
An Integrated Approach to Cryptographic Mitigation of
Denial-of-Service Attacks

Jothi Rangasamy Douglas Stebila Colin Boyd

Juan González Nieto

Information Security Institute, Queensland University of Technology,
GPO Box 2434, Brisbane QLD 4001, Australia

{j.rangasamy,stebila,c.boyd,j.gonzaleznieto}@qut.edu.au

ABSTRACT
Gradual authentication is a principle proposed by Mead-
ows as a way to tackle denial-of-service attacks on network
protocols by gradually increasing the confidence in clients
before the server commits resources. In this paper, we pro-
pose an efficient method that allows a defending server to
authenticate its clients gradually with the help of some fast-
to-verify measures. Our method integrates hash-based client
puzzles along with a special class of digital signatures sup-
porting fast verification. Our hash-based client puzzle pro-
vides finer granularity of difficulty and is proven secure in
the puzzle difficulty model of Chen et al. (2009). We inte-
grate this with the fast-verification digital signature scheme
proposed by Bernstein (2000, 2008). These schemes can be
up to 20 times faster for client authentication compared to
RSA-based schemes. Our experimental results show that,
in the Secure Sockets Layer (SSL) protocol, fast verification
digital signatures can provide a 7% increase in connections
per second compared to RSA signatures, and our integra-
tion of client puzzles with client authentication imposes no
performance penalty on the server since puzzle verification
is a part of signature verification.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: Distributed
Systems—Client/Server ; D.4.6 [Operating Systems]: Se-
curity and Protection—Authentication

General Terms
Security

Keywords
Denial-of-Service, Client Puzzles, Bernstein’s Signatures, Se-
cure Sockets Layer (SSL)

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ASIACCS ’11, March 22–24, 2011, Hong Kong, China.
Copyright 2011 ACM 978-1-4503-0564-8/11/03 ...$10.00.

1. INTRODUCTION
Denial of Service (DoS) attacks are a growing concern as

they aim to disrupt the availability of a target server by
exhausting its resources [8]. Thus, when the end host or
server is under DoS attack, its service will be unavailable to
the legitimate clients. In recent years, several major Internet
e-commerce sites were disabled by DoS attacks. Some of the
victims were eBay, Yahoo, Amazon, and Microsoft’s name
server [20].

Authentication is a promising way to treat DoS attacks by
restricting connections only to authorised users. However,
authentication itself is typically a computationally intensive
process. This means that the authentication protocol can
become a target of DoS attacks as the attackers can cause
the server to perform expensive operations by sending a large
number of (bogus) connection requests. Therefore it can
cause the same problem it aimed to solving [23].

The SSL/TLS protocol1 is the most widely used and trusted
protocol for secure transactions for sensitive applications
ranging from on-line banking and stock trading to e-commerce.
A SSL/TLS client is allowed to trigger the SSL/TLS server
to perform an expensive RSA operation. By exploiting this,
an attacker could easily mount a DoS attack on SSL-based
e-commerce sites. On-line shoppers get frustrated and of-
ten leave the site without completing their purchase. It was
estimated that several billion dollars are lost annually in
revenue from e-commerce transactions aborted due to Web
performance issues [10, 30].

1.1 Our contributions
In this work, we present an efficient protocol for stronger

authentication in the presence of denial of service attacks.
The main motivation for this work is to prevent DoS at-
tacks on secure web servers by introducing fast-to-verify au-
thentication measures that reduce the costs incurred by a
defending server and at the same time increase the cost of
mounting an attack.

Finer granularity hash-based client puzzles. We propose a
new client puzzle based on hash functions; our puzzle con-
struction can be seen as a generalisation of the client puzzle
of Aura et al. [3] with finer granularity in the puzzle’s diffi-
culty. We show that our construction is secure in the Chen

1Secure Sockets Layer (SSL) version 3.1 is known as Trans-
port Layer Security (TLS) version 1.0).

et al. model for puzzle difficulty [9].
Stronger authentication with fast verification signatures.

DoS countermeasures such as client puzzles and cookies give
weak authentication. How can we efficiently achieve stronger
authentication of clients? We propose a gradual authen-
tication protocol which uses client puzzles and signature
schemes for achieving weak and stronger authentication, re-
spectively. By using Bernstein’s fast verification digital sig-
nature scheme [5], for which verification needs only a few
multi-precision integer operations, a defending server can
verify client signatures with very low cost. We carefully
integrate the weak authentication (client puzzles) with the
strong authentication (digital signatures) such that client
puzzle verification adds no cost.

Performance analysis. Although client puzzles have been
known about for some time, there has been very little experi-
ence in using puzzles in practice, particularly in the context
of authenticated key exchange. We have implemented our
techniques to determine the performance improvement that
can be expected in SSL. Our measurements show that our
proposed approach can protect SSL servers effectively from
DoS attacks that exploit the cost of SSL key agreement.

Outline. In the following sections, we describe our gradual
authentication technique and apply it to the TLS protocol to
overcome DoS attacks. We organise the rest of the paper as
follows: Section 1.2 presents related work, Section 2 presents
our client puzzle and its security analysis, Section 3 provides
the design of our client authentication technique and its per-
formance results, and Section 4 presents performance results
obtained by adding our mechanism to the SSL/TLS proto-
col. Section 5 concludes and discusses future work.

1.2 Background and related work
Throughout this paper, we are interested in DoS attacks

that attempt to consume a server’s limited resources such
as CPU cycles, memory and network bandwidth. In re-
cent years, a number of techniques, such as client puzzles
and stateless connections, have been proposed for deterring
resource-consuming DoS attacks [2, 14].

Juels and Brainard [14] first used client puzzles to deter
connection depletion attacks. This lead to the development
of several client puzzles to protect authentication protocols
against DoS attacks [3, 26]. A client puzzle or cryptographic
puzzle is a moderately hard computational problem issued
by a defending server in response to a client request for its
service. The client must return a solution before the server
will continue with the protocol. Puzzles are designed so
that solving a puzzle is an acceptable cost for legitimate
clients but, when trying to establish multiple connections in
parallel, the cost will be a significant restraint for attackers.

Stateless connections are another countermeasure proposed
to prevent memory-based DoS attacks [2]. This is imple-
mented normally via the use of cookies, a technique pro-
posed by Karn [15]. When an authentication protocol is
run, the defending server sends all the session-related infor-
mation in the form of a cookie. Getting back the cookie
in the next round of communication indicates to the server
that the client is able to receive messages sent to the IP
address from which the communication was initiated. This
also protects the server from memory-based DoS attacks in
which the attacker uses spoofed addresses.

There are very few implementations showing the efficacy
of client puzzles in mitigating DoS attacks available in the

literature. Juels and Brainard used client puzzles to counter
TCP SYN flooding [14]. They mentioned that SSL also
has a similar problem. Wang and Reiter also implemented
client puzzles in the TCP stack to show that their puzzle
auction mechanism incurs a negligible cost [27]. Feng et al.
applied client puzzles at the network layer to deter TCP
SYN flooding [12].

Both cookies and client puzzles can provide a weak form of
authentication, but authentication of the client cannot be ig-
nored altogether and must be completed at some stage in the
protocol execution. To thwart DoS attacks, Meadows sug-
gested starting with weak authentication when the protocol
execution begins and then gradually increasing the strength
of authentication as the protocol runs. This strategy for
balancing authentication and computational expenditure is
called gradual authentication [18, 19].

Protocol designers have tried to reduce the impact of DoS
attacks by implementing several countermeasures as a pream-
ble to the network protocols [25, 16, 22, 7]. Dean and Stub-
blefield first used client puzzles to protect TLS [11]. To
the best of our knowledge, we are the first to present a
countermeasure in the form of digital signatures. This pro-
vides an integrated gradual authentication mechanism that
combines a type of hash-based client puzzles with the pro-
posed signature-based countermeasure within an authenti-
cation process. Our integrated approach only increases the
cost of mounting an attack with client puzzles but adds no
extra cost on the server side to verify puzzle solutions. More-
over if puzzle verification fails then the rest of the signature
verification is terminated. Although the proposed approach
is suitable in general for key exchange protocols that use
signatures for client authentication, we focus on preventing
DoS attacks on TLS.

2. OUR CLIENT PUZZLE
This section describes our new client puzzle which achieves

both efficiency and finer granularity. Granularity indicates
how well a server can shift from one difficulty level to the
next level to impose a reasonable cost on clients. The more
difficulty levels in a puzzle scheme, the more flexible it is
for the server. The proposed client puzzle is based on the
construction of Aura et al. which is an interactive version
of Back’s proof of work function, Hashcash [4]. We also
discuss briefly Aura et al.’s puzzle, identify its shortcomings
and propose improvements.

Client puzzle of Aura et al. [3]. In 2000, Aura et al. pro-
posed a client puzzle scheme (which we call APuz) based
on the problem of finding partial hash preimage of a pre-
specified “target” string of a given length. In their puzzle
protocol, the server sends a periodically generated nonce
NS and the difficulty level Q to the client. The client first
generates his own nonce NC and then finds a required par-
tial collision X such that H(C,NS , NC , X) has the required
number, Q, of zeros in the output. Figure 1 describes the
puzzle APuz of Aura et al.

Note that the probabilities of finding partial collisions for
any Q-bit string and for the Q-bit string 0Q are the same,
provided H is random. Let d be the decimal value of a Q-bit
string: d can be any integer in [0, 2Q−1]. But the reason to
set d to be zero in APuz is that it is simpler and convenient to
compare trial collisions. To date, APuz is the most efficient
client puzzle proposed in the literature requiring just a single
hash computation to verify a puzzle solution.

H(C,NS , NC , X) = 000 . . . 000︸ ︷︷ ︸
Q bits

Y

H → a cryptographic hash function
C → the client identity
NS → the server nonce
NC → the client’s nonce
X → the puzzle solution
Q → the puzzle difficulty level

000 . . . 000︸ ︷︷ ︸
Q bits

→ the Q-long string of bits 0

Y → the rest of the hash value;
can be anything

Figure 1: Client puzzle APuz of Aura et al. [3]

Drawbacks. There are two reasons why we need to im-
prove APuz. The first reason is that it fails to perform the
functionality of cookies, testing the reachability of the clients
at the claimed address: the server publishes its nonce and
the puzzle difficulty level, periodically. Therefore puzzles are
not uniquely generated as there is no client identity involved
in puzzle generation. The second reason is that some puz-
zles may not have solutions [17]: unlike Juels-Brainard type
puzzles, puzzles are not verified during their generation and
hence there is no guarantee that a client will find a solution
producing the required number of zeros on the hash output.
Moreover, the average time needed to solve an instance of
APuz is exponential in Q, the difficulty level. Hence, it in-
troduces a big gap between the two nearest difficulties.

2.1 Proposed Client Puzzle GPuz
In this section, we provide an idea to address the issues

discussed above. The idea is the following: relax the condi-
tion on a puzzle solution so that the probability of solving
a puzzle can be increased. That is, instead of fixing the nu-
merical value of the Q-bit target string as d = 0, we can
relax that the numerical value d of the Q-bit target string
could be anything in [0, D], so that 0 ≤ d ≤ D < 2Q. Note
that, while the probability of solving a puzzle with the value
of a given target Q-bit string being D is 1

2Q
, the probability

of solving a puzzle with the value of target Q-bit string being
d, 0 ≤ d ≤ D becomes D+1

2Q
, assuming the hash function is

an ideal random function. Note that we have only increased
a client’s chance of finding solutions. It is still possible that
the client may not find solutions within its running time.

For clarity, we fix the final Q-bits of the hash output as
the target string. That is, for a given puzzle with (Q,D), a
solution x should satisfy (h(x) mod 2Q) ≤ D. For instance,
if SHA-1 is used and (Q,D) = (32, 65537), then a string x is
a solution, only if (SHA-1(x) mod 232) ≤ 65537. Each hash
application outputs a number in the interval [0, 2160 − 1]. If
the required part of the output is below the target value,
then a solution is found. If not, the process is repeated by
incrementing x by one. Note that the lower the target value,
the harder the problem solving. Therefore, in addition to Q,
a defending server has one more parameter in D to adjust
the puzzle difficulty levels. In this way our method allows
the server to set more difficulty levels quite smoothly by
increasing the target space.

We now describe our client puzzle, GPuz, that is a gen-

eralisation of APuz. Figure 2 illustrates the proposed puz-
zle. Let IDS and IDC be the identities of the server and
the client, respectively. When a defending server receives a
request for service, it sends a challenge consisting of a pe-
riodically generated server nonce NS , a uniquely generated
challenge Z and the hardness parameters (Q,D).

Once the client has received the challenge it generates a
new nonce, NC , sets M = Z||NS ||NC ||IDS ||IDC and finds a
partial hash preimage of a Q-bit target string whose integer
value is in the range [0, D]. That is, the client has to find X
such that H(M,X) mod 2Q ≤ D.

Now the client replies with its nonce, NC , and the puzzle
solution X, and the other values it received. Then the server
first checks if the response is fresh by checking the existence
of NC in the memory and then performs the reachability
test by recomputing Z and matching it with the received
one. Finally, the server checks if the last Q bits of H(M,X)
have integer value in [0, D].

Bitcoin. Our proposed client puzzle is similar to the math-
ematical problem used in the Bitcoin peer-to-peer cryptocur-
rency scheme [21]. The main unit of currency of this digital
currency system are called Bitcoins. These are not physical
objects but numbers produced by network nodes. A network
node generates a new coin whenever it finds a solution to a
certain mathematical problem. The mathematical problem
used in the Bitcoin system is similar to our proposed client
puzzle with SHA-256 as the hash function, and the hexadec-
imal value of D as 0000000000081CD2||048, and Q = 256.

2.2 Security of Client Puzzles
Recently, Chen et al. described a security model for client

puzzles, by considering a game between a challenger and
an adversary [9]. They proposed formal definition for client
puzzles and two properties: puzzle unforgeability and puzzle
difficulty. We now give a brief overview of the client puzzle
and puzzle difficulty definitions of Chen et al.

Definition 1. A client puzzle CPuz consists of the follow-
ing algorithms [9]:

• Setup: On input 1k for security parameter,

– Establishes long term secret key space sSpace,
hardness space QSpace, string space strSpace, puz-
zle instance space puzSpace, and solution space
solnSpace

– Selects the long term puzzle generation key s
$←

sSpace, and

– Outputs s and public parameters params.

• GenPuz: Generates a puzzle instance puz ∈ puzSpace
based on inputs long-term secret s ∈ sSpace, puzzle
difficulty Q∈ QSpace and string str ∈ strSpace.

• FindSoln: Finds a potential solution soln ∈ solnSpace
for puzzle puz ∈ puzSpace within running time t.

• VerAuth: Checks the authenticity of puzzle
puz ∈ puzSpace using long-term secret s∈ sSpace.

• VerSoln: Checks the correctness of a potential solution
soln ∈ solnSpace for puzzle puz ∈ puzSpace.

Definition 2. (Puzzle difficulty) Let Q be a difficulty pa-
rameter and let k be a security parameter. Let εk,Q(·) be

Client Server

Setup phase

Select a secret K
$← {0, 1}k and generate

a nonce NS
$← {0, 1}k, periodically.

Pick the puzzle difficulty level Q
and an Q-bit integer D, based on
the availability of system resources.

Puzzle phase

Request
−−−−−−−−−−−−−−−−−−−−→ Compute Z ← H(K,Q,D,NS , IDC)

Generate a nonce NC
$← {0, 1}k

Q,D,NS , Z←−−−−−−−−−−−−−−−−−−−−
Set M ← Z||NS ||NC ||IDS ||IDC

Find X such that

H(M,X) mod 2Q ≤ D
Q,D,NS , Z,NC , X−−−−−−−−−−−−−−−−−−−−→ Check if (NS , Q,D) is recent and

NC is not used before.

Check if Z
?
= H(K,Q,D,NS , IDC)

Set M ← Z||NS ||NC ||IDS ||IDC

Check if H(M,X) mod 2Q ≤ D

Figure 2: Our client puzzle, GPuz.

a family of monotonically increasing functions and A be a
probabilistic polynomial time algorithm.

For the puzzle difficulty of CPuz, consider the game
ExecQ,DIFF

A,CPuz(k), between a challenger C and an adversary A,
defined as follows:

• The challenger C sets (params, s)← Setup(1k) and out-
put params is given to A.

• The adversary A can ask any number of
CreatePuzSoln(str) queries. For each such query C gen-
erates a fresh puzzle puz ← GenPuz(s,Q, str), finds a
solution soln for puz, and returns (puz, soln) to A.

• At any point in time, A can make a single Test(str†)
query. For this query, C creates a challenge puzzle
puz← GenPuz(s,Q, str†) and returns it to A.

• A outputs a potential solution soln†. C returns true if
VerSoln(puz†, soln†) = true, and false otherwise.

A client puzzle CPuz is said to be εk,Q(·)−DIFF if

SuccQ,DIFF
A,CPuz(k) = Pr[ExecQ,DIFF

A,CPuz(k) = 1] ≤ εk,Q(t)

for all probabilistic algorithms A running in time at most t.

Note that, instead of using the running time of the adversary,
puzzle difficulty can also be defined in terms of the number
of oracle queries made by an adversary in the random oracle
model. In the following sections, we consider each query to
the oracle as a step taken by the adversary to solve a puzzle.

2.3 Specification and Security of GPuz
Let H : {0, 1}∗ → {0, 1}2k be a random oracle and k ∈ N.

GPuz is a client puzzle consisting of the following algorithms:

• Setup: On input 1k for security parameter,

– Establishes long term secret key space sSpace ←
K, hardness space QSpace ← {(Q,D) : Q ∈
{0, . . . , 2k}, D ∈ {0, . . . , 2Q − 1}}, string space

strSpace← {0, 1}∗, puzzle instance space
puzSpace← {0, 1}k ×QSpace, and solution space
solnSpace← {0, 1}∗.

– Sets K
$← K.

• GenPuz(K, (Q,D), str): Generates a puzzle instance

puz = ((Q,D), NS , Z) where NS
$← {0, 1}k and Z is

computed as Z ← H(K, (Q,D), NS , str).

• FindSoln(puz, t): For i from 0 to max{t, 2Q}. Set soln←
X ∈ {0, 1}∗: if the first Q bits of H(puz : soln) have
decimal value in [0, D], then output soln.

• VerAuth(K, puz′): For a puzzle puz′= ((Q′, D′), N ′S , Z
′),

computes Z ← H(K, (Q′, D′), N ′S , str
′). If Z = Z′,

this outputs true and otherwise outputs false.

• VerSoln(puz′, soln′): If the decimal value of the first Q
bits of H(puz′, soln′) does not exceed D, then return
true. Otherwise, return false.

From the design principle of our client puzzle GPuz, the
unforgeability property of Chen et al. is easily achieved here.
Since a keyed hash function H is used for puzzle generation,
except for the key holder, the probability of generating a
valid looking puzzle is negligible in the security parameter,
the length of the key.Now we show that GPuz satisfies the
difficulty definition of the Chen et al. model.

Theorem 1. Let εk,(Q,D)(q) = (D+1)(q+1)

2Q
and H be a

random oracle. Then GPuz is an εk,(Q,D)(q)-DIFF client
puzzle, where q is the number of distinct queries to H.

Proof: We prove the theorem using a counting argument.
LetA be a probabilistic algorithm. Now, fixQ andD. Then,
to win the difficulty game, an optimal strategy for A is to
make at most 2Q oracle calls to H. Let X̄1, X̄2, . . . X̄q be the
q distinct queries made to H. Let X̄ = {X̄1, X̄2, . . . X̄q} ⊆
{0, 1}∗ and Ȳi be the random variable taking values in {0, 1}
such that Ȳi = 1 iff H(X̄i) mod 2Q ≤ D. Let Ai be the

event that X̄i is a valid solution to GPuz. Then, Pr(Ai) =
Pr(Ȳi = 1) = (D + 1)/2Q.

Let B be the event that there exists at least one X̄j ∈ X̄
such that H(X̄j) mod 2Q ≤ D. That is, B =

⋃q
i=1Ai.

Then,

Pr(B) = Pr(

q⋃
i=1

Ai) ≤
q∑

i=1

Pr(Ai) ≤
(D + 1)q

2Q
.

Note that for any adversary A making q queries to H, the
probability that A returns a value X̄i with the left most Q

bits of H(X̄i) being smaller than D is at most (D+1)q

2Q
and

if that fails, then he has to guess the solution at random.
Thus,

Succ
(Q,D),DIFF
A,GPuz (k) = Pr[Exec

(Q,D),DIFF
A,GPuz (k) = 1]

= Pr[Awins|B] Pr(B)
+ Pr[Awins|B̄] Pr(B̄)

≤ 1× (D+1)q

2Q
+ (D+1)

2Q
× (1− q

2Q
)

≤ (D+1)(q+1)

2Q
= εk,(Q,D)(q).

Strongly difficult puzzles of Stebila et al. [24]. Stebila et
al. extended the difficulty notion of Chen et al.’s model by
showing that for a powerful adversary, solving n puzzles
should not be easier than solving one puzzle n times [24]. It
can be shown that GPuz is an εk,(Q,D),n(q)-strongly-difficult
interactive client puzzle with

εk,(Q,D),n(q) =

(
(D + 1)(q + n)

n2Q

)n

.

3. A GRADUAL AUTHENTICATION PRO-
TOCOL

In this section, we propose an authentication scheme for
a defending server to authenticate its clients in a gradual
manner. The scheme combines client puzzles for achieving
weak authentication with a signature scheme proposed by
Bernstein [5] for achieving strong, fast authentication.

3.1 Bernstein’s Fast-Verification Digital Sig-
natures

The Rabin-Williams signature system [28] is provably as
secure as factorization and had the most efficient verification
scheme known until 2000, when Bernstein proposed a Rabin-
Williams variant with the same security and signing speed
but much faster verification. We refer to this scheme as
FVDS (Fast-Verification Digital Signatures).

Definition 3. (FVDS Signature Scheme [5]) Let M be a
set of messages and let H : M× {r ∈ Z : 0 ≤ r < 2`} →
{h ∈ Z : 0 < h < 2L, h mod 8 = 1} be a hash function.
The signature schemes consists of the following algorithms:

• KeyGen: Generate an RSA private key sk = (p, q) and
corresponding public key pk = n = pq so that |n| = L.

• Sign(sk = (p, q),m): Compute a signature (r, h, f, t, s)
such that 0 ≤ r < 2`, h = H(m, r), f ∈ {−2,−1, 1, 2},
0 ≤ s < 2L, 0 ≤ t < 2L, and s2 = f · h+ t · n.

• Verify(pk = n,m, (r, h, f, t, s)): Check if h = H(m, r)
and s2 = f · h+ t · n.

Security. FVDS is secure – existentially unforgeable against
adaptive chosen message attacks [13] – under the assumption

that factorization of an RSA modulus is harder. Depending
on the exact range of r and how f is computed, the security
reduction may be tight [6].

Efficiency. Compared with other signatures schemes like
RSA and DSA, verification for FVDS needs only a few op-
erations: one hash function, one modular squaring, and two
modular multiplications.

Interestingly, the verification operation can be made to
work with even smaller integers. The core of the verification
operation is checking if s2 = f · h + t · n. As suggested by
Bernstein [5], a verifier could do this check modulo a smaller
secret random prime. For example, the verifier could pick
a small random prime c, compute s′ = s mod c, t′ = t
mod c, n′ = n mod c, and h′ = h mod c, and then check if
(s′)2− t′ ·n′−f ·h′ mod c = 0. For an appropriately sized c
(say 115 bits), the chance of fooling the modified verification
algorithm is negligible. Alternatively, one could perform this
check for several very small (say, 32-bit) primes, as long as
the product of these primes exceeded a certain value.

We implemented the FVDS scheme in the OpenSSL open
source cryptographic library [29], both as a standalone signa-
ture scheme and for use in the SSL protocol (we discuss the
latter issue in the next section). In particular, we modified
OpenSSL version 1.0.0 to support FVDS using the built-
in big-integer operations, and compared the performance of
this scheme with the built-in RSA implementation. We car-
ried out performance evaluations on one core of a machine
with an Intel Core 2 Duo 2.53GHz (T9400) processor.

Our results are reported in Table 1. FVDS verification
significantly outperforms RSA verification; for example, for
a 1024-bit modulus, a 64-bit computer can verify 6 times as
many FVDS signatures compared to RSA signatures. We
observed, however, that there is little performance enhance-
ment from verifying FVDS with smaller primes: except in
the case of very large (4096-bit moduli) keys, the cost of sev-
eral modular reductions (s′, t′, n′, and h′ mod c) followed
by 1 small mod-squaring and 2 small mod-mults outweighs
the cost of 1 full mod-squaring and 2 full mod-mults.2

3.2 Signature-based client authentication with
client puzzles

We have integrated our proposed client puzzle scheme
(Section 2) with the FVDS scheme to develop a client au-
thentication protocol that resists DoS attacks. The main
benefit of this tight integration is to provide gradual au-
thentication at reduced cost.

We now discuss the proposed scheme in detail; Figure 3
summarizes the proposed protocol.

• Setup. Each client obtains a FVDS public-key / private-
key pair using the KeyGen algorithm, and each server
obtains an authentic copy of each client’s public key.

• Periodic precomputation. A defending server periodi-
cally selects a secret K, generates NS and sets puzzle
difficulty parameters as (Q,D), based on the availabil-
ity of system resources.

2Where this tradeoff point appears depends on the degree of
optimization in the implementation. While our implemen-
tation may not achieve the performance extremes of highly-
optimized hand-coded assembly, we believe our implementa-
tion reflects the performance one might expect from a practi-
cal real-world implementation since the modular arithmetic
is a widely used, well-developed, mature, and fairly opti-
mized code base.

32-bit i386 build 64-bit x86 64 build
modulus RSA FVDS RSA FVDS

(bits) e = 65537 full verify 32-bit c 128-bit c e = 65537 full verify 32-bit c 128-bit c

1024 14013 112690 79502 70543 29726 180938 108950 95268
1536 6782 68165 72252 59412 14947 122558 94707 81212
2048 3949 52036 55838 50534 8844 103962 84319 71418
4096 1013 20688 42650 33557 2354 46532 58393 47481

Table 1: Signature verification performance in operations per second (OpenSSL 1.0.0 (modified), Intel Core
2 Duo 2.53GHz T9400, one core).

• Challenge. When a server receives a request, it issues
the tuple (Q,D,NS) along with a uniquely generated
challenge Z. Here Z is a client-dependent string com-
puted as Z = HK(NS , Q,D, IDC) where IDC is the
client’s identity.

• Solution and client authentication. Upon receipt of
(NS , Q,D,Z), the client first generates a nonce NC ,
sets M ← Z||NS ||NC ||IDS ||IDC and finds a value
X such that H(M,X) mod 2Q ≤ D. That is, client
finds a solution to the associated puzzle. It sets h ←
H(M,X) and computes an FVDS signature σ ←
(X,h, f, t, s) on the stringM . It finally sendsNS , NC ,Z
along with the computed FVDS signature σ to the
server.

• Verification. First the server checks if NS is recent and
NC exists in the list of successfully completed connec-
tions. Then it performs the reachability test by recom-
puting Z and matching it with the received one. Fi-
nally, the server sets M ← Z||NS ||NC ||IDS ||IDC and
verifies the FVDS signature σ = (X,h, f, t, s) on it by

first checking if h
?
= H(M,X) and h mod 2Q ≤ D and

then s2
?
= f ·h+ t ·n. If none of the above checks fails,

then the server authenticates the client. Otherwise it
sends service failure to client.

Note that clients do not have to solve puzzles unless the
server is under attack. Therefore, when there is no DoS
attack, the server in key establishment protocols can imme-
diately engage in a signature-based authentication by setting
the puzzle difficulty Q to 0. In this case, any random value
of X is accepted as a solution of a given puzzle.

Implementation. In order to see if the proposed client au-
thentication scheme is a good DoS countermeasure, we car-
ried out performance evaluations as in Section 3.1. For this
experiment we modified OpenSSL version 1.0.0 to support
signature-based client authentication scheme using the built-
in big-integer operations, and compared the performance of
this scheme with the built-in RSA implementation. Our re-
sults are presented in Table 2.

The experiment for the FVDS-based client authentication
scheme is very similar to the one described in Section 3.1.
The only difference between the two experiments is a hash
operation being performed for puzzle verification in addition
to RSA signature verification. Note that results for FVDS
in Table 1 and Table 2 are the same as the hash operation
is already a part of FVDS signature verification.

Our FVDS-based client authentication scheme significantly
outperforms an RSA-based scheme; for example, for a 4096-
bit modulus, a 32-bit computer can do 20 times as many
FVDS-based protocol runs compared to RSA-based proto-

col runs. Our technique facilitates counterbalancing com-
putational expenditure by requiring clients to perform more
work and servers to perform significantly less work, thereby
enabling the server to process more requests. Performance
results in Table 2 demonstrate that our suggested method
can speed up the client authentication process by a factor
of between 6 to 20, depending on the RSA key size. In de-
fense against DoS attacks, this improvement is considerable.
Note that the speed up factor increases as the RSA key size
increases even with the fixed public exponent. Therefore,
our scheme is more favourable for future security levels.

Moreover our FVDS-based client authentication technique
can be adapted to work with any network protocol to miti-
gate DoS attacks effectively. To show its promising perfor-
mance when adapted in a security protocol, we implemented
the proposed FVDS-based client authentication scheme in
the OpenSSL open source cryptographic library [29] for use
in the SSL protocol. Our results imply that the proposed
scheme is a promising and useful companion tool for SSL
client puzzles in defense against DoS attacks. More details
on this experiment and its results are provided in the fol-
lowing section.

4. DOS RESISTANCE IN SSL
The Secure Sockets Layer (SSL) protocol does not offer

any built-in denial of service resistance features. Given its
wide-spread deployment on the Internet, and that a server
can be directed to do expensive operations with a single
simple message from the client, it presents a denial of service
risk. Our focus is on mutual authentication in SSL, where
both clients and servers authenticate themselves.

We have modified the SSL protocol in two ways to improve
its denial of service resistance. The main modification we
have made is the implementation of a cipher suite involving
the FVDS protocol from Section 3.2. In order to evaluate
the effectiveness of this new cipher suite, we implemented
an alternative client puzzle mechanism and analyzed various
attack scenarios.

There are a number of different DoS attack strategies open
to an adversary. The most obvious attack is simply to send
garbage for both the puzzle solution and the signature. The
server will then check the puzzle solution and, in most cases,
verification will fail and the connection will be aborted. A
more sophisticated attack is when the adversary spends com-
putational effort in solving the puzzle but sends garbage for
the signature. In this case the server will check both puzzle
and signature before aborting the connection. This latter
strategy will benefit most from our FVDS solution and we
can expect the 6 to 20 times improvement reported in Sec-
tion 3.2. In the experiments described in this section we
concentrate on the former attack strategy. More modest

Client (C) Server (S)

Setup phase
Select (p, q)
Compute n = p.q Select a secret K, and

generate a nonce NS .
Secret: p and q Pick the puzzle difficulty level Q
Public: n and an Q-bit integer D.

Connection phase

Request
−−−−−−−−−−−−−−−−−−−−→

Compute Z ← HK(NS , Q,D, IDC)

Generate NC and
Z,NS , Q,D←−−−−−−−−−−−−−−−−−−−−

Set M ← Z||NS ||NC ||IDS ||IDC

(1) Solving the puzzle
Find X such that
H(M,X) mod 2Q ≤ D

(2) Generating signature σ
Generate σ ← (X,h, f, t, s)
where h← H(M,X) and

s2 ← f · h+ t · n.
Z,NS , NC , σ−−−−−−−−−−−−−−−−−−−−→ Check if (NS , Q,D) is recent

and NC is not reused.

Check if Z
?
= HK(NS , Q,D, IDC)

Set M ← Z||NS ||NC ||IDS ||IDC

(1) Verifying the puzzle solution

Check if h
?
= H(M,X) and

h mod 2Q ≤ D

(2) Verifying the signature σ

Check if s2
?
= f · h+ t · n.

Record NC as used.
S authenticates C only if
none of the above checks fails.
S may now commit its resources.

Figure 3: DoS resistant authentication with fast verification signatures and hash-based puzzles

32-bit i386 build 64-bit x86 64 build
modulus RSA (e = 65537) FVDS (full verify) RSA (e = 65537) FVDS (full verify)

(bits) with GPuz with built-in puzzle with GPuz with built-in puzzle

1024 13970 112690 29630 180938
1536 6757 68165 14891 122558
2048 3943 52036 8710 103962
4096 1011 20688 2354 46532

Table 2: Performance of client authentication with puzzle verification in operations per second (OpenSSL
1.0.0 (modified), Intel Core 2 Duo 2.53GHz T9400, one core).

gains can be expected because the faster signature will be
only one part of the overall computation at the server.

4.1 Overview of SSL
The SSL protocol has two main components; the Hand-

shake protocol and the Record Layer protocol. The goal
of the Handshake protocol is to negotiate a common cipher
suite for an SSL client and server, authenticate each other,
and establish a shared master secret using public-key cryp-
tographic algorithms.

We now briefly explain how the SSL handshake protocol
establishes a master secret key and checks authentication.
An overview of the messages in the SSL handshake protocol,
including our modifications, appears in Figure 4.

Our focus is on RSA-based key transport cipher suites.
The client initiates a session by sending a ClientHello mes-
sage to the server. The server responds with a ServerHello

message and sends a ServerCertificate message contain-
ing the server’s RSA public key and other information. The
client picks a random pre-master secret key, encrypts it un-
der the server’s RSA public key, and sends it in the Clien-

tKeyExchange message; it also sends a ClientCertificate

message containing its certificate. The server decrypts the
pre-master secret and both parties derive the master secret
key by hashing the pre-master secret with the transcript.
The parties then exchange Finished messages to provide
authentication: the client signs a transcript of messages us-
ing its signing key, while the server hashes a transcript of
messages under a key derived from the master secret key.
The master secret key is also used to derive encryption keys
for a symmetric cipher, which are then used to protect ap-
plication data transmitted in the Record protocol.

In the above RSA-based handshake, the server must per-
form one RSA private key operation – decrypting the pre-
master secret – and one public key operation – verifying the
client’s signature; depending on how client certificates are
managed, the server may also need to perform public key
operations to validate the client’s certificate.

4.2 Modifications to SSL
Client puzzles. In order to support client puzzles, we ad-

ditionally modified the SSL protocol to carry puzzle data
where necessary. The client indicates its support of puzzles
with an extension to the ClientHello message. The puzzle
itself is sent by the server as an extension to the Server-

Hello message. The client includes its puzzle solution in a
new PuzzleSolution message.

One of the challenges in using client puzzles in SSL is
the limited interaction flow between client and server. Ide-
ally, the server should issue a puzzle and then receive and
verify the solution before performing any expensive opera-
tions. However, in many cipher suites, such as those using
ephemeral Diffie-Hellman key agreement, the server must
perform an expensive private key operation in the ServerKe-
yExchange message, before having received the client’s Puz-
zleSolution message. As such, our client puzzle technique
is most applicable to cipher suites without a ServerKeyEx-

change message, such as RSA-based key transport.
FVDS cipher suite. We added a new cipher suite that

uses FVDS for client authentication, RSA for key transport,
AES128-CBC for symmetric encryption, and SHA-1 as the
hash function. This cipher suite also supports an optional
client puzzle integrated with the FVDS scheme as described

in Section 3.1.

4.3 Performance analysis of SSL with new coun-
termeasures

In order to evaluate the effectiveness of the proposed coun-
termeasure, we made further modifications to OpenSSL (be-
yond those in Section 3.1) to include support for a hash-
based client puzzle and for the FVDS-based authentication
protocol with built-in puzzle. We also modified the Apache
web server (version 2.2.15) as needed to support these changes.
We used the http load package [1] which can generate many
client requests over either http or https (when used with
OpenSSL); our modifications ensured that http load could
use the denial of service countermeasures as well.

Our experiments involved a single server (a Linux server
with an Intel Core 2 Duo 2.53 GHz (T9400) CPU with 4 GB
of RAM, running in an x86 64 architecture) and multiple
client machines across a dedicated network with no other
traffic or programs running.

We compared three cipher suites. All three cipher suites
used RSA-based public key transport, AES128-CBC sym-
metric encryption, and SHA-1 as the hash function. The
difference was in client authentication: one cipher suite used
no client authentication, one used RSA signatures for client
authentication, and the last used FVDS for client authenti-
cation. All public keys were 1024-bit keys.

We performed the following experiments. The results, in
connections per second, are reported in Table 3. We ran
each test 5 times and averaged the results.

• Test 1: “no puzzle”. This test established a baseline of
the number of connections per second each cipher suite
could handle without any puzzles or denial of service
countermeasures. (In other words, for the FVDS-based
cipher suite, FVDS signatures from Section 3.1 were
used for client authentication but the FVDS-puzzle
protocol of Section 3.2 was not used.)

• Test 2: “hash:12, legitimate solutions”. This test in-
cluded a simple hash-based client puzzle based on the
hash-inversion puzzle of Aura et al. [3]; the client
needs to find a preimage x such that the hash value
H(x) starts with at least 12 zero bits (where H is the
SHA-1 hash function). Our clients simulate solving the
puzzle legitimately, allowing us to determine the max-
imum number of legitimate connections per second the
server can handle.

• Test 3: “fvds:12, legitimate solutions”. This test, only
for the FVDS-based cipher suite, is similar to Test 2
except that the hash-based puzzle is integrated with
the FVDS signature generation/verification as in Sec-
tion 3.2, with Q = 12 and D = 0.

• Test 4: “hash:12 / fvds:12, garbage solutions”. In this
test, the clients do not solve the puzzle, instead sending
as many fake requests as possible.

• Test 5: “hash:12 / fvds:12, mix legitimate/garbage”.
In this test, 100 legitimate clients are simulated, as
well as a large number of attacking clients sending fake
requests.

Observations.

Client Server

ClientHello
with PuzzlesSupported extension† −−−−−−−−−−−−−−−−−−−−→

ServerHello
with Puzzle extension†

ServerCertificate*
ServerKeyExchange*
CertificateRequest*

PuzzleSolution† ←−−−−−−−−−−−−−−−−−−−− ServerHelloDone
ClientCertificate*
ClientKeyExchange
CertificateVerify*
Finished −−−−−−−−−−−−−−−−−−−−→

←−−−−−−−−−−−−−−−−−−−− Finished

application layer data ←−−−−−−−−−−−−−−−−−−−−→ application layer data

Figure 4: Messages exchanged in the SSL handshake protocol. * denotes optional messages. † denotes
messages added by us for denial of service resistance.

Key transport −→ RSA-1024 RSA-1024 RSA-1024
Client authentication −→ none RSA-1024 FVDS-1024

Server configuration Client’s puzzle strategy ↓ ↓ ↓
1: no puzzle 1924 1621 1732
2: hash:12 legitimate solutions 1911 1597 1719
3: fvds:12 legitimate solutions N/A N/A 1732
4: hash:12 / fvds:12 garbage solutions 5109 3734 4030
5: hash:12 / fvds:12 mix legitimate/garbage 100 legitimate 100 legitimate 100 legitimate

4302 garbage 2767 garbage 3022 garbage

Table 3: Number of SSL connections per second.

• Adding RSA-based client authentication results in a
16% performance decrease compared to unauthenti-
cated connections.

• Client authentication using FVDS instead of RSA sig-
natures allows for 7% more connections per second.
While still an improvement, this is quite small com-
pared to the 6-fold increase in the number of signature
verifications per second reported in Table 1: this is be-
cause signature verification is a relatively small part of
the overall server cost, which is dominated by the cost
of the RSA private key decryption operation.

• Verification of fvds:12 puzzles (based on the protocol
in Section 3.2) does not add any cost for legitimate
connections, whereas verifying a separate hash:12 puz-
zle adds a 1.5% performance penalty for RSA-based
cipher suites.

• In attack scenarios, FVDS-based cipher suites can han-
dle 8% more fake connections than RSA-based cipher
suites.

5. CONCLUSION
Denial of service attacks are a challenging threat that can-

not be completely prevented. There are many vectors of at-
tack, and in this paper we focused on DoS attacks that ex-
haust server resources by causing a server to perform many
expensive operations. DoS countermeasures, such as client
puzzles, can discourage attackers by increasing the resources
required to mount an attack.

Our gradual authentication scheme provides an effective,
multi-layer, integrated approach to denial of service resis-
tance. Our use of fast-verification digital signatures can
provide client authentication between 6 and 20 times faster
than conventional approaches, and our integration of puzzle
verification in the signature scheme gives puzzle verification
at no additional cost.

We integrated our techniques into the SSL protocol and
tested our techniques on a dedicated network. Our experi-
mental results indicate that the proposed approach can be
effective in mitigating DoS attacks on SSL servers. While
there are speed increases offered by fast-verification digital
signatures, further improvements could be had if the server’s
cost of key transport was reduced, which we believe is an im-
portant subject of future research in DoS-resistant protocols
for real-world networks.

6. ACKNOWLEDGMENTS
The authors would like to thank the ASIACCS anonymous

referees for their reviews. The authors are also grateful to
Lakshmi Devi Kuppusamy for her valuable comments and
helpful advice and Hua Liu for his assistance in experiment
implementation. This work was supported by the Australia-
India Strategic Research Fund project TA020002.

7. REFERENCES
[1] ACME Labs. http load, March 2006. URL: http://

www.acme.com/software/http load/.

[2] T. Aura and P. Nikander. Stateless connections. In
Y. Han, T. Okamoto, and S. Qing, editors, Proceedings

of the First International Conference on Information
and Communications Security (ICICS) 1997, volume
1334 of LNCS, pages 87–97. Springer, 1997.

[3] T. Aura, P. Nikander, and J. Leiwo. DoS-resistant
authentication with client puzzles. In B. Christianson,
B. Crispo, J. A. Malcolm, and M. Roe, editors,
Security Protocols: 8th International Workshop,
volume 2133 of LNCS, pages 170–177. Springer, 2000.

[4] A. Back. Hashcash: A denial-of-service
countermeasure. 2002. URL: http://www.hashcash.org
/papers/hashcash.pdf.

[5] D. J. Bernstein. A secure public-key signature system
with extremely fast verification, August 2000. URL:
http://cr.yp.to/papers.html#sigs.

[6] D. J. Bernstein. Proving tight security for
Rabin-Williams signatures. In N. Smart, editor,
Advances in Cryptology – Proc. EUROCRYPT 2008,
volume 4965 of LNCS, pages 70–87. Springer, 2008.

[7] C. Castelluccia, E. Mykletun, and G. Tsudik.
Improving secure server performance by re-balancing
SSL/TLS handshakes. In Proceedings of the 2006
ACM Symposium on Information, Computer and
Communications Security, pages 26–34. ACM, 2006.

[8] CERT. Denial of service attacks. URL: http://www.
cert.org/tech tips/denial of service.html, 3 May 2010.

[9] L. Chen, P. Morrissey, N. P. Smart, and B. Warinschi.
Security notions and generic constructions for client
puzzles. In M. Matsui, editor, Advances in Cryptology
– Proc. ASIACRYPT 2009, volume 5912 of LNCS,
pages 505–523. Springer, 2009.

[10] C. Coarfa, P. Druschel, and D. Wallach. Performance
analysis of TLS web servers. ACM Transactions on
Computer Systems, 24(1):39–69, 2006.

[11] D. Dean and A. Stubblefield. Using client puzzles to
protect TLS. In Proc. 10th USENIX Security
Symposium, 2001.

[12] W. Feng, E. Kaiser, and A. Luu. Design and
implementation of network puzzles. In INFOCOM
2005. 24th Annual Joint Conference of the IEEE
Computer and Communications Societies. Proceedings
IEEE, volume 4, pages 2372–2382. IEEE, 2005.

[13] S. Goldwasser, S. Micali, and R. L. Rivest. A digital
signature scheme secure against adaptive chosen
message attacks. SIAM Journal on Computing,
17(2):281–308, April 1988.

[14] A. Juels and J. Brainard. Client puzzles: A
cryptographic countermeasure against connection
depletion attacks. In Proc. Internet Society Network
and Distributed System Security Symposium (NDSS)
1999, pages 151–165. Internet Society, 1999.

[15] P. Karn and W. A. Simpson. Photuris: Session-key
management protocol, March 1999. RFC 2522. URL:
http://www.ietf.org/rfc/rfc2522.txt.

[16] C. Kaufman. Internet Key Exchange (IKEv2)
protocol, December 2005. RFC 4306. URL: http://
www.ietf.org/rfc/rfc4306.txt.

[17] V. Laurens, A. El-Saddik, and A. Nayak.
Requirements for client puzzles to defeat the denial of
service and the distributed denial of service attacks.
International Arab Journal of Information Technology,
3(4):326–333, 2006.

[18] C. Meadows. A formal framework and evaluation
method for network denial of service. In Proc. 12th
IEEE Computer Security Foundations Workshop
(CSFW) 1999, page 4. IEEE, 1999.

[19] C. Meadows. A cost-based framework for analysis of
denial of service networks. Journal of Computer
Security, 9(1/2):143–164, 2001.

[20] D. Moore, C. Shannon, D. J. Brown, G. M. Voelker,
and S. Savage. Inferring internet denial-of-service
activity. ACM Transactions on Computer Systems
(TOCS), 24(2):115–139, 2006.

[21] S. Nakamoto. Bitcoin: A peer-to-peer electronic cash
system, 2009. URL: http://www.bitcoin.org/bitcoin.
pdf.

[22] J. Smith, J. González Nieto, and C. Boyd. Modelling
denial of service attacks on JFK with Meadows’s
cost-based framework. In Proceedings of the 2006
Australasian Workshops on Grid Computing and
e-research, volume 54, pages 125–134. Australian
Computer Society, Inc., 2006.

[23] J. Smith, S. Tritilanunt, C. Boyd, J. González Nieto,
and E. Foo. Denial of service resistance in key
establishment. International Journal of Wireless and
Mobile Computing, 2(1):59–71, 2007.

[24] D. Stebila, L. Kuppusamy, J. Rangasamy, C. Boyd,
and J. González Nieto. Stronger difficulty notions for
client puzzles and denial-of-service-resistant protocols.
In A. Kiayias, editor, Topics in Cryptology – CT-RSA
2011 – The Cryptographers’ Track at the RSA
Conference, volume 6558 of LNCS, pages 284–301.
Springer, 2011. URL: http://eprint.iacr.org/2010/649.
pdf

[25] D. Stebila and B. Ustaoglu. Towards denial of service
resilient key agreement protocols. In C. Boyd and
J. González Nieto, editors, Proceedings of the 14th
Australasian Conference on Information Security and
Privacy (ACISP) 2009, volume 5594 of LNCS, pages
389–406. Springer, 2009.

[26] S. Tritilanunt, C. Boyd, E. Foo, and J. González Nieto.
Toward non-parallelizable client puzzles. In F. Bao,
S. Ling, T. Okamoto, H. Wang, and C. Xing, editors,
Cryptology and Network Security (CANS) 2007,
volume 4856 of LNCS, pages 247–264. Springer, 2007.

[27] X. Wang and M. K. Reiter. Defending against
denial-of-service attacks with puzzle auctions. In
Proceedings of the 2003 IEEE Symposium on Security
and Privacy (SP’03), pages 78–92. IEEE Press, 2003.

[28] H. Williams. A modification of the RSA public-key
encryption procedure. IEEE Transactions on
Information Theory, 26(6):726–729, 1980.

[29] E. A. Young and T. J. Hudson. The OpenSSL project,
2007. URL: http://www.openssl.org.

[30] Zona Research. The need for speed II. April, 2001.
URL: http://www.keynote.com/downloads/Zona
Need For Speed.pdf.

