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Abstract

We consider a new form of authenticated key
exchange which we call multi-factor password-
authenticated key exchange, where session establish-
ment depends on successful authentication of multiple
short secrets that are complementary in nature, such
as a long-term password and a one-time response, al-
lowing the client and server to be mutually assured of
each other’s identity without directly disclosing pri-
vate information to the other party.

Multi-factor authentication can provide an en-
hanced level of assurance in higher-security scenarios
such as online banking, virtual private network access,
and physical access because a multi-factor protocol is
designed to remain secure even if all but one of the
factors has been compromised.

We introduce a security model for multi-factor
password-authenticated key exchange protocols, pro-
pose an efficient and secure protocol called MFPAK,
and provide a security argument to show that our pro-
tocol is secure in this model. Our security model is an
extension of the Bellare-Pointcheval-Rogaway secu-
rity model for password-authenticated key exchange
and accommodates an arbitrary number of symmetric
and asymmetric authentication factors.

Keywords: multi-factor authentication, passwords,
key exchange, cryptographic protocols

1 Introduction

Phishing and spyware are two of the major security
problems on the Internet today. Phishing, or server
impersonation, occurs when a malicious server con-
vinces a user to reveal sensitive personal informa-
tion, such as a username and password, to a mali-
cious server instead of the real server. Additionally,
many users’ computers are compromised with spy-
ware, which can record users’ keystrokes (and thus
passwords) and transmit this information to a mali-
cious party. These attacks are possible not because
of the break of any cryptographic protocol but be-
cause of externalities such as social engineering and
software bugs.

In theory, these attacks can be addressed in part
by using trusted cryptographic devices that can store
private keys and perform cryptographic operations,
but such devices are difficult to deploy and use. Years
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of experience have shown that passwords are a much
more popular and easy-to-use form of authentication,
but are more susceptible to phishing and spyware at-
tacks. In this work, we focus on the use of passwords
for authentication, since they are easier for users to
use and carry between computers than long private
keys.

Phishing can be combated by protocols that pro-
vide strong, easy-to-use server-to-client authentica-
tion. Password-authenticated key exchange (PAKE)
can make server-to-client authentication easier and
resistant to offline dictionary attacks, and addition-
ally provides a secure key for encryption.

Spyware is more difficult to defend against. If
a user’s computer is compromised by passive spy-
ware that records keystrokes and occasionally trans-
mits this information to an attacker’s server, then the
use of one-time passwords may be effective, since a
previously used one-time password can not be used
again. Active spyware — that frequently communi-
cates with the attacker’s server and actively alters
the user’s computer — is nearly impossible to defend
against without additional trusted hardware.

To reduce the damage caused by compromising an
authentication factor, many organizations with high
security requirements — such as financial institutions,
governments, and corporate virtual private networks
(VPNs) — are deploying multi-factor authentication,
which depends on a variety of attributes, or factors.
The factors could include: a long-term password, a
set of one-time passwords, a private key, or a biomet-
ric. To be effective in practice, factors should have
different, complementary natures of compromise. For
example, one-time passwords cannot all be compro-
mised unless one obtains the sheet of paper listing
all the one-time passwords or the device generating
the one-time passwords, whereas a biometric read by
a trusted device (such as a secure fingerprint reader)
should not be able to be reproduced without the pres-
ence of the person in question (or at least their finger).

Contributions. Our goal is to design a framework
for multi-factor authentication protocols that pro-
vides flexibility in the number and nature of factors.
Protocols secure in this framework should provide
strong mutual authentication, convey the authenti-
cation secrets in a secure manner, and remain secure
even if all but one of the authentication factors is
compromised. The authentication secrets can be low-
entropy secrets, such as passwords. Using multiple
low-entropy secrets can allow for passwords that may
have different modes of compromise, such as a mem-
orized long-term password and a one-time password
generated from a hardware device or transmitted over
a mobile phone text message.

First, we define a security model which is an exten-
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sion of the Bellare-Pointcheval-Rogaway model (Bel-
lare et al. 2000) for PAKE. Our model allows for an
arbitrary number of authentication factors, which can
be either symmetric or asymmetric. Our security def-
inition formalizes the notion that a multi-factor pro-
tocol should remain secure even if all but one of the
factors has been compromised.

Next, we present an efficient multi-factor proto-
col that is secure in this model under standard cryp-
tographic assumptions in the random oracle model.
Our protocol combines facets of the PAK protocol
(MacKenzie 2002) for symmetric factors and the
PAK-Z+ protocol (Gentry et al. 2005) for asymmet-
ric factors. We discuss how many different types of
factors — long-term passwords, one-time passwords,
biometrics, and even private keys — can be used in
our protocol.

Our work differs from previous work in PAKE
because it uses multiple authentication factors and
maintains security even if some are compromised.
Others have considered some aspects of multi-factor
authentication, but these have either used at least
one factor that is a long cryptographic secret (Yang
et al. 2006, Park & Park 2004, Yoon & Yoo 2006,
Pointcheval & Zimmer 2008), or have not pro-
vided strong server-to-client authentication resistant
to man-in-the-middle attacks.

Outline. The rest of our paper proceeds as follows.
In Section 2, we describe the security model for multi-
factor PAKE. In Section 3, we present our protocol
MFPAK and discuss its efficiency; we show through
a formal analysis that the MFPAK protocol is secure
and discuss how various types of factors can be used.
Section 4 concludes the paper with what we believe
are interesting directions for future research.  Ap-
pendix A presents the one of the cases for our security
proof for the MFPAK protocol; the rest appear in the
full version of the paper (Stebila et al. 2009).

1.1 Related work

Password-authenticated key exchange was first intro-
duced by Bellovin and Merritt in 1992 (Bellovin &
Merritt 1992) as the encrypted key exchange (EKE)
protocol, in which the client and server shared the
plaintext password and exchanged encrypted infor-
mation to allow them to derive a shared session key.
A later variant by Bellovin and Merritt, Augmented
EKE (A-EKE) (Bellovin & Merritt 1993), removed the
requirement that the server have the plaintext pass-
word, instead having a (non-trivial) one-way trans-
formation of the password, which alone is not suffi-
cient to impersonate the user. The former is called
a symmetric password-based protocol, because both
client and server share the same plaintext password
(or a trivial transformation of it), whereas the latter
is called asymmetric. The dominant model for the
security of PAKE protocols was proposed by Bellare,
Pointcheval, and Rogaway (Bellare et al. 2000) and
extended by Gentry, MacKenzie, and Ramzan (Gen-
try et al. 2005) to accommodate asymmetric proto-
cols.

Many PAKE protocols have been developed, in-
cluding PAK (Boyko et al. 2000, MacKenzie 2002) and
PAK-Z+ (Gentry et al. 2005) which are relevant to
our construction. Although universally composable
constructions are attractive to consider when com-
bining primitives, the existing work on universally
composable PAKE (Canetti et al. 2005) is only sym-
metric, not asymmetric, and thus unsuitable for our
approach.

A number of two-factor authentication schemes
have been proposed that rely on a short password
and a long cryptographic secret (Park & Park 2004,
Yang et al. 2006, Yoon & Yoo 2006). Pointcheval and

Zimmer (Pointcheval & Zimmer 2008) presented a
multi-factor authentication scheme using a password,
a long cryptographic secret, and biometric data; their
scheme has a formal security argument in a variant of
the BPR model that shares some features with ours.

There are also non-cryptographic approaches to
multi-factor authentication, but these do not provide
as strong protection for the authentication factors.
In a multi-channel system, the second factor is de-
livered over a separate channel (for example, via an
SMS text message on a mobile phone), which the user
then inputs into their web browser along side their
password. In a multi-layer system, software installed
on the server evaluates additional attributes such as
an HTTP cookie, IP address, and browser identifica-
tion string to heuristically analyze whether the user
is likely to be authentic. Some multi-layer systems
try to offer additional reassurance to the user of the
server’s identity by presenting the user with a cus-
tomized image or string. While these multi-channel
and multi-layer approaches can offer some increased
assurance, they can be defeated by non-cryptographic
means such as sophisticated man-in-the-middle at-
tacks and spyware, and have been shown to be easily
ignored by users (Schecter et al. 2007).

2 Security for multi-factor protocols

In a multi-factor PAKE protocol, multiple authen-
tication secrets of complementary natures, such as
a long-term password and a one-time password, are
used. We support two general types of authentication
factors: symmetric and asymmetric.

The authentication secrets must be used in a way
that the client can convince the server that it knows
all the authentication secrets, and that the server can
convince the client that it knows all the authenti-
cation secrets: this provides mutual authentication.
However, the protocol must be carefully designed to
not reveal any information about the authentication
secrets to a passive or even active adversary.

Secure communications often involve both authen-
tication and encryption so, in addition to providing
authentication, we want protocols that establish an
ephemeral shared secret key between client and server
that can be used, for example, for bulk encryption.

Informal security criteria. The general security
criteria we use for multi-factor PAKE is that the pro-
tocol should remain secure even if all but one authen-
tication factor is known to an adversary. We identify
four security properties such a protocol should have:

1. Strong multi-factor server-to-client authentica-
tion: without knowledge of all of the authentica-
tion factors, a server cannot successfully convince
a client of its identity.

2. Strong multi-factor client-to-server authentica-
tion: without knowledge of all of the authentica-
tion factors, a client cannot successfully convince
a server of its identity.

3. Authentication secrets protected: no useful in-
formation about the authentication secrets is re-
vealed during the authentication process.

4. Secure session key establishment: at the end
of the protocol, an honest client and an honest
server end up with a secure shared session key
suitable for bulk encryption if and only if the
mutual authentication is successful; otherwise no
session is established.

2.1 Security model

We define a model for the security of multi-factor
PAKE that allows one to argue that a protocol is se-
cure by giving upper bounds on the probability that
an adversary can break server-to-client or client-to-
server authentication, or determine the session key



established; the authentication secrets are protected
from offline dictionary attacks as well.

This model is an extension of the model for PAKE
proposed by Bellare, Pointcheval, and Rogaway (Bel-
lare et al. 2000) and modified by Gentry, MacKenzie,
and Ramzan (Gentry et al. 2005). The model allows
for an arbitrary number of authentication factors, and
each factor can be either symmetric or asymmetric.

Participants. In this model, each interacting party
is either a client or a server, is identified by a unique
fixed length string, and the identifier is a member
of either the set Clients or Servers, respectively, with
Parties = Clients U Servers.

Each authentication factor can be one of two types:
symmetric or asymmetric. Suppose there are n fac-
tors; let I denote the indices of symmetric factors and
1, denote the indices of asymmetric factors. For each
client-server pair (C, S) € Clients x Servers, n authen-
tication factors exist. The fth authentication factor
pwé’ g is chosen uniformly at random from the set

Passwords’ and is stored by the client. For symmetric
factors, the server also stores pWec,S? for asymmet-

ric factors, the server stores a verifier pWe g, which

is some non-trivial transformation of pwf g. (The

notion of “non-trivial transformation” will be clear
in the freshness definition below, but intuitively the
transformation should be such that compromise of the
verifier alone should not be sufficient to impersonate
the user without performing a dictionary attack.)

Execution of the protocol. During execution, a
party may have multiple instances of the protocol run-
ning. Each instance ¢ of a party U € Parties is treated
as an oracle denoted by ITY.

In a protocol, there is a sequence of messages,
called flows, starting with a flow from the client in-
stance, responded to by a server instance, and so on.
After some number of flows, an instance may accept,
at which point it hold a session key sk, partner id pid,
and session id sid. Subsequently, it may terminate.
Two instances HZ»C and HJS are said to be partnered if
they both accept, hold (pid, sid, sk) and (pid’, sid’, sk’),
respectively, with pid = S, pid’ = C, sid = sid’, and
sk = sk’, and no other instance accepts with session
id equal to sid. Alternatively, an instance may reject
at any point in time, meaning it is no longer accepted
or terminated.

Queries allowed. The protocol is determined by
how participants respond to inputs from the environ-
ment, and the environment is considered to be con-
trolled by the adversary, which is formally a proba-
bilistic algorithm that issues queries to a challenger
which simulates parties’ oracle instances. For a pro-
tocol P, the queries that the adversary can issue are
defined as follows (where clear by the setting, we may
omit the subscript P):

e Executep(C,i,S,j): Causes client instance II{
and server instance Hf to faithfully execute pro-
tocol P and returns the resulting transcript.

e Sendp(U,i, M): Sends message M to user in-
stance T1Y, which faithfully performs the appro-
priate portion of protocol P based on its current
state and the message M, updates its state as
appropriate, and returns any resulting messages.

o Testp(U,i): If user instance IIY has accepted,
then the following happens: the challenger
chooses b € {0,1}; if b = 1, then return the ses-
sion key of ITY, otherwise return a random string
of the same length as the session key. This query
may only be asked once.

e RevealSKp(U,i): If user instance IIY has ac-
cepted, then returns session key sk held by IIV.

e RevealFactorp(C, S,¢): Returns the fth factor
pwé’ g held by client C' with server S.

e RevealFactorVp(S,C,¢): If ¢ is an asymmetric
factor: returns the ¢th factor’s verifier piwé g held
by server S with client C.

The RevealFactor and RevealFactorV queries model
the adversary learning the authentication secrets,
which corresponds to weak corruption in the Bellare-
Pointcheval-Rogaway model. We do not allow the ad-

versary to modify stored authentication secrets (also
called strong corruption).

Definition 2.1 (Freshness) An instance 1Y with
partner id U’ is fresh in the fth factor (with forward-
secrecy) if and only if none of the following events
occur:

1. a RevealSK(U, %) query occurs;

2. a RevealSK(U’, j) query occurs, where H;-]/ is the
partner instance of 11V, if it exists;

3. if U € Clients: RevealFactor(U,U’,¢) (and/or
RevealFactorV(U', U, ¢) if the (th factor is asym-
metric) occurs before the Test query, and
Send(U, i, M) occurs for some string M ;

4. if U € Servers: RevealFactor(U’,U, ) occurs be-
fore the Test query, and Send(U, i, M) occurs for
some string M .

This notion of freshness accommodates the idea that
an instance should remain fresh even if all but one
of the authentication factors has been fully compro-
mised. If an instance is fresh in all of its factors, then
it is also fresh in the original notion of freshness for
PAKE.

Adversary’s goals. For session key security, the
goal of an adversary is to guess the bit b used in the
Test query of an instance that is fresh in at least one
of its factors; this corresponds to the ability of an ad-
versary to distinguish the session key from a random
string of the same length. Let Succi®(A) be the
event that the adversary A makes a single Test query
to some fresh in the (th factor instance IV that has
accepted and A eventually outputs a bit b/, where
b = b and b is the randomly selected bit in the Test
query. The ake-fl advantage of A attacking P is de-

fined to be Advia®™(A) = 2Pr (Succ*})ke'fe(A)) —1.

We can define similar notions for client-to-server,
server-to-client, and mutual authentication. For the
security experiments involving authentication, the

Test query is prohibited. We define Adv{>*(A) to be
the probability that a server instance H]S with partner

id C terminates without having a partner oracle be-
fore the RevealFactor query in point 4 of the definition

of freshness in the ¢th factor. We define Advi2<™(A)

to be the probability that a client instance ch with
partner id S terminates without having a partner or-
acle before the Revealx queries in point 3 of the defini-
tion of freshness in the /th factor. Finally, we define
AdviEE T (A) = max{Adv§Z T (A), AdviZ T (A)}.

We overload the Adv (and corresponding Pr(Succ))
notation: Adv (£, gse, Gex Gro) = max 4{Adv (A)},
where the maximum is taken over all adversaries run-
ning in time at most ¢, making at most qse and gex
queries of type Sendp and Executep, respectively, and
at most ¢, random oracle queries.

Definition 2.2 (Secure multi-factor protocol)
Let k be a security parameter. A protocol P is



a secure multi-factor password authenticated key
agreement protocol if there exists a negligible (in k)
e and small constants dy, £ € {1,...,n}, such that,
for all polynomially-bounded adversaries A,

deq.
=< 1/‘ +€ b)

| Passwords®
-y if the Lth factor is symmetric,
Adve}j ¢ (A) S 6( ((1_bfo)(Ise+bfo(1ro)
|[Passwords?| te,
if the Lth factor is asymmetric,

and the corresponding bound applies for Advis*(A),

where, for asymmetric factors £, b, = 1 if A makes
a RevealFactorV (-, -, ) query and 0 otherwise.

Intuitively, this notion of security says that any
polynomially-bounded adversary can only do negli-
gibly better than doing an online dictionary attack at
any unknown factors and can gain no advantage by
doing an offline dictionary attack. Ideally, d, would
be 1, indicating the adversary can only rule out one
password with each online guess; however, a protocol
can still be secure as long as d, is small compared to

|Passwords"|.

Since an instance that is fresh in all of its factors
is also fresh in the original ake notion of PAKE, we
have that

AdviEe(A) < min {AdvETT(4))
Le{1,...,n}

By providing bounds for each factor, we can pro-
vide greater granularity in relating the security of
factors to their risks of compromise. For example,
lower entropy factors (represented by smaller values

of |Passwords’|) may be physically distributed and se-
cured in different ways than higher entropy factors, or
may be used for a shorter period of time. This con-
trasts with the approach of (Pointcheval & Zimmer
2008), in which there is a single notion of freshness
and a single bound over all factors.

2.2 Using one-time passwords

The model presented in Section 2.1 uses long-term
authentication secrets that do not change over time.
However, multi-factor authentication may include a
factor that varies, such as a one-time password. Such
a factor may be the response to a challenge, or may
vary with time. The benefit of a one-time password
is that the compromise of a single one-time password
should not affect the security for a different one-time
password. One-time passwords offer some protection
against passive spyware, as previously compromised
one-time passwords are useless.

Although at first glance it may seem impracti-
cal for a user to store a large number of passwords,
this is actually quite practical and is already being
done in the real world: for example, some Euro-
pean banks issue paper lists of one-time passwords
to users (Nordea Bank 2009), and corporations issue
hardware devices for pseudorandomly generating one-
time passwords for virtual private network (VPN) ac-
cess (RSA Security Inc. 2009) or electronic commerce
(Blizzard Entertainment 2009). Even though a user
may be carrying as much data as in a cryptographic
key, one-time passwords offer usability benefits: car-
rying a cryptographic key requires a hardware inter-
face or carefully managed private key files, whereas
one-time passwords can be easily entered in only a
few keystrokes.

Abdalla et al. (Abdalla et al. 2005) present a
protocol for the use of one-time passwords in an au-
thenticated key exchange protocol but do not alter

the security model from the standard BPR setting.
Paterson and Stebila (Paterson & Stebila 2009) do
present an alteration to the BPR security model that
accommodates the compromise of previous (and fu-
ture) one-time passwords and we apply their ideas to
allow for symmetric factors using one-time passwords
as follows.

Adjusting the model. We can alter the security
definition of a multi-factor protocol to allow a sym-
metric factor that corresponds to a one-time pass-
word by applying the ideas of Paterson and Stebila
(Paterson & Stebila 2009). Let ¢ be the index of a
symmetric factor for which we wish to use one-time

passwords. Let Indices’ be the set of indices of one-

time passwords, and let ch € Indices’. When a party
is activated, they are activated with the index of the
one-time password to use for that instance; a party

can only be activated once for each ch € Indices’. Let
{PWE 5.cn} be the set of one-time passwords between
C and S, indexed by ch; each such password is cho-

sen uniformly at random from Passwords’. We add an
additional parameter ch to the RevealFactor query:

e RevealFactorp(C, S, ch, £): Returns the ¢th factor
pwé’ geh held by client C' with server S for one-
time password indexed by ch.

The definition of freshness in the ¢th factor of IV is
adjusted as well, replacing points 3 and 4 in Defini-
tion 2.1 with:

3. if U € Clients: RevealFactor(U,U’, ch, ) occurs
before the Test query, and Send(U, i, M) occurs
for some string M, where ch is the index of the
one-time password with which TIY was activated;

4. if U € Servers: RevealFactor(U’, U, ch, ¢) occurs
before the Test query, and Send(U, i, M) occurs
for some string M, where ch is the index of the
one-time password with which IIY was activated.

The definitions of authentication are adjusted analo-
gously as well.

Paterson and Stebila go on to show that any se-
cure PAKE protocol can be used in the natural way to
build to a secure one-time PAKE protocol, by using
the one-time password in place of the password. This
holds even when the one-time passwords are pseudo-
randomly generated or time-dependent. This means
that our MFPAK protocol in the next section can eas-
ily accommodate one-time passwords as authentica-
tion factors.

3 MFPAK: a  multi-factor = password-
authenticated key exchange protocol

MFPAK is the first PAKE protocol that uses multiple
low-entropy authentication factors. It allows for an
arbitrary number of factors which can be asymmetric
or symmetric, and these factors can be independently
changed as users need to change their passwords. Our
approach is much more efficient, in terms of number
of expensive operations, than the naive approach of
combining existing PAKE protocols as black boxes:
we add no expensive operations for each additional
symmetric factor, and only one additional expensive
operation (signature generation/verification) for each
party for each asymmetric factor.

3.1 Design ideas

We designed MFPAK by considering two existing one-
factor protocols as our building blocks: the asymmet-
ric password protocol PAK-Z+ for asymmetric fac-
tors, and the symmetric password protocol PAK for
symmetric factors. These two protocols are simi-
lar in structure which allows us to gain some effi-
ciency improvements. All factors are tightly inte-



grated into the authentication and key exchange pro-
cesses. The underlying session key agreement comes
from a hashed Diffie-Hellman construction. Authen-
tication for asymmetric factors is done using a digital
signature scheme, while for symmetric factors it is
done using hash functions.

Shielded ephemeral key. One of the main efficiency
and security gains in the MFPAK protocol comes in
the first flow from the client to the server. In this flow,
the client shields its ephemeral public key by multi-
plying it by (the hash of) each factor. The client is
made to commit to those values, thereby preventing
a malicious client from making an offline dictionary
attack later on. Moreover, the server must use the
same values to unshield the client’s ephemeral public
key or Diffie-Hellman key agreement will fail, thereby
committing the server to its choice of values. By do-
ing this multiple shielding operation, the client and
server achieve mutual authentication, the client saves
expensive operations compared to running multiple
protocols separately, and the authentication secrets
are protected.

Digital signature for asymmetric factors. Authen-
tication for asymmetric factors comes from using a
digital signature scheme, where the (short) authen-
tication secret is used to shield the digital signature
private key which is stored on the server. During
the login stage of the protocol, the server returns the
shielded private key, which the client can unwrap only
if she knows the correct password. The client uses the
private key to perform a signing operation which the
server verifies using the public key. This allows for
asymmetry: the compromise of the server’s database
is not enough to impersonate the client to the server
without a dictionary attack. This technique, as used
in PAK-Z+ (Gentry et al. 2005), is an instantiation
of the generic technique proposed by Gentry et al.
(Gentry et al. 2006) for asymmetric password-based
authentication. It is important to note that the dig-
ital signature scheme is not used in its normal sense
with published or certified public keys, but simply as
a convenient asymmetric construction.

Hash function for symmetric factors. The hash of
a symmetric factor is stored on the server. The server
proves its knowledge of a symmetric factor by hashing
it with the session key; the client does the same.

3.2 Protocol specification

The MFPAK protocol, like many other protocols, con-
tains two stages: a user registration stage, completed
once per client-server pair, and a login stage, com-
pleted each time a user attempts to login. For conve-
nience in presentation of the login stage, we assume
there is at least one symmetric factor and one asym-
metric factor; however, the protocol can be altered in
the natural way to deal with exclusively symmetric
or exclusively asymmetric factors. The number and
type of factors are fixed and publicly known.
Ingredients and notation. Let k be a cryptographic
security parameter. The notation z € Z denotes an
element z selected uniformly at random from a set
Z. Angle brackets (-} denote a list, and -||- denotes
concatenation. The protocol operates over a finite
cycle group G of order ¢, generated by g, for which
the Computational Diffie-Hellman (CDH) assumption
holds. The function Acceptable(-) tests whether an el-
ement is in G (or, for efficiency reasons, a group con-
taining G; see (MacKenzie 2002, §4)). It makes use of
a number of random hash functions based on random
oracles (Bellare & Rogaway 1993): H; maps {0,1}*
to group elements (such as (Coron & Icart 2009) for
hashing into elliptic curve groups), while all other
hash functions H; map {0,1}* to {0,1}". We also em-
ploy a signature scheme S = (Gen, Sign, Verify) that
is existentially unforgeable under chosen message at-

tacks (Goldwasser et al. 1988). Let (v, V) «— Gen(1%),
where v is a private key and V is the correspond-

ing public key. Recall that pwecv g denotes client C’s

password for server S for the /th factor, and piwé’ g
denotes the corresponding value held by the server,
which may be equal to pwé, g for symmetric factors

and is some non-trivial transformation of pwéc g for

asymmetric factors.

The user registration stage of MFPAK is given in
Figure 1. This stage should be completed over a pri-
vate, authentic channel. The user registration stage
can be altered in the obvious way to have authentica-
tion secrets chosen by the server and supplied to the
client, if necessary.

The login stage of MFPAK is given in Figure 2.
This stage can be completed over a public, untrusted
channel. A client C initiates the login stage with a
server S.

3.3 Nature of the factors

The MFPAK protocol can accommodate a wide vari-
ety of authentication secrets using either symmetric
or asymmetric factors, as we note below. Our ap-
proach offers improved functionality compared with
the nave way of combining multiple authentication
secrets by simply concatenating them into one long
string: with concatenation, one cannot easily com-
bine passwords that change over time (symmetric fac-
tors) with long-term passwords (asymmetric factors)
because the server does not store the plaintext pass-
word.

Long-term passwords. Long-term passwords are
best accommodated as an asymmetric factor, but can
be treated asymmetrically as well. Since long-term
passwords do not change frequently (or at all), we
should reduce the damage that can be caused by com-
promise of the server database containing data for
these factors. Although we can never prevent dic-
tionary attacks against the server’s database, we can
raise the amount of work an attacker needs to do by
using asymmetric factors.

One-time passwords. One-time passwords are usu-
ally best accommodated as symmetric factors. Asym-
metric factors could be used, but the costs for asym-
metric factors may not be worth it for one-time pass-
words. It may be more efficient to generate one-
time passwords from a seed using a challenge-response
mechanism or a time-dependent generator. For fac-
tors that employ a challenge-response mechanism, an
initial message from the server to the client convey-
ing the challenge can be added to the beginning of
the login stage of the protocol.

Cryptographic keys. Although our primary moti-
vation has been the use of short strings as authentica-
tion secrets so users can easily carry their authentica-
tion secrets between computers, there is nothing pre-
venting a password-based protocol from using high-
entropy secrets (that is, cryptographically large keys)
as opposed to low-entropy secrets. We can directly
use a cryptographic key as pwé g in either the sym-
metric or asymmetric case. In the asymmetric case, it
would be possible to further streamline the protocol
by having the user store the private key v, from the
digital signature scheme, and adjust the remainder of
the protocol as follows: set pwéy g < vg; in the regis-
tration stage, the server stores piwgcys — (14, 7'[17 Va);
in the login stage, the server omits steps 15 and 16
for this factor and the client omits steps 22-25 for
this factor. We recommend, however, that situations
using exclusively cryptographically large keys should
consider traditional authenticated key exchange pro-
tocols as the security models (Canetti & Krawczyk



MFPAK User Registration
Client C' Server S
for e {1,...,n}k:
1. store pw‘é s €ER Passwords’
2. T[(_Hl(C7S7€7pWZCS)
for ¢ € I,:
3. (ve, Vo) <R Gen(1F)
4. vy — Ha(C, S, ¢, PWZC,s) ® vy
5. vy« H3(£,vg)
6 CAre} AV} {vp vy}
for ¢ € Is:
7. store piwéys — (¢, T[l)
for ¢ € I,:
8. store pWé’S — (TZ,Te_l, Vi, v, vy)

Figure 1: The user registration stage of the MFPAK protocol.

2001, LaMacchia et al. 2007) are stronger and offer re-
sistance to ephemeral key leakage in addition to static
key leakage.

Biometrics. Pointcheval and Zimmer (Pointcheval
& Zimmer 2008) describe in detail the use of biomet-
ric templates in an authenticated key exchange pro-
tocol. They use secure sketches and fuzzy extractors
to safely see if two biometric templates match.

An alternative approach is to use fuzzy vaults,
which were introduced by Juels and Sudan (Juels &
Sudan 2002). They allow a secret to be embedded in a
vault which is locked by a set of fuzzy values, such as
the minutiae of a fingerprint. Fuzzy vaults could for
example be used in a multi-factor protocol as follows:
the user receives the fuzzy vault, uses her biometric to
unlock the vault, and then uses the embedded secret
value as another factor in the multi-factor protocol.

Because of the privacy issues surrounding biomet-
rics, we are not suggesting that biometrics naively
be used in our construction immediately, as there are
numerous issues to consider. For example, should the
fuzzy vault be transmitted unencrypted or encrypted
under the session key derived from the other factors?
Should the secret embedded in the vault contain error
correcting information, as suggested in (Juels & Su-
dan 2002), or not? (We think not, as error correcting
information allows an offline “dictionary” attacker to
detect whether it has the right input, whereas lack of
error correction information would ideally mean the
attacker needs to do an online “dictionary” attack.)
The use of biometrics in authenticated key exchange
merits further study.

3.4 Efficiency

In many e-commerce and online banking situations,
the performance-limiting factor is the number of con-
nections a server can handle, and this is in turn lim-
ited by the number of expensive operations required
by the cryptographic protocol. MFPAK can increase
security without a substantial additional computa-
tional burden on the server.

Figure 3 compares the number of expensive op-
erations (group exponentiations and signature gener-
ation / verification) performed by a naive combina-
tion of PAK and PAK-Z+ versus the MFPAK proto-
col. MFPAK has a fixed overhead of two group expo-
nentiations each on client and server side. For each
symmetric factor, there are no additional expensive
operations (only multiplications and hashes, not ex-
ponentiations); for each asymmetric factor, there is
one additional expensive operation on each side (sig-
nature generation by the client, signature verification
by the server). This makes MFPAK much more ef-
ficient, in terms of number of expensive operations,
than if one were to make a multi-factor scheme sim-

ply by running PAK and PAK-Z+ in parallel indepen-
dently.

3.5 Security analysis

The main idea of the security argument is that, if one
factor, say the £*th factor, remains uncompromised,
then the difficulty of breaking MFPAK is related to
the difficulty of breaking the corresponding one of ei-
ther PAK (for a symmetric factor) or PAK-Z+ (for an
asymmetric factor), each which is in turn related to
solving the Computational Diffie-Hellman problem.

For both symmetric and asymmetric factors, we
describe a procedure (specified by a modifier M)
to transform an adversary A against MFPAK with
the £*th factor uncompromised into an adversary A*
against the corresponding one of the two underly-
ing protocols (PAK and PAK-Z+, respectively). The
transformations are such that, if the oracle instance
in MFPAK against which the Test query is directed
is fresh in the ¢*th factor, then the corresponding or-
acle instance is also fresh in the corresponding at-
tack on PAK (resp., PAK-Z+). This is possible be-
cause of the design of the MFPAK protocol: it essen-
tially runs both PAK and PAK-Z+ together while still
capturing the security of each independently. This
design characteristic allows the relatively straightfor-
ward (although lengthy) security argument.

Our formal argument proceeds by considering four
cases, two corresponding to an asymmetric factor be-
ing uncompromised and two corresponding a symmet-
ric factor being uncompromised. The cases are:

1. Asymmetric factor uncompromised, U* €
Clients: no RevealFactoryepak (U, U'*, £*) or
RevealFactorVyepak (U™, U*, £*) query.

2. Asymmetric factor uncompromised, U* €
Servers: no RevealFactormepax (U™, U*, £*) query.

3. Symmetric factor uncompromised, U* € Clients:
no RevealFactoryepak (U*, U™, £*) query.

4. Symmetric factor uncompromised, U* € Servers:
no RevealFactoryepak (U™, U*, £*) query.

These four cases are combined probabilistically to
give the overall result. The details are provided in
Appendix A. Throughout, we assume passwords are
uniformly distributed. The resulting security state-
ment is as follows:

Theorem 3.1 Let k be a security parameter. Let G
be a finite cyclic group generated by g and let S be a
signature scheme. Let A be an adversary that runs
in time polynomial in k, and makes at most qse and
Qex queries of type Send and Execute, respectively, and
at most gy, queries to the random oracle. If ¢ is an
asymmetric factor, then let bee = 1 if A makes a
RevealFactorV (-, -, ¢) query to a server, and 0 other-
wise. Then MFPAK is a secure multi-factor PAKE



MFPAK Login
Client C' Server S
1. T ER Lq
2. X — g%
for £ € {1,...,n}:
3. ¢ — H1(C, S, ¢, pwgc,s)
4. m— X Tl m
5. _¢&m |
6. reject if —=Acceptable(m)
7. Y €ER Lq
8. Y — g¥
for £ € Is:
9. lookup <T£,TZ_1> — pWé’S
for £ € I:
10. lookup (Tg,T[l, Vi, vp,vy)) — piwzcys
1. X —=m-T[{—, Tz_l
12. o — XV
13. sid — (C, S, m,Y)
14. k «— Hy(sid,o,71,...,7n)
for £ € I,:
15. ay < Hs(sid, 0, £, 1)
16. ag — a, ® v
. Y.k, {ae}.{v'}
18. o «<Y~*
19. sid — (C,S,m,Y)
20. reject if k # Hy(sid, o, 71,...,7n)
21. kK < Hg(sid,o,71,...,Tn)
for £ € I,:
22. a% — Hs(sid, 0, ¢, 70)
23. vy —a, ®ag
24. vg — Ha(C, S, L, pwe g 4) D vy
25. reject if v}/ # Hz (£, ve)
26. s¢ < Sign,,, (sid)
27. klﬂ{sé}
28. reject if k' # He(sid, o, 71,...,7n)
for £ € I,:
29. reject if —Verifyy, (sid, s¢)
30. sk« Hy(sid,o,71,...,7n) sk «— Hy(sid, 0, 71,...,Tn)
Figure 2: The login stage of the MFPAK protocol.
Operation PAK & PAK-Z+ MFPAK
Client Server Client Server
exponentiations oI+ 2[1]  2[Is] + 2[14] 2 2
signature generation |1 0 [Tl 0
signature verification 0 [1a] 0 [1a]
total 2|+ 3[I.] 2|Is|+3/Ia] | 2+ 1] 2+ |1a]

Figure 3: Comparison of expensive operations for combined PAK & PAK-Z+ and MFPAK.

protocol, with

166((1_bco)(I5e+bcoqro)
|Passwords? | te,
Advake=tl ( 4y < if the (th factor is symmetric,
vmrpak (A) < 40gs | ¢
|Passwords?| ’

if the Lth factor is asymmetric,

where € is a negligible function of k, and § = |Clients|-

ma-f¢ (A)

|Servers|; a similar bound exists for Adviyrpak

As with any formal security argument, a proof of
security does not imply security against all forms of
attack. A protocol may be vulnerable to attack meth-
ods not described by the security model. Nonetheless,
a security proof is valuable as a heuristic that the pro-
tocol is resistant to at least some types of attacks.

4 Conclusion and future work

We have presented a security model for multi-factor
password-authenticated key exchange protocols that
can accommodate an arbitrary number of factors. We

have provided a security argument showing that our
new protocol, MFPAK, is secure in this model. Our
multi-factor authentication protocol offers enhanced
authentication protection through the use of comple-
mentary factors, such as a long-term password and
a one-time challenge/response. The construction is
quite efficient in terms of the number of operations
per factor; for example, a two-factor version of our
protocol using a long-term password and one-time
challenge /response has the same efficiency as the one-
factor protocol PAK-Z+. The protocol remains secure
even if all but one of the authentication factors is fully
known to an adversary. Our multi-factor protocol is
resistant to man-in-the-middle and impersonation at-
tacks, providing enhanced authentication in the face
of more complex threats like phishing.

Other recent work in the field of PAKE protocols
has focused on protocols where the sequence of flows
fits existing network protocols such as SSL/TLS. An
open question is to design a provably secure multi-
factor PAKE protocol with support for asymmetric
factors that fits within the message flow of SSL/TLS.

Additionally, multi-factor protocols supporting an



arbitrary number of factors could be designed where
some factors are optional and the number of factors
used corresponds to differing levels of access depend-
ing on the application situation: one factor could be
used for read-only access, two factors for small-value
transactions, and three factors for large-value trans-
actions.

An interesting future direction would be to fur-
ther investigate the use of biometric information in
a multi-factor authenticated key exchange protocol.
We have outlined some ideas involving fuzzy vaults,
but consideration of the privacy and security require-
ments requires further research.
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A Security analysis

This section contains the details of the security anal-
ysis supporting Theorem 3.1.

It is helpful to be able to refer to the action of
a party upon receipt of a message. We use the no-
tation CLIENTACTIONip and SERVERACTIONip to
refer to the portion of the protocol P performed
by the client or server, respectively, after the ith
flow. Thus, MFPAK as described in Figure 2 spec-
ifies CLIENTACTIONOMFpaK, SERVERACTION]\EPAK,
CLIENTACTION2MmEpAK, and SERVERACTION3MEPAK

A.1 Ingredients

Computational Diffie-Hellman assumption.
MFPAK operates over a finite cycle group G for which
the Computational Diffie-Hellman (CDH) assump-
tion holds. Let G be a finite cyclic group of or-
der ¢, let g be a generator of G, and let e be
the time it takes to perform an exponentiation in
G. Let Acceptable : G — {true,false} such that

Acceptable(z) = true if and only if z € G, where G is
a specified abelian group which has G as a subgroup.
For two values X and Y, define DH(X,Y) = XV if
Acceptable(X) and Y = ¢¥, or DH(X,Y) = Y*, if
Acceptable(Y') and X = g*. Let A be a probabilis-
tic algorithm with input (G, g, X,Y’) that outputs a
subset of G, and define

AV (A) = Pr (DH(X,Y) € A(G, g, X. ) :
(xvy) €R quX = gm,Y = gy)

Let AdeGdE (t,n) = maXA{AdeG({g (A)} where the
maximum is taken over all algorithms running in time
t and outputting a subset of size at most n. The CDH

assumption is that, for any probabilistic polynomial
cdh

time algorithm A, Adv¢; ;(A) is negligible.

Random hash functions. MFPAK makes use of a
number of random hash functions based on random
oracles (Bellare & Rogaway 1993). A random hash
function H : {0,1}* — {0,1}* is constructed by se-
lecting each bit of H(z) uniformly at random and
independently for every x € {0,1}*. We make use
of a number of independent random hash functions
H,, Hs, ..., which can be constructed from a single
random hash function H by setting Hy(z) = H({||x).
Constructing a hash function that outputs elements
of a group instead of {0,1}* is also possible and ef-
ficient, and in fact all of the hash functions used in
MFPAK are into the group G.

Signature scheme. MFPAK makes use of a sig-
nature scheme S = (Gen, Sign, Verify) that is exis-
tentially unforgeable under chosen message attacks
(Goldwasser et al. 1988). Let (v,V) «— Gen(1"),
where v is a private key and V is the correspond-
ing public key. Let tgen be the runtime of Gen(1%),
and tsg be the runtime of Sign and Verify. A forger
F is given a public key V and must forge signa-
tures; it can query an oracle that returns Sign,(m)
for any messages m of its choice. It succeeds if it can
output a forgery (m,o) such that Verify, (m,o) =
true, where m was not queried to the signing or-
acle.  Let Succg' ™™ (F) = Pr(F succeeds), and
Succg' ™ (t, gsign) = maxz {Succg ™ (F)} where
the maximum is taken over all forgers running in
time ¢ and making at most gsign queries to the sign-
ing oracle. A signature scheme S is existentially un-
forgeable under chosen message attacks (eu-cma) if,
for any probabilistic polynomial time algorithm F,
Succy ™ (F) is negligible.

A.2 Case 1: Attacking a client instance,
asymmetric factor uncompromised

This case addresses impersonation of the server when
the instance being attacked is a client instance and
the uncompromised ¢£*th factor is asymmetric.

The modifier M first uniformly at random guesses
U* g Clients and U’* €g Servers as its guess of who
the adversary A will end up attacking. If the attacker
ends up attacking the pair of users the modifier has
guessed, then we will show how to transform the at-
tack into an attack on PAK-Z+.

Let GuessCS be the event that the modifier M
correctly guesses U* and U’*. Then

Pr(GuessCS) = Pr((U* correct) A (U™ correct)) (1)

1
> ) 2
~ |Clients| - |Servers| @
For this case, we assume that
no RevealFactormepak (U*, U™, £*) or

RevealFactorViepak (U'*,U*,£*) query is issued
against M:  this case models server imper-
sonation in the £*th factor, which is why no
RevealFactorVivepak (U™, U*, £*) query is allowed.
Furthermore, no RevealFactorpmepax (U*, U™, €*) is
allowed because an adversary can easily recover the

verifier piwf]*’U,* from the secret pw. ;. and one

interaction with U'*.
The modifier M does the following to convert an
MFPAK adversary A into a PAK-Z+ adversary A*.

Password preparation. For each (C,S,¢) €
Clients x Servers x {1,...,n}\ {(U*, U™, £*)}, M sets

pwé 5 €R Passwords’ and constructs the correspond-
ing piwé’ g. Of all the authentication secrets, only

pwg{*’U,* and pwg*)U,* remain unknown to M at this
point. Compute the corresponding 7y, for £ # £*, and
set m— [, etex TE

Instantiation of PAK-Z+ simulator. We instan-
tiate the PAK-Z+ simulator Spak-zy+ with the
following random oracles: H}(C,S, pwaS) =
H;(C, 8,0 pwg g) for i =1,2; Hi(v) := H3(l*,v);

HZ((C’,S,m,Y),mT_l)

=Hs((C,S,m -7, Y)Y, 0,T1,..., Ty Tn)
lleer. ee- Hs((C, S,m -7, Y), 0,4, 70)

H§(<C7 S7 m7 Y>7U7 Tﬁl) :: H5(<C7 S7m
m,Y),0.0* 7); and Hi((C,S,m,Y) 0,771 =
H:((C,S,m - 7, Y), 0,71,y sy o).t These

‘starred’ functions are independent random oracles
if the corresponding unstarred functions are. The
above construction is possible since {7;}¢ze+ and 7
are fixed and known to M because of the guesses
made at the beginning of this case. By using a
concatenation of random oracles, the PAK system
computes the values we need in M’s handling of
Execute and Send queries.

Further, Spak-z+ is instantiated with the following
signature scheme (Gen, Sign*, Verify™):

Sign’ ((C, 8,m, ¥)) := Sign, ((C, 5, m - 7, )

Verify}, ((C, S,m,Y), s) := Verify,, ((C, S,m - 7,Y), s).
Since the transformation that sends (C,S,m,Y)
(C,S,m -, Y) is just a permutation, it follows that

(Gen, Sign*, Verify®) is an eu-cma signature scheme
whenever (Gen, Sign, Verify) is.

INote that we do not need to instantiate H{ because this oracle
is not used by PAK-Z+.



M’s handling of A’s queries. The modifier M per-
forms the following modifications to the queries of A.
The main goal is for M to simulate all queries except
for ones that are related to the U* and U’* guessed
at the beginning of the case: these queries are passed
to the underlying PAK-Z+ simulator Spak-z+-

RevealFactor(C, S, ¢):
1. If (C, S, £) £ (U*, U™, £*):
Return PWZC, 5
2. If (C,8,0) = (U*, U™, £*):
Reject; if this query occurs, then M'’s guess of
U* and U™ at the beginning of this case was
incorrect.

RevealFactorV(S, C, ¢):
1. If (C, S, €) £ (U*, U™, *):
Return piwgc’s.
2. If (C,S,0) = (U*, U™, £*):
Reject; if this query occurs, then M'’s guess of
U* and U™ at the beginning of this case was
incorrect.
Test(U, 4):
1. fU=U"
Send a Testpak-z+ (U, i) query to PAK-Z+4 simu-
lator Spak-z+ and return the result to A.
2. fU #£ U™
Reject; if this query occurs, then M’s guess of
U* at the beginning of this case was incorrect.
RevealSK(U, i):
1. HU=U*or U =U"
Send a RevealSKpak-z4+ (U, ) query to PAK-Z+
simulator Spak-z+ and return the result to A.
2. Otherwise:
Return sk for instance HZU.
Execute(C, 4, S, j):
1. If (C,8) £ (U*,U"™):
M performs Executemppak (C, i, S, j) with all the
values it has and returns the transcript.
2. If (C,S) = (U*,U"™):
M will use the PAK-Z+ simulator Spak-z+ to
obtain a transcript for this query.

(a) Send an Executepak-z+(C,i,S,7) query to
Spak-z+ and receive (C,m, Y, k a,v",s).
Set m «— m - 7.

Set k' € range(Hg).

Extract k as the first component of k.
Extract {aj}ecr, o0+ from the remaining
|I,] — 1 components of k.

Compute {a¢}ocr, ote+-

)
)
)
)
)
) Set ap — a.
)
)
)
)
(

Set vy, «—v".

Compute {s¢}rer, o0+

Set sy« «— s.

Return (C, 1, Y, k, {ac}, {v/'}, K {se}) t

If M is not a valid protocol message in a meaning-
ful sequence, then reject as would be done in MFPAK.

1. If M = (“start”, S) and (U, S) # (U*,U"™):
Perform CLIENTACTIONOyepak and return
(U, m).

2. If M = (“start”, S) and (U, S) = (U*,U"™):

(a) Send a Sendpak-z4(U,i, M) query to
SpAK z+ and receive (U, m).

(b) Set m «—m -

(¢) Return (U, ).

3. f M =(C,m) and (C,U) # (U*,U"™):

Perform SERVERACTIONImppak and return

<Ya k, {(lg}, {UZ/ >

4. It M ={(C,m) and (C,U) = (U*,U"™):

Set 1 «— m -7 L.
(b) Send a Sendpak-z4+(U, i, (C 7)) query to
Spak-z+ and receive (Y, k,a,v").
Extract k as the first component of k.
Extract {aj}ecr, e2e« from the remaining
|7,| — 1 components of k.

)
)
g Compute {a¢}rcr, o0+
)
)

(c
(d
(
(

e
f) Set ag* — a
(g) Set vj «—v”
(h) Return (C’,m,Y,IAf, {ac}, {v/'}).
5. If M = (Y,k{ac},{v/}) and (U, U") #

(U*,U"™), where U’ is the partner of U:

Perform CLIENTACTION2mepak  and  return
(K, {s¢})-
6. If M = (Y,k,{a},{v)}) and (U,U') =

(U*,U"™), where U’ is the partner of U:
(a) Verify {vy}rer, o0+
(b) Set &' — klleer, ee- ap-
(c) Send a  Sendpak-z4 (U, i, (Y, k,ap,vj.))
query to Spak-z+ and receive (s).

(d) Set k' € range(Hg) and store.
(e) Compute {s¢}rer, o0+

(f) Set spx « s.

(g) Return (&', {s}).

7. If M = (K',{s¢}) and (U’,
U’ is the partner of U:
Perform SERVERACTION3MEPAK-

8. If M = (K {s¢}) and (U',U) = (U*,U"), where
U’ is the partner of U:

(a) Reject if k" is not the same as the k' gener-
ated in Case 6 above.
(b) Verify {s¢}rer, o0+
(c) Send a Sendpak-z+(U, %, (s¢=)) query to
SPAK-Z+-
Differences from MFPAK simulator. We must now
analyze the differences between a true MFPAK simu-
lator and the view presented to the MFPAK adversary
A by the modifier M.

First we note that the distributions of generated
passwords exactly match the MFPAK specifications.
Furthermore, all the generated passwords exactly
match the PAK-Z+ specifications.

Next, we note that M’s handling of A’s queries
precisely matches what an MFPAK simulator would
do except in a small number of cases. The mes-
sages received from and forwarded from the use of
the PAK-Z+ simulator Spak-z4+ can by inspection be
seen to match what the MFPAK simulator would do
because Spak-z+ is using the specially constructed
random oracles H}. The differences between M and
what a true MFPAK simulator would do are as follows:

U) # (U*,U"™), where

e RevealFactor(C,S,¢) when (C,S,¢) =
(U, U™, %), RevealFactorV(S,C,¢)  when
(C’ S, 6) = (U*, U™, ¢*), and Test(U,i) when

The modlﬁer M rejects here, while a true
MFPAK simulator should not. If M correctly
guessed U* and U’* at the beginning of this
case, then none of these queries would occur,
for if one did then the instance in which a Test
query is directed to HZU would not be fresh in
the £*th factor.

e Execute(C,i,S5,5) when (C,S) = (U*,U"™),
Send(U,i, M) when M = (Y,k,a,v”) and
(U,U") = (U*,U"™), where U’ is the partner
of U, and Send(U,i, M) when M = (k’,s) and
(U,U") = (U™,U*), where U’ is the partner of
U:



The modifier M generated a random value &’
for this instance instead of generating k/ =
Hg(sid,o,71,...,7,). Since Hg is a random or-
acle, this substitution is distinguishable by the
adversary A if and only if A queries Hg on the
arguments sid, o, 71,...,7,. But if that occurs,
then A must know 74«. These are the same in-
puts to the HZ oracle used to compute the ses-
sion key in the PAK-Z+ simulation Spak-z4, S0
the same adversary could distinguish the output
of Testpak-z+ (U™, 1) received from Spak-z+. The
latter event corresponds to the event Succ?,ﬁ_z T
and so the substitution is distinguishable with
probability at most Pr(Succipy-z. (A)).

Let Disty |GuessCS be the event that the simulation
M is distinguishable from a real MFPAK simulator
from A’s perspective given that the modifier correctly
guessed U* and U™ at the beginning of this case.
Then Pr(Dist;|GuessCS) < 3Pr(Succ‘E>§?<_z+(A)) by
the argument above.

Result for case 1. Let U* € Clients, U'™* € Servers
and let E; be the event that neither

RevealFactormepax (U™, U™, £%) nor
RevealFactorVuepak (U™, U™, £*) occurs. The in-
stance involving U*, U’ in Spak-z+ is fresh if and
only if the corresponding instance in M is fresh in
the £*th factor. Thus, if event E; occurs and event
GuessCS occurs, then, whenever A wins against M,
A* wins against Spak-z4+, except with probability at
most Pr(Dist;|GuessCS). Therefore,

Pr (Succzj\l,‘f'fé(t, Gses Gex> Gro) |E1, GuessCS)
<Pr (SUCCgl/ﬁ(_Z+ (t/7 Gses Qex Q:o)) )

where Q:o < n(Qro + 2 + 6¢ex + 4(]se>7 t <t+ n(Qro +
l)texp + Qex(gtexp + ‘Lz'tsig) + QSe(2ntexp + |Ia|tsig)a and
z = min{gse + Gex, |Clients| - |Servers|}. Moreover,

’Pr (Succf\‘,,kFe,;ffK (t, gse, Gex; Gro) |E1, GuessCS)

—Pr (Succjl\lff_fé(t, Gses Jex> Gro ) |E1, GuessCS) ’
< Pr(Dist; |GuessCS) .

Combining these two expressions yields the following
result:

Lemma A.1 Let U* € Clients, U'* € Servers, and
suppose that neither

RevealFactormepak (U™, U™, £*) nor
RevealFactorVpepak (U, U*, £*)  occurs (which s
event Ey ). Then

Pr (Succﬁ%.?ﬁ&i(t, Gse, Gexs Gro) | E1 GuessCS)
< 4Pr (SUCC%IX?—ZJr (tla Jses Gex; (#o)) )

where Q:o < n(Qro + 2 + 6qex + 4QSe); t<t+ n(Qro +
1)texp + qex(3texp + |Ia|tsig) + QSe(Qntexp + |Ia|tsig)> and
z = min{¢se + ¢ex, |Clients| - |Servers|}, and a similar

: s2c-fl
bound exists for Advyirpak -

A.3 Remaining cases

The remaining cases are as follows:
2. Asymmetric factor uncompromised, U* €
Servers: no RevealFactoryepak (U, U*, £*) query.
3. Symmetric factor uncompromised, U* € Clients:
no RevealFactormepak (U*, U™, £*) query.

4. Symmetric factor uncompromised, U* € Servers:
no RevealFactormepak (U™, U™, £*) query.

The proofs for each of these cases proceed in an
analogous manner. For case 2, the modifier simulates
an MFPAK system to the adversary using an underly-
ing PAK-Z+ system and assuring that the underlying
system remains fresh. For cases 3 and 4, the modifier
simulates an MFPAK system to the adversary using an
underlying PAK system and assuring that it remains
fresh.

The details for these three cases appear in the full
version of the paper (Stebila et al. 2009).

A.4 Overall result

By combining cases 1 and 2, we can obtain a result for
instances that are fresh in the £*th factor when that
factor is asymmetric, and by combining cases 3 and 4
we can obtain a result for instances that are fresh in
the £*th factor when that factor is symmetric.

For the ake-f¢ advantage for an asymmetric factor,
we have

Pr (SuccﬁﬂkfﬁfAZK(t,qse, ex q,o)) < [Clients| - |Servers|
-8 Pr (Succpar-z+ (', Gses Gexs Gro)) 5

where ¢ < t 4 n(gro + L)texp + Gex(3texp + |1altsi) +
Gse(3texp + | Laltsig)s Gro < 1(Gro + 2 + 6gex + 5gse), and
z = max{gse + gex, |Clients| - |Servers|}.

For the ake-f¢ advantage for a symmetric factor,
we have

Pr (SuccﬁﬂkfﬁfAZK(t,qse, ex q,o)) < |Clients| - |Servers|
-2Pr (SUCCPAK (t//a Gse) Gex qig)) )

where C],{g < n(2Gro + 1+ 42 + 6qex + 5gse), " <t +
Z|Ia ‘tGen + (qro + ]-)texp + Qex(3texp + |Ia Itsig) +QSe(3texp +
|1.|tsig), and z = max{¢se + gex, |Clients| - |Servers|}.

In each case, a similar bound applies for Advii2ixy.

Substituting the security statements for PAK
(MacKenzie 2002, Thm. 6.9) and PAK-Z4 (Gentry
et al. 2005, Thm. 5.1) and simplifying the expres-
sions, we obtain the following theorem describing the
security of MFPAK:

Theorem A.2 Let G be a finite cyclic group gener-
ated by g and let S be a signature scheme with secu-
rity parameter k. Let A be an adversary that runs
in time t and makes at most gse and qex queries of
type Send and Execute, respectively, and at most gy
queries to the random oracle. Let beo = 1 if A makes
a RevealFactorV(-, -, ) query to a server, and 0 other-
wise. Then MFPAK is a secure multi-factor password-
authenticated key exchange protocol, with

166((1_bco)QSe+bco(Iro)

|Passwords? | te
Adyake-te (A) < if the Lth factor is symmetric,
VMFPAK > 4 4 o
|Passwords | ’

if the Lth factor is asymmetric,

where € = 8q5eAdeGd§ ', q?)+ 6gseSuccy (', gse) +

s(qseﬂ“)l(g"’Jrq“Jrqe*) and § = |Clients|-|Servers|, fort’ =

t+ (2lLa] +8(qfd + [algse + [ Talgex) ) texps dro = 12(210 +
4z 4 6qex + 5gse), and z = max{gse + Gex, |Clients| -
|Servers|}; a similar bound exists for Adviigag (A).
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