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Abstract. One of the earliest cryptographic applications of quantum infor-
mation was to create quantum digital cash that could not be counterfeited.
In this paper, we describe a new type of quantum money: quantum coins,
where all coins of the same denomination are represented by identical quantum
states. We state desirable security properties such as anonymity and unforge-

ability and propose two candidate quantum coin schemes: one using black box
operations, and another using blind quantum computation.

1. Introduction

The uncertainty principle and no-cloning theorem of quantum mechanics made
quantum money one of the original interests of quantum information theory. The
ability to create digital money which cannot be counterfeited because of the laws of
physics is a compelling idea. Classical digital cash has been researched extensively,
with ongoing improvements to its security tradeoffs, but remains fundamentally
subject to the constraint that classical bits can be easily copied. With quantum
money, we hope to use the inability to perfectly clone quantum states to prevent
counterfeiting. Besides being non-counterfeitable, an effective digital cash scheme
should also be efficiently verifiable, anonymous, transferable, and robust.

In this paper, we describe a new form of quantum money called quantum coins,
where all coins of the same denomination are represented by identical quantum
states. We state formally what it means for them to be unforgeable and describe
how to implement quantum coin schemes using black box operations and using
blind quantum computing. We also describe quantum bills which capture a wide
range of notions of quantum money.

Contributions. In this paper, we present a new type of quantum money, which
we call quantum coins : coins are transferable, locally verifiable, and unforgeable,
and have some anonymity properties. Each coin generated by the bank should be a
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2 MICHELE MOSCA AND DOUGLAS STEBILA

copy of the same quantum state, and hence coins should be indistinguishable from
one another. Additionally, a circuit is provided to allow the coins to be verified
locally and then transferred for later use.

We describe how to achieve quantum coins with black box quantum circuits
and with blind quantum computation. The unforgeability of coins in our scheme
comes from complexity theoretic assumptions on the adversary’s running time.

Our work contrasts with previous quantum money schemes, which we call quan-
tum bills : in a quantum bill scheme, the bank generates tokens that are classi-
cal/quantum pairs, which in general are distinct. The classical string may serve as
a serial number or as some input value to be used in the verification procedure.

Future directions. Our quantum coin construction of Section 4 requires the use
of a black-box oracle in the verification circuit, but it is not yet known how these
can be implemented. An open question is to find a way to obfuscate the verifica-
tion circuit so that it is effectively a black box, and in general to find a model for
obfuscation of quantum circuits, possibly using computational assumptions. We
describe how blind quantum computation could be used in the context of quantum
coin verification and note the limitations, in particular the online quantum commu-
nication required. Reducing the communication and computational requirements
of blind quantum computing is a problem that merits further study.

Although our coins are inherently anonymous if the bank issues coins correctly,
we do not yet have a mechanism to allow users of the system to verify that the
coins are indeed issued correctly, so this remains an open question.

In Section 3.2, we briefly discuss a model for quantum bills. An open question
related to quantum bills is to find an offline-verifiable quantum bill scheme; this
may require using computational hardness assumptions.

Outline. The remainder of the paper is organized as follows. In Section 2, we de-
scribe the goals for a quantum money scheme and analyze existing quantum money
schemes, as well as our own, in relation to these goals. Section 3 introduces the two
main types of quantum money, quantum coins and quantum bills, and describes
their precise security properties. In Section 4, we describe how to implement quan-
tum coins in the black box model and give bounds on unforgeability. In Section 5,
we discuss implementing quantum coins using blind quantum computation.

1.1. Related work.
Digital cash. Digital cash has been well-explored in classical cryptographic con-

texts, with the first schemes being proposed by Chaum [Cha85, Cha88] and
Chaum, Fiat, and Naor [CFN88]. For classical digital cash schemes, one of the
main problems to solve is the multiple-spending problem: since classical digital cash
can easily be duplicated, there must be a way to prevent the same tokens from being
redeemed more than once. An online scheme, in which each token is verified with
the bank at the time it is meant to be spent, solves this problem immediately, but
online verification requires an online communications channel between merchant
and bank. The other general solution for preventing multiple spending is to embed
some identity information in the money tokens such that, if the token is spent only
once, the transaction remains anonymous, but if the token is spent multiple times,
then the bank can combine these multiple transactions to recover the identity of
the multiple spender. Moreover, classical digital cash is not transferable unless we
allow the size of the token to grow linearly in the number of transfers [CP92].
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Quantum money. Quantum money was one of the earliest applications of quan-
tum information theory, and was introduced in the early papers of Wiesner [Wie83]
and Bennett, Brassard, Breidbard, and Wiesner [BBBW82]. In both schemes, a
bank constructs distinct quantum tokens and corresponding classical serial num-
bers. The tokens are the encoding of a random string in randomly chosen basis
states of two non-orthogonal bases; the no-cloning theorem prevents perfect cloning
of individual tokens. However, the tokens can only be verified by the bank: verifi-
cation requires knowledge of the bases chosen for each token and the classical string
that should be obtained upon measurement in the appropriate bases. This means
that an online quantum channel is required between merchants and the bank. The
tokens are non-transferable and are not anonymous.

Tokunaga, Okamoto, and Imoto [TOI03] give a scheme for non-transferable
anonymous quantum cash with online verification. In their scheme, a user obtains
a distinct token from the bank; tokens are generated using private parameters and
random values stored by the bank. The user then alters the token with an appro-
priate randomly chosen unitary transformation to obtain anonymity. At payment
time, the user presents the token to the merchant who transmits it (over a quantum
channel) to the bank for verification. The scheme is secure against an attacker who
can examine a single token, but has not been proven secure against an attacker who
can obtain and examine all the quantum tokens.

Our work on quantum coins makes use of work by Aaronson [Aar05a] that
introduced a complexity-theoretic no-cloning theorem that allows us to argue for the
unforgeability of quantum coins. Our work was first presented in [MS06], [MS07],
and [Ste09]. Subsequently Aarsonson expanded his work based on discussions
with us to also include a presentation of quantum money [Aar09] similar to ours;
we have noted in footnotes throughout this paper where that he presents similar
concepts.

2. Security goals

We now describe, informally, the properties that a good money scheme should
have.

G1. Anonymous : it should be difficult for any party to trace the use of a token
to determine who spent it or where they spent it.

G2. Unforgeable: given zero or more tokens and the verification circuit, it
should be difficult for a forger to produce another token that passes the
verification procedure with non-negligible probability.

G3. Efficiently locally verifiable: there should be an efficient algorithm that
can determine with high accuracy whether a token is valid or not, without
communicating with the bank.

G4. Transferable: a valid token should be unchanged by the verification proce-
dure, and thus can be transferred and reused in a subsequent verification
procedure.

We will formally define unforgeability for quantum coin schemes in Section
3.1.2.

Figure 1 shows which of the above goals are satisfied by various existing money
schemes. The “type” column indicates whether the tokens for a given denomination
are all identical (“coin”) or different (“bill”). For classical digital cash schemes, we
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note that while unforgeability is impossible, it is possible to detect double spend-
ing of a token and trace it back to the offending party; such schemes, however,
offer anonymity and offline double-spending detection only with computational as-
sumptions. Our quantum coin schemes offer “partial” anonymity as we describe in
Section 3.1.3. Additionally, the size of transferable digital cash must grow linearly
in the number of transfers [CP92].

Scheme Type Anony-

mous

Unforgeable Locally

verifiable

Transfer-

able

Physical coins coin yes physically yes yes
Physical bills bill no physically yes yes
Classical bill yes double-spending yes grows in
digital cash detection size
[Wie83] q. bill no yes no no
[BBBW82] q. bill no yes no no
[TOI03] q. bill yes yes no no
This work: q. coin partial yes yes yes
black box
This work: q. coin partial yes no yes
blind comp.

Figure 1. Summary of money schemes and their properties

3. Types of quantum money

3.1. Quantum coins. In one type of quantum money, quantum coins, a bank
issues many tokens for a particular denomination, and all these tokens are (supposed
to be) copies of the same quantum state. The state for a 5-cent coin, for example,

might be the pure state |ψ5〉 and the bank produces many copies |ψ5〉⊗1000000,
issuing one copy to each person who withdraws 5 cents from the bank. We use
the term quantum coin because physical coins in the real world have the same
property: there should be no discernible difference between different coins of the
same denomination. The specification of a quantum coin scheme consists of the
specification of the money state and the verification circuit.

Definition 3.1. A quantum coin scheme is a pair (V, |ψ〉), where |ψ〉 is an n-
qubit pure state in a 2n-dimensional Hilbert space H2n , and V is a quantum circuit
with a quantum n-qubit input register (denoted ρ), plus optional ancilla quantum
registers, a classical output bit, and a quantum output register of n qubits.

The basic scenario of how a quantum coin scheme would operate is as follows. A
bank generates a large number of quantum coins and stores them. A user withdraws
coins from the bank via a private quantum channel and stores the coins. When
the user wishes to spend the coins, it transfers the coins to the merchant using a
quantum channel. The merchant uses a quantum circuit to verify the coins; this
procedure may or may not involve classical or quantum communication with the
bank. Finally, the merchant stores the coins until redeeming them with the bank
or issuing them as change to subsequent users.
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3.1.1. Verification. In the most general setting, the verification circuit V oper-
ates on three registers: a 1-qubit data readout register, an n-qubit input register,
and an arbitrary m-qubit ancilla. After applying V , the first register is measured,
and the output is the decision on whether to accept the token as valid or not. If
the input is a valid quantum coin |ψ〉, then, after the application of V and the mea-
surement, the classical output should be 0 and the partial trace over the first and
third registers should leave the second register in the same state |ψ〉. The circuit
diagram is given in Figure 2.

|0〉

V
��

���

ρ / /

|0〉⊗m /

Figure 2. Generic verification circuit for a quantum coin scheme (V, |ψ〉).

We cannot simply provide this circuit in an unprotected form to the public:
it may be possible to decompose the circuit into component gates and find a way
to forge money. In Section 4 we describe two techniques for implementing this
circuit in a safe way: (1) black box verification, in which we assume the circuit is
a black box and security rests on complexity-theoretic assumptions, and (2) blind
quantum computation, which allows one party to implement an operation with-
out gaining any information about the operation being performed, and security is
information-theoretic. It could be possible to construct a scheme based on compu-
tational assumptions.

3.1.2. Unforgeability. We assume that a forger has the verification circuit V
and many (or all) tokens issued, say k of them. The goal of a forger is to produce
a state that passes more than k verification tests with good probability. Since
the verification circuit projects the state into the subspace spanned by |ψ〉, this is
equivalent to creating a state that has good overlap with the state |ψ〉⊗k+1

.

Definition 3.2. A quantum coin scheme (V, |ψ〉), where |ψ〉 is an n-qubit
state, is unforgeable if, given the verification circuit V and k copies of the state |ψ〉,
for any k ≥ 0, k ∈ poly(n), it is not possible for a quantum adversary running in

time poly(n) to produce a state ρ such that 〈ψ|⊗k+1
ρ |ψ〉⊗k+1

is non-negligible (in
n).1

In order to prevent a counterfeiter from performing quantum state tomography
[AJK04] and precisely determining the state |ψ〉, the bank should avoid issuing
more than a polynomial number (in n) of coins.

Information theoretically, no offline quantum coin scheme can be perfectly un-

forgeable (that is, with 〈ψ|⊗k+1 ρ |ψ〉⊗k+1 = 0 and no running time restriction in
Definition 3.2). If a forger has a verification circuit and unbounded quantum com-
putational resources, the forger can repeatedly generate test states until one such
state passes; after verification, this state is projected into a valid money state and

1In the language of Aaronson [Aar09], this is a single key public key quantum money scheme
with completeness error 0 and soundness error negligible in n.
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can subsequently be used as a money token. Thus, we must introduce computa-
tional assumptions on a forger and attempt to lower bound the amount of work
required to forge.

Without any further specification of the quantum coin scheme and the verifica-
tion circuit, we cannot say anything more about the unforgeability of such schemes.
In Section 4.2, we show that a black box quantum coin scheme is unforgeable.

3.1.3. Anonymity. In our ideal formulation, all quantum coins (for a particular
denomination) are minted as the same quantum state |ψ〉. However, the bank could
create quantum coins from different quantum states, all of which can be verified
by a particular verification circuit. Although we have no procedure for users to
test the anonymity of the system, it would be possible for a regulator to regularly
review the procedures of the bank and ensure that it is issuing identical tokens as
the coins. If indeed all the coins issued are identical, then it is impossible for the use
of a coin to be tracked. If quantum circuits can be obfuscated, then the verification
circuit could be provided in an obfuscated form as a fixed public classical string
which merchants then implement; since the circuit is fixed for all merchants, this
would give anonymity to merchants as well. If an interactive protocol is required
for verification (as in our use of blind quantum computing in Section 5), then
anonymous classical [BT07] and quantum [BBF+07] communication can be used
to improve the anonymity of merchants.

3.2. Quantum bills. Whereas all quantum coins of the same denomination
are identical states, with quantum bills we allow tokens of the same denomination
to be different quantum states and additionally allow some classical information
associated with each quantum state. So a bank might issue a set of states {(si, |ψi〉) :
i ∈ Γ} as the valid $20 bills. This corresponds to physical bills which have a distinct
serial number on each bill.

An example of an approach one might take to making quantum bills would be
the following. Let a be an element of orderm of some groupG and let r be a function
that encrypts elements of G. Suppose there were a way to publish a circuit C that
implements, for any group element b and integer y ∈ {0, 1, . . . ,m−1}, the mapping
|y〉 |r(b)〉 → |y〉 |r(bay)〉 but from which one cannot (among other things) determine
x given |r(ax)〉. (Note that the standard quantum discrete logarithm algorithm for
computing x would require a means for computing r(azx+y) for arbitrary integers z
and y.) Then a possible way to generate quantum money is for a bank to perform
eigenvalue estimation (starting from a state |r(b)〉) in order to generate a random
eigenstate of the operation induced by C, of the form

|ψk〉 =
m−1∑
x=0

e−2πikx/m |r(bax)〉 ,

together with the eigenvalue parameter k. The bank would publish an authentic
list of valid parameters k. The bill would consist of the state |ψk〉 and the classical
value k, which any verifier could check by performing eigenvalue estimation on the
bill and confirming the eigenvalue parameter is k (and that k is on the authentic
list of valid serial numbers). There are many variations of this approach that one
might try, and many open questions. We will focus on quantum coins in this paper.

Definition 3.3. A quantum bill scheme is a pair (V, {(si, |ψi〉) : i ∈ Γ}), where
Γ is a finite set, and for each i ∈ Γ, si is a label in a set S, |ψi〉 is an n-qubit pure
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state in a 2n-dimensional Hilbert space H2n . Moreover, V is a quantum circuit with
a quantum input register (denoted |s〉), a quantum n-qubit input register (denoted
ρ), plus optional ancilla quantum registers, a classical output bit, and a quantum
output register of n qubits.2

3.2.1. Verification. A generic verification circuit for a quantum bill scheme is
given in Figure 3.

|0〉

V

��

���

|s〉 /

ρ / /

|0〉⊗m /

Figure 3. Generic verification circuit for a quantum bill scheme
(V, {(si, |ψi〉) : i ∈ Γ}).

The use of the classical label si may vary according to the scheme. For example,
in the schemes of Wiesner [Wie83] and Bennett et al. [BBBW82], si is a serial
number that allows the issuer to retrieve the verification details, while in the scheme
of Tokunga et al. [TOI03], si is effectively unused; in their scheme it is used
to represent the denomination of the bill (e.g., $5), but in our formulation the
denomination is fixed for a particular scheme so the label is effectively the empty
string for all i ∈ Γ. Schemes where si is non-trivial and unchanged by verification
inherently limit the anonymity of the scheme, just as the serial number on physical
bills places some limits on anonymity.

While all previous quantum money schemes discussed in Section 1 are classified
as quantum bill schemes based on the above definition, none of them satisfy all of
the security properties described in Section 2. In particular, no previous quantum
money scheme is offline verifiable: all previous schemes require that the issuer verify
a token via quantum communication, a requirement which we aim to remove for
quantum coins. In the rest of this paper, we are only concerned with quantum coin
schemes, not quantum bill schemes.

4. Black box quantum coins

Our first implementation for quantum coins works in the black box circuit
model. We assume the verification circuit provided to the public is a black box:
“anything one can compute from it one could also compute from the input-output
behavior of the program” [BGI+01a, p. 2]. With this assumption, we present a
scheme in which coins are unforgeable. The scheme allows coins to be transferred
an arbitrary number of times. The use of a black box circuit means that coins
can be verified locally without any communication, classical or quantum, with the
bank.

We note that it is not known at present whether a quantum circuit can be
implemented as a true black box. There are pessimistic results about the ability to
obfuscate classical circuits [BGI+01b], although loopholes do exist: for example,

2In the language of Aaronson [Aar09], this is a public key quantum money scheme.
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point functions can be obfuscated [Wee05]. However, no results are known about
quantum circuits. Another classical technique for black box computation is physi-
cally tamper-proof hardware, but again the parallel in quantum computation is not
clear.

In our black box construction, a coin is a randomly chosen secret state, and the
verification circuit recognizes precisely that state using an oracle like the iterate in
amplitude amplification [BBHT98].

Let |ψ〉 a pure state chosen randomly (according to the Haar measure) from
among the pure states in H2n . The verification oracle is Uψ = I − 2 |ψ〉 〈ψ|. Since
this is a black-box oracle scheme, the unforgeability proof of Section 4.2 applies
and the scheme is unforgeable in the black-box oracle model.

In practice, however, choosing a pure state |ψ〉 randomly according to the
Haar measure with the additional constraints that we must be able to compute
I−2 |ψ〉 〈ψ| and that we must be able to produce many copies of |ψ〉 is problematic
and it is not known how to do so in polynomial time. Recent work has focused
on developing approximate quantum t-designs [AE07] where, roughly speaking,
t copies of a state can be efficiently constructed such that tensor product state is
sufficiently close to t copies of a state selected uniformly at random according to the
Haar measure. Aaronson [Aar09, Theorem 8] gives a technique for constructing
t ∈ poly(n) copies of a pseudorandom state that are nearly indistinguishable (that
is, negligibly different) from t copies of a truly random state by any measurement,
even allowing the measurement procedure to make poly(n) calls to an oracle Uψ

recognizing the state. Aaronson’s technique allows us to use pseudorandom states
instead of truly random states with a negligible loss in security.

We note that, for quantum coins, it is not sufficient to choose a random binary
string encoded randomly in a pair of non-orthogonal bases, such as the so-called
“BB84” bases. An adversary with a small number of quantum coins, say O(logn),
can measure each qubit of the O(logn) tokens in both bases, and will with good
probability find the correct basis choices and thus the random binary string, allow-
ing her to then create arbitrarily many forged coins.

4.1. Verification. Let Uψ be an oracle that recognizes the state |ψ〉 by flip-
ping the sign of the phase of the state |ψ〉. That is, Uψ |ψ〉 = − |ψ〉 and Uψ |φ〉 = |φ〉
for all |φ〉 orthogonal to |ψ〉; in other words, Uψ = I − 2 |ψ〉 〈ψ|.

We can construct a verification circuit V from the oracle Uψ as follows. On the
data readout register, input the state |0〉, then perform a Hadamard transformation
on the ancilla. Use the ancilla as the control bit of a controlled-Uψ applied to the
input state ρ. Then perform a Hadamard transformation again on the ancilla and
measure it in the computational basis. The circuit diagram is given in Figure 4.

V

|0〉 H • H
��

���

ρ / Uψ /

︷ ︸︸ ︷

Figure 4. Verification circuit for quantum coins |ψ〉 recognized
using the oracle Uψ.
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When a measurement in the computational basis is performed on the ancilla
register, the result will be |1〉 when the input state ρ is |ψ〉 and |0〉 when the input
state is |φ〉 for 〈φ|ψ〉 = 0. Moreover, the state on the second register remains
unchanged when its input is |ψ〉.

The fact that a valid token is unchanged by the verification process allows
transferability of quantum coins. When a customer spends a quantum coin at a
store, the merchant, after verifying and accepting the coin, can retain the coin until
the merchant needs to make change. At that time, the merchant can give the coin
to another user who, after optionally verifying the coin, can use that coin in another
transaction. (In fact, the verification process not only enables transferability but
also enhances the robustness of the quantum coins. Although over time a quantum
state may decohere, at verification time the token may still be sufficiently close to
the expected state |ψ〉 to pass the verification process with high probability. If it
does pass, then the measurement process will project the coin back into the original
state |ψ〉.)

Security. The verification procedure described in the previous section yields
a correct quantum money scheme: valid money tokens are recognized. We now
discuss the security of such a scheme. For unforgeability, we want that invalid
tokens are recognized as being invalid and that it is difficult to forge new money.

4.2. Black-box unforgeability. To analyze the forgeability of the quantum
coin scheme given in Figure 4, we suppose that the circuit for the unitary Uψ is a
black box, meaning that no information can be obtained from observing its inner
workings; equivalently, we assume that Uψ is given as an oracle. Having made this
assumption, we proceed to obtain a lower bound on the number of queries to the
oracle that must be made in order to produce a state that has a particular overlap

p with |ψ〉⊗k+1
, when the adversary is only given k coins. We show this result in

the next section.

Definition 4.1. A quantum coin scheme (V, |ψ〉), where |ψ〉 is an n-qubit
state, is black-box unforgeable if, given an oracle Uψ recognizing the state |ψ〉 and
k copies of the state |ψ〉, for any k ≥ 0, k ∈ poly(n), it is not possible for a
quantum adversary using poly(n) queries to Uψ to produce a state ρ such that

〈ψ|⊗k+1
ρ |ψ〉⊗k+1

is non-negligible.3

We note that our definition of unforgeability has the adversary producing a (k+
1)-register state, each register of which should overlap well with |ψ〉. An alternative
formulation could be that the adversary needs to produce a multi-register state
such that some k+ 1 of its registers, but not necessarily all of its registers, overlap
well with |ψ〉. These definitions are equivalent. The adversary has access to a
verification oracle and, for each of the many registers it constructs, could simply
apply the verification oracle to each register and then trace out any registers that
do not pass verification. This requires additional calls to the verification oracle,
but still only poly(n) calls to the oracle (since a polynomial-time adversary can
only construct poly(n) registers), and hence remains within the constraints of the
security argument above.

3In the language of Aaronson [Aar09], this is a single key private key quantum money scheme
with completeness error 0 and soundness error negligible in n.
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We note as well that it is not necessary to extend this definition to k + �
copies of |ψ〉: any adversary who can construct k + � copies of |ψ〉 with non-
negligible probability can in particular construct k + 1 copies of |ψ〉 with non-
negligible probability. In other words, there are no “long shots” that pay off in
expected value: the definition precludes being able to generate a very large number
of coins with a very small probability but with non-negligible expected number of
coins.

We now aim to show that a generic quantum coin scheme implemented with
black-box oracles as in Figure 4 is black-box unforgeable. However, we cannot use
the basic no-cloning theorem [WZ82, Die82] or the result on approximate cloning
[BM07] because not only does a forger have copies of the state |ψ〉, the forger also
has an oracle Uψ that will indicate whether the attempted cloning was successful.

Similarly, we cannot directly apply the Ω(
√
N) lower bound on quantum search

[BBBV97] because the forger has not only an oracle Uψ recognizing the desired
state but also some copies of the state itself. Rather, we need a hybrid of these two
results.

Aaronson [Aar05a] gives the following complexity-theoretic version of the no-
cloning theorem that combines the lower bound for quantum search with the no-
cloning theorem.

Theorem 4.2 (Theorem 5, [Aar05a]). Let |ψ〉 be an n-qubit pure state. Sup-

pose we are given the initial state |ψ〉⊗k
for some k ≥ 1 as well as an oracle Uψ

such that Uψ |ψ〉 = − |ψ〉 and Uψ |φ〉 = |φ〉 whenever 〈φ|ψ〉 = 0. Then to prepare a
state ρ such that

(4.1) 〈ψ|k+1 ρ |ψ〉k+1 ≥ p

we need

(4.2) Ω

( √
2np

k log k
− k

)
queries to Uψ.

This allows us to show that a quantum coin scheme is unforgeable in the black-
box oracle model.

Theorem 4.3. Let (V, |ψ〉) be a quantum coin scheme, where V is as in Figure 4
with Uψ given as a black-box oracle, and |ψ〉 is an n-qubit pure state. If not more
than poly(n) coins are issued, then (V, |ψ〉) is black-box unforgeable.

Proof. Suppose otherwise. Then there exists an adversary who, upon receiv-
ing k copies of |ψ〉 and using q = poly(n) queries to Uψ, can produce a state ρ such

that 〈ψ|⊗k+1
ρ |ψ〉⊗k+1

= p ∈ 1/poly(n). By Theorem 4.2, we need
(4.3)

q = Ω

( √
2np

k log k
− k

)
= Ω

( √
2n/poly(n)

poly(n) log poly(n)
− poly(n)

)
= Ω

( √
2n

poly(n)

)

queries to Uψ. But since the adversary is allowed only a polynomial number q of

queries to Uψ, we have that q ∈ poly(n) and hence poly(n) = Ω
( √

2n

poly(n)

)
, which is

a contradiction. Thus the quantum coin scheme must be black-box unforgeable. �
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5. Quantum coins using blind quantum computation

Blind quantum computation allows one party, Alice, to have another party,
Bob, perform computations on her behalf without Bob learning any information
about the input state, output state, or the operation performed.

Blind quantum computation was first introduced by Childs [Chi05] under the
name “secure assisted quantum communication”. The basic idea is that Alice, who
has limited quantum computational abilities (quantum communication, quantum
storage, and controlled-X and controlled-Z gates) can have Bob securely perform
arbitrary quantum computation, with quantum input and quantum output. In
Childs’ protocol, Alice and Bob must perform large amounts of quantum commu-
nication, though this could be replaced by quantum teleportation (shared entan-
glement with Bell measurements and classical communication).

Broadbent, Fitzsimons, and Kashefi [BFK09] present a protocol for blind
quantum computation with quantum input and output using measurement-based
quantum computation that needs only two rounds of quantum communication: one
at the beginning and one at the end.

Blind quantum computation could be used as follows for verifying quantum
coins as follows. The merchant, playing the role of Bob, implements the verification
circuit blindly for the bank, playing the role of Alice. The merchant receives the
coin as the input to the circuit, and interacts with the bank who helps it implement
the circuit. In the [BFK09] scheme, this requires mostly classical interaction, with
a round of quantum interaction at the end for the final output correction. In the
end, the output state along with the accept/reject information is with the merchant.
Since the bank is actively involved in the verification procedure, the merchant must
trust that the bank is not colluding with the customer.

Although the quantum communication requirements for verifying quantum
coins using blind quantum computation are no better than simply teleporting the
coin to the bank for verification, the quantum computation requirement for the
bank is markedly reduced: instead of having to implement the full quantum circuit
for coin verification for the thousands of coins being verified each second, it only
has to perform step 5 of Protocol 3 of [BFK09], which consists of at most one X
gate and one Z gate per coin qubit.

Obviously, it would be preferable to reduce this quantum communication re-
quirement even further, for example by only requiring quantum communication at
the beginning of the protocol and only classical communication for the remainder of
the protocol, and without using shared entanglement for teleportation. A protocol
for doing so would be an interactive protocol for quantum circuit obfuscation, and
quantum obfuscation is a long standing open problem (cf. [Aar05b]).
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