
Predicting TLS performance
from key exchange performance

(short paper)

Farhad Moghimifar
Queensland University of Technology

Brisbane, Australia
farhad.moghimifar@connect.qut.edu.au

Douglas Stebila
Queensland University of Technology

Brisbane, Australia
stebila@qut.edu.au

ABSTRACT
Most benchmarking of cryptographic systems focuses on the
performance of individual algorithms in a standalone set-
ting. However, real-world applications such as the Transport
Layer Security (TLS) protocol use a variety of cryptographic
algorithms together. Benchmarking the performance of a
web server using TLS is a more complex task, so fewer works
include performance characteristics of full systems. In this
work, we develop a model for the number of connections per
second of a TLS-protected web server based on the runtime
of individual cryptographic operations. Our model allows
us to predict how performance scales with file size. Our
model also allows us to predict the impact of improved key
exchange algorithms: for example, on an HTTPS server
with 1 KiB files running ECDSA-nistp256 with AES-128-
GCM and HMAC-SHA-256, a 2× improvement in ephemeral
Diffie–Hellman key exchange performance only leads to a
10% improvement in connections per second, as signatures
become the dominant cost.

CCS Concepts
•Security and privacy → Security protocols; Cryptog-
raphy; •General and reference → Performance;

Keywords
Transport Layer Security (TLS) protocol; key exchange; per-
formance

1. INTRODUCTION
Improving the performance of cryptographic algorithms is

an active area of research, as the runtime characteristics of
cryptographic algorithms directly impact on the number of
secure connections a given server can simultaneously support.

Since public key operations are generally more expensive
than symmetric key operations, a particular area of active
research is on fast Diffie–Hellman key exchange using elliptic

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ACSW ’16 Multiconference February 2–5, 2016, Canberra, Australia
c© 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-4042-7/16/02. . . $15.00

DOI: http://dx.doi.org/10.1145/2843043.2843360

curves. Internet standards today typically rely on the NIST
family of curves, specifically the nistp256 prime field curve
[11]. However, there are several alternative curves proposed
that are more amenable to high-speed implementations, such
as curve25519 [2], FourQ [5], and others.

Researchers can and typically do give runtime measure-
ments of their curve in software. However, it is often difficult
to compare results across papers to due to different hard-
ware architectures, different measurement frameworks, and
even whether results reported are time or cycles. In order
to provide a framework for the systematic comparison of
the performance of cryptographic algorithms, Bernstein and
Lange developed the ECRYPT Benchmarking of Crypto-
graphic Systems (eBACS) framework [3]. Implementation
developers can submit their implementation to eBACS. If the
implementation follows a standard API, the eBACS bench-
marking tool “SUPERCOP” will run the implementation on
a variety of machines and report the results. This allows
for the fair comparison of implementations across a range
of hardware systems. eBACS includes 31 different elliptic
curve Diffie–Hellman primitives.

Even with this framework for measuring the standalone
performance of an individual cryptographic primitive, there is
still some way to go to be able to characterize the performance
of an application using this primitive, such as a web server
using the Transport Layer Security (TLS) protocol [6, 7] for
secure communication. Performance of a ciphersuite in TLS
relies not just on the speed of the key exchange algorithm but
also on the signature scheme, key derivation function, and
bulk encryption performance; the latter depending on the
size of the transmitted data as well. eBACS only measures
the performance of individual operations, for example Diffie–
Hellman operations in isolation. Measuring the performance
of a ciphersuite in a web server requires significantly more
effort: one must integrate the cryptographic primitive into
an SSL/TLS library (such as the OpenSSL library) which
can require changing hundreds of lines of code across dozens
of files; then set up a testing network with a server machine
and one or more client machines; and then generate sufficient
load to saturate the web server and measure performance.
As a result of this added complexity, there have been fewer
works carrying out a full TLS-level performance analysis.
Some works have done so to demonstrate the viability of a
particular cryptographic primitive over another (Gupta et
al. [8] for elliptic curves over RSA; Bos et al. [4] for ring-
learning-with-errors compared to elliptic curves). Bernat
[1] reports on the performance of TLS handshakes without
forward secrecy versus with forward secrecy.

Our contributions.
In this work, we aim to give a predictive model for the

performance of an HTTPS web server based on the runtime
of the underlying key exchange. Our method is as follows:

• Extend OpenSSL to quickly support plugging in Diffie–
Hellman key exchange algorithms from the eBACS
project using the SUPERCOP API.

• Measure the standalone performance of signatures and
key exchange to determine the runtime of basic crypto-
graphic operations.

• Measure the performance (in connections per second)
of an HTTPS web server using fixed signature and bulk
encryption/authentication algorithms, but different key
exchange algorithms and application data payload sizes.

• Using linear regression, develop a model that predicts
the performance of the web server at different file sizes
and with different key exchange algorithms.

Our model describes the runtime of a TLS connection as

tconn(x) = tsig + tdhkg + tdhss + tfix + cbulk · x (1)

where tsig is the runtime of the signing algorithm, tdhkg and
tdhss are the runtime of the Diffie–Hellman key pair genera-
tion and shared secret generation, tfix is a fixed-cost overhead,
cbulk denotes a coefficient related to the bulk encryption and
authentication of x bytes of application data.

For a fixed ciphersuite, linear regression on file sizes yields
a high coefficient of determination (R2), leading to a highly
predictive model of TLS performance in terms of file size.

Fixing the signature algorithm, bulk cipher, and file size,
we can also predict the impact of key exchange performance
improvements. For example, with ECDSA-nistp256 signa-
tures and AES128-GCM encryption and HMAC-SHA-256
and a file size of x bytes, our model estimates the number of
HTTPS connections per second per core as ñconn ≈

1

0.0005971 + tdhkg + tdhss + 0.0005662 + 6.834× 10−9 · x .

(2)
Substituting in tdhkg and tdhss for ECDH-curve25519 and
assuming a file size of x = 1024 bytes, we get a predicted per-
formance of 694.31 HTTPS connections per second (within
1.3% of the measured performance of 703.35 HTTPS connec-
tions per second). If we replace ECDH-curve25519 with a
curve that is twice as fast (as the FourQ curve is claimed
to be, for example [5]), then we predict 766.1 HTTPS con-
nections per second, a 10.4% improvement.With fast ECDH,
ECDSA then becomes the dominant cost. Replacing ECDSA-
nistp256 with a faster signature scheme would lead to further
improvements; for example, with a signature scheme 1/8 the
cost of ECDSA-nistp256 and key agreement 1/2 the cost of
ECDH-curve25519, we estimate 1277.4 HTTPS connections
per second.

Related work.
The work most closely related to ours is that of Zhao

et al. [12], which gives a detailed decomposition of the cy-
cle count of server operations in the OpenSSL library for
a TLS connection with a variety of built-in ciphersuites
(AES/DES/3DES/RC4, RSA, MD5/SHA-1). Zhao et al.’s
work measures cycle counts for each operation on the server

side that contributes to an SSL connection by instrumenting
the SSL stack. Our work views TLS performance from the
“external” perspective of connections realized per second.

2. BACKGROUND ON TLS
The Transport Layer Security (TLS) protocol [6, 7] pro-

vides security services to a variety of Internet applications,
including the Hypertext Transport Protocol (HTTP) in the
form of “HTTPS”. TLS is composed of a handshake protocol
(which negotiates parameters, performs server-to-client and
optionally client-to-server authentication based on public
key certificates, and establishes a shared session key), and a
record layer protocol (which uses bulk encryption and authen-
tication to provide confidentiality and integrity protection to
application data). A modern ciphersuite in TLS 1.2 would
use RSA with 2048-bit keys or ECDSA using the nistp256
curve for digital signatures, elliptic curve Diffie–Hellman over
the nistp256 curve for key exchange (with forward secrecy),
HMAC-SHA-256 for key derivation, and AES-128 in Galois
counter mode (GCM) for authenticated encryption of appli-
cation data. Figure 1 shows the message flow in the TLS
protocol as well as the cryptographic operations performed
by the server at each stage.

Client Server Server operations

TLS handshake protocol

ClientHello

ServerHello

Certificate
ServerKeyExchange RSA/ECDSA sign, ECDH key pair

ServerHelloDone

ClientKeyExchange ECDH shared secret
KDF (HMAC-SHA-256)

ChangeCipherSpec AES-128-GCM
Finished PRF (HMAC-SHA-256)

ChangeCipherSpec AES-128-GCM
Finished PRF (HMAC-SHA-256)

TLS record layer

application data AES-128-GCM

Figure 1: Message flow and server cryptographic
operations for TLS 1.2 ciphersuite RSA/ECDSA-ECDHE-

AES128-GCM-SHA256 (server authentication only)

3. METHODOLOGY
Our methodology is based on that of Bos et al. [4]. Our

experiment was carried out between two computers – a“client”
and a “server”. Throughout, OpenSSL v1.0.1g was used.

Standalone performance. The standalone performance
measurements were carried out on the server computer using
the openssl speed command, which uses a single core, and
runs each performance test for 10 seconds. Results reported
are the average of 5 runs.

TLS performance. For TLS performance measurements,
we used the http_load tool (version 09jul2014)1 to make
many simultaneous HTTP requests from the client to the
server; it used our modified OpenSSL for TLS connections.

1http://www.acme.com/software/http load/

The server was running Apache httpd 2.4 with the prefork
module for multi-threading. The client and server computers
were connected over a local area network with sub-millisecond
ping time and sufficient bandwidth to ensure that the server’s
2 cores had at least 95% utilization during all tests. Session
resumption was disabled.

We collected TLS performance measurements for several
different web page sizes, namely HTTP payloads of 1 byte,
1 KiB = 1024 bytes, 10 KiB, and 100 KiB. Each test was run
for 100 seconds; results reported are the average of 5 runs.

4. PREDICTIVE MODEL
Let nconn denote the number of HTTPS connections per

second per core, as in Table 2. Let tconn represent the
total runtime the server spends in processing an HTTPS
connection. We model tconn as the sum of the runtimes of
various components:

tconn = tsig + tdhkg + tdhss + trest (3)

where tsig is the runtime of the signing algorithm, tdhkg is
the runtime of the Diffie–Hellman key pair generation, tdhss

is the runtime of the Diffie–Hellman shared secret generation,
and trest is the runtime of the bulk encryption of the payload
data as well as all other operations such as the key derivation
function and non-cryptographic message processing.

Stage 1: Fixed key exchange, regression on file size.
In equation (3), tconn and trest depend on the size of the

payload, but the remaining terms (tsig, tdhkg, tdhss) do not. As
a result, we aim to derive a parameterized form of equation (3)
based on the number of bytes x in the payload:

tconn(x) = tsig + tdhkg + tdhss + trest(x) (4)

Since trest includes both the time for bulk encryption as
well as other processing, we can further divide trest(x) as the
sum of a fixed component plus a component that scales with
the number of bytes:

trest(x) = tfix + cbulk · x . (5)

Once we fix a ciphersuite, we can compute tsig, tdhkg,
and tdhss using the standalone performance measurements
from Section 5. We estimate tconn(x) as 1/nconn(x), and
then we can compute trest(1), trest(1024), trest(10240), and
trest(102400) by solving from the corresponding tconn(x) val-
ues. We then perform linear regression on trest(x) to find
coefficients tfix and cbulk.

Stage 2: Prediction over key exchange algorithms.
In the second stage of our predictive model, we fix all

ciphersuite components except the key exchange algorithm, in
order to predict the impact of improvements in key exchange
performance. Fix tsig as the runtime of the signing algorithm,
and set tfix and cbulk to be the average of tfix and cbulk. For
file size x bytes, the predicted number of connections per
second is ñconn ≈ 1/(tsig + tdhkg + tdhss + tfix + cbulk · x).

5. EXPERIMENTAL RESULTS
We focused on 4 Diffie–Hellman implementations from the

eBACS project’s SUPERCOP toolkit (version 20141124):
curve2251 (version mpfq-x86 64), curve25519 (version mpfq-
x86 64), ecfp256e (version v01-w8s1), and surf2113 (version
mpfq-x64 64). We chose these specific primitives because

Primitive Key pair gen. Shared secret gen.

ECDH-nistp256 1871.5 1803.9

ECDH-curve2251 3001.3 3182.9
ECDH-curve25519 7274.6 7579.3
ECDH-ecfp256e 28474.7 8296.6
ECDH-surf2113 4097.6 4180.9

RSA-2048 signature 468.3
ECDSA-nistp256 signature 1674.6

Table 1: Standalone cryptographic performance, in
operations per second

they had portable C implementations that could be easily
integrated into OpenSSL’s build process and had a range of
performance characteristics. We also included OpenSSL’s
own nistp256 implementation.2

We used the same symmetric algorithms in all TLS exper-
iments: AES128 in GCM mode with SHA256 for hashing
and key derivation as specified in TLS 1.2. We used two
different signature schemes: ECDSA with the nistp256 curve
and RSA with 2048-bit keys.

In our experiment, the “client” computer had an Intel Core
i7 (4770) processor with 4 cores each running at 3.4 GHz.
The “server” computer had an Intel Core 2 Duo (E8400)
with 2 cores each at 3 GHz. (We used a more powerful client
computer to ensure that the client would saturate the server.)

Standalone algorithm performance results.
Table 1 shows the results of the standalone performance

results of the various cryptographic primitives.3 Results
shown are number of operations per second on the server
computer. Note that key pair generation for nistp256 and
ecfp256e is faster than shared secret generation due to fixed
base-point scalar multiplication optimizations. For ecfp256e,
this is approximately 3.39× faster than variable base-point
scalar multiplication [10] [9, Table 6.4, 6.5].

HTTPS performance results.
Table 2 shows the results of the HTTPS performance

of the various cryptographic primitives integrated into a
TLS ciphersuite, with either ECDSA-nistp256 or RSA-2048

2In OpenSSL v1.0.1g, there are two nistp256 implementa-
tions: the default using wNAF point multiplication, and a
64-bit optimized constant-time implementation that must be
selected at compile time; we used the default.
3Interestingly, the openssl speed benchmarking tool in-
cludes a performance optimization for ECDSA signatures
that Apache’s mod_ssl module does not use. openssl
speed precomputes multiples of the base-point for optimiza-
tion purposes using the EC_KEY_precompute_mult function.
Apache’s mod_ssl does not use this function. We observed
that this precomputation can speed ECDSA signature gen-
eration by a factor of approximately 3.8× on our server
machine (tecdsa = 0.0001577 with the optimization versus
tecdsa = 0.0005971 without), suggesting that Apache’s per-
formance could be improved by adopting this optimization.
Using equation (1) and fixing ECDH with nistp256 and the
same bulk encryption parameters, our model predicts that
this optimization would improve server performance to 549.6
connections per second, a 1.27× improvement. Since most
TLS servers use the same curve for most ephemeral Diffie–
Hellman connections, a further improvement may be possible
by carefully switching ECDH key pair generation to use this
optimization as well.

HTTP nistp256 curve2251 curve25519 ecfp256e surf2113
payload ECDSA RSA ECDSA RSA ECDSA RSA ECDSA RSA ECDSA RSA

1 B 434.19 259.30 551.42 296.05 709.43 338.16 779.36 354.69 620.04 311.55
1 KiB 433.97 258.18 548.83 293.90 703.35 336.09 774.88 352.75 617.34 311.02
10 KiB 423.20 255.33 534.76 290.31 685.10 331.67 750.21 347.87 601.26 306.69
100 KiB 334.14 219.73 397.76 245.28 472.01 274.19 500.55 285.01 432.54 256.15

Table 2: HTTPS performance (HTTPS connections per server core per second); ECDSA or RSA signatures

DH primitive ECDSA signatures RSA signatures
tfix cbulk tfix cbulk

nistp256 0.6123× 10−3 6.778× 10−9 0.6329× 10−3 6.769× 10−9

curve2251 0.5652× 10−3 6.869× 10−9 0.6003× 10−3 6.770× 10−9

curve25519 0.5377× 10−3 6.957× 10−9 0.5523× 10−3 6.724× 10−9

ecfp256e 0.5235× 10−3 7.032× 10−9 0.5270× 10−3 6.733× 10−9

surf2113 0.5262× 10−3 6.875× 10−9 0.5847× 10−3 6.831× 10−9

Table 3: Linear regression of trest(x) = tfix + cbulk · x for an x-byte HTTP payload

signatures. Results shown are number of HTTPS connections
per server core per second.

5.1 Evaluation of predictive model
Consider for example the case of curve2251 with ECDSA

signatures. Here, we have tsig = 0.0005971, tdhkg = 0.0003332
and tdhss = 0.0003142. We then have

tconn(1) = 0.0018135 =⇒ trest(1) = 0.0005690

tconn(1024) = 0.0018221 =⇒ trest(1024) = 0.0005775

tconn(10240) = 0.0018700 =⇒ trest(10240) = 0.0006255

tconn(102400) = 0.0025141 =⇒ trest(102400) = 0.0012696

Carrying out linear regression, we derive the equation

tconn(x) = 0.5652× 10−3 + 6.869× 10−9x

with a coefficient of determination R2 = 0.9996.
Table 3 shows the results of this linear regression on all

five DH primitives and 2 signature schemes. In all cases, the
coefficient of determination of R2 is at least 0.9989.

We can now see the justification for equation (2) in the
Introduction: for ECDSA-nistp256 signatures (with tsig =
0.0005971), and with tfix = 0.0005662 and cbulk = 6.834×
10−9 as the average of the tfix and cbulk values in Table 3,
when substituted into equation (1), we obtain equation (2).

Acknowledgments
This research is supported in part by Australian Research
Council (ARC) Discovery Project grant DP130104304.

6. REFERENCES
[1] V. Bernat. SSL/TLS and perfect forward secrecy, 2011.

http://vincent.bernat.im/en/blog/
2011-ssl-perfect-forward-secrecy.html.

[2] D. J. Bernstein. Curve25519: New Diffie-Hellman speed
records. In M. Yung, Y. Dodis, A. Kiayias, and
T. Malkin, editors, PKC 2006, volume 3958 of LNCS,
pages 207–228. Springer, Heidelberg, Apr. 2006.

[3] D. J. Bernstein and T. Lange. eBACS: ECRYPT
benchmarking of cryptographic systems.
http://bench.cr.yp.to.

[4] J. W. Bos, C. Costello, M. Naehrig, and D. Stebila.
Post-quantum key exchange for the TLS protocol from
the ring learning with errors problem. In 2015 IEEE
Symposium on Security and Privacy, pages 553–570.
IEEE Computer Society Press, May 2015.

[5] C. Costello and P. Longa. FourQ: four-dimensional
decompositions on a Q-curve over the Mersenne prime.
Cryptology ePrint Archive, Report 2015/565, 2015.
http://eprint.iacr.org/2015/565.

[6] T. Dierks and C. Allen. The Transport Layer Security
(TLS) protocol version 1.0, January 1999. RFC 2246.

[7] T. Dierks and E. Rescorla. The Transport Layer
Security (TLS) protocol version 1.2, August 2008. RFC
5246.

[8] V. Gupta, D. Stebila, S. Fung, S. Chang, N. Gura, and
H. Eberle. Speeding up secure web transactions using
elliptic curve cryptography. In Proc. Network and
Distributed System Security Symposium (NDSS) 2004.
Internet Society, 2004.

[9] H. Hışıl. Elliptic Curves, Group Law, and Efficient
Computation. PhD thesis, Queensland University of
Technology, April 2010.

[10] H. Hisil, K. K.-H. Wong, G. Carter, and E. Dawson.
Jacobi quartic curves revisited. In C. Boyd and J. M. G.
Nieto, editors, ACISP 09, volume 5594 of LNCS, pages
452–468. Springer, Heidelberg, July 2009.

[11] National Institute of Standards and Technology.
Recommended elliptic curves for Federal government
use, July 1999. http://csrc.nist.gov/groups/ST/toolkit/
documents/dss/NISTReCur.pdf.

[12] L. Zhao, R. Iyer, S. Makineni, and L. Bhuyan.
Anatomy and performance of SSL processing. In IEEE
International Symposium on Performance Analysis of
Systems and Software (ISPASS) 2005, pages 197–206.
IEEE, 2005.

