
	4.4 Overview of protocol
	4.5 Overview of simulator for proof

	5 The trap authentication scheme
	5.1 Definitions and notation
	5.2 Properties of every encode-encrypt authentication scheme
	5.3 Trap codes yield a secure authentication scheme
	5.4 Performing Gates on the Trap Code
	5.5 A universal gate set for the trap scheme
	5.6 Miscellaneous remarks

	6 Statement and analysis of our QOTP
	6.1 Preliminaries
	6.2 Specification of the sender's message
	6.3 Protocol for an honest receiver, completeness
	6.4 General form of an arbitrary environment
	6.5 A tabular representation for operators and vectors
	6.6 Analysis of the environment's interaction with the real sender
	6.7 Specification of the simulator
	6.8 Analysis of the environment's interaction with the simulator
	6.9 Result

	7 UC security of delegating quantum computations
	Appendices
	A One-time programs for classical, bounded reactive functionalities (FBR-OTP)
	B Properties of encode-encrypt authentication schemes
	B.1 Security against Pauli attacks implies security against general attacks
	B.2 Measure-then-decode equals decode-then-measure for CSS codes

	C Analysis of teleportation
	C.1 Teleportation under attack
	C.2 Teleportation under attack, tabular analysis

	Acknowledgements
	References

