
Count-Min Sketches for Estimating Password
Frequency within Hamming Distance Two

Leah South and Douglas Stebila

School of Mathematical Sciences, Queensland University of Technology,
Brisbane, Queensland, Australia

leah.south@connect.qut.edu.au, stebila@qut.edu.au

Abstract. The count-min sketch is a useful data structure for recording
and estimating the frequency of string occurrences, such as passwords,
in sub-linear space with high accuracy. However, it cannot be used to
draw conclusions on groups of strings that are similar, for example close
in Hamming distance. This paper introduces a variant of the count-min
sketch which allows for estimating counts within a specified Hamming
distance of the queried string. This variant can be used to prevent users
from choosing popular passwords, like the original sketch, but it also
allows for a more efficient method of analysing password statistics.

Keywords: count-min sketch, Bloom filter, password frequency, approx-
imate string matching

1 Introduction

The use of passwords for identity verification is widespread. There is a long line
of research on analyzing the security and guessability of password [8, 3]. In large
online systems that we see on the Internet today, an important characteristic
that affects the overall security of the system is that passwords within the system
should not be too popular. In an ideal setting, of course, users would create a
unique password that is hard to guess, and not popular, so that only that user and
no one else could access their account. However, users tend to choose passwords
that are easy to remember and familiar to them, such as dictionary words, or
perhaps strings associated with the system in question. This tendency means
that certain passwords are used with higher frequency, making them popular.

If an attacker knew the distribution of passwords, they could use its statistics
and guess the most popular passwords first. This is known as the statistical
guessing technique [9]. When there is a high percentage of popular passwords, the
attacker can compromise a high percentage of accounts. For example, the 2009
breach of RockYou.com’s 32 million account password database showed that the
most popular password (123456) was used by 0.9% of all accounts, and the next 4
most popular passwords (12345, 123456789, password, and iloveyou) were used
by another 0.8% of all accounts. Clearly, the system was not screening passwords
for popularity. As a result, a statistical guessing attack would lead to millions of
accounts being compromised. In order to prevent a successful statistical guessing

2 Leah South and Douglas Stebila

attack such as this, it is common to limit the number of guesses; more recently, it
has been proposed [9] to limit the popularity of passwords: when users try to set
their password to a string that is used in a percentage of accounts above some
threshold, it is rejected and the user is required to choose another password.

In order to keep track of password popularity, some sort of system which
counts passwords must be used. Online sites with a large number of users are
best suited for systems which restrict popular passwords, as such sites are at
high risk of trawling attacks, in which attackers aim to guess the passwords to
many accounts without targeting any single account.

How can we store password information in a way that allows us to calculate
frequency when users attempt to register a password? The simplest technique for
calculating frequency during password registration would be to store a separate
table of passwords along with their frequency. This is undesirable both for
efficiency reasons (since the size of the table grows linearly in the number of
distinct passwords) and for security reasons (since it immediately provides an
attacker with the full distribution of passwords). Best-practice recommendations
for storing passwords for login involve storing salted password hashes for each
account; the set of such passwords does not admit statistical analysis since,
by design, the hash of the same password under different salts yields different,
seemingly independent, outputs, thus yielding no information about the frequency
with which a password is used.

1.1 Bloom Filters and Count-Min Sketches

The Bloom filter [2] can be used [10] to store in sub-linear space a table rep-
resenting a dictionary of prohibited passwords. The system is setup as follows.
A w × h table T of bits is used, along with h independent hash functions
hash1, . . . , hashh : {A − Z, a − z, 0 − 9, . . . }∗ → {1, . . . , w}. Each word x in the
dictionary of prohibited passwords is hashed under each hash function hashk, and
the entry Thashk(x),k is set to 1. When a proposed password y is to be tested for
membership in the list of prohibited passwords, if all of the values Thashk(y),k are
equal to 1, then y is deemed to be prohibited, but if at least one of those table
entries is zero, then y is not prohibited. There are no false negatives, meaning
that it is impossible for a password that is prohibited to not be recognized as
such, but there may be false positives, meaning that some passwords that are
not prohibited may, due to collisions on all rows, still be identified by the table
as prohibited. Assuming the hash functions are independent random functions,
the false positive rate (1 − (1 − h

w)N)h, where N is the number of prohibited
passwords originally added to the table [10].

The count-min sketch [5] enhances the Bloom filter by storing a table of
integers, not bits. The update(x, c) function records that string x has been used
c more times by adding c to each table entry Thashk(x),k. The estimate(x) func-
tion returns an estimate on the number of times that string x has been used
by computing min{Thashk(x),k : 1 ≤ k ≤ h}. The use of count-min sketches for
recording password frequency was proposed by Schechter, Herley, and Mitzen-
macher [9], who propose preventing users from registering with passwords whose

Count-Min Sketches for Estimating Password Frequency within Distance 2 3

current popularity is above a certain threshold. As with the Bloom filter, false
negatives cannot occur, meaning that for any password x it is impossible for
the estimate(x) to return a value lower than the sum of the c over all calls of
update(x, c). However, false positives may still occur, meaning that estimate(x)
may over-estimate the frequency of password x, due to collisions across all hash
functions. For a single hash, the expected error due to collisions is N/w, where
N is the total sum of the counts of all passwords; this is because the total count
of N will spread approximately evenly across all w columns in the table. By the
Markov inequality, the error of the count min-sketch (the minimum across all
hash functions) is at most 2N/w with probability at least 1− (1

2)h.

1.2 Contributions

When used for passwords, the Bloom filter and the count-min sketch can be
useful in prohibiting certain passwords or limiting the frequency with which
any password is registered. However, they cannot accommodate any relation
between ‘similar’ passwords. For example, a user who tries to register the pass-
word password and finds that it is prohibited may try again with p@ssword

or passw∅rd. An attacker, knowing this prevalence for ‘leetspeak’, may also
make use of these similarities in an attack strategy that targets ‘almost popular’
passwords. Since the Bloom filter and count-min sketch use independent random
passwords, they lose any semantic connection between such similar strings.

In this work, we explore a variant of the count-min sketch that allows one to
compute estimates not only for the given string but for all strings within a fixed
Hamming distance of the given string. This technique allows a system to detect
frequently used passwords at the registration phase. Our technical approach is to
introduce ‘wildcard’ characters and then record and estimate based on all strings
that can be constructed with wildcard characters within the required Hamming
distance. This technique imposes a computational overhead of

(
`
d

)
, where ` is the

length of the password in question and d is the maximum Hamming distance. This
compares favourably with the naive technique which would have a computational
overhead of

(
`α
d

)
, where α is the size of the alphabet. We provide false positive

error rates as well, and compared with the naive method our technique provides
better accuracy for the same size table for a wide range of password lengths. Our
technique can naturally be extended to higher Hamming distances.

2 Related Work

While the Bloom filter and count-min sketch are widely used, there are several
other methods to store estimate counts, some of which may be useful in obtaining
statistics on groups of similar passwords.

There have been some systems in the past which have stored cleartext pass-
words alongside their counts. This method is mostly outdated due to the lack of
security it provides. If attackers gain access to password databases such as these,
a highly successful statistical guessing attack can be carried out because the

4 Leah South and Douglas Stebila

actual passwords are visible and there are no false positives - the exact counts
are known. Using hash functions is preferable to this method.

Decision trees, as suggested by Bergadano, Crispo and Ruffo, can be used
to determine password membership. These decision trees consist of nodes for
particular attributes, arcs for values of these attributes and leaves for classification
of whether or not the password has been used before in that database [1]. When
using decision trees, there is a training phase in which the nodes, arcs and leaves
are chosen to produce the best results. For each update to the database, the
training phase must be repeated. Due to this, decision trees can be used for
determining membership but are not as practical when frequent updates may be
involved.

There has also been some work on the topic of determining popularity of
similar words. This includes work which allows for checking membership of words
within Levenshtein distance 1, that is words which have only one insertion,
deletion or substitution. Manber and Wu [7] suggested an approach similar to
the original Bloom filter, with the main difference being that the membership
of words within Levenshtein distance 1 are checked in the estimation stage. It
is proposed that if any password within distance 1 appears to be positive, the
password cannot be used [7]. As with all Bloom filter-based techniques, this only
records the binary data of whether two similar passwords have been used, not
counts on how frequently similar passwords are used.

3 Construction

The adaptation of the original count-min sketch that is introduced in this paper
allows for the popularity estimations of words within Hamming distance zero to
two, that is words that differ by up to two substitutions. Like the count-min sketch,
this adaptation consists of three main parts: hashing the passwords, updating the
table and estimating the counts. In Appendix A, we provide a worked example
of each of the three operations—hashing, updating, and estimating.

3.1 Hash

We represent passwords x as integers X. Any canonical representation of a
word as an integer will suffice. For expository convenience, we can imagine a
mapping of an `-letter word x = x1 . . . x` where each character xi is coded as
a two-digit integer Xi ∈ {00, . . . , 98}; the integer 99 is reserved to represent
a wildcard character *. The vector 〈X1, . . . , X`〉 is then viewed as an integer

X =
∑`
i=1 100i−1Xi. This suffices to encode for example all passwords that can

be typed using characters on a standard US keyboard.

As in [6], each hash function hashk is a Carter–Wegman 2-universal hash
function [4] of the form

hashk(x) = (((akX + bk) mod pk) mod w) + 1 ,

Count-Min Sketches for Estimating Password Frequency within Distance 2 5

where X is the canonical integer representation of the word x, pk is a prime
number much larger than w (recall w is the width of the table), say pk = 231−1 or
pi = 261− 1, and ak and bk are chosen uniformly at random from {0, . . . , pk − 1}.
We can simplify to using the same prime p = p1 = · · · = ph across all hash
functions, but all ak and bk need to be chosen independently to ensure negligible
probability of collisions; otherwise the benefits of using multiple hash functions
will be eliminated.

We define the vector-wise hash function hash(x) where the kth entry of hash(x)
consists of hashk(x) with ak and bk.

3.2 Update

The function update(T, x, a, b, c)→ T ′ updates the sketch based on the previous
table T , the password x to be updated, the values or vectors of a and b for the
hash functions and the amount of times c that the password is being added. The
update algorithm in this work differs greatly to that in the traditional count-min
sketch.

Firstly, the count for the actual password is updated. Like the original count-
min sketch, this is done by finding the hash of the password for each hash function
then updating the count at these positions in the table. Next, the updates are
done for words within distance 1. To do this, a ‘wildcard character’ is introduced.
This wildcard character, which for our canonical encoding above is denoted by
99, is used to group similar passwords together: for example if the word abcd, or
〈a, b, c, d〉, is represented in integer form as 〈1, 2, 3, 4〉, then 〈99, 2, 3, 4〉 represents
*bcd, all four letter words ending in bcd. A wildcard character indicates that any
character could go in its place. After the count of the actual password is updated,
all wildcard passwords within Hamming distance 1 are updated by creating
` = length(x) variations of the password, each with a different character from
the initial word replaced with 99, then hashing these variations and updating
their positions in the table. Next, the wildcard words within Hamming distance
2 of the password x are hashed and their positions in the table are updated.

In Algorithm 1, update, using the wildcard character means that ` additional
updates are done for adding wildcard words within distance 1. The alternative,
naive technique, would be to search all α` passwords within distance 1 during
the estimate algorithm, where α is the size of the alphabet. When the password
length ` � α, the proposed technique is much more efficient than the naive
technique.

3.3 Estimate

The function estimate(T, x, a, b) is used to obtain estimates of the count of
passwords at exactly Hamming distances 0, 1, and 2 of x and is specified in full
in Algorithm 2.1

1 Note that we have estimate return estimates for counts of passwords at exactly, rather
than within, the specified Hamming distance for clarity of exposition; estimates

6 Leah South and Douglas Stebila

Algorithm 1 update(T, x, a, b, c)

1: T ′ ← T
2: H ← hash(x, a, b)
3: for k = 1 to h do
4: T ′

Hk,k
← T ′

Hk,k
+ c

5: for i = 1 to ` = length(x) do
6: x′ ← x
7: x′

i ← 99
8: H ′ ← hash(x′, a, b)
9: for k = 1 to h do

10: T ′
H′

k
,k ← T ′

H′
k
,k + c

11: for i = 1 to `− 1 do
12: for j = i + 1 to ` do
13: x′′ ← x
14: x′′

i ← 99
15: x′′

j ← 99
16: H ′′ ← hash(x′′, a, b)
17: for k = 1 to h do
18: T ′

H′′
k
,k ← T ′

H′′
k
,k + c

19: return T ′

At distance 0. When the specified Hamming distance d is zero, that is, when the
count of the actual word is desired, the estimate process is very similar to the
original count-min sketch. The h different hashes of the password and the counts
at all h positions in the table are found. These counts can then be put into a
vector est0 of length h, where each element represents the count at a different
hash function. The resulting estimate est

0
is the minimum of these counts.

At distance 1. At a maximum Hamming distance of one, the process is slightly
more complex. First, estimates est1i , i = 1, . . . , `, for the frequency of words that
may differ from x in the ith character; each of these estimates can be found using
the technique estimating the (distance 0) occurrences of the wildcard word. In
other words, est1i is the (distance 0) estimate for the wildcard “word” x′ where
the ith character of x has been replaced with the special wildcard character.
Once estimates est1i for the frequency of words that may differ from x in the

ith character have been found, we can find an estimate est
1

for the number of
occurrences of words at distance 1 from x by summing est1i for all i, then subtract

`est
0
.

The reason for the subtraction is as follows. As explained in the update section,
when a single password x is added into the database, the counts for the exact
password and the counts for all ` = length(x) passwords within distance 1 are all
increased. In the estimation stage, the counts for all passwords with one wildcard
character, or within distance 1, are summed together. This means that the count

within the specified distance can be found by summing the estimates exactly at all
distances less than or equal to.

Count-Min Sketches for Estimating Password Frequency within Distance 2 7

for the exact password has been included ` times in the calculation, when it
should only have been included once. To overcome this problem, the count of
that exact password multiplied by the length of the password is subtracted.

At distance 2. The frequency estimate est
2

for passwords at distance 2 is found
in a similar manner to that of distance 1. For each of the

(
`
2

)
wildcard passwords

of x that may differ in the ith and jth characters, we compute (distance 0)
estimates est2i,j of the wildcard “word” x′′ where the ith and jth characters of
x have been replaced with the special wildcard character. We then sum these
estimates of words within distance 2. However, again we have overcounted. The
words at precisely distance 1 have been counted `− 1 times. Similarly, the word
at precisely distance 0 has been counted

(
`
2

)
times.

Algorithm 2 estimate(T, x, a, b)

1: H ← hash(x, a, b)
2: for k = 1 to h do
3: est0k ← THk,k

4: est
0 ← mink{est0k}

5: for i = 1 to ` = length(x) do
6: x′ ← x
7: x′

i ← 99
8: H ′ ← hash(x′, a, b)
9: for k = 1 to h do

10: est1i,k ← TH′
k
,k

11: est1i ← mink{est1i,k}
12: est

1 ←
(∑

i est
1
i

)
− ` est

0

13: for i = 1 to `− 1 do
14: for j = i + 1 to ` do
15: x′′ ← x
16: x′′

i ← 99
17: x′′

j ← 99
18: H ′′ ← hash(x′′, a, b)
19: for k = 1 to h do
20: est2i,j,k ← TH′′

k
,k

21: est2i,j ← mink{est2i,j,k}
22: est

2 ←
(∑

i,j est
2
i,j

)
− (`− 1) est

1 −
(
`
2

)
est

0

23: return 〈est0, est1, est2〉

8 Leah South and Douglas Stebila

4 Analysis of Construction

4.1 Error

Like the original count-min sketch, collisions can occur in this adaptation. These
collisions result in some error, causing either slight overestimations of counts or
false positives.

The error in estimating exact words can be expressed fairly simply. In deter-
mining this error relative to the original sketch, it is important to note that the
total count for this method is not the same as what it would be in the original
count-min sketch. In this adaptation of the sketch, the total count across the
sketch is (1 + `+

(
`
2

)
) times larger than the actual total of passwords used. This

additional count is the result of the update stage, in which the password itself,
all ` passwords within distance 1 and all

(
`
2

)
combinations of passwords within

distance 2 are added into the sketch. Let N̂ = (1 + `+
(
`
2

)
)N denote the total

count on the new sketch, where N is the total number of (non-distinct) passwords
entered. In general, hash outputs are expected to spread approximately evenly
across all columns of the table, making the average count per hash the quotient
of the total sum of counts and the width w of the table: N̂/w. The expected
maximum error is therefore N̂/w, which may occur, for example, if an estimate
is done on a password which is not present but happens to have the same hash
across all h hash functions as other passwords which have a count of N̂/w.

The expected maximum error for estimating counts of passwords at distance
1 can be derived from the formula for distance 1 in Algorithm 2:

error(est
1
) ≤ error

(∑
i

est1i

)
+ error(` est

0
) .

Since each term of
∑
i est

1
i is calculated as distance-0 estimate, the error of

each term is the same as the error in a distance-0 estimate, and thus

error(est
1
) ≤ ` error(est

0
) + error(` est

0
) ≤ 2` error(est

0
) = 2`

N̂

w
.

For passwords at distance 2, there is another increase in error. Based on the
estimate for words at distance 2 in Algorithm 2, the expected maximum error is

error(est
2
) ≤ error

∑
i,j

est2i,j

+ error((`− 1) est
1
) + error

((
`

2

)
est

0

)
.

Since each term of
∑
i,j est

2
i,j is calculated as distance-0 estimate, the error

of each term is the same as the error in a distance-0 estimate, and thus

error(est
2
) ≤

(
`

2

)
error(est

0
) + error((`− 1) est

1
) + error

((
`

2

)
est

0

)
.

Count-Min Sketches for Estimating Password Frequency within Distance 2 9

Simplifying and substituting, we get

error(est
2
) ≤

(
`

2

)
error(est

0
) + (`− 1) error(est

1
) +

(
`

2

)
error(est

0
)

≤
((

`

2

)
+ (`− 1)(2`) +

(
`

2

))
error(est

0
)

=

(
2

(
`

2

)
+ 2`(`− 1)

)
error(est

0
)

=

(
2

(
`

2

)
+ 4

(
`

2

))
error(est

0
)

= 6

(
`

2

)
error(est

0
) = 6

(
`

2

)
N̂

w
.

4.2 Comparison with Naive Method

The purpose of the adaptation is to provide a more effective method of estimating
counts of passwords within specified Hamming distances. While the count-min
sketch can be used to do this, this naive method using the original sketch—
incrementing the entry for every one of the α

(
`
d

)
words within distance d in an

alphabet of size α—would be less efficient and have a higher error rate.
In this section, a comparison of efficiency and error is carried out. All of the

following graphs have the same response variable: the expected average error as
a multiple of N

w where N is the total number of passwords entered (also the total
count in the original sketch) and w is the width of the table.

Estimates at distance 0. When estimating how many times a specific word
appears in a database (i.e. estimating passwords at distance zero), the original
count-min sketch is more effective. The expected maximum error in estimating

counts is N
w in the original method and N̂

w , or (1 + `+
(
`
2

)
)N/w, in this variation.

Therefore the expected maximum error for estimating counts at distance zero
will always be 1 + `+

(
`
2

)
times larger in this variation. However, this increase in

error is not a major problem since this sketch was not designed for estimating
exact word counts.

Estimates at distance 1. The benefits of using this modified sketch are more
evident when estimating counts at distance 1 of a password. In order to estimate
counts at distance 1 of a specified password using the original sketch, multiple
estimates would have to be done. More specifically, the number of estimates would
be α`, where α is the size of the alphabet and ` is the length of the password. Since
the error in estimating each individual password is N

w , the expected maximum
error in estimating α` passwords is α`N/w. With the new method, the expected
maximum error in estimating words at distance 1 is 2`N̂/w = 2`(1 + `+

(
`
2

)
)N/w.

A comparison of these errors can be seen in Figure 1, where the size of the
alphabet has been set to α = 72 (26 uppercase and 26 lowercase letters, 10

10 Leah South and Douglas Stebila

numbers, and 10 special characters). From this graph, it can be seen that the
error for the proposed method is lower until the length of the password reaches
nine characters.

2 3 4 5 6 7 8 9 10

500

1,000

Password length

E
rr

o
r

fa
ct

o
r

naive scheme

proposed scheme

Fig. 1. Error as a multiple of N/w for passwords at distance 1, using a count-min
sketch supporting maximum distance of 2, compared with naive scheme.

Note that this calculation above assumes that the update stage is as described
in Section 3.2, allowing for estimates within distance 2, even though we are
currently estimating distance 1. If the sketch is not going to be used to estimate
counts at distance 2 at all, then it is possible to remove the distance 2 section.
Updates for passwords at distance 2 would then not be included, making the
expected maximum error for words at distance 1 equal to 2`(1 + `)N/w. A graph
comparing the expected maximum error using the traditional method and this
variation in which only distance 1 is included can be seen below, in Figure 2. For
this graph, the size of the alphabet is again α = 72. The proposed method has a
lower error than the naive method until the length of the password reaches 36
characters.

Estimates at distance 2. For passwords at distance 2,
(
`
2

)
α estimates would have

to be done using the original sketch. This makes the error for the original sketch
α
(
`
2

)
N/w whereas our proposed technique has an error of 6

(
`
2

)
(1 + `+

(
`
2

)
)N/w.

When the size of the alphabet is α = 72, the resulting differences in error can be
seen in Figure 3: the error when using our proposed scheme is better than the
naive method when the length of the word is less than 24 characters.

5 Example Parameter Instantiation

By using the error estimates found in previous sections, it is possible to estimate
the size of the table required in order to obtain certain levels of accuracy. To do
this, the Markov inequality can be applied to all expected maximum errors. The
results are as follows:

Count-Min Sketches for Estimating Password Frequency within Distance 2 11

5 10 15 20 25 30 35

1,000

2,000

Password length

E
rr

o
r

fa
ct

o
r

naive scheme

proposed scheme

Fig. 2. Error as a multiple of N/w for passwords at distance 1, using a count-min
sketch supporting maximum distance of 1, compared with naive scheme.

2 4 6 8 10 12 14 16 18 20 22 24
0

2

4

·105

Password length

E
rr

o
r

fa
ct

o
r

naive scheme

proposed scheme

Fig. 3. Error as a multiple of N/w for passwords at distance 2, compared with naive
scheme.

12 Leah South and Douglas Stebila

– When estimating the number of times a specific word appears, there is an
error of at most 2(1+ `+

(
`
2

)
)N/w with probability of at least 1− (12)h, where

h is the number of hash functions.
– There is an error of at most 4`(1 + `+

(
`
2

)
)N/w with probability of at least

1− (1
2)h when estimating words within distance 1.

– There is an error of at most 12
(
`
2

)
(1 + ` +

(
`
2

)
)N/w with probability of at

least 1− (1
2)h when estimating words within distance 2.

The following exact parameter calculations are done for distances one and
two, but not for Hamming distance zero because, if the user desires a certain
error rate for estimating exact words, it is preferable to use the original count-min
sketch.

If the purpose of this sketch was to estimate passwords within distance 1 with
an error of at most 1% with probability of at least 99.9%, then the width w of
the table and the number h of hash functions would have to be as follows:

4`(1 + `+
(
`
2

)
)

w
=

1

100
=⇒ w = 100 · 4`

(
1 + `+

(
`

2

))

1−
(

1

2

)h
=

999

1000
=⇒ h ≈ 6.64

The number of hash functions would have to be 7 or more and the width
of the table would depend on the length of the password. If the length of the
passwords is 6 characters, then the width of the table would have to be at least
48,400. This size would be smaller if the table only included passwords within
distance zero to one, as suggested previously.

Similarly, if the sketch was needed to estimate passwords within distance 2
with an error of at most 1% with probability of at least 99.9%, then the number
of hash functions would still be at least 7 but the width of the table would be:

12
(
`
2

)
(1 + `+

(
`
2

)
)

w
=

1

100
=⇒ w = 100 · 12

(
`

2

)(
1 + `+

(
`

2

))
For 6-character passwords, this would make the width 338,800. While this width
seems large, it is possible that the false positive (or error) rate could be higher
when estimating words within specified distances.

6 Conclusion

When no restrictions are placed on passwords choices, users tend to choose popular
passwords. This leaves systems vulnerable to statistical guessing attacks. By
limiting the percentage of popular passwords, these attacks are not as successful.
In order to do this, efficient tools must be available to track password usage. The
count-min sketch can be used to estimate the counts of password usage within a
system. However, the count-min sketch is not as effective when estimating the

Count-Min Sketches for Estimating Password Frequency within Distance 2 13

counts of passwords within specified Hamming distances. In this paper, we have
proposed a variant of the count-min sketch using wildcard characters that can
be used to calculate estimates of words that are close in Hamming distance.

As with the original count-min sketch, there will never be false negatives —
where the estimate algorithm under-reports usage of the password — but there
may be false positives — meaning the estimate algorithm may over-report usage
of the password due to collisions. We have calculated the error rate for estimation
as the Hamming distance increases, which allows for calculation of sketch size for
a given error rate. For a reasonable alphabet size, the error rates in our proposed
method are lower than they would be using the naive approach on a standard
count-min sketch for a wide range of password lengths, up to 36- and 24-character
passwords when estimating passwords within distances 1 and 2 respective.

Our technique is most suited when all passwords in the database have the
same length. In future work, it may be desirable to develop another variation in
which edit distance, such as Levenshtein distance, is used, rather than Hamming
distance, to take into account passwords that are close due to deletions or
insertions of characters. Other future work may be to consider the impact of
using fractional contributions for passwords within a certain distance, where the
fraction is either a function of the Hamming distance divided by the password
length, or based on some model of textual similarity: for example, in ‘leetspeak’,
5 is a common substitution for s.

References

1. F. Bergadano, B. Crispo, G. Ruffo. Proactive password checking with decision trees.
Computer and Communications Security, 4(1):67-77, 1997.

2. B. H. Bloom. Space/time trade-offs in hash coding with allowable errors. Commu-
nications of the ACM, 13(7):422–426, July 1970.

3. J. Bonneau. The science of guessing: analyzing an anonymized corpus of 70 million
passwords. In Proc. 2012 IEEE Symposium on Security and Privacy (S&P), 2012.

4. J. Lawrence Carter and M.N. Wegman. Universal classes of hash functions. Journal
of Computer and System Sciences, 18(2):143–154, 1979.

5. G. Cormode, S. Muthukrishnan. An improved data stream summary: the count-min
sketch and its applications. Journal of Algorithms, 55(1):58-75, April 2005.

6. G. Cormode, S. Muthukrishnan. Approximating data with the count-min sketch.
IEEE Software, 29(1):64–69, January/February 2012.

7. U. Manber, S. Wu. An algorithm for approximate membership checking with
application to password security. Information Processing Letters, 50(1):191-197,
1994.

8. J.O. Pliam. On the incomparability of entropy and marginal guesswork in brute-force
attacks. In Proc. INDOCRYPT 2000, LNCS, vol. 1977, pp. 67–79.

9. S. Schechter, C. Herley, M. Mitzenmacher. Popularity is everything: A new approach
to protecting passwords from statistical guessing attacks. In Proc. 5th USENIX
Conference on Hot Topics in Security (HotSec), 2010.

10. E. Spafford. Preventing weak password choices. Purdue University Com-
puter Science Technical Reports, paper 875, report number 91-028, 1991.
http://docs.lib.purdue.edu/cstech/875

14 Leah South and Douglas Stebila

A Example Count-Min Sketch Calculation

Fix the table T to be of width w = 101 and height h = 2.

A.1 Hash

First we show how the hash values can be calculated for a single password, say
abcd, under two hash functions.

We encode each character as two-digit integer, say abcd 7→ x = 〈1, 2, 3, 4〉,
then find the integer representation, X = 01020304.

Set a common prime p = 3571, and for each of the two hash functions
hashk, choose the parameters ak and bk at random modulo p; for example,
a = [1151, 2111] and b = [941, 1433].

The hashes of abcd are as follows:

hash1(X) = ((1151 · 01020304 + 2111) mod 3571) mod 101 = 20

hash2(X) = ((941 · 01020304 + 1433) mod 3571) mod 101 = 83 .

The vector-wise hash is thus hash(abcd, a, b) = 〈20, 83〉.

A.2 Update

We now show how to update the table T to record the use of a password, first
updating just the entries for the password itself, then the entries for passwords
within Hamming distance 2.

Suppose the table T is currently as follows:

column

row 1

row 2

19 20 21 37 38 39 82 83 84

· · ·
· · ·

· · ·
· · ·

· · ·
· · ·

· · ·
· · ·

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

Update at distance 0. Now, suppose we call update(T, x = abcd, a, b, c = 1) 7→ T ′,
which is meant to increment (since c = 1) the use of the password abcd. Assume a
and b are as in the previous subsection. Then we have that hash(abcd) = 〈20, 83〉.
Thus, we increment the 20th entry of row 1 and the 83rd entry of row 2, to obtain
T ′:

column

row 1

row 2

19 20 21 37 38 39 82 83 84

· · ·
· · ·

· · ·
· · ·

· · ·
· · ·

· · ·
· · ·

0 1 0

0 0 0

0 0 0

0 0 0

0 0 0

0 1 0

Count-Min Sketches for Estimating Password Frequency within Distance 2 15

Update at distance 1. Next, we increment all four wildcard passwords within
distance 1 of abcd, namely *bcd, a*cd, ab*d, and abc*. This is done by computing
the corresponding hashes

hash(*bcd) = 〈38, 17〉 hash(a*cd) = 〈37, 47〉
hash(ab*d) = 〈37, 63〉 hash(abc*) = 〈78, 1〉

and updating all the corresponding entries of the table accordingly. Notice that a
few partial collisions occur, for example, both ab*d and a*cd collide under hash1,
but fortunately do not collide under hash2.

In our table extract, we only see a few of the 8 updates since not all columns
are shown (though we imagine all the updates are applied):

column

row 1

row 2

19 20 21 37 38 39 82 83 84

· · ·
· · ·

· · ·
· · ·

· · ·
· · ·

· · ·
· · ·

0 1 0

0 0 0

2 1 0

0 0 0

0 0 0

0 1 0

Update at distance 2. Finally, we increment all
(
4
2

)
= 6 wildcard passwords within

distance 2 of abcd; namely

hash(**cd) = 〈55, 82〉 hash(*b*d) = 〈55, 33〉
hash(*bc*) = 〈31, 36〉 hash(a**d) = 〈18, 27〉
hash(a*c*) = 〈95, 66〉 hash(ab**) = 〈95, 82〉

In our table extract, we again only see a few of the 12 updates:

column

row 1

row 2

19 20 21 37 38 39 82 83 84

· · ·
· · ·

· · ·
· · ·

· · ·
· · ·

· · ·
· · ·

0 1 0

0 0 0

2 1 0

0 0 0

0 0 0

2 1 0

A.3 Estimate

Suppose we now estimate(T, x = bbcd, a, b) to obtain the estimate est
1

of the
frequency of passwords at distance 1 of bbcd.

Estimate at distance 0. First, we need to compute an estimate est
0

for the number
of times bbcd itself has been used. We do this by computing hashk(bbcd) and
retrieving the corresponding cell from row i, then taking the minimum. In this
case, hash(bbcd) = 〈76, 53〉. The 76th entry in the first row and the 53rd entry
in the second row are both 0, so this yields a (correct) estimate that the exact
password bbcd has been seen 0 times before.

16 Leah South and Douglas Stebila

Estimate at distance 1. To compute an estimate est
1

for the number of times any
password at distance 1 of bbcd has been used, we first need to compute estimates
for the number of times each of the four wildcard passwords *bcd, b*cd, bb*d,
and bbc* has been used before.

hash(*bcd) = 〈38, 17〉 =⇒ est11 = min{1, 1} = 1

hash(b*cd) = 〈100, 8〉 =⇒ est12 = min{0, 0} = 0

hash(bb*d) = 〈100, 60〉 =⇒ est13 = min{0, 0} = 0

hash(bbc*) = 〈76, 63〉 =⇒ est14 = min{0, 1} = 0

Then, we sum these values and subtract the estimate for the number of times
the string bbcd itself was used:

est
1

=

(∑
i

est1i

)
− ` est0 = 1 .

