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Abstract. This work discusses generic arithmetic for arbitrary binary
fields in the context of elliptic curve cryptography (ECC). ECC is an
attractive public-key cryptosystem recently endorsed by the US gov-
ernment for mobile/wireless environments which are limited in terms
of their CPU, power, and network connectivity. Its efficiency enables
constrained, mobile devices to establish secure end-to-end connections.
Hence the server side has to be enabled to perform ECC operations for a
vast number of mobile devices that use variable parameters in an efficient
way to reduce cost. We present algorithms that are especially suited to
high-performance devices like large-scaled server computers. We show
how to perform an efficient field multiplication for operands of arbitrary
size, and how to achieve efficient field reduction for dense polynomials.
We also give running times of our implementation for both general elliptic
curves and Koblitz curves on various platforms, and analyze the results.
Our new algorithms are the fastest algorithms for arbitrary binary fields
in literature.

Keywords: Binary Fields, Dense Field Polynomials, Field
Multiplication, Field Reduction, Elliptic Curves, Koblitz Curves

1 Introduction

In recent years Elliptic Curve Cryptography (ECC) has received increased accep-
tance. ECC has been included in standards from bodies such as ANSI, IEEE,
ISO, and NIST. Further evidence of widespread acceptance are the inclusion
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of ECC in IPsec, TLS, and OpenSSL [17]. Compared to traditional cryptosys-
tems like RSA, ECC offers smaller key sizes and more efficient arithmetic which
results in faster computations, lower power consumption, as well as memory
and bandwidth savings. This is especially useful for mobile, constrained devices.
Hence ECC enables wireless mobile devices to perform secure communications
efficiently and establish secure end-to-end connections.

In this paper we focus on binary field arithmetic and its application to ECC.
Many software implementations have been reported in recent years. These works
range from implementations in very constrained environments [1][23] to broad
surveys [6]. However, all of these implementations are done for specific fields and
cannot handle arbitrary fields and curves. While there is value in constructing
a highly specialized implementation for constrained devices such as PDAs and
smart cards, there is a need to handle arbitrary curves on the server side ef-
ficiently. As ECC becomes more important and more widely used, we foresee
the following scenario. Commercial entities such as financial services or online
stores will carry out transactions with users. The servers are required to perform
cryptographic operations such as signature generation and verification, and key
exchange. Most of these operations will employ standardized settings such as
the NIST recommended elliptic curves [16]. However, there may be users that
generate curves themselves, or Certificate Authorities that issue certificates over
non-standardized curves that promise a performance gain. For example, they
might want to use a curve defined over GF (2155) as described in [18], a curve
over GF (2178) as presented in [19], or curves suited to special field element rep-
resentations as in [2]. There may also be standards which are rarely used and
thus do not justify the implementation of a special case, and future standards
may introduce new curves. Still, a server must be able to handle all requests
efficiently to reduce computing time and hence cost.

Our approach and motivation is based on this scenario. We present a binary
field implementation for arbitrary fields GF (2m) in the context of ECC which
works for CPUs with different word sizes. Our implementation is a complete soft-
ware package which is part of the ECC support for binary fields of OpenSSL [17]1.
We present algorithms that are especially suited to high-performance devices like
large-scaled server computers. We show how to perform an efficient field multipli-
cation for operands of arbitrary size, and how to achieve efficient field reduction
for dense polynomials. We give performance numbers that show the efficiency
of our implementation, and analyze the results. We implemented both general
curves and Koblitz curves. The results show that our algorithms are the fastest
methods for arbitrary binary field arithmetic in existing literature.

The remainder of this paper is organized as follows. Related work is presented
in the next section. Section 3 presents the algorithms that we used for the binary
field arithmetic and the ECC operations, and Section 4 presents results and an
analysis of our implementation.

1 Note that this paper describes a highly optimized and adapted version of the ECC
library available in OpenSSL 0.9.8.
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2 Related Work

Since the introduction of elliptic curves to cryptography in 1985 by Koblitz and
Miller a vast amount of research has been done. When implementing ECC in
software there are several choices to make. We categorize these parameter choices
as follows:

– Underlying field type, field representation, and field operation algorithms
– Elliptic curve point representation and point operation algorithms
– Protocol algorithms

The literature contains significant research on each of these issues. As our goal
is a generic implementation of ECC, we focus on the optimization of the oper-
ations of the underlying field. We think it is easier to optimize a generic ECC
implementation over binary fields than over prime fields. As the results in [1]
suggest, the efficient use of prime fields requires platform dependent assembly
code. Therefore we restrict our attention here to binary fields.

A comprehensive survey of binary field and elliptic curve arithmetic for the
NIST recommended elliptic curves was done in [6]. A specialized implementation
was done for the field GF (2155) [18]. There are also implementations available
for constrained devices. PGP was ported to constrained devices in [1] while [23]
optimizes an ECC implementation for a Palm PDA. López and Dahab presented
a Montgomery field multiplication for binary fields in [14]. They also did research
on binary field multiplication [15] and ECC over binary fields [13]. More point
multiplication algorithms can be found in [10] and [12]. Further work was done for
special field choices like composite fields, e.g., in [2] and [4]. There were, however,
recent attacks [3] on these fields. Finally, Solinas developed efficient algorithms
for Koblitz curves over binary fields using complex multiplication [22].

3 Arithmetic

3.1 Binary Field GF (2m)

In the following we present new algorithms that are suitable for performing
efficient general binary field arithmetic. For the field representation we chose a
polynomial basis as it is most widely used and as it yields a simple but fast
implementation in software. Let f(x) = xm + f ′(x) be an irreducible binary
polynomial of degree m. The elements of GF (2m) are represented by binary
polynomials of degree at most m − 1. Operations in GF (2m) are performed
modulo f(x). We represent a field element a(x) =

∑m−1
i=0 aix

i ∈ GF (2m) as
a binary vector a = (am−1, . . . , a0) of length m. As we use word arithmetic,
where the register size is noted as W , we also write A = (A[s − 1], . . . , A[0])
with A[i] = (aiW+W−1, . . . , aiW+1, aiW ) and s = dm/W e. Note that A[s− 1] is
padded on the left with zeros as needed. The expression A{i} denotes the sub
array A{i} = (A[s− 1], . . . , A[i]).

There are two main strategies for implementing general binary fields. The first
one is to use the Montgomery multiplication and squaring as presented in [9].
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The Montgomery multiplication roughly requires two polynomial multiplications
but omits the reduction step. The other possibility is to perform field operations
in two steps, namely the polynomial operation and reduction. Since we estimate
as described later that a general reduction for an arbitrary field polynomial can
be done with our new method in time roughly 1/3 of a polynomial multiplication
at the cost of memory storage we decided to use this technique.

Addition of field elements is done as word-wise XOR. Since the field size is
not fixed we do not know the operand’s length at implementation time. We use a
jump table to unroll the loop as shown in Algorithm 1 as it gave us a speed-up in
our experiments. However, this technique does not necessarily improve running
time on all platforms.

Algorithm 1 Addition using jump table
INPUT: Binary polynomials a(x) and b(x) of degree at most m− 1 and s words.
OUTPUT: The binary polynomial c(x) = a(x)⊕ b(x).

1: switch (s)
2: case 40: C[39]← A[39] XOR B[39]
3: ...
4: case 1: C[0]← A[0] XOR B[0]
5: break
6: default: do standard addition with loop
7: end switch
8: Return c(x)

We perform division according to [20] and squaring in linear time complexity
by a table lookup as presented in [18]. In the following we focus on the multipli-
cation and reduction operation.

Multiplication Modular multiplication is done in two phases. First we compute
the polynomial product c′(x) = a(x) · b(x) and then we reduce the result c(x) ≡
c′(x) mod f(x). We look at the reduction step in the next section and consider
the first step here.

We implemented the Karatsuba Algorithm (KA) and the comb method [15].
The comb method can be implemented as presented in Algorithm 2. Note that
W describes the word size, so typical values for W are 8, 16, 32 and 64. The
comb multiplication requires a table of size 2ws where w is the window size. For
an efficient implementation one should choose a window size that is a divisor of
the word size. We selected w = 4 which requires 16s table entries for all typical
word sizes. Obviously w = 2 and w = 8 is not optimal for operand sizes as they
are used in ECC. We implemented the left shift operation in Steps 1 and 9 as
a jump table in a manner similar to the field addition to achieve loop unrolling
while still having a general implementation. Note that the left shift of Step 9 is
done over the double-sized result operand. Thus, for large word sizes W it might
be more efficient to decrease the number of runs of the outer loop in Step 3 by
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“emulating” smaller word sizes. For instance, operands of 64-bit words might
be considered as operands of twice as many 32-bit words. Then the outer loop
is executed only 3 times instead of 7 times whereas the instructions, namely
the XOR operation, would still be performed over 64-bit words to utilize the
advantage of larger word sizes. However, this might lead to alignment errors at
run time on several hardware platforms and thus cannot be seen as a general
approach.

Algorithm 2 Comb method with window size w = 4
INPUT: Binary polynomials a(x) and b(x) of degree at most m− 1.
OUTPUT: The binary polynomial c′(x) = a(x) · b(x).

1: Compute Bu(x) = u(x) · b(x) for all polynomials u(x) of degree at most 3.
2: C′ ← 0
3: for i = W/4− 1 down to 0 do
4: for j = 0 to s− 1 do
5: Let u = (u3, u2, u1, u0), where uk is bit (4i + k) of A[j].
6: C′{j} ← C′{j} ⊕Bu

7: end for
8: if i 6= 0 then
9: C′ ← C′x4

10: end if
11: end for
12: Return c′(x)

The basic KA works as follows. Consider two operands A(x) and B(x).

A(x) = A[1]xW + A[0], B(x) = B[1]xW + B[0]

Let D0, D1, D0,1 be auxiliary variables with

D0 = A[0] B[0], D1 = B[1] B[1]
D0,1 = (A[0] XOR A[1])(B[0] XOR B[1])

Then the polynomial C(x) = A(x) B(x) can be calculated in the following way:

C(x) = D1x
2W + (D0,1 ⊕D0 ⊕D1)xW + D0 (1)

The KA can easily be expanded in a recursive way, or by splitting the
operands into more than two words [24]. For example, to multiply operands
of three words using the KA, compute

C(x) = D2x
4W + (D1,2 ⊕D1 ⊕D2)x3W + (D0,2 ⊕D2 ⊕D0 ⊕D1)x2W (2)

+ (D0,1 ⊕D1 ⊕D0)xW + D0

where

D0 = A[0] B[0], D1 = A[1] B[1], D2 = A[2] B[2]

5



D0,1 = (A[0] XOR A[1])(B[0] XOR B[1])
D0,2 = (A[0] XOR A[2])(B[0] XOR B[2])
D1,2 = (A[1] XOR A[2])(B[1] XOR B[2])

Obviously this can also be done in a recursive manner.
We implemented the KA as follows. First we multiply two words using a

slightly modified comb method that does not require a multi-word shift opera-
tion. The complexity of the comb method [15] can be generalized to s (m

w +2w−
w − 1) XOR and w − 1 + 2(W

w − 1) SHIFT operations. In our case s = 1 and
m = W . Since we avoid a shift over multiple words this reduces to W

w +2w−w−1
XOR and w + 2W

w − 3 SHIFT operations. Assuming that an XOR and a SHIFT
operation needs the same execution time we obtain the following optimum win-
dow sizes w. For 8-bit and 16-bit hardware we use a window size of 2, for 32-bit
a size of 3,2 and for 64-bit CPUs a size of 4. We call the corresponding macro
1x1 MUL. Based on this elementary multiplication we realized hard-coded macros
to compute the product of 2, 3, and 4 words3. We call these macros 2x2 MUL,
3x3 MUL and 4x4 MUL, which call the 1x1 MUL macro 3, 6, and 9 times, respec-
tively. The cost of the addition operation is negligible for binary fields and is
not considered in the following. Our field multiplication is implemented in a way
that different functions can be plugged in for different field sizes. To multiply
operands that consist of s = 1, . . . , 8 words, we use specialized methods whereas
for operands with s ≥ 9 words, we use a general approach. The cases s = 1, . . . , 4
are mapped onto the hard coded macros. For s = 5 we split the operands into
two parts of size 3 and 2 words, respectively. This requires 2·6+3 = 15 1x1 MULs.
The cases s = 6, . . . , 8 are executed in similar ways. Table 1 presents the cost of
the specialized cases in terms of the number of 1x1 MULs executed.

Table 1. Cost (in number of 1x1 MULs) of KA for n =2-8 words

n 1 2 3 4 5 6 7 8

cost 1 3 6 9 15 18 24 27

For the general case we implemented a recursive method as shown in Algo-
rithm 3. Note that ai and bi in Steps 10, 12 and 14 describe the sub-polynomials
of a and b, respectively. Clearly, the algorithm could be extended such that the
recursion ends in more than the four multiplication macros and the recursive
selection handles more cases of s than only those divisible by 2 and 3. We call
this the KA factor basis. We used a simulation to evaluate the improvements
gained by increasing the number of primes in the factor basis: we compared the
2 Contrary to our earlier statement we use a window size that is not a divisor of the

word-size since we are only working on one register.
3 The method for 4 words has the same complexity as a recursive version computing

products of two words but saves some overhead. However, this comes at the cost of
a larger code-size.
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number of operations for a range of s = 5, . . . , 40 and computed the average cost
for the different factor bases. We found that on average a performance gain of
8% is realized when going from the factor basis of 2 to that of 2 and 3, and no
performance gain is achieved when adding 5, 7, or 11 to the factor basis. The
factors 5, 7, and 11 can optimally be expressed by the factor basis of 2 and 3.
For example, the best method to perform KA for 7 words is to split the operand
into two portions of 3 and 4 words, respectively. These can optimally be com-
puted by the KA using a prime basis of 2 and 3. Thus these larger factors in
the prime basis do not give an additional speed-up. In practice there still might
be a performance gain from enlarging the KA factor basis since the recursion
overhead is reduced. On the other hand, the code complexity and size increases.
We also note that the performance improvement is for the average case. There
are some cases, in which a smaller factor basis executes faster. For example, for
s = 15 words a factor basis of 2 and 3 requires 90 elementary 1x1 MUL operations
while a factor basis of 2 only needs 78 such operations.

Algorithm 3 General Karatsuba Algorithm GEN KA(a,b,s)

INPUT: Binary polynomials a(x) and b(x) of s words.
OUTPUT: The binary polynomial c′(x) = a(x) · b(x).

1: if s = 4 then
2: Return 4x4 MUL(a,b)

3: else if s = 3 then
4: Return 3x3 MUL(a,b)

5: else if s = 2 then
6: Return 2x2 MUL(a,b)

7: else if s = 1 then
8: Return 1x1 MUL(a,b)

9: else if s mod 3 = 0 then
10: Split a and b each into three sub polynomials ai, i = 1, 2, 3, of size s/3, and

bi, respectively. Perform GEN KA(ai,bi,s/3) 6 times according to the elementary
3-word KA (2), and put the result together.

11: else if s mod 2 = 0 then
12: Split a and b each into two sub polynomials ai, i = 1, 2, of size s/2, and bi,

respectively. Perform GEN KA(ai,bi,s/2) 3 times according to the elementary
2-word KA (1), and put the result together.

13: else
14: Split a and b each into two sub polynomials ai, i = 1, 2, of size bs/2c and ds/2e,

and bi, respectively. Perform GEN KA(ai,bi,ds/2e) twice and GEN KA(ai,bi,bs/2c)
once according to the elementary 2-word KA (1), and put the result together.

15: end if

Reduction Reduction can be performed efficiently for trinomials and pen-
tanomials with middle terms close to each other. All standardized curves use
these kinds of field polynomials. It is known that for all binary fields GF (2m) up
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to at least m = 1000 there exists such an irreducible polynomial [11]. While re-
duction can be hard-coded for a fixed field polynomial and executed at negligible
cost, this is not the case for a generic implementation.

As before we decided to offer different reduction methods which can be
plugged in for different fields. We offer a reduction method for trinomials as
well as for pentanomials which performs a word-wise reduction for general trino-
mials and pentanomials, respectively [6]. Furthermore we implemented a general
version that can handle arbitrary field polynomials. However, it becomes very
expensive for dense irreducible polynomials. It is clear that even the specialized
methods for trinomials and pentanomials cannot be nearly as efficient as hard
coded methods for a given irreducible polynomial. Another universal method to
perform reduction is division with remainder which usually is expensive.

We propose a third reduction method using a window technique as described
in Algorithm 4. This algorithm contains a precomputation step in which all
possible window values are computed and stored in a table, and a computation
step in which the polynomial is reduced by one window segment at a time.
The algorithm can be best explained with the following example. Let f(x) =
xm+f ′(x) = x163+x7+x6+x+1, W = 32, s = 6, and let � t and � t be a shift
to the left or right by t bit positions, respectively. Furthermore, let PreFi be the
table entry at index i. First, we insert the polynomial f ′(x) into the table at index
2163 mod 32. Since we will perform shifts of this table entry to the right in order to
obtain further values we attach a zero-word below the least significant bit, i.e.,
we store PreF8 = f ′(x) ·xW . The remaining table entries can now be computed
as PreF1 = PreF8 � 3, PreF2 = PreF1 � 1, PreF3 = PreF2⊕PreF1, and so
on. Further speed-up can be achieved by computing table entries PreFj·t with
j ∈ {1, . . . ,W/w} and t ∈ {1, . . . , 2w − 1} where w is the window size. This
avoids shifting operations in the computation step. In the computational phase
the polynomials are reduced by a window segment in each step. Let c(x) be
a polynomial of order larger than 162, and let (ciW+jw+w−1, . . . , ciW+jw) be a
window of C[i] with iW + jw ≥ 163. Then this window segment can be reduced
by XORing C{i − s} with PreF(j+1)(iW+jw+w−1,...,iW+jw)2 , where C{i − s}
denotes the sub array C{i− s} = (C[i], . . . , C[i− s]). The addition in Step 6 can
be done efficiently by only performing an XOR operation for values not equal to
0. The last word C[s− 1] is reduced separately to take into account that only a
part of it is reduced, namely (c(s−1)W+W−1, ..., c(s−1)W+(m mod W ), 0, ..., 0). Note
that in the last step we XOR (PreFj·t � W ) to C.

The technique is very similar to the comb method for polynomial multipli-
cation [15]. Each table entry PreFu(x) requires s + 1 words. Thus the mem-
ory requirement is (W/w)(2w − 1)(s + 1) words. Algorithm 4 uses window size
w = 8 as it is most suitable for a server application and needs a memory size of
255(W/8)(s + 1) words4. The precomputation step is done only once per field
and can be done off-line. Our reduction method does not require any shift oper-
ations. Assuming that the precomputation is done off-line the method requires

4 A window size of w = 8 requires for a 32-bit CPU (W = 32) and a 163-bit curve
(s = 6) 28 KB while a window size of w = 16 needs 3.5 MB.
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(m/w)(s + 1) XORs. Thus a reduction step costs (m/8)(s + 1) XOR operations
in our case. The comb method requires s(m/4 + 11) XORs and 3 + 2(W/4− 1)
SHIFTs over multiple words [15]. Hence the cost of a reduction step for arbi-
trary field polynomials is less than 1/2 of a comb polynomial multiplication.
For typical field sizes of m = 163 our reduction method has a running time of
approximately 1/3 of a comb multiplication. We expect this to be the fastest
general reduction algorithm at the cost of memory storage.

Further improvements could be made by doing a partial reduction [5] as fol-
lows. Usually we reduce an operand c′(x) of size 2s to c(x) such that degree(c) <
m. However, we can save some calculations by reducing c′(x) to c′′(x) such that
degree(c′′(x)) < sW . The binary field operations are able to handle this operand
size without any further cost. Algorithm 4 can easily be adjusted to this fact by
omitting Steps 9− 12.

Algorithm 4 Window reduction method with window size w = 8
INPUT: A binary polynomial c′(x) of 2s words and an irreducible binary polynomial
f(x) = xm + f ′(x) of s words.
OUTPUT: The binary polynomial c(x) ≡ c′(x) mod f(x).

1: Precompute PreFu for all u = jt with j ∈ {1, . . . , W/8} and t ∈ {1, . . . , 28 − 1}:
PreF1 = (f ′(x) · xW )� (m mod W )
PreF2v = PreF2v−1 � 1 for 0 < v < 8
PreFt = PreF2v ⊕ PreFt−2v for 2v+1 < t < 2v, 0 < t < 28

PreFjt = PreFt << 8(j − 1) for j ∈ {2, ..., W/8} and t ∈ {1, . . . , 28 − 1}
2: C ← C′

3: for i = 2s− 1 down to s do
4: for j = W/8− 1 down to 0 do
5: Let t = (t7, t6, t5, t4, t3, t2, t1, t0), where tk is bit (8j + k) of C[i].
6: C{i− s} = C{i− s} ⊕ PreFj·t
7: end for
8: end for
9: for j = W/8− 1 down to 0 do

10: Let t = (t7, t6, t5, t4, t3, t2, t1, t0), where tk is bit (8j + k) of C[s− 1] if (8j + k) ≥
(m mod W ) and tk = 0 otherwise.

11: C{0} = C{0} ⊕ (PreFj·t �W )
12: end for
13: Return c(x)

3.2 Elliptic Curve E(GF (2m))

We chose standard algorithms to implement the general elliptic curves. We use
the projective Montgomery point multiplication as introduced in [14]. We also
implemented standard point addition and point doubling [7].

9



Koblitz Curves We implemented Koblitz Curves as described in [22]. We
chose the windowed NAF technique for point multiplication using projective
coordinates as introduced in [13]. Most of the values needed for the computation
can be computed on the fly at initialization time. However, obtaining the window
coefficients αi [22] requires operations such as complex number arithmetic that
are not supported by our software library. There are two kinds of Koblitz curves,
namely for curve parameter a = 0 and a = 1. We decided to support window
sizes of w = 5 and w = 6. The windowed NAF technique performs a point
multiplication at the cost of 2w−2 − 1 + m

w+1 point additions for fields GF (2m).
Thus for m < 336 we use a window size of w = 5 whereas for m ≥ 336 we
choose w = 6. A window size of w = 4 is efficient for m < 120 and a window
size of w = 7 for m > 896. Since these field sizes are not relevant for ECC we do
not support these window sizes. We precomputed all possible window coefficient
values αi for the four combinations off-line, namely a = 0 and a = 1 combined
with w = 5 and w = 6. The memory storage for the precomputed values is
negligible and would easily fit into the storage of a smart card.

4 Implementation

In this section we give timings for our implementation and analyze the results.
We did our timings for the NIST recommended binary fields and curves over
GF (2163), GF (2233), GF (2283), GF (2409) and GF (2571) [16]. We considered gen-
eral curves and Koblitz curves which are denoted as B-163, B-233, B-283, B-409,
B-571 and K-163, K-233, K-283, K-409, and K-571, respectively. The fields of
bit-size 163, 283, and 571 use pentanomials while fields of bit-size 233 and 409
use trinomials as field polynomials. We compiled our code on a SPARC 32-bit
and 64-bit workstation and on an Intel workstation. The SPARC timings were
done on a 900 MHz UltraSPARC III CPU running Solaris 9, and gcc version
3.1. The UltraSPARC III is a 64-bit CPU which can also emulate a 32-bit mode.
The Intel timings were performed on a 1 GHz Pentium III and gcc version 2.95.3
under Linux. We implemented all algorithms in C and did not use any assembly
code.

Table 2 presents our timings of the field operations. The field operations
always include the reduction step which is performed by the word-wise method
for general trinomials as well as general pentanomials. It is worth noticing that
a squaring, which is usually considered to have little cost, is no longer negligible
for unknown field polynomials. The cost is especially considerable for small field
sizes.

We experienced in our tests that the running time of the comb method is very
dependent on the hardware platform and even the compiler. While KA performs
similarly on different platforms we were unable to predict the running time of
the comb method. It also seemed difficult to implement the comb method in a
general fashion. We did some testings by implementing a special comb method for
6 words as needed for B-163. We unrolled all the loops, and used special addition
and shifting macros for the given operand’s length. The obtained timings are
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Table 2. Timings in µs for one field operation (for trinomials and pentanomials as
field polynomial)

Field SPARC 32-bit SPARC 64-bit Intel
Size Operation 900 MHz 900 MHz 1 GHz

163 Multiplication Comb Method 3.9 3.4 2.8
Karatsuba 2.3 1.3 1.9

Reduction 0.7 0.4 0.4
Squaring 0.8 0.5 0.5

233 Multiplication Comb Method 5.8 4.8 3.8
Karatsuba 2.8 1.5 2.9

Reduction 0.3 0.2 0.3
Squaring 0.5 0.4 0.4

283 Multiplication Comb Method 6.6 5.8 4.5
Karatsuba 4.5 3.3 4.4

Reduction 0.7 0.5 0.5
Squaring 1.0 0.8 0.6

409 Multiplication Comb Method 10.7 8.9 6.9
Karatsuba 8.5 4.7 8.1

Reduction 0.5 0.3 0.4
Squaring 0.8 0.6 0.6

571 Multiplication Comb Method 17.7 12.8 10.6
Karatsuba 16.4 7.0 13.4

Reduction 1.3 0.9 0.9
Squaring 1.8 1.2 1.2

comparable to the KA times. However, we did not find a way to implement
the comb method faster in a general way. Having specialized methods for each
size results in large and complex code, while plugging in different methods for
different cases requires expensive function calls and cannot be done as compile-
time macros. However, it seems that the comb method outperforms the KA for
large operand sizes. For a server implementation one could implement both the
comb method and KA, do some test runs when a new field comes into use and
plug in the faster method.

Now we want to point the reader’s attention to the 64-bit multiplication.
While the KA performs nearly twice as fast as the 32-bit version, the comb
method gets only slightly faster. Our 1x1 MUL for 64-bit requires about 65%
more operations than the 32-bit version. However, the number of multiplica-
tions required for the KA applied to operands of half the size decreases by a
factor of up to 3. Thus the KA becomes almost twice as fast, i.e., by a factor of
around 3/1.65 = 1.82. However, the comb method requires W/4 − 1 left shifts
of the double-sized result operand. Since the number of shifts doubles and the
number of words is halved the overall computational cost remains unimproved.
For instance, if the operand’s length is s words on a 32-bit machine and s′ = s/2
words on a 64-bit computer, the number of shifts evaluates to 3s and 7s′ = 3.5s,
respectively. Since shifting has linear time complexity, i.e. a shift over 2t words
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takes twice as long as a shift over t words, the number of executable CPU in-
structions roughly remains the same. Thus there is only little speed gain due to
the accelerated XOR operations for the comb method on a 64-bit CPU.

We compared our numbers to NTL 5.3 [21] which is considered to be one of
the fastest number arithmetic libraries publicly available. The results for the Intel
platform are presented in Table 3. Both multiplication and squaring include the
modulo reduction. Note that we compare the timings to our KA implementation
although on the Intel platform it is slower than the comb method for large field
sizes. Our results are considerably faster for the essential field multiplication.
One can guess that this is due to our polynomial multiplication method.

Table 3. Timings in µs for one field operation on 1 GHz Intel

Field
Size Operation NTL GEN KA

163 Multiplication 4.7 1.9
Reduction 0.8 0.4
Squaring 1.1 0.5

233 Multiplication 5.5 2.9
Reduction 1.0 0.3
Squaring 1.1 0.4

283 Multiplication 9.7 4.4
Reduction 1.1 0.5
Squaring 1.8 0.6

409 Multiplication 14.6 8.1
Reduction 1.1 0.4
Squaring 1.3 0.6

571 Multiplication 27.4 13.4
Reduction 1.2 0.9
Squaring 3.1 1.2

Table 4 presents the timings for the elliptic curve point multiplication. For
each platform, the first column is based on the KA while the second one uses
the comb method. When comparing our timings to the numbers for fixed fields
presented in [6] one can see that our flexible implementation still is slower than
such a specialized implementation.

5 Conclusions

In this paper we presented an industry implementation of ECC as part of
OpenSSL. Our implementation takes a general approach to implement binary
field arithmetic and does not depend on any choice of field size or field polyno-
mial. We showed that we achieve running times that are in the range of previously
reported implementation results for fixed field sizes. Furthermore we showed that
our implementation is faster than other implementations for arbitrary field sizes.
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Table 4. Timings in ms for one point multiplication

SPARC 32-bit SPARC 64-bit Intel
900 MHz 900 MHz 1 GHz

Curve KA Comb KA Comb KA Comb

B-163 3.0 4.9 1.8 4.1 2.3 3.6

B-233 4.8 8.7 2.8 7.3 4.7 6.4

B-283 10.0 13.9 6.8 12.0 9.5 9.7

B-409 24.9 30.0 14.1 24.3 23.6 19.8

B-571 66.6 71.5 30.3 51.3 54.3 44.9

K-163 1.6 2.0 1.0 1.7 1.2 1.4

K-233 2.2 3.3 1.5 2.6 2.0 2.5

K-283 4.6 5.4 3.1 4.3 3.7 3.8

K-409 9.6 10.9 5.4 7.7 8.0 7.2

K-571 22.5 23.8 11.4 15.9 17.2 15.3
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