
Effort-Release Public-Key Encryption from
Cryptographic Puzzles

Jothi Rangasamy, Douglas Stebila, Colin Boyd, Juan Gonzalez Nieto, and
Lakshmi Kuppusamy

Information Security Institute, Queensland University of Technology,
GPO Box 2434, Brisbane, Queensland 4001, Australia

{j.rangasamy,stebila,c.boyd,j.gonzaleznieto,l.kuppusamy}@qut.edu.au

Abstract. Timed-release cryptography addresses the problem of “send-
ing messages into the future”: a message is encrypted so that it can only
be decrypted after a certain amount of time, either (a) with the help
of a trusted third party time server, or (b) after a party performs the
required number of sequential operations. We generalise the latter case
to what we call effort-release public key encryption (ER-PKE), where
only the party holding the private key corresponding to the public key
can decrypt, and only after performing a certain amount of computation
which may or may not be parallelisable. Effort-release PKE generalises
both the sequential-operation-based timed-release encryption of Rivest,
Shamir, and Wagner, and also the encapsulated key escrow techniques
of Bellare and Goldwasser. We give a generic construction for ER-PKE
based on the use of moderately hard computational problems called puz-
zles. Our approach extends the KEM/DEM framework for public key
encryption by introducing a difficulty notion for KEMs which results in
effort-release PKE. When the puzzle used in our generic construction is
non-parallelisable, we recover timed-release cryptography, with the addi-
tion that only the designated receiver (in the PKE setting) can decrypt.
Keywords: puzzles, difficulty, timed-release encryption, key escrow

1 Introduction

Until 1992, only the hard problems of computational complexity were consid-
ered as the foundation of cryptography. Dwork and Naor introduced the notion
of moderately hard problems in 1992 [9]. Since then, moderately hard problems
have shown a great deal of promise and have emerged as an important pil-
lar of cryptography. A moderately hard problem is defined as a cryptographic
problem such that solving it is not computationally infeasible but also not easy.
Moderately hard problems have found their main application in guarding against
resource exhaustion attacks such as denial-of-service (DoS) and spam [9, 10]. In
these applications, they are called client puzzles or proofs of work ; in the case of
DoS attacks, a defending server can force its clients to commit some of its own
resources by solving a puzzle, before being granted access to a resource. In this
work, we call all such moderately hard problems cryptographic puzzles regardless
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of who is the solver.

Timed-release cryptography. Rivest et al. used a class of cryptographic
puzzles to enable “future decryption”: encrypting a message so that the decryp-
tion is possible only after a certain amount of time has elapsed [14]. They called
this idea timed-release cryptography (TRC) and also proposed an alternative
way to accomplish TRC with the help of a trusted third party time server. The
class of cryptographic puzzles being used for this task is called time-lock puzzles
and has the following properties: (i) solving them is an intrinsically sequential
process (puzzle solving is a non-parallellisable task) and (ii) the puzzle generator
may hold a trapdoor allowing an easy (short-cut) way to find solutions. Timed-
release encryption has been identified to have many applications in practice.
Examples given by Rivest et al. include e-voting where opening votes needs to
be delayed and sealed-bid auctions where the bids must not be opened until the
end of the bidding period.

Motivation. Since Rivest et al.’s work, there has been a lot of work on TRC
but primarily focused on the second approach of using a trusted third-party
server [6, 4, 7]. Moreover the puzzle-based TRC of Rivest et al. does not provide
confidentiality which is as important as delaying the decryption since anyone
can get the message after solving the associated puzzle. Achieving both the con-
fidentiality and the delayed decryption properties is vital in many applications
where timed-release encryption is useful. For example, bid-privacy in e-auctions
and vote-privacy in e-voting schemes require the addition of confidentiality.

Another interesting scenario is the encapsulated key escrow techniques of
Bellare and Goldwasser [1, 2] where both the confidentiality and the delayed de-
cryption properties are essential, but the puzzles need not be non-parallelisable.
In particular an Internet service provider may need to escrow (session) keys of
its customers to the government law-enforcement agency. To prevent the agency
from engaging in massive wire-tapping, puzzles are used to delay the key recov-
ery process. However we observe that puzzle-based TRC has not been treated
in a formal way, thus a more formal and thorough approach is desirable.

Contributions: We propose the notion of effort-release PKE (ER-PKE) in
which only the intended recipient can get the message, and that too after a
certain amount of computational effort which need not be a sequential process.
Our notion generalises both the encapsulated key escrow techniques of Bellare
and Goldwasser and the puzzle-based timed-release encryption of Rivest, Shamir,
and Wagner in the PKE setting.

Moreover our notion generalises timed-release cryptography in two ways as
effort-release cryptography considers not only non-parallellisable puzzles but
also parallelisable ones and achieves confidentiality. In particular, the receiver
can decrypt the message only after solving the puzzle correctly but the solving
process may or may not be parallelisable. Since time-lock puzzles are mainly
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non-parallelisable puzzles, restricting effort-release cryptography only to non-
parallelisable puzzles recovers timed-release PKE.

In our approach, we adapt the KEM/DEM approach to obtain a generic
construction of effort-release PKE. In particular, following this strictly modular
approach, we first introduce a difficulty notion for KEMs and quantify the effort
required to release the encrypted message by extending the difficulty notion for
puzzles by Chen et al [5]. We then give a generic construction of difficult KEM
as a composition of a PKE and a difficult puzzle. Finally, we define effort-release
PKE analogous to difficult KEM, show that difficulty of the KEM carries over
to the KEM/DEM hybrid PKE, and provide a concrete construction of ER-PKE.

Paper Outline. Section 2 considers the definition and security notions for puz-
zles. Section 3 presents the difficulty notion for KEMs by adapting the framework
for puzzle schemes. Section 4 is dedicated to effort-release PKE and effort-release
hybrid PKE and Section 5 concludes the paper.

Notation. If n is an integer, |n| denotes its length in bits and if S is a set,

|S| denotes its cardinality. a
$← S means choosing a from the set S at random

and if a = (a1, . . . , an) then (a1, . . . , an) ← a means a is parsed as shown.
By y ← A(x), we mean that the output of an algorithm A with the input x is

assigned to y; y
$← A(x) denotes the similar running of a probabilistic algorithm.

PPT means probabilistic polynomial time. [A(x1, x2, . . .)] denotes the set of all
possible outputs of A on inputs x1, x2, . . .. We use negl(`) to denote an arbitrary
function which is negligible as a function of `.

2 Cryptographic Puzzles

The functions that we often use in cryptography are either easy to compute or
intractable. In this section we look at a special kind of functions or problems
that are moderately hard to compute: cryptographic puzzles.

A cryptographic puzzle scheme CPuz is a tuple (Setup,GenPuz,GetSoln,
FindSoln,Vrfy) of algorithms defined as follows:

Setup(1`): The PPT algorithm that accepts the security parameter ` as input
and returns output as follows:
• Selects the key space sSpace, the difficulty space QSpace, the string space

strSpace, the puzzle instance space puzSpace and puzzle solution space
solnSpace.

• Selects the long-term puzzle secret s
$← sSpace.

• Selects the puzzle parameters params← (sSpace, puzSpace, solnSpace,
QSpace) required for the client puzzle.

• Returns (params, s)
GenPuz(params, s,Q, str): Given params, the puzzle secret s ∈ sSpace, Q ∈

QSpace and str ∈ strSpace the probabilistic algorithm outputs a puzzle in-
stance puz ∈ puzSpace.
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GetSoln(params, s, puz): Given params, the puzzle secret s ∈ sSpace, and a puzzle
puz ∈ puzSpace, the algorithm outputs a solution soln ∈ solnSpace.

FindSoln(params, puz, τ): Given params, a puzzle puz ∈ puzSpace and a run time
τ ∈ N, the algorithm outputs a potential solution soln ∈ solnSpace after
running for at most τ clock cycles of execution.

Vrfy(params, puz, soln): is a deterministic algorithm taking as inputs params, a
puzzle puz ∈ puzSpace and a potential solution soln ∈ puzSpace and returns
a true or false.

Correctness. We say a puzzle scheme CPuz = (Setup,GenPuz,GetSoln,
FindSoln,Vrfy) is correct if for all (params, s) ∈ [Setup(1k)], all Q ∈ QSpace, all
str ∈ strSpace and all puz ∈ [GenPuz(params, s,Q, str)], there exists a τ ∈ N
such that soln← FindSoln(params, puz, τ), and true← Vrfy(params, puz, soln).

Remark 1. The GetSoln algorithm taking the trapdoor puzzle secret s as an
input and will be used by the puzzle generator to find a solution faster than
the FindSoln algorithm. Hence the difficulty of finding solution applies only to
the solver running the FindSoln without the trapdoor s. In this work we are
interested in puzzles for which GetSoln algorithms exist and there exist unique
solution for each puzzle instance.

Chen et al. [5] were the first to study computational puzzles in a rigor-
ous manner and they introduced two necessary security properties for a puzzle
scheme to be effective against DoS attackers. In particular they defined two secu-
rity notions of puzzles, namely, unforgeability and difficulty. The unforgeability
property requires that only the puzzle generator who holds the long-term puzzle
secret can generate genuine puzzles. The difficulty property requires that solving
a puzzle requires a certain amount of computational work.

In the context of DoS defense the unforgeability property is quite important
as argued by Chen et al.. In contrast, in the context of ER-PKE a sender gener-
ates a puzzle and encrypts it under the receiver’s public key so that the adversary
does not see puzzles. Hence we require puzzles only to be difficult enough for
the intended recipient.

We now describe the puzzle-difficulty game of Chen et al. using the code-
based game-playing approach due to Bellare and Rogaway [3]. The difficulty of
CPuz is defined by the game executed between a challenger and an adversary A
in Figure 1. The advantage of A playing the difficulty game is defined as

AdvQ,Diff
A,CPuz(`) = Pr

[
ExecQ,Diff

A,CPuz(`) = 1
]
.

Definition 1 (Puzzle-difficulty). Let ε`,Q(τ) be a family of functions mono-
tonically increasing in τ , where ` is a security parameter and Q is a difficulty
parameter. Fix ` ≥ 0 and Q ≥ 0. Then, a client puzzle CPuz is ε`,Q(·)-difficult if

AdvQ,Diff
A,CPuz(`) ≤ ε`,Q(τ),

for all A running in time at most τ (τ ∈ N).
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ExecQ,Diff
A,CPuz(`) :

1. (params, s)
$← Setup(1`);List← ∅

2. (state, str∗)
$← AO1 (params)

• If A queries O(str):

(a) puz
$← GenPuz(params, s, str)

(b) soln← GetSoln(params, s, str, puz)
(c) Append (str, puz, soln) to List
(d) Answer A with (puz, soln).

3. puz∗
$← GenPuz(params, s, str∗)

4. soln∗ ← GetSoln(params, s, str∗, puz∗)

5. soln′
$← AO2 (state, puz∗)

• Answer O queries as above
6. If (str∗, puz∗, soln′) is in the List, return ⊥
7. Return 1 if soln′ = soln∗, else return 0.

Fig. 1. Difficulty experiment for puzzles

Remark 2. Let Puz be an ε`,Q(t)-difficult puzzle such that each instance of it
requires about Q basic steps to solve. Then ε`,Q(t) might take the form t/Q +
negl(`). However for puzzles we usually have ` ≥ Q and ` can be chosen according
to the difficulty we aim to achieve. When ` ≥ Q, we have that εQ(t) := t/Q +
negl(Q) ≥ t/Q+ negl(`) = ε`,Q(t) and therefore an ε`,Q(t)-difficult puzzle Puz is
also εQ(t)-difficult. Hence, for ease of notation, we set the difficulty parameter
Q to be the puzzle security parameter.

In the sections that follow we combine difficult puzzles with public-key prim-
itives to delay the decryption process for a certain amount of time.

3 Difficult Key Encapsulation Mechanism

The basic idea behind the work of Rivest et al. on TRC is that the symmetric
key used for encrypting the message should not be available immediately for the
recipient but only after a certain period of time. Analogous to this approach, the
natural extension to a designated solver case is to delay the decryption of the
ciphertext encapsulating the symmetric key. This leads us to seek a new class of
KEMs and we call a KEM satisfying this goal a difficult KEM.

3.1 Definition: Difficult KEM

We now propose the notion of difficult key encapsulation mechanism (DKEM)
which will lead to a PKE achieving confidentiality as well as delayed decryption.
A DKEM works very similar to a KEM scheme, except that the encapsulation
algorithm takes in addition to the regular inputs a secret generated by the param-
eter generation algorithm. A DKEM is a tuple (KEM.PG,KEM.KG,KEM.Encap,
KEM.Decap) of 4 algorithms with the following input/output behavior:
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(params, s)
$← KEM.PG(1k, 1Q)

(pk, sk)
$← KEM.KG(params)

(K,C)
$← KEM.Encap(params, s, pk)

K ← KEM.Decap(params, sk, C).

Correctness. Correctness of DKEM = (KEM.PG,KEM.KG,KEM.Encap,KEM.
Decap) requires that, for all (params, s) ∈ [KEM.PG(1k, 1Q)], and all (pk, sk) ∈
[KG(params)], we have KEM.Decap(params, sk, C) = K for all (C,K)← KEM.
Encap(params, s, pk) with probability one, where the probability is taken over
the coins of KEM.Encap.

Difficulty. We formally define what we mean by a KEM be difficult. We
observed that the difficulty in getting session keys is analogous to the difficulty
of getting puzzle solutions and thus we extend the puzzle-difficulty property of
Chen et al. to KEMs as a special security property.

The difficulty of KEM is defined by the game executed between a challenger
and an adversary A in Figure 4. The advantage of A playing the difficulty game
is defined as

Advk,Diff
A,KEM(Q) = Pr

[
Execk,Diff

A,KEM(Q) = 1
]
.

Execk,Diff
A,KEM(Q) :

1. (params, s)
$← KEM.PG(1k, 1Q);KList← ∅

2. (pk, sk)
$← KEM.KG(params)

3. state
$← AOEnc

1 (params, sk)
• If A queries OEnc:

(a) (C,K)
$← KEM.Encap(params, s, pk)

(b) Append (C,K) to KList
(c) Answer A with (C,K).

4. (C∗,K∗)
$← KEM.Encap(params, s, pk)

5. K′
$← AOEnc

2 (state, C∗)
• Answer OEnc queries as above

6. If (C∗,K∗) is in the KList, return ⊥
7. Return 1 if K′ = K∗, else return 0.

Fig. 2. Difficulty experiment for key encapsulation mechanism

Definition 2 (KEM-difficulty). Let εk,Q(τ) be a family of functions mono-
tonically increasing in τ , where k is a security parameter and Q is a difficulty
parameter. Fix k ≥ 0 and Q ≥ 0. Then, a KEM is εk,Q(·)-difficult if

Advk,Diff
A,KEM(Q) ≤ εk,Q(τ),
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for all A running in time at most τ (τ ∈ N).

Remark 3. The difficulty definition of KEM appears quite similar to the non-
invertibility under adaptive chosen ciphertext attacks of KEM but differs in the
following ways: the encapsulation here takes a secret as an input which is not an
input to the decapsulation algorithm, and (hence) the adversary is given access
to the encapsulation oracle but not to the decapsulation oracle.

3.2 A Difficult Key Encapsulation Mechanism from Puzzles

As discussed before, cryptographic puzzles have been predominantly used for
fighting against resource exhaustion attacks such as junk email (also known as
spam) and DoS attacks [9, 10]. Rivest, Shamir and Wagner [14] were the first
to combine puzzles with symmetric-key encryption to intentionally delay the
message recovery process. In particular, a sender encrypts a message under a
(random) symmetric-key. Then the sender generates a puzzle and uses its unique
solution to mask the symmetric-key. The ciphertext and the puzzle is sent to the
recipient who gets the message after solving the puzzle.

However this technique just delays the decryption process but anyone that
is willing to solve the puzzle can acquire the message and hence confidentiality
is lost. One natural way to achieve confidentiality is to encrypt the puzzle under
the recipient’s public key so that anyone else but the recipient cannot see the
puzzle. Following this idea, we instantiate a difficult KEM by using a PKE with
a difficult puzzle and we then show that the difficulty of the puzzle substantiates
the difficulty of the KEM.

The other approach for this idea could be the following: first generate a KEM
ciphertext using the recipient’s public key, then mask the ciphertext with the
solution of a puzzle and send the masked ciphertext and the puzzle to the recipi-
ent. Although this approach of adding puzzles separately to the KEM ciphertext
looks interesting it may work only for the specific KEM and puzzle schemes. Thus
we follow the direct approach of using the puzzle solution to derive a session key
and then encrypting the puzzle as it leads to a generic construction of a difficult
KEM using a PKE and a difficult puzzle. Moreover, our approach is compatible
with practical PKEs such as RSA-REACT as seen in Section 4.2.

The Scheme. Let KDF be a key derivation function [15, 16]. Let (PKE.KG,PKE.
Enc,PKE.Dec) be a PKE scheme and let CPuz = (Setup, GenPuz,GetSoln, FindSoln,
Vrfy) be a puzzle scheme. Then the proposed DKEM is a tuple (KEM.PG,KEM.KG,
KEM.Encap, KEM.Decap) of algorithms as seen in Figure 3:

Security analysis. We consider two security properties for the KEM in Fig-
ure 3, namely difficulty (see definition 2) and indistinguishability under adaptive
chosen-ciphertext attacks (IND-CCA) [8, 15].

We now show that if CPuz is difficult in the sense of Chen et al., then the
DKEM in Figure 3 is difficult according to the definition 2.
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KEM.PG(1k, 1Q) :

• (params, s)
$← Setup(1Q)

• Return (params, s)

KEM.Encap(params, s, pk) :

• puz
$← GenPuz(params, s, str)

• soln← GetSoln(params, s, puz)

• r
$← {0, 1}poly(k); K ← KDF(soln, r)

• C
$← PKE.Enc(pk, puz||r)

• Return (C,K)

KEM.KG(params) :

• (pk, sk)
$← PKE.KG(params)

• Return (pk, sk)

KEM.Decap(params, sk, C) :

• puz||r ← PKE.Dec(sk, C)
• soln← FindSoln(params, puz)
• K ← KDF(soln, r)
• Return K

Fig. 3. DKEM from PKE and puzzles

Theorem 1. Assume that KDF is a random oracle. Let DKEM = (KEM.PG,
KEM.KG,KEM.Encap,KEM.Decap) be the KEM scheme in Figure 3 and let CPuz
= (Setup,GenPuz,GetSoln,FindSoln,Vrfy) be a difficult cryptographic puzzle scheme
according to the definition 1. Suppose there exists an adversary A against the
difficulty of DKEM, then there is an adversary B against the difficulty of CPuz
such that

Advk,Diff
A,DKEM(Q) ≤ AdvDiff

B,CPuz(Q) + negl(k)

and the running time of B is asymptotically the same that of A.

Proof. Let A be the attacker against the difficulty of DKEM that makes at most
qEnc queries to OEnc and at most qKDF queries to the random oracle KDF. We
now build an attacker B that breaks the difficulty of CPuz using A and runs in
asymptotically the same time as A.
B interacts individually with the challenger in puzzle-difficulty game and

A playing the KEM-difficulty game. We describe how B proceeds. B’s input
are the public parameters params from the puzzle challenger. Now B generates

(pk, sk)
$← KEM.KG(params) and invokes A with (params, sk).

Encapsulation queries: NowAmay issue a polynomial number of Enc queries
for which B answers as follows: for each of A’s query to OEnc, B first selects a

string str
$← strSpace and queries O (the oracle for CreatePuzSoln queries) from

the puzzle challenger and in response receives a puzzle-solution pair (puz, soln).

Then B queries the random oracle KDF with (soln, r) for r
$← {0, 1}poly(k), to get

K, computes C
$← PKE.Enc(pk, puz||r) and responds A with (C,K). B records

(soln, r,K) into the list it maintains for KDF queries. B also records A’s queries
to the KDF oracle.

Challenge: At some point of time, A asks for the target ciphertext and now B
selects a random string str∗

$← strSpace and queries the puzzle challenger with
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str∗ for the target puzzle. In response B receives the target puzzle puz∗ to solve

and B now computes the challenge ciphertext C∗
$← PKE.Enc(pk, puz∗||r∗) and

responds A with C∗.
At some time, when A returns a key K ′ as the output of the game, B checks

with the list if there was an query to KDF having K ′ as its output. Since A has
non-negligible advantage in breaking the KEM-difficulty it must have queried
KDF with some soln′ and r∗ to obtain K ′. In this case B searches for the tuple
matching (soln′, r∗,K ′) and returns soln′ to the puzzle challenger playing the
difficulty game.

If A wins the KEM-difficulty game by guessing the session key K ′ it happens
with probability 1/(the size of key space), which is negl(k). If A does not guess
the session key but wins the KEM-difficulty game then B also wins the puzzle-
difficulty game. Therefore we have,

Advk,Diff
A,KEM(Q) ≤ AdvDiff

B,CPuz(Q) + negl(k).

The running time of B is asymptotically the same that of A. ut

The following theorem says that if PKE is IND-CCA-secure, then DKEM in
Figure 3 is IND-CCA-secure. The proof of the theorem is similar to the proof for
KEM/DEM by Cramer and Shoup[8] and is omitted due to lack of space.

Theorem 2. Assume that KDF is entropy smoothing key derivation function
[15, 16]. Let PKE = (PKE.PG,PKE.KG,PKE.Enc,PKE.Dec) be an IND-CCA-
secure public-key encryption scheme and let DKEM be a KEM as seen in Fig-
ure 3. Suppose there exists an IND-CCA adversary A against DKEM, then there
exist an adversary A1 against the entropy smoothness of KDF and an IND-CCA
adversary A2 against PKE such that

AdvIND-CCA
A,DKEM(k) ≤ AdvES

A1,KDF(k) + AdvIND-CCA
A2,PKE (k), ∀k ≥ 0

where A1 and A2 have (asymptotically) the same running time as A.

Remark 4. The proof of Theorem 1 is in the random oracle model where as
the proof of Theorem 2 is in the standard model assuming KDF to be entropy
smoothing(ES) [15, 16]. It is an interesting open problem to construct a DKEM
from a difficult puzzle such that the proof of Theorem 1 is in the standard model.

4 Effort-Release Public Key Encryption

In this section we define difficulty for public-key encryption schemes in analogous
to the difficulty for KEMs. We call a PKE scheme having this property an Effort-
Release Public Key Encryption (ER-PKE). An ER-PKE works similar to a PKE
but the recipient holding the decryption key cannot immediately and suddenly
complete the decryption process but after the required number of operations.
That is, the decryption process requires a certain amount of moderately-hard
computation which may or may not be a parallelisable task.
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An ER-PKE is a tuple (PKE.PG,PKE.KG, PKE.Enc, PKE.Dec) of 4 algorithms
with the following input/output behaviour:

(params, s)
$← PKE.PG(1k, 1Q)

(pk, sk)
$← PKE.KG(params)

C
$← PKE.Enc(params, s, pk,m)

m← PKE.Dec(params, sk, C).

Correctness. A ER-PKE scheme (PKE.PG,PKE.KG,PKE.Enc, PKE.Dec) is cor-
rect if, for all (params, s) ∈ [PKE.PG(1k)], all (pk, sk) ∈ [PKE.KG(params)], and
all plaintexts m ∈ MsgSp, we have PKE.Dec(params, sk,Enc(params, s, pk,m)) =
m with probability one, where the probability is taken over the coins of PKE.Enc.

Informally we call a PKE effort-release if the decryption algorithm cannot be
run trivially and the adversary should put in some computational effort for pre-
specified expected amount of time for the successful decryption of a ciphertext.

We now formally define what do we mean by effort-release PKE. As for
the difficulty of KEM, the effort-release game is defined as the difficulty game
executed between a challenger and an adversary A in Figure 4. The advantage
of A playing the difficulty game is defined as

Advk,Diff
A,PKE(Q) = Pr

[
Execk,Diff

A,PKE(Q) = 1
]
.

Execk,Diff
A,PKE(Q) :

1. (params, s)
$← PKE.PG(1k, 1Q);List← ∅

2. (pk,sk)
$←PKE.KG(params)

3. state
$← AOEnc

1 (params, sk)
• If A queries OEnc(m):

(a) C
$← PKE.Enc(params, s, pk,m)

(b) Append (C,m) to List
(c) Answer A with (C,m).

4. m∗
$← MsgSp, the message space

5. C∗
$← PKE.Enc(params, s, pk,m∗)

6. m′
$← AOEnc

2 (state, C∗)
• Answer OEnc queries as above

7. If (C∗,m∗) is in the List, return ⊥
8. Return 1 if m′ = m∗, else return 0.

Fig. 4. Difficulty experiment for Effort-Release PKE

Definition 3 (Effort-Release PKE). Let εk,Q(τ) be a family of functions
monotonically increasing in τ , where k is a security parameter and Q is a dif-
ficulty parameter. Fix k ≥ 0 and Q ≥ 0. Then, a PKE is εk,Q(·)-effort-release
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if

Advk,Diff
A,PKE(Q) ≤ εk,Q(τ),

for all A running in time at most τ (τ ∈ N).

4.1 Effort-Release Hybrid PKE

Effort-release hybrid PKE can be seen as an extension of Rivest et al.’s timed-
release (symmetric-key) encryption to the PKE setting. In this section, we give
definition for an effort-release hybrid PKE, which works very similar to a hybrid
PKE proposed by Cramer and Shoup [8, 15] and we then prove that (i) the
hybrid PKE scheme in Figure 5 is an effort-release PKE if the DKEM is difficult
according to the definition 2 and (ii) the effort-release hybrid PKE is IND-CCA-
secure if both the DKEM and DEM are IND-CCA-secure.

ER-PKE.PG(1k, 1Q) :

• (params, s)
$← KEM.PG(1k, 1Q)

• Return (params, s)

ER-PKE.Enc(params, s, pk,m) :

• (K, c1)← KEM.Encap(params, s, pk)
• K′ ← KDF(K)
• c2 ← DEM.Enc(K′,m)
• C ← (c1, c2)
• Return C

ER-PKE.KG(params) :

• (pk, sk)
$← KEM.KG(params)

• Return (pk, sk)

ER-PKE.Dec(params, sk, C) :

• (c1, c2)← C
• K ← KEM.Decap(params, sk, c1)
• K′ ← KDF(K)
• m← DEM.Dec(K′, c2)
• Return m

Fig. 5. Effort-Release hybrid PKE

Remark 5. In the Effort-Release hybrid PKE in Figure 5, the operation K ′ ←
KDF(K) may look redundant and undesirable since K itself is usually the output
of KDF. As shown in Theorem 3, having K ′ ← KDF(K) allows us to prove that
the difficulty of DKEM implies the difficulty of the hybrid ER-PKE.

Theorem 3. Assume that KDF is a random oracle. Let DKEM = (KEM.PG,
KEM.KG,KEM.Encap,KEM.Decap) be a difficult KEM scheme according to the
definition 2 and let ER-PKE be the scheme in Figure 5. Suppose there exists
an adversary A against the difficulty of ER-PKE, then there is an adversary B
against the difficulty of DKEM such that

Advk,Diff
A,ER-PKE(Q) ≤ (1/qKDF)Advk,Diff

B,DKEM(Q),

where qKDF is an upper bound on the number of queries to KDF made by A and
the running time of B is asymptotically the same that of A.
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The proof to this theorem is similar to the proof of Theorem 1 and is omitted
due to lack of space.

Now the following theorem shows that if both the Difficult-KEM and the
DEM are IND-CCA-secure then so is the the Hybrid PKE scheme in Figure 5.

Theorem 4 (Difficult-KEM/DEM Composition Theorem). Let (KEM.
PG,KEM.KG,KEM.Encap,KEM.Decap) be an IND-CCA-secure DKEM, let (DEM.
Enc,DEM.Dec) be an IND-CCA-secure DEM, and let (PKE.PG,PKE.KG,PKE.Enc,
PKE.Dec) be the resulting hybrid ER-PKE scheme. Then, for any IND-CCA ad-
versary A against ER-PKE, there exists an IND-CCA adversary B1 against DKEM
and an IND-CCA adversary B2 against DEM such that

AdvIND-CCA
A,ER-PKE(k) ≤ AdvIND-CCA

B1,DKEM(k) + AdvIND-CCA
B2,DEM (k) ∀k ≥ 0

and B1 and B2 have (asymptotically) the same running time as A.

The proof to this theorem is almost identical to the proof for KEM/DEM by
Cramer and Shoup [8] and is omitted.

4.2 Constructions of Effort-Release Hybrid PKE

Theorem 3 states that if the underlying KEM is difficult then the resulting hy-
brid encryption scheme is effort-release PKE. Therefore, as shown in Section 3.2
we can easily instantiate an effort-release hybrid PKE by constructing a difficult
KEM from difficult puzzles in [5, 12, 17] and combining it with a DEM.

Constructions of Timed-Release PKE. As shown by Rivest et al.[14]
timed-release encryption can be obtained from non-parallelisable puzzles in [13,
14]. Therefore using any of these two puzzles in a generic DKEM from Section 3.2
yields a timed-release PKE.

Effort-Release RSA-REACT To get an idea of how a practical effort-release
PKE might look, we briefly describe a way of constructing ER-PKE from RSA-
REACT proposed by Okamoto and Pointcheval [11]. In particular we instantiate
Chen et al.’s generic puzzle with SHA1 hash function and combine it with KEM
part of RSA-REACT and use AES to implement DEM part of RSA-REACT.
The resulting ER-RSA-REACT works as follows:
Let G and H be two hash functions with appropriate domains.

The key generation algorithm KG(1k). On input of the security parameter
k, the probabilistic algorithm generates an RSA modulus n and outputs a
public-key (e, n) and a secret-key (d, φ(n)) such that d = e−1 mod φ(n).

The encryption algorithm Enc((e, n),m). Given a message m and a public

key (e, n) the PPT algorithm first picks r
$← Zn and u

$← {0, 1}poly(Q). Now
it computes v ← SHA1(u) and parses u into u1 and u2 such that u2 is of
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length Q in bits. Then the algorithm computes K ← G(u2, r) and produces
a ciphertext (x, c, h) of m, where x← (u1||v||r)e mod n, c← AESK(m) and
the checking value h = H(r,m, x, c). Output is the ciphertext C ← (x, c, h).

The decryption algorithm Dec((d, φ(n)), C). The algorithm first decrypts x
using the secret key to obtain u1||v||r = xd mod n. Now it starts solving the

puzzle (u1, v) by guessing u2 such that v
?
= SHA1(u1||u2). Then recovers the

session key K = G(u2, r) and the plaintext m = AESK(c). Finally checks if

h
?
= H(r,m, x, c). If the check fails, outputs ⊥ to indicate rejection, otherwise

outputs the message m.

Remark 6. In ER-RSA-REACT a recipient may securely outsource the puzzle
solving process; if this is not desirable in some applications then including the
key material r along with u as input to SHA1 for a puzzle generation prevents
such outsourcing by the recipient since the (stand-in) puzzle solver will then
have enough information to recover the message.

5 Conclusion

Timed-release cryptography has been gaining increased popularity due to its
many interesting applications. While already known schemes for this purpose
are mainly based on time-servers, the only alternative way appears to be puzzle-
based ones where the receiver will be able to decrypt the message after solving
a puzzle. To the best of our knowledge, the puzzle-based approach has been
treated in an ad hoc fashion. We have proposed the notion of effort-release PKE
which generalises both the encapsulated key escrow techniques of Bellare and
Goldwasser and the puzzle-based timed-release encryption of Rivest, Shamir, and
Wagner in the PKE setting. We also gave a generic construction of effort-release
PKE by adapting the KEM/DEM approach which is tailored to moderately-
hard puzzles and the type of puzzle being used decides whether the obtained
ER-PKE is timed-release or not.

However, our generic construction of a difficult KEM has a proof of diffi-
culty in the random oracle model and hence it is an open problem to construct a
difficult KEM (from puzzles) having the proof of difficulty in the standard model.
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