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Abstract. At EUROCRYPT 2009, Gauravaram and Knudsen presented
an online birthday attack on the randomized hashing scheme standard-
ized in NIST SP800-106. This attack uses a fact that it is easy to find
fixed points for the Davies-Meyer-type compression functions of stan-
dardized hash functions such as those in the SHA-2 family. This attack
is significant in that it is an attack on the target collision resistance
(TCR) of the randomized hashing scheme which is claimed to be en-
hanced TCR (eTCR). TCR is a property weaker than eTCR. In this
paper, we will present a randomized hashing scheme called RMC. We
will also prove that RMC satisfies both TCR and eTCR in the random
oracle model and in the ideal cipher model. In particular, the proof for
the TCR security in the ideal cipher model implies that the attack by
Gauravaram and Knudsen is not effective against RMC.
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1 Introduction

Background. At EUROCRYPT 2009, Gauravaram and Knudsen [10] showed an
online existential birthday forgery attack on the digital signatures based on a ran-
domized hashing scheme that are enhanced Target-Collision-Resistant (eTCR)
secure designed by Halevi and Krawczyk [12]. The randomized hashing was also
standardized by U.S. National Institute of Standards and Technology in the
SP 800-106 [21]. An interesting aspect of this attack is that it is an attack on
the TCR property of the randomized hashing scheme. TCR is a property weaker
than eTCR. Namely, an attack on the TCR property implies an attack on the
eTCR property but an attack on eTCR property does not necessarily lead to an
attack on the TCR property. In addition, the attack has a practical impact as it
is applicable in the scenarios where a random value used as part of the signature
computation is also used for randomized hashing, which is a recommended prac-
tice to save on the communication bandwidth from transmitting an additional
random value used for randomized hashing. An attack on the eTCR property is
not useful in this scenario.



Although digital signatures based on a randomized hashing scheme with the
eTCR property have a practical advantage of not requiring to sign a random
value along with the hash value, in some scenarios such as above, an attack
on the eTCR property is not useful to forge randomize-hash-and-sign digital
signatures [10] whereas an attack on the TCR property is. This argument is
valid for both online and offline attacks on the eTCR property.

Thus a randomized hashing scheme which is secure with respect to eTCR
should also provide security against TCR attacks in some practical applications.
This leaves open the problem of designing a randomized hash function family
with eTCR property that provides better security against TCR attacks, yet,
should be implementable without any modifications to the standard digital sig-
natures and hash functions. Thus, it is significant to design a randomized hash
function family that is eTCR for practical reasons and yet, provides security
against TCR attacks.

Our contribution. We will present a randomized hash function family which
we call RMC. It simply feeds concatenation of the randomization input and
a message block to each compression function in the iterated hash function.
Similar to the randomized hash function family by Halevi and Krawczyk, RMC
can be implemented without any modifications to iterated hash functions such
as SHA-2 hash functions [7]. We will specify a preprocessing scheme for message
input and randomization input to instantiate RMC with the use of iterated hash
functions such as SHA-2 hash functions.

Actually, RMC is essentially equivalent to the strengthened Merkle-Damg̊ard
domain extension in the dedicated key setting [1] if instantiated with compression
functions of SHA-2 hash functions. In the dedicated key setting, the underlying
compression function takes as a part of input a key which is not secret but chosen
uniformly at random. For compression functions of SHA-2 hash functions, it is
natural to feed the key as a part of the message-block input.

Additionally, a negative result is shown for TCR and eTCR properties of
RMC. It is shown that neither TCR nor eTCR are preserved by strengthened
Merkle-Damg̊ard in the dedicated key setting by Bellare and Ristenpart [1] and
by Reyhanitabar, Susilo and Mu [23]. This also applies to RMC. Namely, RMC
does not necessarily satisfy TCR and eTCR even if the underlying compression
function satisfies TCR and eTCR, respectively.

In this paper, we will give a positive result on TCR and eTCR properties of
RMC on a different assumption on the underlying compression function. More
precisely, we will show that RMC satisfies both TCR and eTCR if the underlying
compression function is an ideal primitive. The result implies that RMC provides
better security with respect to TCR than the Halevi-Krawczyk randomized hash
function family. In particular, it implies that RMC is secure against the online
TCR attack by Gauravaram and Knudsen [10].

Organization. Some basic notions are introduced and the RMX randomized hash
function family is reviewed in Sect. 2. The security notions of TCR and eTCR
are formally defined for randomized hash function family in Sect. 3. The RMC
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randomized hash function family is presented in Sect. 4. It is also shown in the
same section that the RMC hash function family satisfies TCR and eTCR in the
random oracle model and in the ideal cipher model. In Section 5, a preprocessing
scheme for message input and randomization input is described, which is used for
instantiating the RMC randomized hash function family with widely deployed
iterated hash functions such as SHA-2 hash functions.

2 Definitions

2.1 Notations

Let {0, 1}∗ be the set of the binary sequences of arbitrary length including the
empty sequence. The length of x ∈ {0, 1}∗ is denoted by |x|. For x and y in
{0, 1}∗, x‖y is their concatenation.

a ←← A means that an element is chosen uniformly at random from a finite
set A and assigned to a.

2.2 Deterministic hash function

A hash function takes as input an arbitrary-length message and outputs a fixed-
length digest. A hash function is usually constructed by iterating a compression
function, which takes as input a fixed-length message and outputs a fixed-length
digest, by applying a mode of operation or domain extension transform such
as Merkle-Damg̊ard (MD) [5, 17]. In this paper, we consider MD as the hash
function mode of operation albeit the extension of our analysis to other modes.

Let f : {0, 1}n × {0, 1}b → {0, 1}n be a compression function which takes
as input a b-bit message block and an n-bit chaining value and outputs a new
n-bit chaining value. The MD mode of operation iterated over f takes as input
a message M of length a multiple of b. M is divided into b-bit message blocks
M [1],M [2], . . . ,M [m], and is processed with MD to obtain the digest. The MD
mode of operation iterated over f with an initialization vector IV , denoted by
MDf , is formally defined as follows:

MDf (IV ,M):

1. V [0]← IV
2. M [1]‖M [2]‖ · · · ‖M [m]←M
3. For i = 1 to n: V [i]← f(V [i− 1],M [i])
4. Return V [m]

Let Hf : {0, 1}n × {0, 1}∗ → {0, 1}n be a deterministic hash function con-
structed by using the MD mode of operation iterated over f . Hf takes as input
a message M of arbitrary length. With the application of a padding procedure
pad, M is extended as M‖pad , which is processed by MDf . The length of M‖pad
is a multiple of b. pad usually depends only on the length of M . A hash function
Hf with an initialization vector IV is formally defined as follows:

Hf (IV ,M):
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1. M‖pad ← pad(M)
2. Return MDf (IV ,M‖pad)

For deterministic hash functions such as SHA-256 and SHA-512, their initial-
ization vectors are fixed and public. Thus, we will use the notations MDf (M)
and Hf (M).

2.3 Randomized hash function family and RMX

A randomized hash function family is defined by a deterministic hash func-
tion with an auxiliary input which is used for randomization. Randomized hash
function families were first introduced by Naor and Yung in the name of univer-
sal one-way hash functions (UOWHFs) [20]. The UOWHFs were called target-
collision-resistant (TCR) hash functions by Bellare and Rogaway [2] and they
satisfy TCR property which is weaker than collision resistance. Bellare and Rog-
away [2] and later Shoup [24] proposed and analyzed composition constructions
to build TCR iterated hash functions from TCR compression functions. Halevi
and Krawczyk [12] designed randomized hash functions with TCR and stronger
property of enhanced Target Collision Resistance (eTCR) by using properties
related to second preimage resistance of the compression function. One of their
designs is called RMX which was proven eTCR based on properties related to
second preimage resistance of the compression function.

The scope of this paper is in proposing design improvements for RMX hash
function family, and we limit our design description to RMX. An RMX hash
function family over Hf is defined by H̄ =

{
H̄f

r | r ∈ {0, 1}c
}

, where

H̄f
r (M):

1. M ′ ← r‖(r ⊕M [1])‖(r ⊕M [2])‖ · · · ‖(r ⊕M [m])
2. Return Hf (M ′)

For simplicity, it is assumed that the length c of r equals the message-block
length of f . It is also assumed that M = M [1]‖M [2]‖ · · · ‖M [m] and |M [i]|
equals the message-block length of f . The detailed specification for the general
cases is given in NIST SP 800-106 [21].

2.4 Fixed points in block-cipher-based compression functions

Several practical block-cipher-based compression functions [22] such as Davies-
Meyer [18], Matyas-Meyer-Oseas [16] and Miyaguchi-Preneel [22], that are prov-
ably collision resistant and (second) preimage resistant in the ideal cipher model [3,
4, 25], are easily differentiable from a fixed-input-length random oracle [15]. For
example, it is easy to find fixed points for the Davies-Meyer compression func-
tion [18]. This weakness was exploited in several attacks on popular hash function
frameworks [6, 8–11, 13, 14]. These attacks make use of fixed points in compres-
sion functions to generate birthday collision attacks that are used to find second
preimages in much less than generic second preimage attack complexity.
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3 TCR and eTCR security of randomized hash function
family

Let H be a randomized hash function family using a deterministic iterated hash
function Hf randomized with an auxiliary random input. We define multi-target
(enhanced) target-collision-resistance. We formalize them using the experiments
given below:

ExpTCR-t
H :

1. st← ⊥; r0 ← ⊥
2. For i = 1 to t: (Mi, st)← Af (ri−1, st); ri ←← {0, 1}c
3. (M∗, r∗)← Af (K, r, st)
4. WIN iff ∃i : (Mi 6= M∗) ∧ (ri = r∗) ∧ (Hf

ri(Mi) = Hf
r∗(M∗))

ExpeTCR-t
H :

1. st← ⊥; r0 ← ⊥
2. For i = 1 to t: (Mi, st)← Af (ri−1, st); ri ←← {0, 1}c
3. (M∗, r∗)← Af (r, st)
4. WIN iff ∃i : (ri,Mi) 6= (r∗,M∗) ∧ (Hf

ri(Mi) = Hf
r∗(M∗))

An experiment is a game played by an adversary A. A is given t first preim-
ages. For each first preimage (Mi, ri), message Mi is chosen by A adaptively, and
the corresponding randomization input ri is chosen uniformly at random after
Mi. A wins in the experiment if A finds a second preimage for one of the given t
first preimages. The experiment for TCR requires that the randomization input
of the second preimage is equal to that of the first preimage.

The TCR advantage of A is defined as follows:

AdvTCR-t
H (A) = Pr

[
A wins in ExpTCR-t

H

]
.

The eTCR advantage AdveTCR-t
H is defined analogously.

4 RMC hash function family

We propose RMC as a randomized hash function family which offers better
security bounds against TCR attacks than the RMX hash function family. Let
H̃ be an RMC hash function family which uses MD mode as the underlying
domain extension. A hash function in this family, illustrated in Figure 1, is
formally defined as follows:

H̃f
r (M):

1. M [1]‖M [2]‖ · · · ‖M [m]←M
2. M ′ ← (r‖M [1])‖(r‖M [2])‖ · · · ‖(r‖M [m])
3. Returns Hf (M ′)

Here, r ∈ {0, 1}c, and it is assumed that b > c, |M | ≡ 0 (mod b − c) and
|M [i]| = b − c for 1 ≤ i ≤ m. For arbitrary-length messages, a preprocessing
function producing inputs to the deterministic hash function Hf is specified in
the next section.
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r‖M[1] r‖M[2] r‖M[m]

Hr(M)f˜f f f

Fig. 1. A randomized hash function in the RMC family

4.1 Rationale for the design choice of RMC

The key criterion is to choose a design so that an RMC randomized hash
function family is not vulnerable to length-extended fixed-point-based birth-
day collision attacks used to find online TCR collision attacks on RMX hash
functions [10, 11]. In a length-extended fixed-point-based birthday collision at-
tack on an iterated hash function Hf , an adversary develops a colliding pair
(M,M‖M [`+ 1]) such that H(M) = H(M‖M [`+ 1]), where M is an arbitrary
`-block message and M [` + 1] is a fixed-point message block for f such that
f(H(M),M [` + 1]) = H(M). As demonstrated in [10, 11], this attack is also
applicable on RMX randomized hash function families in the following way:

1. Adversary A is given t preimages (M1, r1), (M2, r2), . . . , (Mt, rt).
2. A produces s random fixed points for f such that f(Vj , Nj) = Vj for 1 ≤
j ≤ s.

3. If A finds some i and j such that H̄f
ri(Mi) = Vj , then A outputs (Mi‖(ri ⊕

Nj), ri) as the second preimage for (Mi, ri).

This attack is a TCR collision attack in birthday complexity since it is successful
with some significant probability if ts = O(2n).

This attack cannot be applied to RMC randomized hash function families as
the compression function always takes a randomization input.

4.2 Security analysis

The TCR and eTCR security of the RMC randomized hash function family H̃ ={
H̃f

r

∣∣ f : {0, 1}n × {0, 1}b → {0, 1}n ∧ r ∈ {0, 1}c
}

are analyzed in the random

oracle model and in the ideal cipher model. In the random oracle model, the
compression function f is assumed to be a fixed-input-length random oracle. In
the ideal cipher model, it is assumed to be a Davies-Meyer compression function,
that is, f(v, x) = Ex(v)⊕ v, where the block cipher E with block size n and key
size b is chosen uniformly at random. In these ideal models, the advantage of an
adversary is evaluated based on the number of calls to the ideal primitive. Let

AdvTCR-t
H (`, q) = max

A
Pr
[
A wins in ExpTCR-t

H

]
,

where each preimage given to A has at most ` message blocks and A calls f at
most q times, which exclude the number of calls required to compute the outputs
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for the t first preimages. AdveTCR-t
H (`, q) is defined similarly. Notice that a call

to f in the ideal cipher model is a call to encryption E or decryption E−1.

Theorem 1 given below quantifies the TCR security of the RMC hash function
family. In the proof of Theorem 1, the following lemma is used to evaluate the
probability of multi-collision among the randomization inputs.

Lemma 1 (Theorem 3.1 in [19]). Suppose that there are u balls and u bins
and that each ball is placed in a bin chosen independently and uniformly at ran-
dom. Then, with probability at least 1− 1/u, no bin has more than e lnu/ ln lnu
balls in it.

Theorem 1. Let q, t and ` be positive integers. Let α = min{t, b(e ln 2)c/(ln c+
ln ln 2)c}. Suppose that t ≤ 2c.

1. If f is a random oracle, then

AdvTCR-t
H̃ (`, q) ≤ (α`+ 1)(t`+ q)

2n
+

1

2c
.

2. If f is a Davies-Meyer compression function with an ideal cipher, then

AdvTCR-t
H̃ (`, q) ≤ (α`+ 1)(t`+ q)

2n − (α`+ q)
+

1

2c
.

Proof. Let A be an adversary whose goal is to compromise the TCR-t property of
RMC hash function construction by asking q queries to the compression function
f .

Let win be the event that A wins the TCR-t game. Let mcoll be the event
that more than α of r1, r2, . . . , rt have the same value. Then,

Pr[win] = Pr[¬mcoll ∧ win] + Pr[mcoll ∧ win]

≤ Pr[win | ¬mcoll] + Pr[mcoll] .

From Lemma 1, Pr[mcoll] ≤ 1/2c since t ≤ 2c.

If A wins the game, then A finds a collision of f such that f(v′, r‖m′) =
f(v′′, r‖m′′) for some r ∈ {r1, r2, . . . , rt} or a preimage of K. Suppose that
¬mcoll.

1. Suppose that f is a random oracle. Then, a call to f induces this kind of
collision or a preimage with probability

α`+ 1

2n
.

Since the total number of calls to f in the game is at most t`+ q,

Pr[win] ≤ (α`+ 1)(t`+ q)

2n
.
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2. Suppose that f is a Davies-Meyer compression function with an ideal cipher
E. Then, a call to E or E−1 induces this kind of collision or a preimage with
probability at most

α`+ 1

2n − (α`+ q)
.

Since the total number of calls to E or E−1 in the game is at most t`+ q,

Pr[win] ≤ (α`+ 1)(t`+ q)

2n − (α`+ q)
.

ut

It is implied by the result for the ideal cipher model shown in Theorem 1 that
the collision attack on the RMX hash function family is not effective against the
RMC hash function family.

Theorem 2 gives upper bounds on the eTCR advantage both in the random
oracle model and in the ideal cipher model.

Theorem 2. Let q, t and ` be positive integers.

1. If f is a random oracle, then

AdveTCR-t
H̃ (`, q) ≤ (t`+ 1)(t`+ q)

2n
.

2. If f is a Davies-Meyer compression function with an ideal cipher, then

AdveTCR-t
H̃ (`, q) ≤ (t`+ 1)(t`+ q)

2n − (t`+ q)
.

Proof. Let A be an adversary whose goal is to compromise the eTCR-t prop-
erty of RMC hash function construction by asking q queries to the compression
function f .

Let win be the event that A wins the eTCR-t game. If A wins the game, then
A finds a collision of f or a preimage of K.

1. Suppose that f is a random oracle. Then, a call to f induces a collision or a
preimage with probability (t` + 1)/2n. Since the total number of calls to f
in the game is at most t`+ q,

Pr[win] ≤ (t`+ 1)(t`+ q)

2n
.

2. Suppose that f is a Davies-Meyer compression function with an ideal cipher
E. Then, a call to E or E−1 induces a collision or a preimage with probability
at most (t`+ 1)/(2n− (t`+ q)). Since the total number of calls to E or E−1

in the game is at most t`+ q,

Pr[win] ≤ (t`+ 1)(t`+ q)

2n − (t`+ q)
.

ut
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5 Randomized message preprocessing for hash functions

A randomized message preprocessing algorithm for an iterated hash function is
specified for instantiation of the RMC randomized hash function family with
widely deployed iterated hash functions such as SHA-256 and SHA-512. It is
assumed that the iterated hash function uses a compression function f : {0, 1}n×
{0, 1}b → {0, 1}n and the Merkle-Damg̊ard strengthening. For the iterated hash
function, let l be the length of the binary representation of the input length. For
example, n = 256, b = 512 and l = 64 for SHA-256, and n = 512, b = 1024 and
l = 128 for SHA-512.

The message preprocessing algorithm takes as input r ∈ {0, 1}c chosen uni-
formly at random and a message M ∈ {0, 1}∗. It is assumed that l + 1 ≤ b− c.

The algorithm first pads the message M with 10k, where k is the minimum
non-negative integer such that

|M |+ k + 1 ≡ (b− c)− (l + 1) (mod b− c) .

Then, it divides M‖10k into the blocks M [1],M [2], . . . ,M [m] such that |M [i]| =
b− c for 1 ≤ i ≤ m− 1 and |M [m]| = (b− c)− (l + 1). Finally, it produces

(r‖M [1])‖(r‖M [2])‖ · · · ‖(r‖M [m]) .

From the TCR security analysis in Sect. 4, since it is assumed that t ≤ 2c,
where t is the number of the first preimages, it is recommended that c ≥ 128
for SHA-256 and SHA-512. In addition, it is reasonable to assume that c ≤ n,
where n is the output length and n < b − l − 1 for SHA-256 and SHA-512. If
c = 128, the number of calls of RMC to the compression function is about 4/3
and 8/7 times larger than that of RMX for SHA-256 and SHA-512, respectively.
Table 1 summarizes the comparison for some other values of c.

Table 1. Performance comparison between RMC and RMX. Each entry τ means that
the number of calls of RMC to the compression function is about τ times larger than
that of RMX.

c 128 256 384 512

SHA-256 4/3 2 n/a n/a

SHA-512 8/7 4/3 8/5 2
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