
Modelling ciphersuite and version negotiation
in the TLS protocol

Benjamin Dowling and Douglas Stebila

Queensland University of Technology, Brisbane, Australia
{b1.dowling,stebila}@qut.edu.au

Abstract. Real-world cryptographic protocols such as the widely used
Transport Layer Security (TLS) protocol support many different combina-
tions of cryptographic algorithms (called ciphersuites) and simultaneously
support different versions. Recent advances in provable security have
shown that most modern TLS ciphersuites are secure authenticated and
confidential channel establishment (ACCE) protocols, but these analyses
generally focus on single ciphersuites in isolation. In this paper we extend
the ACCE model to cover protocols with many different sub-protocols,
capturing both multiple ciphersuites and multiple versions, and define a
security notion for secure negotiation of the optimal sub-protocol. We give
a generic theorem that shows how secure negotiation follows, with some
additional conditions, from the authentication property of secure ACCE
protocols. Using this framework, we analyse the security of ciphersuite
and three variants of version negotiation in TLS, including a recently
proposed mechanism for detecting fallback attacks.

Keywords: Transport Layer Security (TLS); ciphersuite negotiation;
version negotiation; downgrade attacks; cryptographic protocols

1 Introduction

The security of much communication on the Internet depends on the Transport
Layer Security (TLS) protocol [1,2,3], previously known as the Secure Sockets
Layer (SSL) protocol [4]. TLS allows two parties to authenticate each other
using public keys and subsequently establish a secure channel which provides
confidentiality and integrity of messages. The general structure of all versions of
SSL and TLS is that a handshake protocol is run, in which a set of cryptographic
preferences are first negotiated, then an authenticated key exchange protocol
is used to perform mututal or server-to-client authentication and establish a
shared session key; and then the record layer is active, in which the shared
session key is used with authenticated encryption for secure communication. TLS
supports many combinations of cryptographic parameters, called ciphersuites:
as of this writing, more than 300 ciphersuites have been standardized, with
various combinations of digital signature algorithms, key exchange methods, hash
functions, ciphers and modes, and authentication codes.

Given the paramount importance of TLS, formal understanding of its security
is an important goal of cryptography. Wagner and Schneier [5] were among the

mailto:b1.dowling@qut.edu.au
mailto:stebila@qut.edu.au

first to study SSL, and in particular compared SSLv3 [4] to SSLv2 [6]. A key
difference was that SSLv3 provided authentication of the full handshake, whereas
SSLv2 omitted the ciphersuite negotiation messages, leaving SSLv2 vulnerable
to ciphersuite rollback attacks: an active attack could force clients and servers to
negotiate weaker ciphersuites than the best they mutually support.

Provable security of TLS. A significant body of work is devoted to studying
the provable security of TLS: the majority of it focuses on individual cipher-
suites. Early work on the provable security of TLS analyzed truncated forms
of the TLS handshake [7,8] and a simplified record layer [9]. More recently,
unmodified versions of the TLS constructions have been studied by introducing
suitable security definitions. Paterson et al. [10] showed that certain modes of
authenticated encryption in the TLS record layer satisfy a property known as
secure length-hiding authenticated encryption. In 2012, Jager et al. [11] showed
that, under suitable assumptions on the underlying cryptographic primitives, the
signed-Diffie–Hellman TLS ciphersuite is a secure authenticated and confidential
channel establishment (ACCE) protocol, yielding the first full proof of security of
an unmodified TLS ciphersuite. Subsequent efforts [12,13,14] have shown that
most other TLS ciphersuites (using static or ephemeral Diffie–Hellman, RSA key
transport, or pre-shared keys) are also secure. Other recent approaches to analyz-
ing TLS include an alternative composability notion [15] and formal verification
of an implementation [16].

Previous security results on TLS all focus on analyzing a single ciphersuite
in isolation. Among other things, TLS allows for versions and ciphersuites to
be negotiated within the protocol, sessions to be resumed, renegotiation within
a session. Moreover, in practice servers often use the same long-term key in
many different ciphersuites, and browsers re-attempt failed handshakes with
lower versions. This variety of complex functionality leaves a gap between single-
ciphersuite results and real-world security. Some work has tried to bridge that
gap: Giesen et al. [17] extended the ACCE model to analyze the renegotiation
security of TLS in light of the attack of Ray and Dispensa [18]; Mavrogiannopou-
los et al. [19] demonstrated a cross-ciphersuite attack first suggested by Wagner
and Schneier [5] when the same long-term signing key is used in two different
key exchange methods; Bergsma et al. [20] developed an ACCE-based model for
multi-ciphersuite security and showed that the Secure Shell (SSH) protocol is
multi-ciphersuite security, though the Mavrogiannopolous et al. attack rules out
a general proof that TLS is multi-ciphersuite secure; and Bhargavan et al. [21]
showed that some combinations of ciphersuites do support key agility (a concept
related to multi-ciphersuite security).

Ciphersuite and version negotiation. This work aims to give a formal treatment
of the negotiation of ciphersuites and versions in real-world protocols like TLS.
For ciphersuite negotiation in TLS, the client sends in its first handshake message
a list of its supported ciphersuites in order of preference, and the server responds
with one of those that it also supports. With regards to version negotiation,
most browsers and servers support multiple versions of SSL and TLS, with

2

the majority supporting and accepting SSLv3 and TLSv1.0 (with more modern
software also supporting TLSv1.1 and TLSv1.2). The differences between versions
can significantly affect security: TLSv1.1 and TLSv1.2 are less vulnerable to
certain weaknesses in record layer encryption in some ciphersuites; SSLv3 does not
support extensions in the ClientHello and ServerHello negotiation messages;
and some extensions such as the Renegotiation Information Extension [22] are
essential to prevent certain types of attacks; and some ciphersuites with newer,
more efficient and secure algorithms are only supported in TLSv1.2.

The TLS protocol standards support a limited version negotiation mechanism
at present: the client sends the highest version it supports, and the server
responds with the highest version it supports that is less than or equal to the
client’s version, and that is the version the parties continue to use. However,
some server implementations do not correctly respond to ClientHello messages
containing higher versions, and instead of returning their highest supported
version in the ServerHello message will instead fail and return an error. Thus, in
practice a more complex version negotiation mechanism is often employed by web
browsers, sometimes called the “downgrade dance”. The client’s browser will try
to negotiate the highest version it supports (say, TLSv1.2); if the handshake fails,
then the browser will retry with each lower enabled version (TLSv1.1, TLSv1.0,
SSLv3) until it succeeds. This improved compatibility with incorrect server
implementation comes at the cost of decreased efficiency and more importantly
decreased security: the client and server have no way of detecting whether the
negotiated version is actually the highest version they both support or a lower
version due to an attacker maliciously injecting failure messages. In light of
this potential downgrade attack, a very recent Internet-Draft by Möller and
Langley has proposed a new backwards-compatible mechanism for detecting such
attacks [23], but as of this writing has yet to be standardized or deployed. The
SCSV extension is proposed to work as follows: If the client is falling back to an
earlier version due to a handshake failure, the client includes the SCSV value
indicating that it has fallen back; if the server observes the fallback SCSV but
supports a higher version than the client requests, the server returns an error
indicating that inappropriate fallback has been detected.

Contributions. We investigate the security of version and ciphersuite negotiation
in TLS. We do so by introducing an extension to the ACCE security model that
generically captures negotiation of “sub-protocols”. In particular, using ideas from
the multi-ciphersuite ACCE security experiment of Bergsma et al. [20], we extend
the ACCE security experiment to include “sub-protocols”: a single protocol
(such as TLS) consists of a negotiation protocol NP and several sub-protocols
–
SP (such as different ciphersuites or different versions), and in each session the
parties use the negotiation protocol to identify which sub-protocol they will
use for that session. We define secure negotiation for a negotiable protocol,
and use this to derive a negotiation-authentication theorem which allows us to
relate the security of sub-protocol negotiation to ACCE authentication under
certain conditions. Intuitively, if each sub-protocol individually is a secure ACCE
protocol with an independent long-term key, and if the transcript of all of the

3

messages in the negotiation protocol is authenticated by the sub-protocol, then
the authentication detects any attempt by an attacker to carry out a downgrade
attack. It is important to note that the aforementioned cross-ciphersuite attack
breaks ACCE authentication security under long-term key reuse setting; thus,
in order to obtain results on multi-ciphersuite TLS, our framework assume
long-term keys are independent for each sub-protocol. Existing analyses of TLS
show ([11,12,13,14]) that authentication security of TLS holds under independent
long-term key assumptions.

Having established the secure negotiation framework and tools we proceed to
study version and ciphersuite negotiation in TLS in several forms:

1. Ciphersuite negotiation within a single version: For a fixed version of TLS,
by application of the negotiation-authentication theorem we show that TLS
provides secure ciphersuite negotiation.

2. Version negotiation, no fallback: For clients and servers that support multiple
versions of TLS but do not attempt to fallback to earlier versions upon
handshake failure, we show that TLS also provides secure version negotiation
via the negotiation-authentication theorem.

3. Version negotiation, with fallback: For clients and servers that support multi-
ple versions of TLS and where the client will fallback to earlier versions if the
handshake fails, we see that secure negotiation is not provided demonstrating
that our secure negotiation definition does detect this undesired behaviour.

4. Version negotiation, with fallback using signalling ciphersuite value (SCSV): A
recent Internet-Draft [23] proposes the use of a special flag in the ClientHello
message. We show that this SCSV does provide TLS with a secure version
negotiation mechanism even when fallbacks are used.

2 The TLS Protocol

In this section, we give the details for ciphersuite negotiation and three variants
of version negotiation in the TLS protocol. The following is a description of
the two messages most relevant to TLS ciphersuite and version negotiation:
the ClientHello and ServerHello messages; descriptions of the subsequent
messages can be found in the TLS protocol specification [3].

– ClientHello: Sent by the client to begin the TLS handshake. Consists of: the
highest version that the client supports v; a random nonce rc; the optional
identifier of previous session that the client wishes to resume; a list of client
ciphersuite preferences #–c ; and an optional list of extensions extensions

describing additional options or functionality.
– ServerHello: Sent by the server in response to ClientHello. Consists of:

the negotiated choice of version v; a random nonce rs; a session identifier;
the negotiated choice of ciphersuite c∗; and an optional list of extensions.

2.1 Ciphersuite negotiation in TLS

As indicated above, in TLS the client sends in ClientHello. #–c a list of supported
ciphersuites, ordered from most preferred to least preferred. The server also has a

4

Client session π Server session π̂

ClientHello.CipherSuite← π. #–c

π.sid← π.sid‖ClientHello

#–c ′ ← ClientHello.CipherSuite

c∗ = ci where i = min{j : π̂.cj ∈ #–c ′}
ServerHello.cipher suite← c∗, π̂.c← c∗

π̂.sid← π̂.sid‖ClientHello‖ServerHello

ClientHello

ServerHello

π.c← ServerHello.cipher suite

π.sid← π.sid‖ServerHello

Fig. 1. NPcs: Ciphersuite negotiation protocol in TLS

list of supported ciphersuites ordered by preference, and selects its most preferred
ciphersuite that the client also supports. This ciphersuite negotiation protocol
NPcs is described algorithmically in Figure 1. In our formalism, the adversary
activates each party with the vector #–c of their ordered ciphersuite preferences
for that session.

2.2 Version negotiation in TLS

As indicated in the standards, in TLS the client sends in ClientHello.v the
highest version of TLS supports, and the server responds in its ServerHello

message with the chosen version. In practice, buggy TLS server implementations
sometimes reject unrecognised versions rather than negotiating a lower version,
so some TLS clients will carry out fallback, where they try again with a lower
supported version. We identify three variants of TLS version negotiation as
follows. Recall again that in our formalism, the adversary activates each party
with a vector #–v of their supported versions for that session.

– No-fallback version negotiation, denoted NPv: Version negotiation as defined
by the TLS standards (Figure 1).

– Fallback version negotiation (the “downgrade dance”), denoted NPv-fb: Version
negotiation as defined by the TLS standards, but allowing version fallback
(Figure 3).

– Fallback version negotiation with SCSV, denoted NPv-fb-scsv: The client pro-
ceeds as in fallback version negotiation, but when falling back to a lower
version, the client also includes in its ciphersuite list a fallback signalling
ciphersuite value (SCSV) to indicate that it has fallen back; this ciphersuite
cannot be negotiated, and instead simply serves as a flag. If the server sees
that it would negotiate a version lower than its highest version and the
client has included the fallback SCSV, the server aborts and responds with
inappropriate fallback (Figure 4).

Note that the transcript (π.sid in our formalism) “resets” in fallback version
negotiation: matching conversations are based solely on the last handshake, rather
than all handshakes that may have fallen back.

5

Client session π Server session π̂

ClientHello.client version← max{π. #–v }
π.sid← π.sid‖ClientHello

v′ ← ClientHello.client version
v∗ = max{v ∈ π̂. #–v : v ≤ v′}

ServerHello.server version← v, π̂.v ← v∗

π̂.sid← π̂.sid‖ClientHello‖ServerHello

ClientHello

ServerHello

π.v ← ServerHello.server version

π.sid← π.sid‖ServerHello
if π.v 6∈ π. #–v , then π.α← reject

Fig. 2. NPv: No-fallback version negotiation protocol in standard TLS

Client session π Server session π̂

(∗) ClientHello.client version← π.v0
π.sid← π.sid‖ClientHello

v′ ← ClientHello.client version
if ⊥ = max{π̂. #–v , v ≤ v′}

reply with fatal handshake error

else server responds as in Figure 2

if fatal handshake error

π.sid← ∅
go to (∗) and try with next highest version†

else π.v ← ServerHello.server version

π.sid← π.sid‖ServerHello
if π.v 6∈ π. #–v , then π.α← reject

ClientHello

fatal handshake error or ServerHello

† Note that the “go to (∗)” step in the client execution means that execution remains
in the same session for the client; however, the server, receiving a new ClientHello,

will start a new session.

Fig. 3. NPv-fb: Fallback version negotiation in TLS (the “downgrade dance”)

3 Security definitions

We begin by introducing the standard authenticated and confidential channel
establishment (ACCE) protocol framework as introduced by Jager et al. [11]. We
then extend the definition to cover protocols which negotiate a sub-protocol, and
define the secure negotiation property.

3.1 Authenticated and confidential channel establishment (ACCE)
protocols

An ACCE protocol is a multi-party protocol. Each instance of the protocol is
executed between two parties: during the pre-accept phase, the parties establish a
shared secret key and mutually authenticate each other; this is followed by a post-
accept phase, which allows parties to transmitted authenticated and encrypted

6

Client session π Server session π̂

(∗) ClientHello.client version← π.v0
π.sid← π.sid‖ClientHello

ClientHello

if FALLBACK SCSV ∈ ClientHello.Cipher Suite

and π̂.v0 > ClientHello.client version,
then reply with inappropriate fallback and abort

else server responds as in Figure 3

fatal handshake error or inappropriate fallback or ServerHello

if inappropriate fallback then π.α← reject and abort

if fatal handshake error

π.sid← ∅
ClientHello.Cipher Suite← π. #–c ‖FALLBACK SCSV

go to (∗) and try with next highest version

else π.v ← ServerHello.server version

π.sid← π.sid‖ServerHello
if π.v 6∈ π. #–v , then π.α← reject

Fig. 4. NPv-fb-scsv: Fallback negotiation in TLS with signalling ciphersuite value

payload data. We now proceed to describe the ACCE security model in detail,
beginning with the per-session variables and adversary interaction. Note that,
for simplicity, we restrict to the mutual authentication setting as in the original
ACCE definition of Jager et al. [11], but our results apply equally to server-only
authenticated ACCE [12,13]. Each ciphersuite in TLS is considered a separate
ACCE protocol with independent long-term keys, which limits the application of
the framework to implementations of TLS with no long-term key reuse.

Parties and sessions. The execution environment consists of nP parties, de-
noted P1, P2, . . . PnP

. Each party Pi has a long-term public/private key pair
(pki, ski), generated according to the protocol specification. Each party can exe-
cute multiple runs of the protocol either sequentially or in parallel; each run is
referred to as a session, and πs

i denotes the sth session at party i. For each session,
the party maintains a collection of the following per-session variables, and we
overload the notation πs

i to refer to both the session itself and the corresponding
collection of per-session variables.

– ρ ∈ {init, resp}: The role of the party in the session.
– pid ∈ [nP]: The index of the intended peer of this session.
– α ∈ {in-progress, accept, reject}: The execution status of the session.
– k: A session key, or ⊥; k may for example consist of sub-keys for bi-directional

authentication and encryption.
– T : Transcript of all messages sent and received by the party in this session.
– sid: A session identifier, consisting of an ordered subset of messages in T as

defined by the protocol specification.1

1 Our separation of the transcript and session identifier follows [20] and is a slight
change compared to the original ACCE model [11] to allow for consideration of
protocols where some messages are not authenticated.

7

– Any additional state specific to the protocol (such as ephemeral Diffie–
Hellman exponents).

– Any additional state specific to the security experiment.

We use the notation πs
i .ρ etc. to denote each variable of a particular session.

While a session has set α← in-progress, we say that the session is in the
pre-accept phase; after the session has set α← accept, we say that the session
is in the post-accept phase.

Definition 1 (ACCE protocol). An ACCE protocol P consists of a probabilis-
tic long-term public-private key pair generation algorithm, as well as probabilistic
algorithms defining how the party generates and responds to protocol messages.
The protocol specification also includes a stateful length-hiding authenticated
encryption (sLHAE) scheme StE [10,11] for sending and receiving payload data
on the record layer.

Adversary interaction. In the security experiment, the adversary controls all
interactions between parties: the adversary activates sessions with initialization
information; it delivers messages to parties, and can reorder, alter, delete, replace,
and create messages. The adversary can also compromise certain long-term and
per-session values. The adversary interacts parties using the following queries.

The first query models normal, unencrypted operation of the protocol, gener-
ally corresponding to the pre-accept phase.

– Send(i, s,m)
$→ m′: The adversary sends message m to session πs

i . Party
Pi processes m according to the protocol specification and its per-session
variables πs

i , updates its per-session state, and optionally outputs an outgoing
message m′.
There is a distinguished initialization message which allows the adversary
to activate the session with certain information, such as the intended role ρ
the party in the session, the intended communication partner pid, and any
additional protocol-specific information; when we extend to the negotiable
setting in the next subsection, this will include ciphersuite and/or version
preferences.
This query may return error symbol ⊥ if the session has entered state
α = accept and no more protocol messages are to be transmitted over the
unencrypted channel.

The next two queries model adversarial compromise of long-term and per-
session secrets.

– Corrupt(i)
$→ ski: Returns long-term secret key ski of party Pi.

– Reveal(i, s)
$→ πs

i .k: Returns session key πs
i .k.

The final two queries, Encrypt and Decrypt, model communication over the
encrypted channel. The adversary can direct parties to encrypt plaintexts and
obtains the corresponding ciphertext. The adversary can deliver ciphertexts to
parties, which are then decrypted. To accommodate defining the security property
of indistinguishability of ciphertexts, the Encrypt query takes two messages, and
one of the tasks of the adversary is to distinguish which was encrypted. The

8

exact specification of Encrypt and Decrypt is specified in Figure 4 of [24] (the full
version of [11]), and is omitted in this paper as these queries are not required for
defining negotiable security.

ACCE security definitions. We now present the two sub-properties that de-
fine security of ACCE protocols. Like authenticated key exchange (AKE) security
definitions, the ACCE framework requires that the protocol provides secure mu-
tual authentication. The difference lies in the encryption-challenge: instead of key
indistinguishability (found in AKE experiments) the ACCE framework requires
that all payload data transmitted between parties (during the post-accept stage)
is over an authenticated and confidential channel. The original motivation for
this distinction is that real-world protocols often have key confirmation messages
(for example, TLS’s Finished message), which can act as a key-distinguisher in a
AKE security framework. ACCE solves this by focusing on message confidentiality
and integrity instead of key indistinguishability.

We start by defining matching conversations and the mutual authentication
property of an ACCE protocol. Matching conversations is a property useful for
describing the correctness and authentication of a protocol, first introduced by
Bellare and Rogaway [25]. 2

Definition 2 (Matching sessions). A session πt
j matches session πs

i if:

– if Pi sent the last message in πs
i .sid, then πt

j .sid is a prefix of πs
i .sid; or

– if Pi received the last message in πs
i .sid, then πs

i .sid = πt
j .sid,

where X is a prefix of Y if X contains at least one message and the messages in
X are identical to and in the same order as the first |X| messages in Y .

Definition 3 (Mutual authentication). A session πs
i accepts maliciously if

– πs
i .α = accept;

– πs
i .pid = j and no Corrupt(j) query was issued before πs

i .α was updated to
accept; and

– there is not a unique session πt
j that matches πs

i .

We define Advacce-auth
P (A) as the probability that, when probabilistic adversary

algorithm A terminates in the ACCE experiment for protocol P, there exists a
session that has accepted maliciously.

Channel security for ACCE protocols is defined as the ability of the adversary
to break confidentiality or integrity of the channel. As the channel security
definition does not play a role in the remainder of this paper, we omit the definition
and refer the reader to Definition 5.2 of [11] for details. Using the notation of
Bergsma et al. [20], the expression Advacce-aenc

P (A) denotes the probability that
the adversary A breaks channel security of protocol P.

Definition 4 (ACCE-secure). A protocol P is said to be ε-ACCE-secure against
an adversary A if we have that Advacce-auth

P (A) ≤ ε and Advacce-aenc
P (A) ≤ ε.

2 Our formulation is a slight variant of Jager et al. [11]: we match on session identifiers
(a well-defined subset of messages sent and received) rather than the full transcript.

9

3.2 Negotiable ACCE protocols

In this section we define formally a negotiable ACCE protocol and the cor-
responding security notions. We do so by explaining the differences with Sec-
tion 3.1. The basis of our definition is the multi-ciphersuite ACCE definition of
Bergsma et al. [20], but like the ACCE definitions above we do not consider use
of the same long-term key in multiple sub-protocols. We then define the secure
negotiation property.

Differences in execution environment. A negotiable ACCE protocol is com-
posed of a negotiation protocol NP and a collection of sub-protocols

–
SP; we use

the notation NP‖ # –
SP to denote the combined protocol. For example:

– In TLS with multiple ciphersuites, the negotiation protocol NPcs consists of
the sending and receiving of the ClientHello and ServerHello messages as
shown in Figure 1, and each sub-protocol SPi corresponds to the remaining
messages in ciphersuite i.

– For TLS with multiple versions, each sub-protocol SPi corresponds to a
different version of TLS; the description of the negotiation protocol depends
on whether and how fallback is handled, and is described in Section 2.

Parties and sessions. In a negotiable ACCE protocol, each party Pi has a vector
of long-term public/private key pairs (

–

pki,
–

ski), one for each sub-protocol.
Each session in a negotiable ACCE protocol maintains two additional per-

session variables:

– #–n : An ordered list of negotiation preferences.
– n: The index of the negotiated sub-protocol.

In the execution of NP‖ # –
SP, the protocol begins by running the negotiation

protocol NP, which has as input the ordered list #–n of negotiation preferences; the
negotiation protocol updates per-session variables, and in particular updates the
index n of the negotiated sub-protocol. Once the negotiation protocol completes,
subprotocol SPn is run, operating on the same per-session variables.

Adversary interaction. The adversary can interact with parties exactly as in
Section 3.1. The only difference is that in the distinguished initialization message
in the Send query, the adversary also includes an ordered list #–n of the sub-
protocol preferences that the party should use in that session. For example, in
ciphersuite negotiation, the adversary may direct the party to prefer RSA over
Diffie–Hellman in one session and Diffie–Hellman over RSA in another session.
For version negotiation in TLS, order of the list is descending and contiguous
(i.e., if TLSv1.2 and TLSv1.0 are listed as supported, TLSv1.1 must be listed).

Secure negotiation. Intuitively, a negotiable protocol has secure negotiation
if the adversary cannot cause the parties to successfully negotiate a worse sub-
protocol than the best one they both support. We formalize this via an optimality
function, which will be different for each protocol (for example, the optimality
function for TLS ciphersuite negotiation is different from that of TLS version
negotiation).

10

Definition 5 (Optimal negotiation). Let ω(#–x , #–y)→ z be a function taking
as input two ordered lists and outputting an element of one of the lists or ⊥. We
say that two sessions πs

i and πt
j do not have optimal negotiation with respect to

ω unless πs
i .n = πt

j .n = ω(πs
i .

#–n, πt
j .

#–n).

For TLS ciphersuite negotiation, the optimality function yields the first
ciphersuite in the server’s ordered list of preferences also supported by the client:

ωcs(
#–x , #–y) = yi, where i = min{j : yj ∈ #–x} . (1)

For TLS version negotiation, the optimality function yields the highest version
that is supported by both the client and the server:

ωvers(
#–x , #–y) = max{ #–x ∩ #–y } . (2)

For TLS version negotiation, we impose the order TLSv1.2 > TLSv1.1 >
TLSv1.0 > SSLv3.0 > SSLv2.0.

We can now define what it means for a protocol to have secure negotiation,
either of a particular sub-protocol or over all sub-protocols.

Definition 6 (Secure negotiation of a sub-protocol). We say that a session
πs
i has negotiated a sub-protocol n∗ insecurely with respect to ω if

– πs
i .α = accept;

– πs
i .n = n∗;

– πs
i has not accepted maliciously (in the sense of Definition 3); and

– πs
i and πt

j do not have optimal negotiation with respect to ω, where πt
j is the

unique session that matches πs
i .

We define Advneg,ω

NP‖ #–
SP,n∗(A) as the probability that, when A terminates in the

negotiable-ACCE experiment for NP‖ # –
SP, there exists a session that has negotiated

sub-protocol n∗ insecurely with respect to ω.

Remark 1 (Secure negotiation vs. authentication). Secure negotiation, as defined
is a stronger property than authentication: the third condition of Definition 6
effectively incorporates the authentication security definition. Recall that au-
thentication is based on matching session identifiers; if a protocol uses the full
transcript as the session identifier, then negotiation generally reduces to authenti-
cation, which is shown in the theorem in the next section. However, if a protocol
uses some subset of the transcript as the session identifier, or for example “resets”
the session identifier partway through the handshake as in TLS version fallback,
then negotiation becomes non-trivially different from authentication and requires
further consideration, as we shall see in Section 6.

4 Negotiation-authentication theorem

We now present our negotiation-authentication theorem, which allows us under
certain conditions to relate the probability of an adversary forcing a user to

11

insecurely negotiate to NP‖SPn to the probability of an adversary breaking authen-
tication in NP‖SPn. At first glance, this seems obvious: if all of the messages in a
protocol are securely authenticated, then it should be impossible for an adversary
to trick the parties into negotiating something sub-optimal. There is a reason
why the application of the theorem is not trivial: In practise, not all protocols
authenticate all messages in the handshake. As we will see Section 6, version
fallback in TLS results in some parts of the negotiation not being authenticated.
Historically, ciphersuite downgrade in SSLv2 was possible as the negotiation
phase wasn’t entirely authenticated.

To be able to apply this theorem, the protocol P has to satisfy certain
conditions as shown in the theorem statement below. Precondition 1 captures the
notion that protocols where all handshake message are authenticated, or at least
all handshake messages related to negotiation are authenticated, should allow
us to reduce negotiation security to authentication security. Precondition 2 is a
simply that, in the absence of an active adversary, parties negotiate correctly.

Theorem 1. Let NP‖ # –
SP be a negotiable ACCE protocol and let ω be an optimality

function. Suppose that:

1. all message sent and received by a party in the negotiation phase are included
in the session identifier; and

2. in the absence of an active adversary, negotiation is always optimal with
respect to ω,

then for all algorithms A and for all sub-protocols SPn, Advneg,ω

NP‖ #–
SP,n

(A) = Advacce-auth
NP‖SPn (A).

The proof of Theorem 1 appears in the full version [26]. The brief description
of the argument is as follows: By condition 1, both parties can verify that in
presence of a passive adversary that negotiation was optimal with respect to ω.
Since both parties can verify (via the session identifier) that the negotiation sub-
protocol SPn is the optimal sub-protocol, and NP||SPn itself is an ACCE protocol
with negligible adversary advantage over a passive adversary, then negotiating to
NP||SPn is both optimal and authenticated with negligible adversary advantage.
Once we have related the security of negotiation to the security of authentication
as in the equation in the theorem, we can make use of existing results on ACCE
authentication security, for example the bounds on Advacce-auth

P (B) given for ACCE
authentication security of P = TLS signed-Diffie–Hellman ciphersuites [11], P =
TLS RSA key transport and P = TLS static Diffie–Hellman ciphersuites [13,12].

5 Analysis of TLS ciphersuite negotiation

Using our negotiation-authentication theorem from Section 4, we can show that
TLS is ciphersuite-negotiation secure. We do this by showing that ciphersuite
negotiation in TLS satisfies the two preconditions outlined in our negotiation-
authentication theorem, and hence secure negotiation of ciphersuites is, not
surprisingly, guaranteed by security of authentication. All outputs of ciphersuite
negotiation are included in the session identifier (as seen in Figure 1), thus

12

precondition 1 is satisfied, provided the ciphersuite has secure authentication.
In addition, TLS ciphersuite negotiation is optimal in the presence of a passive
adversary, so precondition 2 is also satisfied. Details appear in the full version [26].

Corollary 1. For the TLS protocol with ciphersuite negotiation NPcs as described
in Figure 1 and TLS ciphersuites

–
SP, an adversary A who can force a user

to negotiate insecurely to ciphersuite SPn with respect to the TLS ciphersuite
optimality function ωcs from equation (1) can also break authentication of that
ciphersuite: Advneg,ωcs

NPcs‖
#–
SP,n

(A) = Advacce-auth
SPn

(A).

6 Analysis of TLS version negotiation

In this section, we consider the three variants of TLS version negotiation identified
in Section 2.2. The no-fallback version negotiation mechanism specified by the
TLS standard, can easily be seen to be secure using our negotiation-authentication
mechanism. When version fallback is permitted, version negotiation is no longer
secure, as we demonstrate with a counterexample, and thus our model successfully
captures this weakness of fallback. Finally, when the signalling ciphersuite value
(SCSV) version fallback detection mechanism is used, we can show that TLS
becomes version-negotiable secure.

6.1 TLS no-fallback version negotiation is secure

It is straightforward to apply our negotiation-authentication theorem to show
that TLS with no-fallback version negotiation (NPv described in Figure 2), pro-
vides secure version negotiation. Here the session identifier consists of the entire
transcript, which includes the client and server’s version information, so precon-
dition 1 of Theorem 1 is satisfied. It is clear that TLS provides optimal version
negotiation in the presence of a passive adversary, so precondition 2 is satisfied.
Thus the negotiation-authentication theorem yields Corollary 2. Details appear
in the full version [26].

Corollary 2. For the TLS protocol with no-fallback version negotiation NPv as
described in Figure 2 and TLS versions

–
SP, an adversary A who can force a user

to negotiate insecurely to version SPn with respect to the TLS version optimality
function ωvers from equation (2) can also break authentication of that version:
Advneg,ωvers

NPv‖
#–
SP,n

(A) = Advacce-auth
SPn

(A).

6.2 TLS fallback version negotiation is not secure

When examining version negotiation in TLS with fallback (NPv-fb from Figure
3), notice that many different ClientHello messages may be sent by the client
before the handshake is accepted by the server. An active adversary may force this
behaviour: instead of delivering the first few ClientHello attempts at handshake
messages to the server, the adversary responds with fatal handshake error,

13

until the client sends a ClientHello which has a sufficiently low version that
the adversary is satisfied. In practise, this may mean a client and a server both
supporting TLSv1.2 may be downgraded to TLSv1.0 by an adversary returning
a handshake error until the client attempts a TLSv1.0 ClientHello with a
successful response. In this scenario, the session clearly has sub-optimal version-
negotiation—the client and server both support TLSv1.2, but the adversary has
caused a version 1.0 negotiation—and this provides a example that TLS with
fallback is not version-negotiable secure.

In terms of our negotiation-authentication theorem, it fails to apply here
because not every output of the negotiation phase is authenticated by the sub-
protocol: only the successful ClientHello message is included in the transcript
and is considered for matching sessions. Much like the ciphersuite-downgrade
vulnerability in SSLv2, this allows an active adversary to modify and delete any
of the previous exchanges between the server and client.

6.3 TLS fallback version negotiation with SCSV is secure

Similar to TLS fallback version negotiation, TLS fallback version negotiation with
SCSV (NPv-fb-scsv as described in Figure 4) does not acknowledge or authenticate
any messages previous to the fatal handshake message in the session identifier,
and as such does not satisfy precondition 1 of Theorem 1. Thus, we cannot
use the negotiation-authentication theorem to show that that fallback version
negotiation with SCSV securely negotiates version. Instead, we provide a direct
argument to show that fallback version negotiation with SCSV is secure provided
that no-fallback TLS version negotiation is secure.

Theorem 2. For the TLS protocol with fallback version negotiation with SCSV
NPv-fb-scsv as described in Figure 4 and TLS versions

–
SP, an adversary who can

force a user to negotiate insecurely to version SPn with respect to the TLS version
optimality function ωvers from equation 2 can also break authentication of that
version: Advneg,ωvers

NPv-fb-scsv‖
#–
SP,n

(A) ≤ Advacce-auth
SPn

(A).

Proof. The security argument proceeds by showing that an adversary who is
successful in breaking fallback version negotiation with SCSV is also successful in
breaking authentication of the underlying ACCE protocol. We give a high-level
description of the simulator behaviour below.

The simulator B in our argument recreates the SCSV mechanisms described in
Figure 4 and ref. [23] using a version negotiation TLS challenger C for TLS with
no-fallback version negotiation; more precisely, B simulates the neg experiment
for NPv-fb-scsv‖

–
SP using a challenger for NPv‖

–
SP.

B initially forwards all adversarial queries to the challenger C for each session.
After receiving the ClientHello message for a session π from the adversary A,
the simulator is able to determine whether the version in the ClientHello would
cause a handshake error. If the error would occur, B replies to A directly with
fatal handshake error. If the error would not occur, B faithfully forwards all
queries for that session between A and C.

14

Upon receiving a fatal handshake error from A intended for a session π,
the simulator uses a Send query to activate a new session π′ that is activated
identically to π except FALLBACK SCSV is also included in the list of supported
ciphersuites and the list of supported versions for π′ is modified to no longer
include the highest supported version v of the session π. B also adds π to a
fallback list FL to determine which sessions have performed version-fallback.

Note that from A’s point-of-view, π′ and π are the same continuous session,
and B now directs all queries sent to π to π′ instead.

As well, B, upon receiving a ClientHello fromA that contains FALLBACK SCSV

in the list of supported ciphersuites, determines if the server’s highest supported
version is higher than the client’s indicated version in the ClientHello. If so,
B replies with an inappropriate fallback error message. Note that the alert
is fatal, so the simulator B will disregard all further Send queries directed to
the server’s session. If not, B forwards the ClientHello to C and continues to
forward all messages for these sessions between A and C.

This describes the simulator’s behaviour during the experiment. Suppose at
some point A breaks the negotiable security of a session π∗. There are two cases:

1. If π∗ does not appear on B’s fallback list FL, then all messages were forwarded
faithfully between A and C. An insecure version fallback to version SPn in B’s
simulation of NPv-fb-scsv‖

–
SP thus directly translates to insecure version negoti-

ation to version SPn in C’s execution of NPv‖
–
SP. Hence, Advneg,ωvers

NPv-fb-scsv‖
#–
SP,n

(A) ≤
Advneg,ωvers

NPv‖
#–
SP,n

(A). By Corollary 2, Advneg,ωvers

NPv-fb-scsv‖
#–
SP,n

(A) ≤ Advacce-auth
SPn

(A).

2. If π∗ does appear on B’s fallback list FL, then the simulator will have rejected
any non-optimal handshakes containing the SCSV. It follows then that the
session must have accepted maliciously (either by the A impersonating the
server party or by modifying the handshake of the fallback session π∗′). Thus
an insecure fallback to version SPn in B’s simulation of NPv-fb-scsv‖

–
SP directly

translates to an authentication break in SPn. Hence, Advneg,ωvers

NPv-fb-scsv‖
#–
SP,n

(A) ≤
Advacce-auth

SPn
(A). ut

Need for contiguous support of TLS versions for fallback with SCSV.
As shown above, SCSV does give additional protection against version downgrade
attacks in TLS implementations that support version fallback. However, we
observe that there is a drawback to the SCSV proposal as it stands: Non-
contiguous support of versions in TLS implementations (a viable scenario in
practise) can hamper interoperability between systems supporting checking for
insecure fallback using SCSV.

In some implementations of TLS,3 users can select a non-contiguous subset
of TLS version support. For example, a user could—for some reason—enable
TLSv1.2 and TLSv1.0, but not TLSv1.1.

3 The current version of Microsoft Internet Explorer (11) and previous versions allow
users to configure which subset of SSL/TLS versions are enabled (Internet options →
Advanced → Security); Mozilla Firefox up to version 22 did as well. On the server
side, Apache mod ssl, Microsoft IIS, and nginx all allow the server administrate to
select which subset of SSL/TLS versions to enable.

15

In relation to the SCSV, this can result in a connection attempt that could
fail to accept without adversarial interaction. Consider the following scenario:
suppose a client user selects TLSv1.2 and TLSv1.0 to support, and attempts to
connect to a server that only supports TLSv1.1 and TLSv1.0, and will return
a fatal handshake error for TLSv1.2. The client sends a ClientHello with
TLSv1.2. After the server fails to parse the TLSv1.2 handshake correctly, it reply
with a fatal handshake error message. The client falls back, sending a new
ClientHello message with its next highest supported version, TLSv1.0, and
includes FALLBACK SCSV in the ciphersuite list to indicate it is falling back. The
server notes the SCSV and rejects the handshake with inappropriate fallback

as recommended in the SCSV proposal because the server’s highest supported
version (TLSv1.1) is higher than the client’s indicated version (TLSv1.0), despite
the fact that the optimal negotiated version would be TLSv1.0.

An alternative mechanism for secure version fallback would be to include
a signalling ciphersuite value for each version it supports, allow the parties to
detect insecure fallback while allowing non-contiguous version support.

7 Discussion

We have introduced provable security notions for negotiation in Internet protocols,
and extended the definition of ACCE protocols to utilise previous comprehensive
ACCE proofs of TLS ciphersuites. We develop a negotiation-authentication
theorem and show that ciphersuite negotiation in TLS is secure, under certain
conditions about long-term key reuse. We follow by showing that the version
negotiation in standards-defined TLS and the TLS implementation with the
SCSV is also secure, but demonstrate that TLS implementations that utilise
browser-based version fallback mechanisms are not version-negotiable secure. This
analysis holds for TLS configurations that exclude sharing long-term keys across
multiple versions. In practice, our analysis requires that TLS configurations (in
order to have ciphersuite negotiation security) must use independent long-term
keys and thus distinct digital certificates for each ciphersuite; this is currently a
necessary cost in order to prevent cross-ciphersuite-like attacks from breaking
authentication in TLS. To the best of our knowledge, no web server software
currently permits configuring different certificate for different TLS ciphersuites
with the same signing/key transport algorithm, nor different certificates for
different TLS versions.

Future work. It seems possible that one could extend our analysis to include
TLS configurations where long-term keys are shared across multiple versions but
a single fixed ciphersuite (i.e. that TLS 1.2 and TLS 1.0 can reuse long-term
keys in the same ciphersuite configuration). However in order to do so requires
extensive modification of the negotiation framework to more closely resemble the
multi-ciphersuite setting [20]. This remains a significant practical limitation on
long-term key reuse across ciphersuites.

Proposed revisions to TLS in the current draft of TLS 1.3 [27] seem to make
the protocol resistant to cross-ciphersuite and cross-version attacks. The main

16

change is that, in TLS 1.3, the value signed using the long-term secret key
now includes (the hash of) all handshake messages, including the negotiated
version and ciphersuite. As a result, the multi-ciphersuite composition framework
of Bergsma et al. [20] should be applicable to both multi-version and multi-
ciphersuite configurations of TLS: a signing oracle for a single sub-protocol
could be constructed to avoid signing objects that would be valid in another
sub-protocol, defeating the first step of the cross-ciphersuite attack. This could
then imply negotiation-authentication security of TLS 1.3 with shared long-term
keys. A thorough analysis is required to show this categorically, however.

Our techniques can also be applied to other protocols that negotiate crypto-
graphic parameters or versions, the Secure Shell (SSH) protocol being a prime
candidate. While SSH does have two versions, they are largely incompatible, and
current best-practices including disabling v1 support, so there is little value in
studying SSH version negotiation. However, SSH also supports multiple crypto-
graphic algorithms, and our framework can easily be applied to SSH algorithm
negotiation. Since the parties authenticate their entire transcript, including both
the client’s and server’s algorithm preferences, our negotiation-authentication
theorem readily implies that SSH has secure ciphersuite negotiation if it has
secure authentication, which it does by the recent results of Bergsma et al. [20].

Acknowledgements

This research has been supported by Australian Research Council (ARC) Discov-
ery Project grant DP130104304.

References

1. Dierks, T., Allen, C.: The TLS protocol version 1.0 (1999) RFC 2246.
2. Dierks, T., Rescorla, E.: The Transport Layer Security (TLS) protocol version 1.1

(2006) RFC 4346.
3. Dierks, T., Rescorla, E.: The Transport Layer Security (TLS) protocol version 1.2

(2008) RFC 5246.
4. Freier, A.O., Karlton, P., Kocher, P.C.: The Secure Sockets Layer (SSL) protocol

version 3.0 (2011) RFC 6101; republication of original SSL 3.0 specification by
Netscape of November 18, 1996.

5. Wagner, D., Schneier, B.: Analysis of the SSL 3.0 protocol. In: Proc. 2nd USENIX
Workshop on Electronic Commerce. (1996)

6. Hickman, K.E.B.: The SSL protocol (version 0.2). http://www-archive.mozilla.

org/projects/security/pki/nss/ssl/draft02.html (1995)
7. Jonsson, J., Kaliski Jr., B.S.: On the security of RSA encryption in TLS. In Yung,

M., ed.: CRYPTO 2002. Volume 2442 of LNCS., Springer (2002) 127–142
8. Morrissey, P., Smart, N.P., Warinschi, B.: A modular security analysis of the

TLS handshake protocol. In Pieprzyk, J., ed.: ASIACRYPT 2008. Volume 5350 of
LNCS., Springer (2008) 55–73

9. Krawczyk, H.: The order of encryption and authentication for protecting communi-
cations (or: How secure is SSL?). In Kilian, J., ed.: CRYPTO 2001. Volume 2139
of LNCS., Springer (2001) 310–331

17

http://www-archive.mozilla.org/projects/security/pki/nss/ssl/draft02.html
http://www-archive.mozilla.org/projects/security/pki/nss/ssl/draft02.html

10. Paterson, K.G., Ristenpart, T., Shrimpton, T.: Tag size does matter: Attacks and
proofs for the TLS record protocol. In Lee, D.H., Wang, X., eds.: ASIACRYPT 2011.
Volume 7073 of LNCS., Springer (2011) 372–389

11. Jager, T., Kohlar, F., Schäge, S., Schwenk, J.: On the security of TLS-DHE in the
standard model. In Safavi-Naini, R., Canetti, R., eds.: CRYPTO 2012. Volume
7417 of LNCS., Springer (2012) 273–293

12. Krawczyk, H., Paterson, K.G., Wee, H.: On the security of the TLS protocol:
A systematic analysis. In Canetti, R., Garay, J.A., eds.: CRYPTO 2013, Part I.
Volume 8042 of LNCS., Springer (2013) 429–448

13. Kohlar, F., Schäge, S., Schwenk, J.: On the security of TLS-DH and TLS-RSA
in the standard model. Cryptology ePrint Archive, Report 2013/367 (2013) http:

//eprint.iacr.org/2013/367.
14. Li, Y., Schäge, S., Yang, Z., Kohlar, F., Schwenk, J.: On the security of the

pre-shared key ciphersuites of TLS. In Krawczyk, H., ed.: PKC 2014. Volume 8383
of LNCS., Springer (2014) 669–684

15. Brzuska, C., Fischlin, M., Smart, N.P., Warinschi, B., Williams, S.C.: Less is more:
Relaxed yet composable security notions for key exchange. International Journal of
Information Security 12 (2013) 267–297

16. Bhargavan, K., Fournet, C., Kohlweiss, M., Pironti, A., Strub, P.Y.: Implementing
TLS with verified cryptographic security. In: 2013 IEEE Symposium on Security
and Privacy, IEEE Computer Society Press (2013) 445–459

17. Giesen, F., Kohlar, F., Stebila, D.: On the security of TLS renegotiation. In Sadeghi,
A.R., Gligor, V.D., Yung, M., eds.: ACM CCS 13, ACM Press (2013) 387–398

18. Ray, M., Dispensa, S.: Renegotiating TLS (2009) http://extendedsubset.com/

Renegotiating_TLS.pdf.
19. Mavrogiannopoulos, N., Vercauteren, F., Velichkov, V., Preneel, B.: A cross-protocol

attack on the TLS protocol. In Yu, T., Danezis, G., Gligor, V.D., eds.: ACM CCS
12, ACM Press (2012) 62–72

20. Bergsma, F., Dowling, B., Kohlar, F., Schwenk, J., Stebila, D.: Multi-ciphersuite
security of the Secure Shell (SSH) protocol. In Ahn, G.J., Yung, M., Li, N., eds.:
ACM CCS 14, ACM Press (2014) 369–381

21. Bhargavan, K., Fournet, C., Kohlweiss, M., Pironti, A., Strub, P.Y., Zanella Béguelin,
S.: Proving the TLS handshake secure (as it is). In Garay, J.A., Gennaro, R., eds.:
CRYPTO 2014, Part II. Volume 8617 of LNCS., Springer (2014) 235–255

22. Rescorla, E., Ray, M., Dispensa, S., Oskov, N.: Transport Layer Security (TLS)
renegotiation indication extension (2010) RFC 5746.

23. Möller, B., Langley, A.G.: TLS fallback Signaling Cipher Suite Value (SCSV)
for preventing protocol downgrade attacks. https://tools.ietf.org/html/

draft-ietf-tls-downgrade-scsv-05 (2015) Internet-Draft -05.
24. Jager, T., Kohlar, F., Schäge, S., Schwenk, J.: On the security of TLS-DHE in

the standard model. Cryptology ePrint Archive, Report 2011/219 (2011) http:

//eprint.iacr.org/2011/219.
25. Bellare, M., Rogaway, P.: Entity authentication and key distribution. In Stinson,

D.R., ed.: CRYPTO’93. Volume 773 of LNCS., Springer (1993) 232–249
26. Dowling, B., Stebila, D.: Modelling ciphersuite and version negotiation in the TLS

protocol (full version). Cryptology ePrint Archive (2015)
27. Rescorla, E.: The Transport Layer Security (TLS) protocol version 1.3. https:

//tools.ietf.org/html/draft-ietf-tls-tls13-05 (2015) Internet-Draft -05.

18

http://eprint.iacr.org/2013/367
http://eprint.iacr.org/2013/367
http://extendedsubset.com/Renegotiating_TLS.pdf
http://extendedsubset.com/Renegotiating_TLS.pdf
https://tools.ietf.org/html/draft-ietf-tls-downgrade-scsv-05
https://tools.ietf.org/html/draft-ietf-tls-downgrade-scsv-05
http://eprint.iacr.org/2011/219
http://eprint.iacr.org/2011/219
https://tools.ietf.org/html/draft-ietf-tls-tls13-05
https://tools.ietf.org/html/draft-ietf-tls-tls13-05

	Modelling ciphersuite and version negotiation in the TLS protocol
	Benjamin Dowling and Douglas Stebila

