
Practical Client Puzzles in the Standard Model

Lakshmi Kuppusamy Jothi Rangasamy Douglas Stebila

Colin Boyd Juan González Nieto

Information Security Institute, Queensland University of Technology,
GPO Box 2434, Brisbane QLD 4001, Australia

{l.kuppusamy,j.rangasamy,stebila,c.boyd,j.gonzaleznieto}@qut.edu.au

ABSTRACT
Client puzzles are cryptographic problems that are neither
easy nor hard to solve. Most puzzles are based on either
number theoretic or hash inversions problems. Hash-based
puzzles are very efficient but so far have been shown secure
only in the random oracle model; number theoretic puzzles,
while secure in the standard model, tend to be inefficient.
In this paper, we solve the problem of constructing crypto-
graphic puzzles that are secure in the standard model and
are very efficient. We present an efficient number theoretic
puzzle that satisfies the puzzle security definition of Chen et
al. (ASIACRYPT 2009). To prove the security of our puzzle,
we introduce a new variant of the interval discrete logarithm
assumption which may be of independent interest, and show
this new problem to be hard under reasonable assumptions.
Our experimental results show that, for 512-bit modulus,
the solution verification time of our proposed puzzle can be
up to 50× and 89× faster than the Karame-Čapkun puzzle
and the Rivest et al.’s time-lock puzzle respectively. In par-
ticular, the solution verification time of our puzzle is only
1.4× slower than that of Chen et al.’s efficient hash based
puzzle.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: Distributed
Systems—Client/Server ; D.4.6 [Operating Systems]: Se-
curity and Protection—Authentication

General Terms
Security

Keywords
client puzzle, denial of service, interval discrete log problem,
factorisation, puzzle unforgeability, puzzle difficulty

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ASIACCS ’12, May 2–4, 2012, Seoul, Korea.
Copyright 2012 ACM 978-1-4503-1303-2/12/05 ...$10.00.

1. INTRODUCTION
Denial-of-service (DoS) attacks are a growing concern to

networked services like the Internet. In recent years, major
Internet e-commerce and government sites have been dis-
abled due to various DoS attacks. A common form of DoS
attack is a resource depletion attack, in which an attacker
tries to overload the server’s resources, such as memory or
computational power, rendering the server unable to service
honest clients. A promising way to deal with this problem
is for a defending server to identify and segregate malicious
traffic as earlier as possible.

Client puzzles, also known as proofs of work, have been
shown to be a promising tool to thwart DoS attacks in net-
work protocols, particularly in authentication protocols. A
puzzle is issued by the server in reply to each request when
the server is under attack. After receiving a puzzle, the
client has to solve it in order to convince the server to allo-
cate its resources. The main idea is that puzzle generation
and solution verification should be easy for the server, while
computing the puzzle solution should be somewhat compu-
tationally hard for the client.

Many client puzzles have been proposed since they were
first introduced by Dwork and Naor in 1992 [7]. An im-
portant recent development has been the analysis of client
puzzles in the provable security framework [6, 19]. The
computational problems underlying most puzzles are either
number-theoretic [7, 12, 21] or based on hash inversions [3,
6, 10, 11]. Hash-based puzzles are very efficient — genera-
tion and verification typically requires only one or two hash
function calls — but concrete realisations to date have been
shown secure only in the random oracle model. Number-
theoretic puzzles, on the other hand, have been shown secure
in the standard model but have tended to be relatively ineffi-
cient, typically requiring the server to perform a large integer
modular exponentiation making it unsuitable for high speed
applications. Recently, Rangasamy et al. [16] proposed an
efficient modular exponentiation based client puzzle which
does not require any online exponentiations for puzzle gener-
ation and verification. But the puzzle security relies on the
security of time-lock puzzle of Rivest et al. [17] and does
not follow from standard model security assumptions. The
existence of a highly efficient, standard-model secure client
puzzle has remained an open question until now.

1.1 Contributions
Our contributions in this work are as follows:

• We propose an efficient number-theoretic client puzzle

Puzzle Standard Generation Generation Verification verification
model Cost Time (µs) Cost Time (µs)

Rivest et al. [17] Yes 1 hash
1 hash

4.80 |n|-bit mod. exp. 474.68

Karame-Čapkun [12] Yes
2 HMAC (4 hash) 2 HMAC (4 hash)

1 gcd 8.37 2k-bit mod. exp. 263.35
Chen et al. 1 HMAC and 1 HMAC

hash based puz [6] No 1 hash 5.92 1 hash 3.77

Rangasamy et al. [16] Yes
1 hash 1 hash

2(`− 1) mod. mul. 16.66 3 mod. mul. 14.75

Our Puzzle Yes
1 HMAC, (`− 1) mod. add.

(`− 1) mod. mul. 1 HMAC
1 large integer mul. 1 large integer mul.
1 large integer add. 31.43 1 large integer add. 5.31

Table 1: Puzzle generation and verification costs and time for low difficulty level Q, 512-bit RSA modulus n,
56-bit security parameter k. ` is set to 4 and 8 for Rangasamy et al.’s puzzle and our puzzle respectively.

DLPuz that does not require any online exponentia-
tions. In fact, our puzzle requires only a few modular
additions and multiplications for generation and ver-
ification which is a significant improvement over the
existing practical standard model puzzles. Thus we
solve the problem of constructing cryptographic puz-
zles that are secure in the standard model and are very
efficient. Table 1 lists the generation and verification
costs and times for our puzzle and other puzzles.

• We compare the performance of our puzzle with the
performances of the puzzles listed in Table 1. Our ex-
perimental results show that the solution verification
time of our puzzle is approximately 89 times faster
when compared to Rivest et al.’s time-lock puzzle and
by approximately 50 times faster when compared to
Karame and Čapkun, for 512-bit RSA moduli. The so-
lution verification time of our puzzle is approximately
3 times faster than that of Rangasamy et al.’s efficient
number theoretic puzzle. The puzzle verification time
of our puzzle is only 1.4 times slower than Chen et al.’s
most efficient hash based puzzle which is proven secure
in the random oracle model.

• We analyse the security of our puzzle using the puzzle
security model of Chen et al. [6] and show that our
puzzle satisfies the unforgeability and difficulty prop-
erties.

• Though our puzzle enjoys a simple construction, its
security does not follow directly from existing crypto-
graphic assumptions. We introduce a new variant of
the composite interval discrete logarithm assumption
which we call the modular composite interval discrete
logarithm assumption, IDL∗. We show that this new
computational problem is as hard as the composite
interval discrete logarithm problem (IDL) and the fac-
torisation problem.

Outline.
The rest of the paper is organised as follows. Section 2

presents the background and motivation for our work. In
Section 3, we present our new client puzzle scheme DLPuz.
In Section 4, we introduce a new variant IDL∗ of the com-
posite interval discrete logarithm assumption and analyse its
hardness. Section 5 describes the puzzle security model of
Chen et al. and provides the security analysis of DLPuz in
the standard model, relating its difficulty to the new IDL∗

problem. Finally, we present our experimental results in
Section 6 and conclude the paper with future work in Sec-
tion 7.

2. BACKGROUND
In this section, we review the relevant literature on client

puzzles, with an emphasis on standard model puzzles.

Client Puzzles. Client puzzles were first proposed by Dwork
and Naor [7] as a countermeasure for email spam. Many
client puzzles [3, 6, 10, 11] are based on the difficulty of in-
verting a hash function. These hash-based puzzles are gen-
erally quite efficient: typically they require only one or two
hash function calls for puzzle generation and verification. In
this work we will focus on number theoretic puzzles, and will
review the various constructions below.

Until recently, the difficulty of solving puzzles was ad-
dressed in a mostly ad hoc manner. However, several prov-
able security models have been recently introduced: one by
Chen et al. [6] for analysing the difficulty of solving a single
puzzle, and one by Stebila et al. [19] for the case of solving
multiple puzzles.

Modular Exponentiation-Based Puzzles. In 1996, Rivest et
al. [17] introduced time-lock puzzles that can only be solved
by running a computer continuously for a certain amount
of time. An example construction of a time-lock puzzle was
given based on repeated squaring. Given a composite RSA
modulus n and a random element a in Z∗n, the client’s task

is to do t repeated squaring on a: compute a2
t

mod n.
The server can use its knowledge of φ(n) as a shortcut to

create the puzzle with two modular exponentiations, whereas
the client has to spend no less than the predetermined amount
of time to solve the puzzle. However, because of the high
cost of puzzle generation and verification at the server, time-
lock puzzles are not suitable for DoS defense.

In 2010, Karame and Čapkun [12] reduced the verification
cost of the time-lock puzzles of Rivest et al.. The puzzle
scheme works as follows: Let (n, e, d) be a tuple of RSA
parameters such that e · d = 1 mod φ(n). Here d is chosen
to be small such that d ≥ k, where k is a security parameter.
Instead of an RSA public key e, an enlarged public key ē is
given as the puzzle and a client needs to encrypt a challenge
string. The difficulty of a puzzle is adjusted by increasing
or decreasing the size of ē. The server verifies a solution by
decrypting with d (which is small) and checking whether the
resulting value matches the challenge.

The speed-up achieved was a factor of logn
k

, when log d =
k+1. For example, when a 1024-bit modulus is used, the full
1024-bit modular exponentiation required for solution verifi-
cation in time-lock puzzles is reduced to a 1024-bit modular
exponentiation with an 80-bit exponent. Although, this im-
provement is significant compared with the performance of
known time-lock puzzles, the puzzle is still not suitable for
high-speed practical applications because of its higher veri-
fication cost.

Recently, Rangasamy et al. [16] proposed a modular
exponentiation-based client puzzle which can be seen as an
efficient alternative to Rivest et al.’s time-lock puzzle. Un-
like the Rivest et al.and Karame-Čapkun puzzle, Rangasamy
et al.’s puzzle does not require the server to perform any on-
line exponentiations. In fact, the server has to perform to-
tally two hash operations and few modular multiplications
for the puzzle generation and verification. Although it is
a significant improvement over the Karame-Čapkun puzzle
construction, the security of the puzzle does not rely on the
standard security assumptions.

Diffie-Hellman-Based Puzzles. Waters et al. [21] proposed a
puzzle based on the Diffie-Hellman (DH) problem. Given a
generator β of a group of prime order q and a random integer
a in [r, r + Q], a puzzle consists of the values (βf(a), r,Q),
where f is a one-way permutation on Zq and Q is a diffi-
culty parameter. The client solves the puzzle by checking
each candidate value ã ∈ [r, r + Q] to see if βf(ã) = βf(a).
By giving a hint interval [r, r + Q] to the client, the puzzle
difficulty achieves linear granularity.

To contact a particular server, the client needs to do extra
work by combining the puzzle solution with the server’s DH
public key; that is, the client actually calculates (βx)f(a) as

yf(a), where y is the public key of the server. The server
needs one modular exponentiation to verify the solution, by
raising the puzzle to its private key x: (βf(a))x. Since the
defending server can independently compute the solution for
a time period, all the solutions for the particular time period
are precomputed and stored by the server so that verification
needs a single table lookup.

While verification via table lookup is considered to be
cheap, constructing a puzzle still requires one modular ex-
ponentiation which is expensive and thus is undesirable for a
defending server. To avoid this circumstance, Waters et al.
suggested outsourcing the puzzle creation to a secure third
party, called a bastion, thereby removing the computational
burden of puzzle generation from the server. However, the
assumption on existence of such a third party seems to be
unsatisfactory.

3. DLPuz: AN EFFICIENT NUMBER-
THEORETIC PUZZLE

This section describes our new client puzzle construction
DLPuz, which is based on the problem of finding a discrete
logarithm in an interval. First we review the definition of a
client puzzle and then present our construction.

Notation. If n is an integer, then we use |n| to denote the
length in bits of n, and φ(n) is the Euler phi function for
n. If S is a set, then x←R S denotes choosing x uniformly
at random from S. If A is an algorithm, then x ← A(y)

denotes assigning to x the output of A when run with the
input y. An interval of integers is denoted by [a, b]. If I is an
interval, we note in particular that I ← [a, b] denotes setting
I to be the interval with endpoints a and b, not selecting an
element from that interval. If k is a security parameter, then
negl(k) denotes a function that is negligible in k, namely
asymptotically smaller than the inverse of any polynomial
in k.

3.1 Defining Client Puzzles
Chen et al. [6] gave the following definition of a client

puzzle:

Definition 1. Client Puzzle A client puzzle Puz is a tu-
ple consisting of the following algorithms:

• Setup(1k): A p.p.t. setup algorithm that generates and
returns a set of public parameters params and a secret
key s, the former of which includes a puzzle difficulty
parameter space QSpace.

• GenPuz(s,Q, str): A p.p.t. puzzle generation algorithm
which accepts a secret key s, difficulty parameter Q,
and a session string str and returns a puzzle puz.

• FindSoln(puz, t): A probabilistic puzzle solving algo-
rithm that returns a potential solution soln for puzzle
puz after running time at most t.

• VerAuth(s, puz): A d.p.t. puzzle authenticity verifica-
tion algorithm that returns true or false

• VerSoln(s, str, puz, soln): A d.p.t. puzzle solution ver-
ification algorithm that returns true or false.

For correctness, we require that if (params, s)← Setup(1k)
and puz ← GenPuz(s,Q, str) then there exists t ∈ N such
that VerSoln(s, str, puz, soln) is true with probability 1 where
soln← FindSoln(puz, t).

3.2 The DLPuz Puzzle
The idea behind our proposed puzzle scheme is the fol-

lowing: given a RSA modulus n, g, V = gv mod n and an
interval I, where v ∈ I, the task of a client is to find v.

Waters et al. [21] outsourced the computation of gv mod n
to a trusted third party, thereby removing the computational
burden associated with the puzzle generation. In this work,
we show how to shift this burden to clients while maintain-
ing the secrecy of the solution. Hence, we do not assume the
existence of such a trusted third party, thereby making our
proposal more practical.

Our puzzle construction makes use of several other cryp-
tographic primitives. It relies on a modulus generation algo-
rithm GenRSA that generates an RSA-style modulus n = pq.
We note that RSA modulus generation only needs to be done
once in the Setup phase, not in each puzzle generation. Our
puzzle also employs a technique due to Boyko et al. [5] for
quickly generating many ephemeral values gx using a rela-
tively small amount of precomputation.

Definition 2. (Modulus Generation Algorithm) Let k be
a security parameter. A modulus generation algorithm is
a probabilistic polynomial-time algorithm GenRSA that, on
input 1k, outputs (n, p, q) such that n = pq and p and q are
k-bit primes.

In our puzzle generation algorithm, the server has to gen-
erate a pair (a, ga) for each puzzle. Since the generation of
these pairs are expensive, the server uses the following gen-
erator proposed by Boyko et al. [5] to efficiently generate
such pairs for each puzzle.

Definition 3. (BPV Generator) Let k, `, and N , with
N ≥ ` ≥ 1, be parameters. Let n ← GenRSA(1k) be an
RSA modulus. Let g be a random element of order M in the
multiplicative group Z∗n. A BPV generator consists of the
following two algorithms:

• BPVPre(g, n,N,M): A pre-processing algorithm that
is run once. Generate N random integers x1, x2, . . . , xN ←R

ZM . Compute Xi ← gxi mod n for each i. Return a
table τ ← ((xi, Xi))

N
i=1.

• BPVGen(g, n, `,M, τ): A pair generation algorithm that
is run whenever a pair (a, ga) is needed. Choose a ran-
dom set S ⊆R {1, . . . , N} of size `. Compute u ←∑
j∈S xj mod M . If u = 0, then stop and generate

S again. Otherwise, compute U ←
∏
j∈S g

xj mod n

and return (u, U). In particular, the indices S and the
corresponding pairs ((xj , Xj))j∈S are not revealed.

Randomness of BPV generator.
Boyko et al. [5] proposed the discrete-log-based BPV gen-

erator to speed up protocols based on discrete logarithm
such as Elgamal, DSS and Schnorr signatures, Diffie-Hellman
key exchange, and Elgamal encryption. In Boyko’s thesis [4],
it is proved (Claim 4) that the outputs of the BPV gener-
ator are statistically indistinguishable from uniform values
for large values of

(
N
`

)
. Nguyen et al. [13] proposed the ex-

tended BPV generator (EBPV) and argued that for the BPV
generator is the special case of EBPV generator and hence
the security results for EBPV also holds for BPV. They es-
tablished the security of some discrete logarithm based sig-
nature schemes that use EBPV under adaptive chosen mes-
sage attack. They also obtained results for the statistical
distance between the distribution of EBPV and the uniform
distribution.

Nguyen and Stern [14] analysed the distribution of the
output of the BPV generator and showed in Theorem 1 that
for a fixed M, with overwhelming probability on the choice
of xi’s, the distribution of the BPV generator is statisti-
cally close to the uniform distribution [14]. In particular, a
polynomial time adversary cannot distinguish the two dis-
tributions

Theorem 1. For all M > 0, if x1, . . . xN are chosen
independently and uniformly from [0,M − 1] and if a =∑
j∈S xj mod M is computed from a random set S ⊆ {1, . . . N}

of ` elements, then the statistical distance between the com-
puted a and a randomly chosen a′ ∈ ZM is bounded by√
M/
(
N
`

)
. That is,∣∣∣∣∣Pr

(∑
j∈S

xj = a mod M

)
− 1

M

∣∣∣∣∣ ≤
√√√√M/

(
N

`

)
The above theorem is valid even if one considers polyno-
mially many samples, not just one. The bound for BPV
is shown in Theorem 1. Moreover, if the statistical differ-
ence of some distributions D1 and D2 defined over a set S

is less than ε, then the statistical difference of Du1 and Du2
defined over the set Su is less than uε, where Du1 is defined
by choosing m elements independently random from S.

3.3 Definition of DLPuz

We now give the definition of our puzzle DLPuz in Fig-
ure 1, which we have organised diagrammatically to suggest
an interaction between a server issuing puzzles and a client
solving them. DLPuz is parameterised by a security param-
eter k, a difficulty parameter Q. In practice, a server using
client puzzles as a denial-of-service countermeasure can vary
Q based on the severity of the attack it is experiencing.

Puzzle solving. One typical method for a legitimate client
to implement the FindSoln algorithm is a brute-force search.
Upon receiving a puzzle puz from the server with an inter-
val [i, i+Q], the client computes V and gi mod n. It then
iterates by multiplying the current value with g mod n and
comparing that value with V . If the length of the inter-
val I is Q, then this will take approximately Q/2 multipli-
cations on average, plus the cost of the initial exponentia-
tions. We note however that a client could also choose to
solve this problem using one of the faster interval-kangaroo
techniques described by Galbraith et al. [8] which require
approximately O(

√
Q) steps plus the cost of the initial ex-

ponentiations.

Server efficiency. In many scenarios, it is essential that the
GenPuz, VerAuth, and VerSoln algorithms be extremely effi-
cient. In a denial-of-service setting, these algorithms are run
online by the server many times, and if they were expensive
then an attacker could induce a resource depletion attack by
asking for many puzzles to be generated or verified.

GenPuz: The dominant cost in puzzle generation is the
BPV pair generation BPVGen, which requires `− 1 modular
additions and ` − 1 modular multiplications. There is also
a single call to the HMAC Hρ (a keyed collision-reisistant
pseudo-random function where ρ is used as a key), a large
integer multiplication b · z, and three integer additions.

VerAuth: Puzzle authenticity verification is quite cheap,
requiring just a single call to the HMAC Hρ.

VerSoln: To verify correctness of a solution, the server has
to perform only 1 modular addition and 1 modular multi-
plication.

Remark 1. In DLPuz as specified in Figure 1, the server
has to store a short-term secret a to re-compute v for ver-
ifying the solution. If the server stores a for each puzzle,
then it may be vulnerable to a memory-based DoS attack.
To avoid this type of attack, the server may use a stateless
connection [1] to offload storage of a to the client. In partic-
ular, the server can encrypt a under a long-term symmetric
key sk and send it along with each puzzle. Then the client
has to echo it back while sending the solution to the puzzle.
In this way, the server remains stateless and can obtain a
by decrypting the encrypted value using the key sk. The cost
for encryption and decryption adds a very little cost to the
server. For example, the time to encrypt or decrypt 512 bits
of data using AES-128-CBC is approximately 0.403 micro
seconds and hence we ignore these costs in the performance
comparison section.

3.4 Parameter Sizes for DLPuz

Client Server
Setup(1k)

(n, p, q)← GenRSA(1k)
b←R [1, φ(n)], compute gb mod n
ρ←R {0, 1}k
τ = ((xi, Xi))

N
i=1 ← BPVPre(g, n,N,M)

s← (b, ρ, φ(n), τ), params← (g, n)

random NC
NC−−−−−−−−−−−−−−−−−−→ GenPuz(s,Q,Nc)

(a, ga)← BPVGen(g, n, `,M, τ)
random NS
z ← Hρ(NC , NS , IPC , IDS , g

a, gb, Q)
v ← a+ b · z mod φ(n)
r ←R [0, Q− 1], I ← [v − r, v − r +Q]

FindSoln(NC , puz, t)
NC , puz←−−−−−−−−−−−−−−−−−− puz ← (NS , z, g

a, gb, I, g, n)

V ← ga · (gb)z mod n
find v ∈ I

s.t. V = gv mod n

soln← v
NC , puz, soln−−−−−−−−−−−−−−−−−−→ VerAuth(s, puz)

z
?
= Hρ(NC , NS , IPC , IDS , g

a, gb, Q)
VerSoln(s, puz, soln)

soln
?≡ a+ b · z mod φ(n)

Figure 1: Client puzzle DLPuz based on the interval discrete logarithm problem

Number of pairs Values of
√
M/
(
N
`

)
) for a 80-bit M

to pre-compute and the chosen `
N ` = 8 ` = 9 ` = 10 ` = 11 ` = 12 ` = 13 ` = 14 ` = 15 ` = 16 ` = 17

210 24 2−1 2−5 2−9 2−14 2−18 2−23 2−27 2−32 2−36

211 2 2−5 2−10 2−15 2−20 2−25 2−30 2−35 2−40 2−45

212 2−4 2−9 2−15 2−20 2−26 2−31 2−37 2−42 2−48 2−53

213 2−8 2−14 2−20 2−26 2−32 2−38 2−44 2−50 2−56 2−62

214 2−12 2−18 2−25 2−30 2−38 2−44 2−51 2−57 2−64 2−70

215 2−16 2−23 2−30 2−37 2−44 2−51 2−58 2−65 2−72 2−79

216 2−20 2−27 2−35 2−42 2−50 2−57 2−65 2−72 2−80 2−87

217 2−24 2−32 2−40 2−48 2−56 2−64 2−72 2−80 2−88 2−96

Table 2: Distinguishability of BPV Pairs from Random pairs

Our DLPuz requires a pair (a, ga) to be computed dur-
ing each puzzle generation. We use BPV generator to effi-
ciently generate such a pair using the N pre-computed pairs
(xi, Xi). The efficiency of puzzle generation depends on the
number of elements ` in the random set S the server choose
to compute (a, ga). Note that a defending DoS server may
prefer to reduce the number of modular multiplications re-
quired for each puzzle generation. Hence it might be ap-
propriate for the server to choose the bigger value of N
(polynomial in logM) to make ` smaller. Table 2 specifies
the approximate distribution distance between pairs (a, ga)
generated uniformly at random versus pairs generated by
the BPV generator using Theorem 1 for the specified N and
` values, with a 80-bit M value. An example showing the
statistical distance for specific parameter values appear in
Appendix A.

4. A NEW VARIANT OF THE INTERVAL
DISCRETE LOGARITHM PROBLEM

Computing discrete logarithms in an interval is a funda-
mental computational problem that has arisen naturally in
a number of contexts [9, 15, 20]. The security of our DLPuz
puzzle relies on a variant IDL∗ of the Interval Discrete Log
(IDL) assumption; the main difference in our variant is that
the adversary can return any value x′ which is equivalent,
modulo φ(n) (where n is an RSA modulus), to the discrete
logarithm of gx. In this section, we introduce a new vari-
ant IDL∗ and show that our new IDL∗ problem is as hard as
the original IDL problem and integer factorisation. The for-
mal definition of the factorisation and the interval discrete
log problem specifically for the RSA composite modulus n
appear in Appendix B.

4.1 The Modular Composite Interval Discrete
Logarithm Problem

We now describe our variant of the IDL problem. Given a
modulus n = pq, an element y = gx mod n, and an interval
I of length q such that x ∈ I, the modular composite interval
discrete logarithm problem IDL∗ is to compute x′ such that
x ≡ x′ mod φ(n).

Definition 4. (Modular Composite Interval Discrete Log-
arithm Problem IDL∗) Let k be a security parameter, q be a
difficulty parameter, and GenRSA be a modulus generation
algorithm. Let A be a probabilistic algorithm. Define the
experiment ExpIDL∗

A,GenRSA,q(k) as follows:

1. n← GenRSA(1k).

2. g ←R Z∗n, x←R [1, φ(n)], y ← gx mod n.

3. r ←R [0, q − 1], I ← [x− r, x− r + q].

4. x′ ← A(g, y, n, I).

5. Output 1 if x′ ≡ x mod φ(n) and 0 otherwise.

The advantage of A in violating the IDL∗ assumption is

AdvIDL∗
A,GenRSA,q(k) = Pr

(
ExpIDL∗

A,GenRSA,q(k) = 1
)
.

The IDL∗ problem with GenRSA is said to be δk,q(t)-hard if

AdvIDL∗
A,GenRSA,q(k) ≤ δk,q(t) for all A running in time at most

t.

In the following theorem we show that solving the IDL∗

problem is as hard as solving either the IDL problem or the
integer factorisation problem.

Theorem 2 (Hardness of IDL∗). Let k be a security
parameter, q be a difficulty parameter, and GenRSA be a
modulus generation algorithm. Suppose there exists a prob-
abilistic algorithm A running in time t which can solve the
IDL∗ problem for GenRSA on an interval of size q. Then
there exists a probabilistic algorithm B with running time
t′ = t + texp(k) + c, where texp(k) is the time to compute
an exponentiation modulo an output of GenRSA(1k) and c is
a constant, that solves either the factorisation problem for
GenRSA or the IDL problem on an interval of size q. In
particular,

AdvIDL∗
A,GenRSA,q(k) ≤ AdvFact

B,GenRSA(k)+AdvIDL
B,GenRSA,q(k)+negl(k) .

Proof. Let A be a probabilistic algorithm with running
time t. We prove the theorem using a sequence of games [18].
In one of the games, we will insert a factorisation challenge
and a win by the adversary lets us factor; in another game,
we will insert an IDL challenge and a win by the adversary
gives us the discrete logarithm.

Let Si be the event the adversary A wins game Gi.

Game G0.
Let G0 be the original IDL∗ experiment. Thus,

AdvIDL∗
A,GenRSA,q(k) = Pr(S0) . (1)

Game G1.
In game G1, the challenger chooses x from the interval

[1, n] instead of the interval [1, φ(n)]. Since φ(n) is very close
to n, the distribution of messages returned by the challenger
is virtually unchanged. In particular, the probability that x
lies in an interval [φ(n), n] is (n−φ(n))/n = O(1/

√
n) which

is negligible in k, and hence

|Pr(S0)− Pr(S1)| ≤ O
(
1/
√
n
)
≤ negl(k) . (2)

Game G2: Factorisation.
The change from G1 to G2 is that in G2 the challenger uses

the adversary to try to factor a modulus n from a factori-
sation challenger by simulating the IDL∗ experiment from
game G1.

To begin, the IDL∗ challenger B obtains a factorisation
challenge: it is given n such that n = pq and must compute
either p or q. With this n, B chooses the values g, x, y, r,
and I as in game G1. B then initiates A with the inputs
(g, y, n, I). Suppose A solves the IDL∗ problem. Let y be
the element output by A; we have that y ≡ x mod φ(n).
Here either y = x or y = x + mφ(n). Let F be the event
that y = x+mφ(n) where m ≥ 1.

When F occurs, B can compute y − x = mφ(n). With a
multiple of φ(n), B can now compute a non-trivial factor of
n. Hence,

Pr(S2|F) ≤ AdvFact
B,GenRSA(k) (3)

and the running time of B is t(B) = t(A) + texp + c, where
texp is the time to perform an exponentiation gx mod n and
c is a constant. We also note that, since the distribution of
values provided by B to A are exactly the same as in game

G1, we have

|Pr(S1|F)− Pr(S2|F)| = 0 . (4)

When F does not occur, we do not have any way of solving
the factorisation problem. However, we will construct game
G3 in which we can solve an IDL challenge when F̄ occurs.

Game G3: IDL.
Game G3 is based on G1 (not G2); the change from G1 to

G3 is that in G3 the challenger uses the adversary to try to
solve a modular composite interval discrete logarithm prob-
lem from an IDL challenger by simulating the IDL∗ experi-
ment from game G1.

The IDL∗ challenger B obtains an IDL challenge: it is
given (g, gx, n, I), and must compute x. B passes the in-
puts (g, gx, n, I) to A. Suppose A solves the IDL∗ problem.
Let y be the element output by A; we have that y ≡ x
mod φ(n). Here either y = x or y = x+mφ(n). Again, let
F be the event that y = x+mφ(n) where m ≥ 1.

When F̄ occurs, B has a solution y = x to the IDL challenge
it was given. Hence,

Pr(S3|F̄) ≤ AdvIDL
B,GenRSA,q(k) (5)

and the running time of B is t(B) = t(A). We also note
that, since the distribution of values provided by B to A are
exactly the same as in game G1, we have∣∣Pr(S1|F̄)− Pr(S3|F̄)

∣∣ = 0 . (6)

When F̄ does not occur, we do not have any way of solving
the IDL problem. However, game G2 handles the event when
F occurs.

Analysis of Game G1.
Combining equations (3)–(6), we find

Pr(S1) = Pr(F) Pr(S1|F) + Pr(F̄) Pr(S1|F̄)

= Pr(F) Pr(S2|F) + Pr(F̄) Pr(S3|F̄)

≤ Pr(F)AdvFact
B,GenRSA(k) + Pr(F̄)AdvIDL

B,GenRSA,q(k)

≤ AdvFact
B,GenRSA(k) + AdvIDL

B,GenRSA,q(k) . (7)

Final result.
The result follows by combining equations (1), (2), and

(7).

5. SECURITY ANALYSIS OF DLPuz

In this section, we analyse the DLPuz puzzle using the
security model of Chen et al. [6]. Chen et al. introduced
two security properties that a client puzzle should satisfy:
unforgeability and difficulty. We give a brief description of
these two properties. Unforgeability of DLPuz follows from
the straightforward use of a pseudo-random function as a
message authentication code. We show that the difficulty of
DLPuz can be reduced to the IDL∗ problem.

5.1 Unforgeability
This experiment measures the ability of an adversary to

produce a valid client puzzle and force a server to accept
it as one that was not originally generated by a server in a
probabilistic way.

In general, unforgeability can easily be provided by using
a message authentication code (MAC) or pseudo-random

function to tag puzzles generated by the server, and this
is what done in DLPuz. The formal definition of puzzle
unforgeability and the result showing that DLPuz is indeed
unforgeable appear in Appendix C due to space constraints.

5.2 Difficulty
The difficulty property ensures that an adversary has to

spend the specified amount of resources to solve an instance
of a client puzzle. In the following theorem, we show that
our puzzle, DLPuz, is a difficult puzzle under the IDL∗ as-
sumption.

Definition 5. (Puzzle Difficulty [6]) Let k be a security
parameter and let Q be a difficulty parameter which is kept
fixed through the experiment. Let A be a probabilistic al-
gorithm and Puz be a client puzzle. Define the experiment
ExpDiff
A,Puz,Q(k) as follows:

1. (params, s)← Setup(1k).

2. Run A(params) with oracle access to CreatePuzSoln(·)
and Test(·), which are answered as follows:

• CreatePuzSoln(str): puz ← GenPuz(s,Q, str). Find
a solution soln such that VerSoln(puz, soln) =
true. Return (puz, soln) to A.

• Test(str∗): This query may be asked once, at any
point during the game. The challenger gener-
ates a puzzle puz∗ ← GenPuz(s,Q, str) and re-
turns puz∗ to A. Then A may continue to ask
CreatePuzSoln queries.

3. A outputs a potential solution soln∗.

4. Output 1 if VerSoln(puz∗, soln∗) = true and 0 other-
wise.

We say that A wins the game if ExpDiff
A,Puz,Q(k) = 1 and loses

otherwise. The advantage of A is defined as:

AdvDiff
A,Puz,Q(k) = Pr

(
ExpDiff
A,Puz,Q(k) = 1

)
.

Let εk,Q(t) be a family of functions monotonically increas-
ing in t. A puzzle Puz is εk,Q(t)−difficult if, for all proba-
bilistic algorithms A running in time at most t,

AdvDiff
A,Puz,Q(k) ≤ εk,Q(t) .

Theorem 3 (Difficulty of DLPuz). Let k be a secu-
rity parameter and let Q be a difficulty parameter. Let GenRSA
be a modulus generation algorithm and let Hρ be a pseudo-
random function. Suppose IDL∗ with GenRSA is δk,Q(t)-
difficult. Let εk,Q(t) = δk,Q(t + O(poly log k)) + negl(k).
Then DLPuz is εk,Q(t)-difficult for all probabilistic algorithms
A running in time at most t.

Proof. We prove the theorem using a sequence of games.
Let A be a probabilistic algorithm with running time t. Let
Si be the event that A wins in game Gi. We will use an
adversary A that wins the puzzle difficulty experiment to
construct an algorithm B that solves the IDL∗ problem.

Game G0.
Let G0 be the original difficulty game ExpDiff

A,DLPuz,Q(k). For
clarity, we write the full definition of this game:

1. The challenger first runs the Setup algorithm and ob-
tains s← (b, ρ, φ(n), (xi, Xi)) and params← (n, g, gb).
s is kept secret by the challenger and the parameters
params are supplied to A.

2. Whenever A issues a CreatePuzSoln(NC) query, the
challenger first runs the BPV pair generator BPVGen
to obtain a pair (a, ga) and then computes z, v, and
an interval I of length Q in which v lies as in the
puzzle description (Figure 1). The challenger returns
(puz, soln)← ((z, ga, gb, I), v) to A.

3. At any point during the game, A is allowed to issue
a Test(N∗C) query for which the challenger, generates a

puzzle puz∗ = (z∗, ga
∗
, gb, I∗) using GenPuz(s,Q,NC∗)

and returns puz∗ to A. Then A may continue to ask
CreatePuzSoln(NC) queries.

4. Eventually, A outputs a potential solution soln∗ =
v∗. If VerSoln(puz∗, soln∗) = true, then the challenger
outputs 1, otherwise it outputs 0.

Hence,

Pr
(
ExpDiff
A,DLPuz,Q(k) = 1

)
= Pr(S0) . (8)

Game G1.
In game G1, we replace the pseudo-random function Hρ

with a truly random function H. This change is indistin-
guishable due to the pseudo-randomness of Hρ, so

|Pr(S0)− Pr(S1)| ≤ negl(k) . (9)

Game G2.
In game G2, we insert an IDL∗ challenge into the response

to the Test query. In particular, the experiment proceeds as
follows:

1. Obtain an IDL∗ challenge (g, y, n, Ī). Choose a long-
term secret b ←R Zn and compute all other values in
Setup as specified in game G1. Set params← (g, n).

2. Run A(params) with oracle access to CreatePuzSoln(·)
and Test(·), which are answered as follows:

• CreatePuzSoln(str): As in game G1.

• Test(str∗): Use the IDL∗ challenge y as ga. Com-
pute z∗ specified, and set I ← Ī + b · z∗. Return
puz ← (NS , z

∗, y, gb, I).

3. A outputs a potential solution soln∗.

4. Output 1 if gsoln
∗
≡ y ·(gb)z

∗
mod n and 0 otherwise.

If A wins game G2, then soln∗ can be converted into a so-
lution soln∗ − b · z∗ for the IDL∗ challenger. Hence,

Pr(S2) ≤ AdvIDL∗
B,GenRSA,Q(k) (10)

where B is our challenger which runs in time t(B) = t(A) +
(N + 1)texp + c where c is a constant.

The messages generated by the challenger in G2 are iden-
tical to those in G1 except for the following modifications:

• In game G2, the challenger selects a random b ∈ Zn,
instead of a random b ∈ Zφ(n). This change is in-
distinguishable due to the fact that (n − φ(n))/n ≈
O (1/

√
n).

• The value ga which is returned during the Test query:
in G1 it is an output from the BPV generator BPVGen
whereas in G2 it is uniformly random. By Theorem 1,
one can choose N and ` so that the distribution of
the BPV generator is statistically close to the uniform
distribution.

Hence

|Pr(S1)− Pr(S2)| ≤

√√√√M/

(
N

`

)
+O

(
1/
√
n
)
≤ negl(k)

(11)
for a fixed M , where the second inequality follows from ap-
propriate choices of M,N and `.

Final result.
Combining equations (8) through (11) yields the desired

result.

Remark 2. Though our puzzle is proven secure in the
Chen et al. model, it does not seem straightforward to prove
the security of our puzzle in the multiple puzzle difficulty
definition of Stebila et al. [19]. To prove the security of our
puzzle in the Stebila et al. model we need to either extend
the proposed hardness assumption (to a new variant of the
interval discrete logarithm problem for example) or find a
suitable computationally hard problem.

6. PERFORMANCE COMPARISON
The experimental results of the number theoretic puzzles

for 512-bit RSA modulus with the security parameter k = 56
and the hash based puzzle appear in Table 3. The results
are shown for difficulty levels ranging from low, to high. The
experiment is run on a single core of a 3.06 GHz Intel Core i3
with 4GB RAM, compiled using gcc -O2 with architecture
x86 64. The big integer arithmetic from OpenSSL 0.9.8r is
used to implement the software.

It is evident from our experimental results that our puz-
zle is much faster to verify than the existing number theo-
retic puzzles. More precisely, for the 512-bit RSA modulus,
the solution verification time of DLPuz is approximately 89
times faster when compared with Rivest et al. puzzle and by
approximately 50 times faster when compared with Karame-
Capkun puzzle. In addition, the solution verification time
of DLPuz is approximately 3 times faster when compared
with Rangasamy et al. puzzle. On the other hand, the so-
lution verification time of DLPuz is only 1.4 times slower
when compared with Chen et al.’s hash based puzzle (which
is proven secure in the random oracle model).

Note that the running time of generating DLPuz includes
the time to compute HMAC-SHA1 operation. Even though
the puzzle generation algorithm GenPuz of our puzzle is 4 to
7 times slower than the GenPuz in Rivest et al., Karame-
Capkun and Chen et al. puzzles, the cumulative puzzle
generation and verification time of our puzzle is still less
than the corresponding times in Rivest et al. and Karame-
Capkun. Moreover, the cost of GenPuz in DLPuz can be
further reduced by setting a lower value for ` and by in-
creasing the number of precomputed pairs N in the puzzle
setup phase.

7. CONCLUSION

512-bit modulus, k = 56. For DLPuz, N = 65536 and ` = 8.
For, Rangasamy et al. puzzle, ` = 4 and N = 2500

Puzzle Difficulty Setup (ms) GenPuz (µs) FindSoln (s) VerAuth + VerSoln (µs)

Low Difficulty
Rivest et al. [17] 1 million 13.919 4.80 1.54 474.68

Karame-Capkun [12] 1 million 11.520 8.37 1.59 263.35
Hash based puzzle
of Chen et al.[6] 222 0.002 5.92 1.07 3.77

Rangasamy et al.[16] 1 million 1401.14 16.66 1.54 14.75
DLPuz 10 million 31863 31.437 1.05 5.31

Medium Difficulty
Rivest et al. [17] 10 million 49.989 4.80 15.17 474.83

Karame-Capkun [12] 10 million 28.951 8.37 15.18 265.28
Hash based puzzle
of Chen et al.[6] 226 0.002 5.92 16.84 3.77

Rangasamy et al.[16] 10 million 1419.78 16.66 15.34 14.53
DLPuz 150 million 31832 32.01 18.10 5.29

High Difficulty
Rivest et al.[17] 100 million 416.292 4.81 157.10 470.61

Karame-Capkun [12] 100 million 218.757 8.35 160.97 259.39
Hash based puzzle
of Chen et al.[6] 229 0.002 5.87 134.38 3.77

Rangasamy et al.[16] 100 million 1609.83 16.76 158.22 14.88
DLPuz 1500 million 31885 32.01 175.41 5.27

Table 3: Timings for number theoretic puzzles and hash based puzzles.

Client puzzles are a promising countermeasure for defense
against denial of service attacks. Hash-based puzzles are
very efficient but are generally secure only in the random
oracle model. On the other hand, number-theoretic puz-
zles can be shown secure in the standard model but exist-
ing puzzles have had expensive puzzle generation or veri-
fication operations. We have presented a number-theoretic
client puzzle that is not only efficient but also has a standard
model proof of security in the Chen et al. model. To prove
difficulty of our puzzle, we introduced a new variant of the
interval discrete logarithm problem and showed the hardness
of this new problem under the factorisation and composite
interval discrete logarithm assumptions. Our experimental
results show that, for 512-bit modulus, the solution verifica-
tion time of our proposed puzzle are much faster than the
Karame-Čapkun and the Rivest et al.’s time-lock puzzle.

Future Work.
Though we show that our puzzle satisfies Chen et al.’s

security notions, the proof for achieving difficulty in the
stronger model of Stebila et al. does not follows directly.
Hence, constructing an efficient number theoretic standard
model puzzle which satisfies the stronger difficulty notion
of Stebila et al. appears to be an interesting open problem.
Additionally, constructing a provably secure hash based puz-
zle that satisfies the strong definition of Stebila et al. in the
standard model remains an open problem.

8. REFERENCES
[1] T. Aura and P. Nikander. Stateless connections. In

Y. Han, T. Okamoto, and S. Qing, editors, Proceedings
of the First International Conference on Information
and Communication Security, ICICS’97, Beijing,
China, November 11-14, 1997, volume 1334 of Lecture
Notes in Computer Science, pages 87–97. Springer,
1997.

[2] S. Babbage, D. Catalano, C. Cid, O. Dunkelman,
C. Gehrmann, L. Granboulan, T. Lange, A. Lenstra,
P. Q. Nguyen, C. Paar, J. Pelzl, T. Pornin, B. Preneel,
C. Rechberger, V. Rijmen, M. Robshaw, A. Rupp,

N. Smart, and M. Ward. ECRYPT yearly report on
algorithms and keysizes (2007–2008), July 2008.

[3] A. Back. Hashcash-a denial of service
counter-measure. URL: http://www. hashcash.
org/papers/hashcash. pdf, 2002.

[4] V. Boyko. A pre-computation scheme for speeding up
public-key cryptosystems. Master’s thesis,
Massachusetts Institute of Technology, 1998. Available
as http://hdl.handle.net/1721.1/47493.

[5] V. Boyko, M. Peinado, and R. Venkatesan. Speeding
up discrete log and factoring based schemes via
precomputations. In K. Nyberg, editor, Advances in
Cryptology - EUROCRYPT ’98,, volume 1403 of
Lecture Notes in Computer Science, pages 221–235.
Springer, 1998.

[6] L. Chen, P. Morrissey, N. Smart, and B. Warinschi.
Security notions and generic constructions for client
puzzles. In M. Matsui, editor, Advances in Cryptology
- ASIACRYPT 2009,, volume 5912 of Lecture Notes in
Computer Science, pages 505–523. Springer, 2009.

[7] C. Dwork and M. Naor. Pricing via processing or
combatting junk mail. In E. F. Brickell, editor,
Advances in Cryptology - Proceedings of CRYPTO
’92,, volume 740 of Lecture Notes in Computer
Science, pages 139–147. Springer, 1992.

[8] S. D. Galbraith, J. M. Pollard, and R. S. Ruprai.
Computing discrete logarithms in an interval.
Cryptology ePrint Archive, Report 2010/617, 2010.
http://eprint.iacr.org/2010/617.

[9] R. Gennaro. An improved pseudo-random generator
based on discrete log. In M. Bellare, editor, Advances
in Cryptology - CRYPTO 2000,, volume 1880 of
Lecture Notes in Computer Science, pages 469–481.
Springer, 2000.

[10] M. Jakobsson and A. Juels. Proofs of work and bread
pudding protocols. In B. Preneel, editor, Secure
Information Networks: Communications and
Multimedia Security, IFIP TC6/TC11 Joint Working
Conference on Communications and Multimedia

http://hdl.handle.net/1721.1/47493
http://eprint.iacr.org/2010/617

Security (CMS ’99), September 20-21, 1999, Leuven,
Belgium, volume 152 of IFIP Conference Proceedings,
pages 258–272. Kluwer, 1999.

[11] A. Juels and J. G. Brainard. Client puzzles: A
cryptographic countermeasure against connection
depletion attacks. In Proceedings of the Network and
Distributed System Security Symposium, NDSS 1999,
San Diego, California, USA, pages 151–165. The
Internet Society, 1999. URL:
http://www.rsa.com/rsalabs/node.asp?id=2050.

[12] G. Karame and S. Capkun. Low-cost client puzzles
based on modular exponentiation. In D. Gritzalis,
B. Preneel, and M. Theoharidou, editors, Computer
Security - ESORICS 2010,, volume 6345 of Lecture
Notes in Computer Science, pages 679–697. Springer,
2010.

[13] P. Nguyen, I. Shparlinski, and J. Stern. Distribution of
modular sums and the security of the server aided
exponentiation. In Proc. Workshop on Cryptography
and Computational Number Theory (CCNT’99),
Singapore, pages 257–268. Birkh
”auser, 2001.

[14] P. Q. Nguyen and J. Stern. The hardness of the
hidden subset sum problem and its cryptographic
implications. In M. J. Wiener, editor, Advances in
Cryptology - CRYPTO ’99,, volume 1666 of Lecture
Notes in Computer Science, pages 31–46. Springer,
1999.

[15] S. Patel and G. S. Sundaram. An efficient discrete log
pseudo random generator. In H. Krawczyk, editor,
Advances in Cryptology - CRYPTO ’98,, volume 1462
of Lecture Notes in Computer Science, pages 304–317.
Springer, 1998.

[16] J. Rangasamy, D. Stebila, L. Kuppusamy, C. Boyd,
and J. M. G. Nieto. Efficient modular
exponentiation-based puzzles for denial-of-service
protection. In To appear in ICISC 2011 proceedings.

[17] R. L. Rivest, A. Shamir, and D. A. Wagner. Time-lock
puzzles and timed-release crypto. Technical report,
Cambridge, MA, USA, 1996.

[18] V. Shoup. Sequences of games: a tool for taming
complexity in security proofs. Cryptology ePrint
Archive, Report 2004/332, 2004.
http://eprint.iacr.org/.

[19] D. Stebila, L. Kuppusamy, J. Rangasamy, C. Boyd,
and J. M. G. Nieto. Stronger difficulty notions for
client puzzles and denial-of-service-resistant protocols.
In A. Kiayias, editor, Topics in Cryptology - CT-RSA
2011, volume 6558 of Lecture Notes in Computer
Science, pages 284–301. Springer, 2011.

[20] P. C. van Oorschot and M. J. Wiener. On
diffie-hellman key agreement with short exponents. In
U. M. Maurer, editor, Advances in Cryptology -
EUROCRYPT ’96,, volume 1070 of Lecture Notes in
Computer Science, pages 332–343. Springer, 1996.

[21] B. Waters, A. Juels, J. A. Halderman, and E. W.
Felten. New client puzzle outsourcing techniques for
DoS resistance. In V. Atluri, B. Pfitzmann, and P. D.
McDaniel, editors, ACM Conference on Computer and
Communications Security, pages 246–256. ACM, 2004.

APPENDIX
A. EXAMPLE.

As the number of operations required to solve a puzzle
ranges from 0 to 225, it is enough for the server to choose N
and ` such that the indistinguishability bound is less than
or equal to ε, the bound for difficulty. Suppose the server
wants to fix the difficulty Q of a puzzle to be 220 and the
40-bit security level k with a 512-bit modulus n. Let order
of g be M , where M is of length 80-bits. Then, from the
above table, it is clear that with 216 (xi, Xi) pre-computed
pairs, the server requires to perform only 7 (`− 1) modular
multiplications to compute a pair (a, ga) on-line. Then it
can set the interval length to be 240 so that the best known
solving algorithm requires

√
Q = 220 operations and the

distinguishability is bounded by 2−20.

B. EXISTING ASSUMPTIONS
We begin by defining the factorisation problem and inter-

val discrete log problem specifically for the RSA composite
modulus n.

Given a composite integer n such that n is a product of
two k-bit primes p and q, the factorisation problem is to
compute either p or q. The formal definition is as follows.

Definition 6. (Factorisation Problem) Let k be a secu-
rity parameter, let GenRSA be modulus generation algorithm,
and let A be a probabilistic algorithm. The experiment is as
follows. Run GenRSA(1k) to obtain (n, p, q), and then run A
on input n. The adversary wins the experiment if it outputs
either p or q (one of the non-trivial factors of n). We define
the advantage of A in violating the factorisation assumption
as

AdvFact
A,GenRSA(k) = Pr

(
x = p or q : (n, p, q)← GenRSA(1k), x← A(n)

)
.

Recent recommendations on RSA key sizes [2] indicate
that the time required to factor an m-bit RSA modulus is
2s(m), where

s(m) =

(
64

9

) 1
3

log2(e)(m ln 2)
1
3 (ln(m ln 2))

2
3 − 14 .

The composite interval discrete logarithm problem IDL is
to compute x given an RSA modulus n = pq, an element y =
gx mod n for a random x where g is a random element in
Z∗n and an interval I of length q such that x ∈ I. Formally:

Definition 7. (Composite Interval Discrete Logarithm Prob-
lem IDL) Let k be a security parameter, q be a difficulty pa-
rameter, and GenRSA be a modulus generation algorithm.
Let A be a probabilistic algorithm. Define the experiment
ExpIDL
A,GenRSA,q(k) as follows:

1. n← GenRSA(1k).

2. g ←R Z∗n, x←R [1, φ(n)], y ← gx mod n.

3. r ←R [0, q − 1], I ← [x− r, x− r + q].

4. x′ ← A(g, y, n, I).

5. Output 1 if x′ = x and 0 otherwise.

The advantage of A in violating the IDL assumption is

AdvIDL
A,GenRSA,q(k) = Pr

(
ExpIDL
A,GenRSA,q(k) = 1

)
.

http://eprint.iacr.org/

Galbraith et al. [8] have given the best algorithms to date for
solving the Interval Discrete Logarithm problem in a group-
agnostic manner, which have an average case expected run-
ning time of (1.660 + o(1))

√
q. In groups over a composite

modulus n where factoring n is hard, this remains the ex-
pected running time.

C. UNFORGEABILITY OF DLPuz

Definition 8. (Puzzle Unforgeability [6]) Let k be a se-
curity parameter, A be a probabilistic algorithm, and Puz be
a client puzzle. Define the experiment ExpUF

A,Puz(k) as fol-
lows:

1. (params, s)← Setup(1k).

2. Run A(params) with oracle access to CreatePuz(·) and
CheckPuz(·), which are answered as follows:

• CreatePuz(str,Q): puz ← GenPuz(s,Q, str). Re-
turn puz to A.

• CheckPuz(puz): If puz was not an output for any
of the CreatePuz(str) query made previously and
VerAuth(s, puz) = true then stop the experiment
and output 1. Otherwise, return false to A.

3. Output 0.

We say that A wins the game if ExpUF
A,Puz(k) = 1 and loses

otherwise. The advantage of A is defined as:

AdvUF
A,Puz(k) = Pr

(
ExpUF
A,Puz(k) = 1

)
.

A puzzle Puz is said to be unforgeable if this advantage is
negligible in k for all probabilistic algorithms A running in
time polynomial in k.

In this unforgeability experiment, the adversary is allowed
to query the CreatePuz oracle by choosing a str and a puzzle
difficulty level Q at will. This is to ensure that even after
seeing puzzles with different difficulty levels, the adversary
cannot create a valid looking puzzle.

Theorem 4 (Unforgeability of DLPuz). The client
puzzle DLPuz is unforgeable.

Proof. We prove the theorem using a sequence of games.
Let A be a probabilistic algorithm with running time t. Let
Si be the event that A wins in game Gi.

Game G0.
Let G0 be the original unforgeability game ExpUF

A,DLPuz(k).
Then

Pr
(
ExpUF
A,DLPuz(k

′) = 1
)

= Pr(S0) . (12)

Game G1.
In this game, we modify game G0 by replacing the HMAC

Hρ with a truly random function H to compute z. This
change has a negligible effect on adversary A because of the
pseudo-randomness of HMAC Hρ. Hence,

|Pr(S0)− Pr(S1)| ≤ AdvHMAC
B (k) ≤ negl(k) (13)

where B is an algorithm running in timeO(t), and the second
inequality follows whenever Hρ is a pseudo-random function.

Since the function H in game G1 is truly random, the
probability that an adversary without access to H can guess
an output is negligible:

Pr(S1) ≤ 1

2k
. (14)

Combining equations (12)–(14), we obtain the final result,
that the adversary’s success in forging a puzzle is negligi-
ble.

	Introduction
	Contributions

	Background
	DLPuz: An Efficient Number-Theoretic Puzzle
	Defining Client Puzzles
	The DLPuz Puzzle
	Definition of DLPuz
	Parameter Sizes for DLPuz

	A New Variant of the Interval Discrete Logarithm Problem
	The Modular Composite Interval Discrete Logarithm Problem

	Security Analysis of DLPuz
	Unforgeability
	Difficulty

	Performance Comparison
	Conclusion
	References
	References
	Example.
	Existing Assumptions
	Unforgeability of DLPuz

