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Abstract

Denial of service resilience is an important practical consideration for key agreement protocols
in any hostile environment such as the Internet. There are well-known models that consider the
security of key agreement protocols, but denial of service resilience is not considered as part of these
models. Many protocols have been argued to be denial-of-service-resilient, only to be subsequently
broken or shown ineffective.

In this work we propose a formal definition of denial of service resilience, a model for secure
authenticated key agreement, and show how security and denial of service resilience can be consid-
ered in a common framework, with a particular focus on client puzzles. The model accommodates a
variety of techniques for achieving denial of service resilience, and we describe one such technique by
exhibiting a denial-of-service-resilient secure authenticated key agreement protocol. Our approach
addresses the correct integration of denial of service countermeasures with the key agreement
protocol to prevent hijacking attacks that would otherwise render the countermeasures irrelevant.

1 Motivation

Reliable, fast, and secure communication is essential for commercial success on today’s Internet. Slow
web pages could motivate clients to switch to an alternative business, leading to a loss in customer base
for the service provider. However, maintaining sufficiently powerful servers can be an expensive venture.
Servers have limited resources in terms of the amount of traffic that can be handled, the time required
to establish a connection, and the number of active concurrent connections. This effectively bounds the
number of connections a company’s server can honour in a given period in time.

Malicious parties have recognized that they can benefit by depleting the limited resources of others’
servers. Denial of service attacks aim to disrupt, destroy, or render services unavailable. A typical denial
of service attack exhausts the target’s resources. The server is rendered unavailable for honest clients,
who then proceed to request similar services from competitors. To prevent malicious requests, a server
needs to filter out bogus connection requests and honour those from legitimate clients. Recognizing
legitimate clients is difficult. We will view a client as having legitimate intentions if it is willing to perform
an expensive computation; it still could be malicious, but we may have no further way of distinguishing
legitimate from malicious connections with a priori authentication.

Security is an important aspect of online services. Many connections between a client and a server
need to be secured against third parties; financial transactions are the most common case. Key agreement
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is used to produce a shared secret that can be used to encrypt subsequent communication. Key exchange
involves computationally expensive algorithms, and hence may dominate server-side run time, limiting
the number of clients serviced. This makes key agreement an enticing target for denial of service attacks
since a malicious party can easily issue many key agreement requests. Hence, it is advantageous to try to
reject as many bogus connections as possible during key agreement. In this paper we are concerned with
deterring malicious parties from initiating denial of service attacks based on key agreement, without
compromising on security.

Practitioners and standardization bodies have recognized the importance of denial of service re-
silience, but researchers have been slow to respond with a formal treatment of the subject. In some sense,
addressing denial of service resembles the initial approach to key agreement: rather than constructing
an overall model, a list of ad hoc goals is selected and then it is shown that a protocol meets those goals.
As a result, it is difficult to evaluate the strength and usefulness of denial of service countermeasures
when integrated into protocols.

Our Contributions. We give a formal definition of denial of service resilience for key agreement
protocols in the context of the extended Canetti-Krawczyk (eCK) model for secure key agreement. Our
definition for denial of service resilience is sufficiently strong that it prevents known attacks that arose
against protocols once thought to be denial of service resilient. Puzzles have been previously used as a
denial of service countermeasure, but in an ad hoc manner. Compared to previous work, our contribution
models the careful integration of two orthogonal issues: key agreement security and denial of service
resilience.

It is well established that improper use of cryptographic algorithms can render them useless. For
example, even the most secure password-based system is of no use if weak passwords are used. Similar
reasoning applies for DoS countermeasures: even good solutions are useless if they are not used properly.
For example, if a proof-of-work in the form of a puzzle solution does not indicate who is the intended
recipient, when the solution was created, or who created the solution, then the door is open for misuse.
Without careful integration into the overall protocol, DoS countermeasures may not achieve their goal.

Additionally, we present the DoS-CMQV protocol which is a secure key agreement protocol and uses
client puzzles to offer denial of service resilience in our model, showing how to achieve security and
denial of service resilience together.

2 Previous Work

Key Agreement. Key agreement is an important cryptographic primitive used for building confidential
channels. Designing and analyzing key agreement protocols is a non-trivial task. Formal models, which
allow complexity-theoretic security arguments for authenticated key agreement, were first proposed by
Bellare and Rogaway [BR04] and Blake-Wilson, Johnson, and Menezes [BWJM97]. The work of Canetti
and Krawczyk [CK01a] is one of the most influential extensions to the original models. Their work
was later augmented by Krawzcyk [Kra05a] and LaMacchia, Lauter and Mityagin [LLM07] to capture
a wider range of desirable security properties; we refer to this as the extended Canetti-Krawczyk (eCK)
model.

In all of the above models the adversary controls all communication links. It is not immediately
clear how denial of service can be considered alongside key establishment when the adversary may not
deliver messages to destinations. However, even in this setting there are meaningful DoS-related goals
that can be incorporated into the model; we discuss our extension in Sect. 3.1.
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Denial of Service. There are two main types of denial of service attacks (see [BM03, §1.6.6], for
example): resource depletion attacks and connection depletion attacks. In resource depletion attacks a
malicious party attempts to drain a server’s computational or memory resources. By contrast, connection
depletion attacks aim to exhaust the number of allowed connections to the server. A DoS countermeasure
can aim to defend against either or both of these types of attacks.

Distributed denial of service (DDoS) attacks, in which many distributed client computers attack a
single server, are of significant concern on the Internet today. These types of attacks are very difficult
to defend against. One known technique, which we use in this paper, is to allow a server to adjust its
denial of service countermeasure based on the load it experiences. Puzzle auctions [WR03] are one such
implementation of tunable puzzles.

Aura and Nikander [AN97] introduced the notion of stateless connections, in which stateful connec-
tions are transformed into stateless ones by attaching the state information to the message and using a
message authentication code for integrity. This gives some protection against denial of service by saving
the server from having to store session information until later in the exchange when more assurance is
possible.

Meadows [Mea99] offered the first formal framework for denial-of-service-resilient protocols, based
on the causal sequencing language of fail-stop protocols of Gong and Syverson [GS95]. To avoid
connection depletion, Meadows suggests that each message be authenticated with increasingly complex
levels of authentication. Meadows then applies this framework to the Station-to-Station protocol
[DvOW92] to identify potential DoS attacks but does not provide a denial-of-service-resilient protocol.
An application of Meadow’s cost-based framework to the JFK protocol revealed a potential DoS attack,
and a solution to this problem was proposed using client puzzles [SGNB06]. This underscores the ability
of formal models to reveal flaws and the need for the formalization of denial of service resilience.

Cookies. One of the first techniques used to defend protocols against denial of service attacks was
cookies. Introduced in the Photuris protocol (published in 1999 as [KS99] but introduced earlier),
cookies are small authentication tokens returned by a server upon initial connection by the client. In
order for the client to be allowed to continue with the connection, the client must echo the cookie back
to the server. The server does not store the cookie, instead using the stateless connection technique to
check the authenticity of the cookie which the client includes in subsequent messages. Cookies can be
applied in Meadows’ framework as an early level of authentication.

Krawczyk’s SIGMA protocol [Kra03a] was proposed as a successor of the Internet Key Exchange
(IKE) protocol used in IPsec, and was adapted to have denial of service resilience in the form of cookies
in its implementation in IKEv2 [Kau05]. Cookies are also used in the Just Fast Keying protocol (JFK)
proposed by Aiello et al. [ABB+04]. JFK allows the server to reuse its ephemeral private-public key
pair across multiple sessions to reduce the server’s computational load, at the expense of increasing the
potential damage should an ephemeral private key be leaked.

Cookies are a valuable first-order denial of service countermeasure and have been used extensively
as described above. However, they are a weak form of denial of service resilience because they do not
require an attacker to do anything other than faithfully relay a previously received cookie.

Protocols using cookies can also be susceptible to other types of attacks. Mao and Paterson [MP02,
§2.2] described a denial of service attack against IKEv2. In their attack, a malicious party who controls
a popular server M̂ can redirect legitimate traffic from M̂ towards another target server M̂ ′, thereby
effecting a denial of service attack against M̂ ′. The attack only costs M̂ bandwidth, not computation or
memory, and is resilient to cookie-based DoS countermeasures. This attack is possible because there is
no strong binding between the DoS countermeasure and the identity of the server to which the client
wishes to connect: we codify this notion in our security criterion DoS-2 in Sect. 3. Despite key agreement
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and denial of service being orthogonal issues, combining them is no trivial task, as demonstrated by this
attack.

Puzzles. Dwork and Naor [DN92] introduced the notion of client puzzles to defend against denial of
service attacks. A server under a denial of service attack can require clients to find the solution to a
puzzle before the server allocates resources: the puzzle should be hard to solve but the solution should
be easy to verify. Back [Bac97] and Juels and Brainard [JB99] suggested using a hash function so that
a client must perform a large number of operations to find the solution; this is a computation-bound
puzzle. We build on their approach by specifying how puzzles should be integrated with key agreement.
Puzzles where computing the solution is more dependent on memory access time, called memory-bound
puzzles, have also been suggested for use [ABMW03]; these offer less varied running times across
different hardware platforms because memory access times vary less than processor speed. Waters et al.
[WJHF04] described how puzzles can be distributed across multiple servers for coordinated access.

Aura, Nikander, and Leiwo [ANL00] gave a framework for using hash function preimages as a denial
of service in authentication protocols, and lay out the basic principle that “the client should always
commit its resources to the authentication protocol first and the server should be able to verify the
client commitment before allocating its own resources”. We use this principle to develop a model for
denial-of-service-resilient key agreement. The technique of [ANL00] is not sufficient to defend against
the attack of Mao and Paterson [MP02]; our approach is.

This principle of clients committing resources before the server does applies well to preemptive
DoS countermeasures. The server obtains assurance that the client committed resources, but this is
no guarantee that the client will complete the request. If a client does not finish a request then what
should the actions of the server be? What should a server do if a client takes too long to respond after
presenting its proof-of-work? Even though such open connections have important practical significance,
preemptive measures do not completely cover the problem of open connections, such as the half-open
connections of TCP SYN flood attacks [Edd07]; a common countermeasure is to discard old uncompleted
open connections.

3 Modelling Denial of Service Resilience and Security

We begin with an informal description of the goals of a denial-of-service-resilient protocol and then
proceed to outline a formal model for integrating denial of service resilience and secure key agreement
protocols. While the goals of denial of service resilience and secure key agreement are, as others such
as Krawczyk [Kra03a, §2.3] have noted, orthogonal issues, it is useful to be able to discuss them in a
common framework. We must be careful to integrate the two issues sufficiently well to avoid the types
of attacks proposed by Mao and Paterson [MP02].

Denial of Service Resilience Intuition. We are concerned about the situation in which a malicious
party on the network can cause a server to perform many expensive operations (and key agreement is
one such expensive operation) for no good reason, eventually consuming all of the server’s available
resources. But since the server is willing to place itself on the network for the use of all users, how can
the server know if it is doing work for a good reason or not? Distinguishing legitimate requests from
malicious requests is an essential element of denial of service resilience.

While one can never be certain about the good intentions of another party on the network, it is
plausible to believe that a client is making a legitimate request if the client is willing to commit some
expensive resources – computation, memory, etc. – to the connection request. However, if a client does
do something expensive to prove its good faith, then a good protocol should protect the client from being
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exploited by a malicious party aiming to steal the client’s work. Last but not least, a server should be
able to adapt its procedures to resist being flooded by many “honest” requests that may be coordinated
for maximum impact.

These ideas lead us to the following five informal criteria for a denial-of-service-resilient protocol:

DoS-1. An uncompromised honest server B̂ does not perform any expensive operations with a client unless
it is convinced the client is trying to make a legitimate connection.

DoS-2. Moreover, a server B̂ does not perform any expensive operations unless it is convinced that the
client wants to talk to B̂ and not another server M̂ .

DoS-3. A client Â who commits significant resources to prove its legitimate intentions cannot have her
work stolen: the work that Â does to convince B̂ that it wants to communicate legitimately with B̂
cannot convince anyone of anything else.

DoS-4. A malicious party1 must use a very large amount of resources if it wishes to prepare sufficiently
many connection requests and “flood” a server with many valid connection requests.

DoS-5. A server can adjust the amount of work a client has to do in times of higher or lower load.

In Sect. 3.1.2, we give a formal definition of denial of service resilience and describe in Sect. 3.2
how it achieves each of the goals DoS-1 through DoS-4; goal DoS-5 is a property of a particular
countermeasure and not of the formal model.

The first two goals aim to protect the server from performing unnecessary expensive operations.
While what qualifies as an expensive operation can vary depending on the setting, we identify three main
classes of expensive operations for the purposes of denial of service: memory denial of service attacks,
in which the server is forced to perform slow, expensive memory reads or writes or use large amounts
of memory; computational denial of service attacks, in which the server is forced to perform operations
requiring significant computational time (such as exponentiation, elliptic curve point multiplication, or
many simpler operations such as hash function or MAC evaluations); and transmission denial of service
attacks, in which the server is forced to expend resources available to send and receive communications.
In various situations, different notions of expensive can apply; for example, in mobile environments,
transmitting and receiving take a lot of time and power.

To achieve denial of service resilience, we require that a client answer a puzzle that takes significant
computational or memory resources to solve, but is easy for a server to prepare and verify. The key idea
is to tightly bind the puzzles with the identities of the parties involved to prevent attacks in which work
can be stolen or redirected. This allows a server to be more convinced of a client’s legitimate intention
to engage in a key agreement protocol.

Secure Key Agreement Intuition. As noted in Sect. 2, secure key agreement has been extensively
studied. The goal of an adversary in the eCK model is to learn any information about the session key
established by a pair of uncompromised participants. If an adversary cannot distinguish such a session
key from a randomly selected string with non-negligible probability, then the session key is viewed as
secure and suitable for use in bulk encryption. The model is formally described in Sect. 3.1 and the
definitions of security are given in Sect. 3.1.1.

1A malicious party can be a single entity or a collection of entities working together.
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3.1 Formal Model Description

Our model is based on the extended Canetti-Krawczyk (eCK) model proposed in [LLM07]. However,
instead of all exchanged messages we use a fingerprint of exchanged messages to identify session.

A protocol takes place among n parties Parties = {Â, B̂, . . .}, where a party is a probabilistic
polynomial-time Turing machine. In addition to the certified and validated static key pair, each party
also possesses static information that is not certified. If non-empty, the non-certified information may be
either private or public. Parties are activated via incoming messages, which are then processed within
the party. As a result a party either returns its outgoing response or indicates if the processing resulted
in failure or success.

Pre-session and Session Creation. An execution of the protocol is called a session. A party may
receive an incoming request to initiate a session via a message (i) (Â, B̂) or (ii) (Â, B̂, “hello”). In the
former case Â is called the client or initiator, and reacts by creating a separate session request (B̂, Â, “hello”)
designated for B̂. In the latter case, Â is called the server or responder, and creates a separate session
request (B̂, Â, “hello”) designated for B̂. Server Â selects a fresh (unique within Â) challenge ch and sends
(B̂, Â, “hello”,ch) to B̂. Within a party the execution of the subroutines between the session request and
either accepting or rejecting the request to initiate a session is called a pre-session. The model does not
prevent a protocol from accepting multiple distinct responses to the same challenge.

The motivation for the pre-session is to include the denial of service countermeasure in the pre-
session and leave expensive operations and resources commitment by a server for the session. A session
can only be reached after a successful pre-session: in other words, expensive resources will only be
committed by the server once the denial of service countermeasure are passed.

A party Â can be activated to create a session with a message of the form (i) (Â, B̂, “hello”,ch) or
(ii) (Â, B̂,ch, re). If the activation is of type (i) then Â, who is the initiator, prepares re that passes all
protocol conditions and creates an active session. The string re must be unique within Â; the outgoing
message is (B̂, Â,ch, re). If the activation is of type (ii) then Â, who is the responder in this case, verifies
that (Â, B̂,ch, re) satisfies the protocol requirements; if so a new active session is created, otherwise the
message is ignored. If a responder Â creates a new session, then the outgoing message is (Ψ,mesg),
where mesg is prepared by Â in accordance with the protocol and Ψ is the session string identifier, a
string used to identify sessions within Â and B̂, which is derived from (ch, re) and possibly other publicly
known parameters. The conditions imposed on ch and re allow for the derivation of a string unique
within both Â and B̂.

Session State. Upon creating a session, Â also creates a separate session state that contains both private
and public session-specific information. The private information is needed to derive a secret session key.
The public information is (Â, B̂,Ψ, role,otherinfo), where B̂ is the purported session peer; role is either
“initiator” or “responder” and otherinfo is any other public information required by the protocol. Globally
the session is identified via sid= [Â, B̂,Ψ] and Ψ identifies the session within Â. For sid= [Â, B̂,Ψ] we
call Â the owner and together Â and B̂ are the communicating partners of sid. Sessions sid = [Â, B̂,Ψ]
and sid∗ = [Ĉ , D̂,Ψ′] are matching if Ψ = Ψ′, Â= D̂, and Ĉ = B̂.

As in the eCK model, Â can be activated to update a session via a message of the form (Ψ,mesg).
Upon receipt of such a message, Â performs validation procedures similar to the eCK model and updates
its state. At any stage a session is in exactly one of the following states: active, completed or aborted.

Adversary. The adversary M is a probabilistic Turing machine that controls all communications and
party activation via the query Send(·). Parties present M with their outgoing messages. Leakage of
private information to M is modelled via the following adversary queries:
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• StaticKeyReveal(Â): M obtains Â’s static private key.

• EphemeralKeyReveal(sid): M obtains the ephemeral private key of Â in session sid= [Â, B̂,Ψ].

• SessionKeyReveal(sid): If sid has completed then M obtains the session key in sid.

• Establish(M̂ , M): M registers an adversary-controlled party M̂ with static public key M ∈ G. If a
party is not adversary-controlled it is said to be honest.

• DoSExpose(Â): M obtains the non-certified private information belonging to an honest Â, exclud-
ing the session-related ephemeral private keys. Parties against which this query was issued are
called DoS-exposed, otherwise they are called DoS-unexposed.

The role of the new DoSExpose query in our model is to allow us to identify the parties which ought
to still be resilient to denial of service attacks, namely those parties which are DoS-unexposed. For
example, adversary-controlled parties are not relevant to the DoS portion of the protocol. Moreover, a
separate DoSExpose query allows us to separate denial of service resilience from key agreement security:
compromise of key agreement secrets can be an orthogonal issue to compromise of denial of service.

3.1.1 Key Agreement Security Definitions.

Security is defined via indistinguishability. At any time during the experiment M can make one special
query, Test(sid), to a session sid that must remain fresh throughout the experiment. The goal of M is to
guess whether the response to the query is sid’s key or a random key.

Definition 1 (Fresh session) Let sid be the identifier of a completed session, owned by an honest party Â
with peer B̂, who is also honest. Let sid∗ be the identifier of the matching session of sid, if it exists. Then sid
is fresh if none of the following conditions hold:

1. M issued SessionKeyReveal(sid) or SessionKeyReveal(sid∗) (if sid∗ exists).

2. sid∗ exists and M issued one of the following: either

(a) both StaticKeyReveal(Â) and EphemeralKeyReveal(sid), or

(b) both StaticKeyReveal(B̂) and EphemeralKeyReveal(sid∗).

3. sid∗ does not exist and M issued one of the following: either

(a) both StaticKeyReveal(Â) and EphemeralKeyReveal(sid), or

(b) StaticKeyReveal(B̂).

Definition 2 (Secure key agreement protocol) A key agreement protocol is secure if the following con-
ditions hold: (i) two honest parties that complete matching sessions then, except with negligible probability
they compute the same session key; and (ii) no polynomially bounded adversary M can distinguish the
session key of a fresh session from a randomly chosen session key with probability greater than 1

2
plus a

negligible fraction (in the security parameter).
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3.1.2 Denial of Service Definitions.

In the protocol there is a test that the server performs on some of the messages received to determine if
the client has done sufficient work to merit the server performing expensive operations. The client’s
work, modelled by a puzzling relation, is used to define the protocol’s denial of service resilience.

Definition 3 (Puzzling relation) Let Challenges and Responses be sets. A relation R ⊆ Parties ×
Parties×Challenges×Responses is a puzzling relation if

1. deciding if (Â, B̂,ch, re) ∈R is “easy”, and

2. given Â, B̂,ch, and an oracle U that, on input (Â′, B̂′,ch′), returns re′ with (Â′, B̂′,ch′, re′) ∈R, it is
“hard” to produce re such that (Â, B̂,ch, re) ∈R and re was not a response generated by the oracle U
upon input (Â, B̂,ch).

The notion of “expensive operation”, “easy”, and “hard” will depend on the application context.
Although we have left these notion vague, they can be formalized, for example as a proof of work [JJ99].
We omit this formalization as the focus of our work is on the integration of denial of service resilience
techniques into key agreement protocols, not the construction of suitable puzzles.

Definition 4 (Acceptable pre-session) A pre-session [Â, B̂,ch] is an acceptable pre-session for B̂ if B̂
generated ch.

Definition 5 (Denial-of-service-resilient protocol) Let R be a puzzling relation. A protocol Π is denial-
of-service-resilient if the following hold for every DoS-unexposed server B̂:

1. B̂ only performs expensive operations (a) in a session, or (b) for some (low frequency) periodic update
of its non-certified private information ρ, and

2. B̂ only establishes a session [B̂, Â,ch, re] if the pre-session [Â, B̂,ch] was an acceptable pre-session for
B̂ and (Â, B̂,ch, re) ∈R.

Note that we have explicitly avoided merging Definitions 4 and 5 (as Definition 4 could be part
of Condition 2 of Definition 5) because we acknowledge that there may be situations that require a
different notion of acceptable pre-session, for example one-pass key agreement protocols where both ch
and re are generated by the initiator. In particular, it appears to suffice that B̂ has an assurance that ch
was generated independently at random before re.

3.2 Model Implications

In this section we explain how our formal model of denial of service resilience in Definition 5 satisfies
the informal goals for denial of service resilience of Sect. 3.

DoS-1. An uncompromised honest server B̂ does not perform any expensive operations with a client unless
it is convinced the client is trying to make a legitimate connection.

By condition 1 of Definition 5, a server B̂ does not perform any expensive operation with a client
until it has established a session, and by condition 2 it will not establish a session until it received a
response to its challenge that satisfies the puzzling relation. In order to satisfy the puzzling relation, the
client must do a significant amount of work because of condition 2 of Definition 3; by doing this work,
the client convinces the server that it is trying to make a legitimate connection. Moreover, since sessions
are unique within a party, replay attacks of legitimate connection requests are prevented.
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DoS-2. Moreover, a server B̂ does not perform any expensive operations unless it is convinced that the
client wants to talk to B̂ and not another server M̂.

Condition 2 of Definition 3 allows us to meet this criterion: even if an adversary obtains any tuple
(Â, M̂ ,ch, re) ∈R, the tuple (Â, B̂,ch, re) is unlikely to be in R and moreover it remains hard to produce
a response re′ such that (Â, B̂,ch, re′) ∈R. Since it is hard to create such a tuple given oracle access to
R, then it is still hard to construct any tuple in R without oracle access.

Our approach avoids the attack of Mao and Paterson [MP02] against IKEv2 in which an attacker
can redirect traffic from her server towards other servers and can cause the receiving server to deplete
its connection resources at low expense to the attacker. That attack is possible because there is no
cryptographic binding between the denial of service countermeasure and the identities of the parties
involved. By including the names of the client and server in the puzzling relation, a server B̂ can be
assured that whoever solved the puzzle intended to communicate with B̂.

DoS-3. A client Â who commits significant resources to prove its legitimate intentions cannot have her
work stolen: the work that Â does to convince B̂ that it wants to communicate legitimately with B̂ cannot
convince anyone of anything else.

Suppose B̂ is a DoS-unexposed server and suppose an honest client Â starts a pre-session [Â, B̂,ch],
and then finds a value re such that (Â, B̂,ch, re) ∈R. The client wishes that the response value should
not be useful to anyone else trying to establish a session; in other words, no one should be able to steal
Â’s work and use it in another pre-session.

Suppose [Â′, B̂′,ch′] is another pre-session. Given these values, it is hard to produce re′ such that
(Â′, B̂′,ch′, re′) ∈R, even with help from another pre-session such as [Â, B̂,ch], because R is a puzzling
relation. The help given by the other pre-session can be modelled as one response of the oracle U
in Definition 3 for another pre-session, and this is of no help in a puzzling relation. Thus, an honest
client’s work in solving a puzzle is of no use to anyone else responding to a different challenge, or with a
different server, or with a different user name.

If the adversary M simply relays Â’s entire response and then participates in Â’s place, the server
will proceed with key agreement but this session will ultimately fail, since it is secure in the sense of
Definition 2 key agreement protocols, and thus M cannot complete a session masquerading as Â.

DoS-4. A malicious party must use a very significant amount of resources if it wishes to prepare sufficiently
many connection requests and “flood” a server with many valid connection requests.

As noted in DoS-1, a server will only perform expensive operations if it has been convinced that the
client is trying to make a legitimate connection, meaning the client has solved an instance of the puzzling
relation, which is “hard” and requires a significant amount of resources. Suppose that for an attacker to
start a session requires t steps of computation (e.g., t may be the number of cycles it takes to solve a
computationally bound puzzling relation), and a server has enough computational resources to support
n connections per second. Then, roughly speaking, an attacker’s computers must be able to perform tn
steps of computation per second to sustainably render the server unavailable through a denial of service
attack, which may require distributed resources. By registering many dishonest parties the above attack
can be incorporated in our model. While not completely defending against such powerful distributed
attacks, we can at least allow the amount of denial of service resilience to be tuned in the event of heavy
traffic. On the other hand what our model assures is that the adversary cannot use honest parties to
mount such distributed attacks. For example, a DoS-resilient protocol guards against the attack where
the adversary registers a single malicious party M̂ , initiates pre-sessions between honest parties and M̂ ,
and then forwards messages from the honest parties to create many sessions at an honest server. That is,
the model defends against Mao-Patterson type of attacks.
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Consider also the case of replay attacks, in which an attacker resends the same message many times
to a server. Suppose in particular that an attacker replays a response value re for a pre-session [Â, B̂,ch].
This set of values leads to the server session [B̂, Â,ch, re], which already exists in the server. Since
sessions identifiers are unique in the model, the server will not start a new session and hence commit no
new resources as a result of this replay. This requires the server to store a table of session identifiers, but
this does not result in a denial of service attack in theory since the server commits memory resources for
the entries in the table only once the puzzling relation has been passed. To limit the size of the table, the
server could change the non-certified information ρ periodically. When receiving a previous challenge
and response, an entirely acceptable action would be for the server to respond to the replay with the
same response it gave previously; this prevents puzzle stealing attacks where the adversary responds to
a puzzle faster than a legitimate client. Now, if the attacker were to compute a different response value
re′ for the pre-session [Â, B̂,ch], then the server would commit new resources to the new session, but
this is acceptable since the attacker solved the puzzling relation, just as a legitimate client must.

Since in the Canetti-Krawczyk model we allow the adversary to control the delivery of messages, an
adversary may choose not to deliver the final message from the client to the server and leave the server
with an incomplete session (similar to the half-open connections of TCP SYN flood attacks [Edd07]).
Our model does not view this as a denial of service attack, because the server has been assured that
the other party performed many expensive computations to create the connection. This type of attack
can be mitigated, without affecting the security assurance nor preventive DoS countermeasures, by
conventional server policies to deal with open connections that are not completed for a predefined
period of time. Such countermeasures can be separately addressed once the server is assured about the
correct connection between the proof of work, the client’s identity and the client’s intended recipient –
exactly what our model provides.

4 A Secure DoS-Resilient Key Agreement Protocol

Our DoS-CMQV protocol, given in Fig. 1, is an adaptation of the CMQV [Ust08] secure authenticated
key agreement protocol. We use the problem of finding preimages for a random hash function as the
expensive puzzle at the heart of the puzzling relation that a client needs to solve.

The notation L[i] refers to the ith component in the tuple L. H0 and H1 are random hash functions
[BR04] that return bit strings; all other hash functions return random integers between 1 and q, the
order of the group G generated by g. We use x[1...w] to denote the first w bits of x . We note that in
practice H1 should be chosen so as to be unique to the protocol so that puzzles cannot be outsourced to
another protocol; for example, H1(. . .) = SHA-256(“DoS-CMQV”,1, . . .).

4.1 Security Analysis

Theorem 1 If H0, H1, . . . , H5 are random oracles [BR04], and G is a group where the Gap Diffie-Hellman
(GDH) assumption [OP01] holds, then DoS-CMQV is a secure key agreement protocol.

Argument. The DoS-CMQV security argument is similar to the argument presented for CMQV
in [Ust08]. We proceed to outline the argument. Verifying condition 1 of Definition 2 is straightforward.
It remains to verify condition 2.

In the model here parties possess additional (non-certified) private information ρ, which the
adversary can obtain via DoSExpose query. For each of the events in the analysis of CMQV, the solver
establishes and simulates the parties similar to the CMQV analysis. The main difference is that when
parties are established the solver selects randomly the value ρ for each party. The DoSExpose queries
are answered faithfully and they do not affect the freshness of the session. Since the new adversary query
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DoS-CMQV with security parameter λ
Client Â Server B̂

0. g, a, A= ga, B g, b, B = g b, A,ρ ∈R {0,1}λ

1. “hello”,Â,B̂
−−−−−→ i ∈R {0, 1}λ

2. j = H0(ρ, Â, B̂, i)
3. store x̃ ∈R {0,1}λ ch←−−−−− ch= (i, j)
4. x = H2( x̃ , a), X = g x

5. find ` s.t.
H1(Â, B̂,ch, X ,`)[1...20] = 0 . . . 0

6. re= (X ,`),Ψ= (ch, re)

7. establish session [Â, B̂,Ψ] Â,ch,re
−−−−−→ verify ch[2] = H0(ρ, Â, B̂,ch[1])

8. verify H1(Â, B̂,ch, re)[1...20] = 0 . . . 0
9. establish unique session [B̂, Â,ch, re]
10. store Â,Ψ= (ch, re)
11. X = re[1]
12. verify X ∈ G
13. ỹ ∈R {0, 1}λ, y = H2( ỹ , b)
14. store Y = g y

15. d = H3(X , Â, B̂), e = H3(Y, Â, B̂)
16. σ = (XAd)y+eb

17. store M1 = H4(“server finished”,
Â, B̂,ch, re, Y,σ)

18. store M2 = H4(“client finished”,
Â, B̂,ch, re, Y,σ)

19. verify Y ∈ G Ψ,Y,M1←−−−−− store K = H5(Â, B̂,ch, re, Y,σ)
20. d = H3(X , Â, B̂), e = H3(Y, Â, B̂)
21. σ = (Y Be)x+da

22. verify M1

23. M2 = H5(“client finished”,
Â, B̂,ch, re, Y,σ)

24. K = H5(Â, B̂,ch, re, Y,σ) Ψ,M2−−−−−→ verify M2

Figure 1: DoS-CMQV: A denial-of-service-resilient adaptation of the CMQV protocol.

is not relevant to the security analysis of the events, the solver can transform the DoS-CMQV adversary
to a GDH solver with similar success and running time as a CMQV adversary. Hence a polynomially
bounded DoS-CMQV adversary contradicts the assumptions in the theorem. �

4.2 Denial of Service Resilience Analysis

In this section we show that the DoS-CMQV protocol given in Fig. 1 is denial-of-service-resilient according
to Definition 5. Since this definition (and the related definition of a puzzling relation) includes the
intentionally vague terms “expensive operation”, “easy”, and “hard”, we need to define what these terms
mean for a concrete instantiation of the definition.

For our purposes, an expensive operation is one of the following operations: storing a per-connection
or per-session value in memory (other than a long-term value), performing a group exponentiation, or
making a large number of calls (say, more than 210) to a hash oracle.

We first establish, via the following lemma, that the relation used in the DoS-CMQV protocol is a
puzzling relation and then show that our protocol is resilient to denial of service attacks

Lemma 1 Let R be the relation defined such that (Â, B̂,ch, re) ∈R if and only if H1(Â, B̂,ch, re)[1...20] =
0 . . . 0, where H1 is a random hash function. Then R is a puzzling relation, where “hard” means requiring
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approximately 220 hash function queries on average, and “easy” is something that is not an “expensive
operation” as defined above.

Argument. Deciding membership in R is easy for a particular tuple because it involves only a single
call to H1.

Moreover, given Â, B̂, and a random ch, producing a value re such that H1(Â, B̂,ch, re)[1...20] = 0 . . . 0
is hard and requires approximately 220 hash oracle queries on average. To find such an re requires
finding a preimage for the random hash function. The oracle U helps us find other preimages of H1.
Our task, then is to find a preimage of the correct format involving Â, B̂, ch. But since H1 is a random
hash function, other outputs do not help in finding a preimage for this input. Since H1 is a random hash
function outputting 20 bits, this is a hard task that requires approximately 220 queries on average. �

This hash puzzle is similar to the partial inversion proof of work (PIPOW) problem of Jakobsson
and Juels [JJ99, §3.1]. By their Claim 1, we know that any prover Â with memory bounded by m who
performs on average at most w steps of computation and is given (Â, B̂,ch) can find a response re such
that (Â, B̂,ch, re) ∈R with probability at most p+ o(m/220) where p = 1/(220−w).

Theorem 2 The DoS-CMQV protocol is a denial-of-service-resilient protocol, where “easy”, “hard”, and
“expensive operation” are defined as above.

Argument. By the Lemma above, R is a puzzling relation.
Let [Â, B̂,ch] be a pre-session. According to the protocol, B̂ does not perform any expensive operation

until line 10, which is not reached unless the server’s checks on lines 7 and 8 are passed and a new
session is established on line 9.

If the check on line 8 is passed, namely if H1(Â, B̂,ch, re[1], re[2])[1...20] = 0 . . . 0, then (Â, B̂,ch, re) ∈
R. If the check on line 7 is passed, namely if ch[2] = H0(ρ, Â, B̂,ch[1]), then, except with negligible
probability, ch[2] was generated only be someone who knew both ρ and ch[1]. Since B̂ is a DoS-
unexposed party, no DoSExpose(B̂) query could have been issued and since ρ is only ever used as an
input to a random oracle, only B̂ knows ρ. Thus, [Â, B̂,ch] is an acceptable pre-session.

Hence, B̂ establishes a session only if the corresponding pre-session is acceptable and the tuple is in
the puzzling relation. Note that since sessions must be unique within a party, the server only performs
these expensive operations once per session. Thus, DoS-CMQV is a denial-of-service-resilient protocol.
�

Tuning the Puzzling Relation. The puzzle used in DoS-CMQV can be tuned by the server based on its
load. The client must find a hash function preimage; for concreteness, we have specified that the first 20
bits should be zeros, but the length could be a parameter w set by the server depending on its current
load. The server would need to include w in the computation of j on line 2, return w as part of ch on
line 3, and include w in the check on line 7 to avoid spoofing.

In practice, H1 could be implemented by using a standard cryptographic hash function, such as
SHA-1, and truncating the output to the first w bits. In times of light load, the server could require that
clients truncate only to the first 5 or 10 bits of output, but in heavier load could require that clients
truncate to 20 or 25 bits of output to make the cost of mounting a denial of service attack higher. It
takes just under 3 seconds to perform 220 SHA-1 evaluations on one core of our 2 GHz Intel Core 2 Duo
processor using OpenSSL 0.9.7`. This may be an acceptable computational burden for the client in many
scenarios.
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5 Other Denial of Service Constructions

Memory-Bound Puzzling Relations. While the protocol given in Sect. 4 uses a puzzling relation based
on finding preimages in a hash function, other types of puzzling relations can be used, demonstrating
the flexibility of our framework. Abadi et al. [ABMW03], for example, described puzzles in which
memory access time provides an expected lower bound on the time it takes to solve the puzzle, removing
disparities in processor speed between large computers and small devices. However, care must be taken
in choosing parameters for memory-bound puzzles: the cost incurred by a server in setting up one of
these memory-bound puzzles, while much less expensive than the cost incurred by a client solving the
puzzle, can still be significant. For the memory-bound puzzles of [ABMW03], it took a 2.4 GHz Pentium
4 server approximately 2−7 seconds to create a puzzle that takes approximately 22 seconds to solve. By
comparison, the time to do one 1024-bit modular exponentiation on a computer of similar speed is less:
only 2−9 seconds.

JFKi. In the JFKi protocol of [ABB+04, §2.3], the denial of service resilience goal for the server is
to avoid expensive operations unless the client performs resource-heavy operations, namely group
exponentiations. There are two main ideas used: reuse of ephemeral public keys and use of a keyed
hash function. The purpose of reusing ephemeral public keys is to distribute the cost of an expensive
operation across multiple sessions. This allows the authors to argue the client must perform her share of
the work first, in terms of bearing the cost of establishing a round communication trip. The keyed hash
function is used by the server to verify that the client indeed executed the round. Note that the server
does not need to dedicate any resources to verify the challenge was created by the server. This can be
viewed as the pre-session stage of the protocol since the goal of the first round trip is to filter out bogus
connections.

JFKi can be described in our model of denial of service resilience, but with weak definitions of “hard”
in the puzzling relation. In the implied puzzling relation in JFKi, the client must echo back to the server
all the received values and the preimage of the client’s nonce. If the puzzling relation test passes, then
the server establishes a new session and computes the shared Diffie-Hellman key.

The problem with JFKi’s puzzling relation is that there is no binding between the client’s ephemeral
public key and the solution to the puzzling relation. A dishonest client can use the same solution to
the puzzling relation with different ephemeral public keys (and it can generate these ephemeral public
keys very cheaply, for example, by generating g i , g · g i = g i+1, g · g i+1 = g i+2, . . .) to cause the server to
perform many exponentiations with little cost to the client. Thus, given the JFKi puzzling relation and a
single solution to the puzzling relation, generating more solutions is easy, contradicting Condition 2 of
Definition 3.

Hence, JFKi does not satisfy informal goal DoS-4: the protocol is not resilient to flooding attacks.
DoS-CMQV avoids this problem: producing a solution to the puzzling relation means finding a preimage
in the hash function and the values cannot be repeated if the server is to establish a new session.

One approach to fixing the denial of service resilience of JFKi was given by Smith et al. [SGNB06].
They note that JFKi is not denial-of-service-resilient when analyzed under Meadows’ framework [Mea99].
They use a hash function preimage puzzle as well to bind the puzzle solution to the key exchange session
at hand. There construction still preserves a fundamental design characteristic of JFKi: the responder
must reuse its ephemeral private key in order to achieve denial of service resilience, preventing full
freshness in the Canetti-Krawczyk model.

Host Identity Protocol. The Host Identity Protocol (HIP) [MNJH04] was designed to offer protection
against denial of service attacks. HIP (in [MNJH04, §4.1.1]) uses a similar puzzling relation to that of
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Sect. 4: the client must find a preimage in SHA-1 such that the k lowest-order bits of the output are zero.
HIP includes the identities of the initiator and responder in the hash function computation as we have
done. Our model provides a theoretical interpretation of the security of HIP against denial of service
attacks and the value of including the client and server identities in the hash function computation.

6 Conclusion and Open Problems

We have given the first formal definition of denial of service resilience for secure key agreement protocols.
Our model uses puzzles solved by the client as an indication of interest in a legitimate connection,
and a variety of puzzles, both memory-bound and computation-bound, can be used. We described a
protocol, DoS-CMQV, that provides resilience to denial of service attacks and offers secure key agreement.
Additionally, we analyzed the existing JFKi and HIP protocols to compare their notions of denial of
service resilience.

Denial of service resistance countermeasures often depend on the freshness of challenges. Our model
could be extended to explicitly consider the update of puzzle freshness and how past puzzles affect
current denial of service resilience.

This new framework for analyzing denial of service resilience can be applied in conjunction with
other goals for key agreement protocols. For example, the JFK protocols [ABB+04] aim to offer privacy
features: JFKi protects the initiator’s identity and JFKr protects the responder’s identity. Future work
could involve designing denial-of-service-resilient protocols with similar privacy measures.

This model can also be applied to give denial of service resilience to other types of key agreement
protocols, for example password-authenticated key agreement protocols. Adapting this technique for
use in IPsec or TLS would provide denial of service resilience in important Internet protocols.

Acknowledgements.

This work was performed while the authors were at the University of Waterloo. D.S. was supported
by an NSERC Canada Graduate Scholarship. The authors are grateful for the helpful advice of Alfred
Menezes and Ian Goldberg.

References

[ABB+04] William Aiello, Steven M. Bellovin, Matt Blaze, Ran Canetti, John Ioannidis, Angelos D. Keromytis,
and Omer Reingold. Just Fast Keying: Key agreement in a hostile Internet. ACM Transactions on
Information and System Security, 7(2):1–30, May 2004. DOI:10.1145/996943.996946.

[ABMW03] Martín Abadi, Michael Burrows, Mark Manasse, and Ted Wobber. Moderately hard, memory-
bound functions. In Proc. Internet Society Network and Distributed System Security Symposium
(NDSS) 2003. Internet Society, 2003. URL http://www.isoc.org/isoc/conferences/ndss/
03/proceedings/.

[AN97] Tuomas Aura and Pekka Nikander. Stateless connections. In Yongei Han, Tatsuaki Okamoto, and
Sihan Qing, editors, Proc. 1st International Conference on Information and Communications Security,
LNCS, volume 1334, pp. 87–97. Springer, November 1997. DOI:10.1007/BFb0028465.

[ANL00] Tuomas Aura, Pekka Nikander, and Jussipekka Leiwo. DOS-resistant authentication with
client puzzles. In Bruce Christianson, Bruno Crispo, James A. Malcolm, and Michael
Roe, editors, SECPROT, LNCS, volume 2133, pp. 170–177. Springer, 2000. DOI:10.1007/3-
540-44810-1_22. URL http://research.microsoft.com/en-us/um/people/tuomaura/
Publications/aura-nikander-leiwo-protocols00.pdf.

14

http://dx.doi.org/10.1145/996943.996946
http://www.isoc.org/isoc/conferences/ndss/03/proceedings/
http://www.isoc.org/isoc/conferences/ndss/03/proceedings/
http://dx.doi.org/10.1007/BFb0028465
http://dx.doi.org/10.1007/3-540-44810-1_22
http://dx.doi.org/10.1007/3-540-44810-1_22
http://research.microsoft.com/en-us/um/people/tuomaura/Publications/aura-nikander-leiwo-protocols00.pdf
http://research.microsoft.com/en-us/um/people/tuomaura/Publications/aura-nikander-leiwo-protocols00.pdf


[Bac97] Adam Back. A partial hash collision based postage scheme, 1997. URL http://www.hashcash.
org/papers/announce.txt.

[BM03] Colin Boyd and Anish Mathuria. Protocols for Authentication and Key Establishment. Springer, 2003.

[BR04] Mihir Bellare and Phillip Rogaway. Random oracles are practical: a paradigm for designing efficient
protocols. In Pfitzmann and Liu [PL04], pp. 62–73. DOI:10.1145/168588.168596.

[BWJM97] Simon Blake-Wilson, Don Johnson, and Alfred Menezes. Key agreement protocols and their security
analysis. In Michael Darnell, editor, Cryptography and Coding – 6th IMA International Conference,
LNCS, volume 1355. Springer, 1997. DOI:10.1007/BFb0024447.

[CK01a] Ran Canetti and Hugo Krawczyk. Analysis of key-exchange protocols and their use for building
secure channels. In Birgit Pfitzmann, editor, Advances in Cryptology – Proc. EUROCRYPT 2001, LNCS,
volume 2045, pp. 453–474. Springer, 2001. DOI:10.1007/3-540-44987-6_28. Full version available
as [CK01b].

[CK01b] Ran Canetti and Hugo Krawczyk. Analysis of key-exchange protocols and their use for building secure
channels, 2001. EPRINT http://eprint.iacr.org/2001/040. Extended abstract published as
[CK01a].

[DN92] Cynthia Dwork and Moni Naor. Pricing via processing or combatting junk mail. In Ernest F. Brickell,
editor, Advances in Cryptology – Proc. CRYPTO ’92, LNCS, volume 740, pp. 139–147. Springer, 1992.
DOI:10.1007/3-540-48071-4_10.

[DvOW92] Whitfield Diffie, Paul van Oorschot, and Michael J. Wiener. Authentication and authenticated key
exchanges. Designs, Codes and Cryptography, 2(2):107–125, June 1992. DOI:10.1007/BF00124891.

[Edd07] Wesley M. Eddy. TCP SYN flooding attacks and common mitigations, August 2007. URL http:
//www.ietf.org/rfc/rfc4987.txt. RFC 4987.

[GS95] Li Gong and Paul Syverson. Fail-stop protocols: An approach to designing secure protocols. In Proceed-
ings of the 5th IFIP Working Conference on Dependable Computing for Critical Applications (DCCA-5), pp.
44–55, September 1995. URL http://citeseer.ist.psu.edu/article/gong94failstop.
html.

[JB99] Ari Juels and John Brainard. Client puzzles: A cryptographic countermeasure against connection
depletion attacks. In Proc. Internet Society Network and Distributed System Security Symposium (NDSS)
1999, pp. 151–165. Internet Society, 1999. URL http://www.isoc.org/isoc/conferences/
ndss/99/proceedings/.

[JJ99] Markus Jakobsson and Ari Juels. Proofs of work and bread pudding protocols. In Bart Preneel,
editor, Proceedings of the IFIP TC6/TC11 Joint Working Conference on Secure Information Networks:
Communications and Multimedia Security, IFIP Conference Proceedings, volume 152, pp. 258–272.
Kluwer, 1999. URL http://www.rsa.com/rsalabs/node.asp?id=2049.

[Kau05] Charlie Kaufman. Internet Key Exchange (IKEv2) protocol, December 2005. URL http://www.ietf.
org/rfc/rfc4306.txt. RFC 4306.

[Kra03a] Hugo Krawczyk. SIGMA: The ‘SIGn-and-MAc’ approach to authenticated Diffie-Hellman and its use in
the IKE protocols. In Dan Boneh, editor, Advances in Cryptology – Proc. CRYPTO 2003, LNCS, volume
2729, pp. 400–425. Springer, 2003. DOI:10.1007/b11817. Full version available as [Kra03b].

[Kra03b] Hugo Krawczyk. SIGMA: The ‘SIGn-and-MAc’ approach to authenticated Diffie-Hellman and its use
in the IKE protocols, 2003. URL http://www.ee.technion.ac.il/~hugo/sigma.ps. Short
version published as [Kra03a].

[Kra05a] Hugo Krawczyk. HMQV: A high-performance secure Diffie-Hellman protocol. In Victor Shoup, editor,
Advances in Cryptology – Proc. CRYPTO 2005, LNCS, volume 3621, pp. 546–566. Springer, 2005.
DOI:10.1007/11535218_33. Full version available as [Kra05b].

[Kra05b] Hugo Krawczyk. HMQV: A high-performance secure Diffie-Hellman protocol, 2005. EPRINT http:
//eprint.iacr.org/2005/176.pdf. Extended abstract published as [Kra05a].

15

http://www.hashcash.org/papers/announce.txt
http://www.hashcash.org/papers/announce.txt
http://dx.doi.org/10.1145/168588.168596
http://dx.doi.org/10.1007/BFb0024447
http://dx.doi.org/10.1007/3-540-44987-6_28
http://eprint.iacr.org/2001/040
http://dx.doi.org/10.1007/3-540-48071-4_10
http://dx.doi.org/10.1007/BF00124891
http://www.ietf.org/rfc/rfc4987.txt
http://www.ietf.org/rfc/rfc4987.txt
http://citeseer.ist.psu.edu/article/gong94failstop.html
http://citeseer.ist.psu.edu/article/gong94failstop.html
http://www.isoc.org/isoc/conferences/ndss/99/proceedings/
http://www.isoc.org/isoc/conferences/ndss/99/proceedings/
http://www.rsa.com/rsalabs/node.asp?id=2049
http://www.ietf.org/rfc/rfc4306.txt
http://www.ietf.org/rfc/rfc4306.txt
http://dx.doi.org/10.1007/b11817
http://www.ee.technion.ac.il/~hugo/sigma.ps
http://dx.doi.org/10.1007/11535218_33
http://eprint.iacr.org/2005/176.pdf
http://eprint.iacr.org/2005/176.pdf


[KS99] Phil Karn and William Allen Simpson. Photuris: Session-key management protocol, March 1999. URL

http://www.ietf.org/rfc/rfc2522.txt. RFC 2522.

[LLM07] Brian LaMacchia, Kristin Lauter, and Anton Mityagin. Stronger security of authenticated key exchange.
In Willy Susilo, Joseph K. Liu, and Yi Mu, editors, First International Conference on Provable Security
(ProvSec) 2007, LNCS, volume 4784, pp. 1–16. Springer, 2007. DOI:10.1007/978-3-540-75670-5_1.
EPRINT http://eprint.iacr.org/2006/073.

[Mea99] Catherine Meadows. A formal framework and evaluation method for network denial of service. In
Proc. 1999 IEEE Computer Security Foundations Workshop (CSFW), p. 4. IEEE Computer Society Press,
1999. DOI:10.1109/CSFW.1999.779758.

[MNJH04] Robert Moskowitz, Pekka Nikander, Petri Jokela, and Thomas R. Henderson. Host identity proto-
col. Online, February 2004. URL http://tools.ietf.org/html/draft-moskowitz-hip-09.
Internet-Draft.

[MP02] Wenbo Mao and Kenneth G. Paterson. On the plausible deniability feature of Internet protocols.
Manuscript, 2002. URL http://citeseer.ist.psu.edu/678290.html.

[OP01] Tatsuaki Okamoto and David Pointcheval. The gap-problems: A new class of problems for the security
of cryptographic schemes. In Kwangjo Kim, editor, Public Key Cryptography (PKC) 2000, LNCS, volume
1992, pp. 104–118. Springer, 2001. DOI:10.1007/3-540-44586-2_8.

[PL04] Birgit Pfitzmann and Peng Liu, editors. Proc. 11th ACM Conference on Computer and Communications
Security (CCS). ACM, 2004.

[SGNB06] Jason Smith, Juan Gonzalez-Nieto, and Colin Boyd. Modelling denial of service attacks on JFK with
Meadows’s cost-based framework. In Rajkumar Buyya, Tianchi Ma, Reihaneh Safavi-Naini, Chris
Steketee, and Willy Susilo, editors, Proc. 4th Australasian Information Security Workshop – Network
Security (AISW-NetSec) 2006, CRPIT, volume 54, pp. 125–134. Australian Computer Society, 2006.
URL http://crpit.com/confpapers/CRPITV54Smith.pdf.

[Ust08] Berkant Ustaoglu. Obtaining a secure and efficient key agreement protocol from (H)MQV and NAXOS.
Designs, Codes and Cryptography, 46(3):329–342, March 2008. DOI:10.1007/s10623-007-9159-1.
EPRINT http://eprint.iacr.org/2007/123.pdf.

[WJHF04] Brent Waters, Ari Juels, J. Alex Halderman, and Edward W. Felten. New client puzzle outsourcing tech-
niques for dos resistance. In Pfitzmann and Liu [PL04], pp. 246–256. DOI:10.1145/1030083.1030117.

[WR03] Xiaofeng Wang and M.K. Reiter. Defending against denial-of-service attacks with puzzle auctions. In
Proc. 2003 IEEE Symposium on Security and Privacy (SP’03), pp. 78–92. IEEE Press, 2003. URL http:
//ieeexplore.ieee.org/xpls/abs_all.jsp?isnumber=27002&arnumber=1199329.

16

http://www.ietf.org/rfc/rfc2522.txt
http://dx.doi.org/10.1007/978-3-540-75670-5_1
http://eprint.iacr.org/2006/073
http://dx.doi.org/10.1109/CSFW.1999.779758
http://tools.ietf.org/html/draft-moskowitz-hip-09
http://citeseer.ist.psu.edu/678290.html
http://dx.doi.org/10.1007/3-540-44586-2_8
http://crpit.com/confpapers/CRPITV54Smith.pdf
http://dx.doi.org/10.1007/s10623-007-9159-1
http://eprint.iacr.org/2007/123.pdf
http://dx.doi.org/10.1145/1030083.1030117
http://ieeexplore.ieee.org/xpls/abs_all.jsp?isnumber=27002&arnumber=1199329
http://ieeexplore.ieee.org/xpls/abs_all.jsp?isnumber=27002&arnumber=1199329

	Motivation
	Previous Work
	Modelling Denial of Service Resilience and Security
	Formal Model Description
	Key Agreement Security Definitions.
	Denial of Service Definitions.

	Model Implications

	A Secure DoS-Resilient Key Agreement Protocol
	Security Analysis
	Denial of Service Resilience Analysis

	Other Denial of Service Constructions
	Conclusion and Open Problems

